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Abstract
As the growing demand of the performances for modern equipment under complex service condition, more challenges 
have been presented for topology optimization design considering the influence of thermo-mechanical coupling field. At 
present, most thermo-mechanical topology optimizations are focused on deterministic assumptions. However, the random 
and interval hybrid uncertainties related to material properties, loadings, etc. unavoidably exist in structures and may have 
notable influence on structural performances or even result in failure designs. This paper will develop a new robust topol-
ogy optimization method for structures under thermo-mechanical loadings considering hybrid uncertainties, in which an 
efficient dimension reduction-based orthogonal polynomial expansion method is developed for hybrid uncertainty analysis. 
Firstly, the robust objective function is defined by the lower order moments and the topology optimization model is provided 
under the worst case. Based on the proposed hybrid uncertainty analysis method, the sensitivities with respect to the design 
variables are obtained. Finally, the gradient-based optimization method is applied to achieve the robust design for structures 
with thermo-mechanical loadings.

Keywords Topology optimization · Thermo-mechanical coupling · Robust design · Hybrid uncertainties

1 Introduction

Topology optimization provides an effective design tool to 
search for the optimal material distributions of structures 
and achieve novel conceptual designs, which can meet the 
increasing requirements of the modern equipment to a large 
extent. Topology optimization has experienced great popu-
larity and a series of achievements has been developed over 
the past decades (Sigmund and Maute 2013; Dbouk 2017). 
Most topology optimization methods are developed for 
structures under the mechanical field or the thermal field. 
However, the structures in advanced equipment generally 
work under complex multi-physics service conditions. Since 
the high temperature and the mechanical loading would both 

have great influence of the performance of the structure, it is 
important to consider the thermo-mechanical coupled effect 
in the topology optimization.

In order to improve the mechanical performance and 
ensure the service reliability of structures, Rodrigues and 
Fernandes (1995) early explored the structural topology 
optimization considering thermal and mechanical coupling 
loadings. Since then, a series of thermo-mechanical topol-
ogy optimization methods have been developed. Based on 
the level set method, Xia and Wang (2008) investigated 
topology optimization of thermoelastic structures under 
volume constraint. In recent years, level set methods have 
also been introduced in thermoelastic topology optimization 
for problems with multi-material, non-linearity, and ther-
mal buckling (Vermaak et al. 2014; Deng and Suresh 2017; 
Chung et al. 2020). Based on the solid isotropic material 
with penalization (SIMP) method, Gao and Zhang (2010) 
developed a topology optimization method for structures 
involving thermoelastic stress loads based on the definition 
of thermal stress coefficient and also applied the method 
to multi-material topology optimization problems. Later, 
Yang and Li (2013) proposed a topology optimization 
method to minimize the dynamic compliance in a thermal 
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environment. Yan et al. (2016) developed the multi-scale 
concurrent topology optimization method under mechanical 
and thermal loads based on the porous anisotropic material 
with penalization model. In order to meet the manufacturing 
requirements of mechanical equipment, Hostos et al. (2021) 
proposed a topology optimization method for  thermo-
mechanical metadevices.

In thermo-mechanical topology optimization problems, 
the heat conduction property is also an important concern of 
the structural design. For heat storage devices, the mechani-
cal stiffness should be maintained under high temperature 
conditions, while the heat retaining capacity should also be 
ensured. Focus on this problem, Yang et al. (2019) proposed 
a topological optimization method for integrated thermal 
protection systems to achieve both low thermal conductiv-
ity and high mechanical performance. In some industrial 
fields i.e., electron components design, the heat conduction 
property should be improved to reduce the temperature of 
the structure. For example, Matsumori et al. (2019) devel-
oped a topology optimization method based on the den-
sity method for a power semiconductor module to provide 
efficient cooling and reduce the thermal stress. Zhu et al. 
(2019) studied a temperature-constrained topology opti-
mization method for thermo-mechanical coupled problem. 
Kambampati et al. (2020) built the topology optimization 
model to minimize stress and compliance under volume and 
temperature constraints and solved this problem based on 
a level set method. These developments and achievements 
contribute much for the structural design optimization of 
advanced equipment.

At present, the topology optimizations considering 
thermo-mechanical loadings are generally based on deter-
ministic assumption. However, the material properties and 
loadings parameters related to the physical fields inevitably 
have multi-source uncertainties (Fragiadakis et al. 2008), 
and these uncertainties may have great influence on the 
design optimizations or even result in failure designs. Nev-
ertheless, the importance of uncertainties has already been 
noticed in the topological design problems and a number of 
research works have been proposed for topology optimiza-
tion considering uncertainties which can be divided into two 
categories, namely, reliability-based topology optimization 
(RBTO) and robust topology optimization (RTO) (Guo and 
Cheng 2010). In RBTO, reliability constraints are introduced 
into the topology optimization model, in order to achieve a 
reliable design under the uncertain parameters (Kharmanda 
et al. 2004; Jung and Cho 2004; Meng et al. 2020; Luo et al. 
2021). RTO problems is the main concern of this work, 
in which the lower statistical moments of the structural 
response are optimized to receive a robust design. Guest 
and Igusa (2008) presented an RTO method under load-
ing and structural nodes location uncertainties. Chen et al. 
(2010) developed a Karhunen–Loeve (KL) and univariate 

dimension-reduction-based RTO method for structures 
with material and loading uncertainties. Tootkaboni et al. 
(2012) proposed an RTO method considering random field 
material uncertainties based on polynomial chaos expan-
sion and stochastic Galerkin formulation. Recently, the RTO 
framework is introduced in the design of optical cloaks to 
deal with the topology optimization designs considering the 
uncertainties in the wave number and angle in the incident 
wave (Sato et al. 2020). Due to some physical characteris-
tics, it could be more appropriate to model the uncertainties 
with certain bounded ranges by bounded probability mod-
els. Schevenels et al. (2011) presented a robust approach 
based on a Monte Carlo method considering uniform and 
non-uniform spatially varying manufacturing errors mod-
eled by bounded random variables and random fields. Zhang 
et al. (2017) developed a new level set-based framework for 
robust topology optimization (RTO) problems with geomet-
ric uncertainties modeled by uniformly distributed random 
fields, in which the Karhunen–loeve (KL) decomposition 
and the polynomial chaos expansion are utilized to evaluate 
the stochastic response. Considering uncertainties arising 
from different sources, Bai et al. (2021) also proposed an 
RTO method for structures with bounded loads and spatially 
correlated material uncertainties by using the ellipsoid con-
vex model.

Among the topology optimizations considering uncer-
tainties, the uncertain parameters are often assumed to fol-
low the probability distributions based on enough experi-
mental samples. However, due to the difficulty and high cost 
of testing, it is often difficult to get the accurate distribu-
tions of uncertain parameters. Therefore, the interval model 
provides an effective way to describe the uncertain param-
eters by the variation bounds. Early in 1993, Ben-Haim and 
Elishakoff (2013) introduced interval methods into struc-
tural analysis problems, and then a number of achievements 
for interval analysis have been developed afterward (Ben-
Haim and Elishakoff 2013; Jiang et al. 2008; Wei et al. 2016; 
Wang et al. 2020; Xu et al. 2020). Thus, the bounded interval 
uncertainties have also been paid attention in the topology 
optimization to obtain robust designs. Guo et al. (2013) 
studied an RTO problem based on a level set framework 
considering the unknown-but-bounded boundary variations. 
Wu et al. (2016) employed the Chebyshev polynomial for 
the interval analysis in the RTO problems. Considering the 
interval uncertainties in magnitude and direction of load-
ings, da Silva et al. (2019) proposed a non-probabilistic RTO 
approach for topology optimization problems with stress 
constrains. Wang and Gao (2020) proposed an RTO method 
based on Taylor expansions for structures with loading posi-
tion uncertainties.

With the increasing complexity of engineering structures 
and requirements for structural safety design, it is not appro-
priate to model the multi-source uncertainties only by one 
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type of uncertainties. Random and interval hybrid uncertain-
ties are considered as a more general uncertain model (Jiang 
et al. 2018) and a series of RTO problems with hybrid uncer-
tainties have been developed based on Taylor expansions 
(Chen et al. 2016; He et al. 2020), orthogonal polynomial 
expansions (Wu et al. 2017; Chen et al. 2019), dimension 
reduction methods (Zheng et al. 2018, 2019a) and so on. 
Among those, the orthogonal polynomial expansion-based 
method has become one of the most popular type due to 
the powerful function approximation ability of the expan-
sion represented by a suitably polynomial basis. Wu et al. 
(2015) proposed a Polynomial-Chaos-Chebyshev-Interval 
method (PCCI) method for hybrid uncertainties analysis and 
investigated an RTO method for mechanical metamaterials 
with negative Poisson’s ratio based on the PCCI method 
(Wu et al. 2017). Later, the PCCI method has also been 
introduced in topology optimization problems (Zheng et al. 
2019b; Li et al. 2020) for structures and composite mate-
rials under hybrid uncertainties. A robust microstructural 
topology optimization method has been proposed based on 
Gegenbauer polynomial expansion to minimize the sound 
pressure of structural–acoustic system with bounded hybrid 
uncertainties (Chen et al. 2019). By the projection method, 
the polynomial coefficients are calculated multiple integra-
tions, in which the dimensionality is equal to the number of 
the uncertain variables. Hence, the computational cost in 
calculating the expansion coefficients would increase expo-
nentially with the increase of the uncertain variables, which 
is a main difficulty for the hybrid uncertainty analysis.

In the thermo-mechanical coupled analysis problem, 
there may exist uncertain parameters related to the Young’s 
module, Poison’s ratio, thermal expansion coefficient, tem-
perature field, and applied loadings. Thus, the computational 
burden becomes heavier for problem with a relatively large 
number of uncertain parameters. Dimension reduction (DR) 
integration methods (Rahman and Xu 2004; Xu and Rah-
man 2004) are proved to be efficient to deal with multiple 
integrations. The univariate DR method has been proposed 
to calculate statistical moments of the structural response, in 
which the multi-dimensional integral can be approximated 
by a series of one-dimensional integrals. For structures 
involving small-to-moderate uncertainties, the univariate 
DR method has been verified to show very good efficiency 
and accuracy in reference (Rahman and Xu 2004). For prob-
lems with large uncertainties and/or high non-linearity, the 
univariate DR may not be adequate since the contributions 
from two- and higher-dimensional integrations could not be 
neglected, and the errors can be further reduced by apply-
ing bivariate or multivariate DR methods (Xu and Rahman 
2004). Taking advantage of the DR methods, the integration 
formulations for calculating the mean and variance have pre-
viously been efficiently solved in (Zheng et al. 2018, 2019a). 
However, this type of scheme could improve the efficiency, 

but sometimes may have a relatively large sacrifice on accu-
racy. In order to efficiently analyze the structural compli-
ance of thermo-mechanical coupled structures with hybrid 
uncertainties, a DR-based orthogonal polynomial expansion 
method is developed for hybrid uncertainty analysis in this 
work. In this case, the advantage of the orthogonal polyno-
mial expansion is maintained, while the efficiency of calcu-
lating the expansion coefficients has been greatly improved. 
Based on the proposed hybrid uncertainty analysis method, 
a new robust topology optimization method has been devel-
oped. Firstly, the robust topology optimization model is built 
in which the robust objective function is defined as the com-
bination of the mean and standard variance of the structural 
compliance under the worst case. After the evaluation of 
the robust objective function, the sensitivities with respect 
to the design variables are obtained. Finally, the effective-
ness of the proposed method is verified by several numerical 
examples.

2  Thermo‑mechanical topology 
optimization

Under a thermo-mechanical coupled field, the global finite 
element equation is expressed as follows:

in which K is the global stiffness matrix of the struc-
ture, and U denotes the global displacement field. F and 
�Δ� are the mechanical and thermal loading vectors of the 
structure, respectively. The thermal loading �Δ� related to 
thermal stress can be calculated by assembling the elemental 
thermal loading �(e)

Δ�
 which can be obtained as follows:

in which �e and �e are strain–displacement matrix and 
elastic matrix of the eth element. �Δ�

e
 is the thermal strain 

caused by the temperature variation:

 where � is the thermal expansion coefficient. �e and �e denote 
the temperature and reference temperature of the element, 
respectively. � = [1 1 0] for 2D problems. When the tem-
perature field of the structure is achieved, the relevant ther-
mal loading �Δ� can be obtained. Considering both mechan-
ical and thermal loadings, the topology optimization aiming 
at minimizing structural compliance can be formulated as 
follows:

(1)�� = � + �Δ�,

(2)�
(e)

Δ�
= ∫Ve

(
�e

)T
�e�

Δ�
e

dVe,

(3)�Δ�
e

= �
(
�e − �ref

)
�T,
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in which C represents the compliance of the structure. Ve 
and V0 represent the volume of the element and the structure, 
respectively, and f  is the volume fraction. �

e
(e = 1, 2,⋯ ,N) 

denotes the design variable of the eth element, while �
min

 is 
the minimum element relative density to avoid singularity.

The density-based SIMP method is applied to solve the 
topology optimization in Eq. (3), in which the elastic matrix 
and the thermal stress coefficient (Gao and Zhang 2010) 
need to be determined by material interpolations:

in which �0 is a constant matrix, while E0 and �0 are the 
Young’s modulus and the thermal expansion coefficient of 
the solid material. p is the penalization factor. The gradient-
based optimization algorithm is implemented for updating 
the design variables, so the sensitivities of the objective 
function with respect to the design variables are required for 
the iteration. The sensitivities can be calculated as follows:

Substituting Eq. (2)-(3) and Eq. (5)-(6) into Eq. (7), it can 
be obtained that:

3  Robust topology optimization 
under thermo‑mechanical loadings

3.1  Robust topology optimization formulation

Considering random and interval hybrid uncertainties 
related to material properties and loadings, the structural 
compliance C is no longer a constant value but a function 
C(�,�) with random and interval parameters, in which 
� =

(
X1,X2, ...,Xn

)
 represents the random vector and 

(4)

min C = �T�� =

N∑
e=1

(
�e

)T
�e�e

s.t.

N∑
e=1

𝜌eVe ≤ fV0

�� = � + �Δ�

0 < 𝜌min ≤ 𝜌e ≤ 1, e = 1, 2,⋯ ,N

(5)�e

(
�e
)
= E

(
�e
)
�0 =

(
�e
)p
E0�0,

(6)�
(
�e
)
=E

(
�e
)
�
(
�e
)
=
(
�e
)p
E0�0,

(7)
�C

��e
= 2�T

��Δ�

��e
− �T ��

��e
�.

(8)

�C

��e
= 2�T

e
p(�e)

p−1�
0
E
0

(
�e − �ref

)
∫Ve

�T

e
�

0
�TdVe

− p
(
�e
)p−1

E
0
�T

e

(
∫Ve

�e�0
�edVe

)
�e.

� =
(
Y1, Y2, ..., Ym

)
 represents the interval vector. The robust 

objective function can then be defined as a linear combi-
nation of the mean and standard variance of the structural 
compliance under the worst case as:

in which h is the weight factor. The robust topology opti-
mization is formulated as:

 where the weight factor value is set as 1 in this work. Sim-
ilarly, as the topology optimization in Eq. (4), the above 
robust topology optimization can also be conveniently 
solved after obtaining the robust objective function value 
and the sensitivities of the robust objective function and con-
straints. However, the hybrid uncertainties cause difficulties 
in calculating the robust objective function value and the 
sensitivities with respect to the design variables. In order to 
efficiently solve the topology optimization problem, an effi-
cient DR-based hybrid uncertainty analysis method is devel-
oped, and the explicit sensitivity expressions are achieved 
based on the uncertainty analysis.

3.2  DR‑based hybrid uncertainty analysis method

3.2.1  Hybrid uncertainty analysis based on orthogonal 
polynomials

In this part, we will introduce the hybrid uncertainty analysis 
based on orthogonal polynomials, in which the performance 
function will be approximated using the PC expansion by 
firstly considering the random uncertainties, and then be 
expanded by the CI method taking the interval uncertainties 
into account (Wu et al. 2015). The expansion coefficients for 
the PC and CI expansions are calculated by integration for-
mations. At first, the random variables Xi, i = 1, 2,⋯ , n are 
transformed into standard random variables �i, i = 1, 2,⋯ , n 
and interval variables Yi, i = 1, 2,⋯ ,m are turned into stand-
ard interval variables �i, i = 1, 2,⋯ ,m through linear trans-
formations. For an uncertain performance function �(�,�) 
with n random variables �=

[
�1, �2,⋯ , �n

]
 and m interval 

variables �=
[
�1, �2,⋯ , �m

]
 , the p1th order PC expansion 

with fixed interval variables can be expressed as:

(9)g = max �(C(�,�)) + h�(C(�,�)),

(10)

min g = max 𝜇(C(�,�)) + h𝜎(C(�,�))

s.t.

N∑
e=1

𝜌eVe ≤ fV0

�(�,�)�(�,�) = �(�,�) + �Δ�(�,�)

0 < 𝜌min ≤ 𝜌e ≤ 1, e = 1, 2,⋯ ,N

(11)�(�,�) =
∑

�1∈ℕ
n

h�1
(�)H�1

(�),
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in which �1 =

�
�1 ∈ ℕ

n ∶
n∑
i=1

� i
1
≤ p1

�
 represents the 

index set to identify the components of the multivariate 
polynomials. H�1

(�) =
n∏
i=1

H� i
1

�
�i
�
, � i

1
= 0, 1, ⋅ ⋅ ⋅, p1 is the 

multivariate polynomial built from a set of univariate ortho-
normal polynomials H� i

1

(
�i
)
 that satisfies the following 

orthogonality condition:

 where �(�) is the weighting function corresponding to the 
type of the orthogonal polynomial, �ij is the Kronecker delta. 
For standard random variable � , the base function is Hermite 
polynomial, and the corresponding weighting function 
�H(�) =

1√
2�
e
−

1

2
�2 . h��

(�) is the expansion coefficient which 

can be calculated by the projection method:

The above Eq. (13) is a multi-dimensional integration 
function and it can be calculated by the Gaussian quadrature. 
The multivariate Gaussian quadrature points are achieved 
by a tensor product of univariate integration points, so the 
number of integration points increases exponentially with 
the number of uncertain variables.

From the PC expansion in Eq. (11), it can be seen that 
the performance function with hybrid uncertainties can be 
approximated by polynomial terms and the corresponding 
expansion coefficients. Considering the interval uncertain 
variables, the coefficients in Eq. (13) can be approximated 
using the p2th order Chebyshev polynomials:

Thus, the uncertain function �(�,�) can be rewritten as:

 where �2 is the index set and C�
2
(�) =

m∏
i=1

C� i

2

�
�
i

�
,� i

2
= 0, 1, ⋅ ⋅ ⋅, p

2
 

denote the multivariate Chebyshev polynomials built from 
univariate Chebyshev polynomial:

(12)

⟨
Hi(�),Hj(�)

⟩
= ∫ �(�)H� i

1

(�)H
�
j

1

(�)d� =
⟨
Hi(�),Hj(�)

⟩
�ij,

(13)

h��
(�) =

⎛
⎜⎜⎜⎝

n�
i=1

1�
H� i

1

(�)2
�
⎞
⎟⎟⎟⎠
∫

+∞

−∞

⋅ ⋅ ⋅∫
+∞

−∞

�
n�
i=1

�
H

�
�
i

��
�(�,�)H��

(�)d�1 ⋅ ⋅ ⋅ d�n.

(14)h�1
(�) =

∑
�2∈ℕ

m

c�1,�2
C�2

(�).

(15)�(�,�) =
∑

�1∈ℕ
n

∑
�2∈ℕ

m

c�1,�2
C�2

(�)H�1
(�),

 where �i = arccos
(
�i
)
= [0,�] . The inner product of the 

univariate Chebyshev polynomial is as follows:

Similarly, the Chebyshev expansion coefficient c�1,�2
 can 

be calculated by the projection method in a multi-dimen-
sional integration formation:

 where �C(�) =
1√
1−�2

 is the weighting function correspond-
ing to the Chebyshev polynomial. The Eq. (18) is also a 
multi-dimensional integration in which h�1

(�) is calculated 
by Eq. (13). It can be seen that a nested multi-dimensional 
integration is required to evaluate the coefficient c�1,�2

 . 
Hence, the computational burden becomes extremely heavy 
for the hybrid uncertainty analysis especially for problems 
with a large number of uncertain variables.

Taken advantage of the orthogonality of the polynomials, 
the mean and variance of the performance function can be 
acquired after the evaluation of the expansion coefficients:

Based on the bounded characteristic of the univariate 
Chebyshev polynomials, it can be seen that C0(�) = 1 and 
C�2

(�) = [−1, 1] . Hence, the bounds of the mean and stand-
ard variance can be easily approximated as follows:

(16)C� i
2

(
�i
)
= cos

(
� i
2

[
�i
])
,

(17)
⟨
Ci(�)

2
⟩
=

{
�, i = 0
�

2
, i ≠ 0

.

(18)

c�1,�2
=

⎛
⎜⎜⎜⎝

m�
i=1

1�
C� i

2

(�)2
�
⎞
⎟⎟⎟⎠
∫

+1

−1

⋅ ⋅ ⋅∫
+1

−1

�
m�
i=1

�
C

�
�
i

��

h�1
(�)C�2

(�)d�1 ⋅ ⋅ ⋅ d�m,

(19)�(�(�,�)) = h0(�) =
∑

�2∈ℕ
m

c0,�2
C�2

(�),

(20)

�2(�(�,�)) =
∑

�
1
∈ℕn,�

1
≠0
(
h�

2
(�)

)2⟨
H�

1
(�)2

⟩

=
∑

�
1
∈ℕn,�

1
≠0

( ∑
�
2
∈ℕm

c�
1
,�

2
C�

2
(�)

)2⟨
H��

(�)2
⟩
.

(21)

�(�(�,�)) = c
0,0

−

( ∑
�
2
∈ℕm,�

2
≠0
|||c0,�2

|||
)
,�(�(�,�))

= c
0,0

+

( ∑
�
2
∈ℕm,�

2
≠0
|||c0,��

|||
)
,
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In Eqs. (21) and (22), each interval term of the expan-
sion is assumed to reach their bounds simultaneously. In 
this case, the worst-case mean and standard variance values 
calculated from the proposed method is not with respect to 
a certain interval realization, but a bound estimation for an 
interval function with given interval variations. However, 
this approximation scheme provides a same trend of a direct 
evaluations of the interval functions in Eqs. (19) and (20), 
so it can be used to formulate the robust objective function 
value in Eq. (9).

3.2.2  Coefficient evaluation by DR integration

The coefficients are obtained through multi-dimensional 
integrations in the uncertainty analysis based on orthogonal 
polynomials using the projection method. Considering the 
random and interval hybrid uncertainties, the coefficients 
in the expansion are evaluated by nested multi-dimensional 

(22)

�(�(�,�)) =

√√√√√ ∑
�1∈ℕ

n ,�1≠0

(
c�� ,0

−
∑

�2∈ℕ
m ,�2≠0

|||c�� ,��
|||
)2⟨

H��
(�)2

⟩

�(�(�,�)) =

√√√√√ ∑
�1∈ℕ

n ,�1≠0

(
c�� ,0

+
∑

�2∈ℕ
m ,�2≠0

|||c�� ,��
|||
)2⟨

H��
(�)2

⟩
.

integrations. During the process of the uncertainty analysis, 
coefficient evaluation is the main time-consuming part in 
which a large number of function calls are required corre-
sponding to the integration points or samples. In this work, 
the uncertain parameters in structures are considered to have 
a small level of variations, and the univariate DR method is 
introduced to calculate the expansion coefficients. Follow 
the main idea of the univariate DR method, the multi-dimen-
sional performance function can be approximated by a series 
of one-dimensional functions. Hence, the multi-dimensional 
integration can be expressed by a series of one-dimensional 
integrations, and the exponentially increasing computational 
cost can be greatly relieved.

Typically, by the univariate DR method, the multi-
dimensional problem will be transformed into a series of 
one-dimensional problems. The uncertain function can be 
approximated as (Rahman and Xu 2004):

in which � =
[
Z1, Z2,⋯ , Zn

]
 denotes the random or inter-

val vector, uj represents the mean value or the midpoint value 
of the variable Zj , Ĉj(�) = C

(
u1, ⋅ ⋅ ⋅, uj−1, Zj, uj+1, ⋅ ⋅ ⋅, un

)
 . 

After this approximation, the multi-dimensional Gauss inte-
gral can be changed to a one-dimensional Gauss integral. By 
applying Eq. (23) for h�1

(�) , the Eq. (18) can be rewritten as:

The coefficient c�1,�2
 can be calculated from two terms. 

For the second term, it can be figured out that the later part 
of this term can be expressed as follows when and only 
when �1

2
= �2

2
= ⋅ ⋅ ⋅ = �n

2
= 0 due to the orthogonality of 

the Chebyshev polynomial:
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)
,

(24)

c�1,�2
=

⎛
⎜⎜⎜⎝

m�
i=1

1�
C𝜒 i

2

(𝜂)2
�
⎞
⎟⎟⎟⎠
∫

+1

−1

⋅ ⋅ ⋅∫
+1

−1

�
m�
i=1

𝜔C

�
𝜂i
���

m�
j=1
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(�)d𝜂1 ⋅ ⋅ ⋅ d𝜂m.
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For the first term of c�1,�2
:

in which �c
j
 is the midpoint of the interval variable �j . It 

can be seen that Eq. (26) composed of m integrations, and 
the jth integration can be rewritten as:

To make the description clear, we also con-
sider Eq.  (27) as two parts. The first part of Eq.  (27) 
can be expressed as follows when and only when 
�1
2
= ⋅ ⋅ ⋅ = �

j−1

2
= �

j+1

2
= ⋅ ⋅ ⋅ = �m

2
= 0:

(25)
∫
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�C

(
�i
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2
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= �m.

(26)
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(
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𝜔C
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1
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c
j+1
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m
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(27)

�
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The second par t  of  the  term ∫ +1
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(
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j
 can be evaluated 

easily by the Gaussian quadrature. Hence, Eq. (24) can be 
rewritten as follows when �1

2
= �2

2
= ⋅ ⋅ ⋅ = �m

2
= 0:

When  �1
2
= ⋅ ⋅ ⋅ = �
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� j

2
≠ 0 , Eq. (24) is:
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2
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= 0.

It can be seen that the coefficient h�1
(�) is required when 

calculate the c�1,�2
 . h�1

(�) is also a multi-dimensional inte-
gration by Eq. (13), which can similarly be achieved by 
introduction the DR method:
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Similarly, repeating the process in Eqs. (25)-(28), it can 
be concluded that when �1

1
= �2

1
= ⋅ ⋅ ⋅ = �n

1
= 0:

When �1
1
= ⋅ ⋅ ⋅ = �

j−1

1
= �

j+1

1
= ⋅ ⋅ ⋅ = �n

1
= 0 while 

�
j

1
≠ 0:

When 
n∑

i=1,i≠j
� i

1
≠ 0 , h�1

(�) = 0.

Therefore, by the proposed DR-based hybrid uncertainty 
analysis method, the coefficients of the hybrid expansion 
can be efficiently obtained, and then the mean and stand-
ard variance of the uncertain function (i.e., the structural 
compliance) can be easily approximated by Eqs. (21) and 
(22). For a problem with n random variables and m inter-
val variables,  3n+m integration points are required for the 
full tensor product multi-dimensional integration if the uni-
variate integration points are chosen as three, while by the 
proposed method, only (3n + 1) × (3 m + 1) function calls 
are needed during the hybrid uncertainty analysis process. 
Thus, the exponentially increasing computational cost can 
be greatly relieved to improve the computational efficiency. 
At the same time, very good computational accuracy can 
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also be kept for the analysis which will be illustrated in the 
numerical examples.

3.3  The solving of the robust topology optimization

By applying the hybrid uncertainty analysis method, the 
interval mean and variance of the structural compliance can 
be calculated by Eq. (21) and (22), and then the robust objec-
tive function can be obtained:

In order to solve the robust topology optimization, the 
method of moving asymptotes (Svanberg 1987) method is 
used to update the design variables, and the sensitivities with 
respect to the design variables are:

in which:

The sensitivities can be rewritten as:
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Since sign function is not differentiable at x = 0, hyper-
bolic tangent function is used to approximate the sign func-
tion. The sensitivities are then be expressed as:

in which the constant � is set as 100 here.
On the other hand, considering the uncertainties for the 

sensitivities in Eq. (8), the deterministic sensitivity function 
can also be expanded as follows:

 where ��1,�2
 represent the expansion coefficients. At the 

same time, by differentiating Eq. (15) in regard to the struc-
tural compliance with respect to the design variables:

It can be figured out that:

Hence, the values of ��1,�2
 are obtained after the uncer-

tainty analysis of the deterministic sensitivity functions in 
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Eq. (8). Finally, the sensitivities of the robust objective func-
tion can be calculated by:

Fig. 1  Design domain and boundary condition

4  Numerical examples

In this part, three numerical examples are provided in this 
part to verify the proposed robust topology optimization 
method in this work. The material properties and loadings 
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related to thermo-mechanical coupled field are considered 
as hybrid uncertain variables. For comparison, the deter-
ministic topology optimization results are also provided, in 
which the random variables are set as the mean values and 
the interval variables are set as the midpoint values. A dou-
ble loop sampling method termed as Monte-Carlo-Scanning 
(MCS) test has been applied to verify the hybrid uncertainty 
analysis results of the DR-based method, in which the Monte 

Carlo (MC) simulation is applied in the inner loop for the 
random variables and the scanning method is used in the 
outer loop for the interval variables (Wu et al. 2015). In the 
MC simulation, the sampling points of the random variables 
are obtained randomly from the corresponding probability 
functions. By the scanning method, equidistant points are 
generated for each interval variable to formulate different 
combinations of the interval variables. For an uncertain 

a(1)                                                                            b(1)

a(2)                                                                          b(2)

Fig. 2  Optimized results for deterministic and robust designs

Table 1  Means and standard 
variances of deterministic 
design
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Table 2  Means and standard 
variances of robust design
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performance function with n random variables and m inter-
val variables, if the number of Monte Carlo sampling points 
of the random variables is N0 , and the scanning points in 
each dimension of interval variables is q , then the total 
number of sampling points is N0 × qm . In this work, 10,000 
random sample points are selected for random variables and 
10 equidistant points for the interval variables are chosen in 
each dimension.

4.1  Example 1

A cantilever beam with 1 m length and 0.45 m height is 
investigated in this example. The left side of the beam is 
fixed, F1 and F2 are applied on the upper right and the lower 
right corners, as shown in Fig. 1. The magnitudes of the 
two loads are random normal variables with mean values 
[700KN, 700KN] and standard variances [70KN, 70KN] . 
The directions of the two loads �1 and �2 are interval vari-
ables. �1=

[
−�∕20, �∕20

]
 is the angle of the direction of 

F1 and the horizontal direction, and �2=
[
−�∕20, �∕20

]
 

is the angle of the direction of F2 and the vertival direc-
tion. A temperature rise ΔT ∼ N(1, 0.1) °C is considered 
over the design domain. The elastic tensor E= 70GPa , the 
Poisson’s ratio �=0.3 , and thermal expansion coefficient 
� = 2.3 × 10−5∕°C. The structure is discretized by 45 × 100 
four-node quadrilateral elements, and the volume fraction 
is set as 0.5.

There are three random variables and two interval vari-
ables in this example. The temperature rise related to the 
thermal field and the applied loadings related to the mechan-
ical field are regarded as hybrid uncertain parameters. The 
deterministic and robust optimization design results are 
given in Fig. 2, in which a(1) and b(1) are the structural 
topological designs of deterministic topology optimization 
and robust topology optimization, respectively, and a(2) and 
b(2) are the iteration histories of the optimization process 
of deterministic topology optimization and robust topology 
optimization, respectively. It is obvious to see that the design 
considering uncertainties is different from the design under 
deterministic assumption, for example, the local topologies 
from the central lower boundary to the right top of the robust 
result in Fig. 2 b(1) is more straight than the determinist 
result in Fig. 2 a(1). It is noticed that the uncertainty param-
eters would influence the result of the topology optimization. 
In Fig. 2 a(2), the structural compliance C corresponding to 
each iteration of robust optimization process is provided. In 
order to better illustrate the robustness of the intermediate 
design, the value changes of the mean μ, the standard devia-
tion σ and the robust objective function g are presented in 
Fig. 2 b(2) in red, pink and blue colors, respectively. The 
three curves in Fig. 2 b(2) have the similar trend during the 
robust topology optimization process. After some iterations, 
the values of the mean, the standard deviation and the robust 
objective function maintain stable and the optimization pro-
cess become convergent gradually. Hence, it can be seen that 
the proposed robust topology optimization method has good 
stability and convergence.

In order to show the importance and necessity of the opti-
mization considering uncertainties, the uncertain parameters 
related to material properties and loadings are also consid-
ered for the deterministic design. We can then obtain the 
worst-case mean and standard variance of the structural 
compliance under the hybrid uncertainties for the determin-
istic design. For verification purpose, the robust objective 
values for both deterministic and robust designs obtained by 
MCS method are also provided. In this case, there are in total 
104 × 102=106 samples in the MCS reference test. There are 

Table 3  Hybrid uncertainty 
analysis results of optimized 
designs

Case Method Mean Standard variance Robust objective 
function

FEA calls

Deterministic design DR-based 737.52 171.09 908.61 70
MCS 736.88 167.51 904.38 106

Robust design DR-based 704.55 136.56 841.11 70
MCS 702.86 134.59 837.45 106

Fig. 3  Design domain and boundary condition
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100 combinations of the interval variables in the outer loop, 
and the mean and standard variance of each interval com-
bination can be obtained from the Monte Carlo simulations 
in the inner loop. The “worst-case” mean and standard vari-
ance of the structural compliance are chosen to formulate 
the robust objective function. In order to clearly show the 
Monte Carlo simulation results under different combinations 
of the interval variables, we also list the values correspond-
ing to selected interval combinations. In Tables 1 and 2, the 
means and standard variances under different realizations of 
the interval variables are presented, respectively. The worst-
case mean and standard variance values in each example 

a(1)                                                                              b(1)

a(2)                                     b(2)

Fig. 4  Optimized results for deterministic and robust designs

Table 4  Hybrid uncertainty 
analysis results of optimized 
designs

Case Method Mean Standard variance Robust objective 
function

FEA calls

Deterministic design DR-based 383.89 39.99 423.89 100
MCS 383.82 40.29 424.11 107

Robust design DR-based 358.75 37.56 396.31 100
MCS 358.65 37.80 396.45 107

Fig. 5  Design domain and boundary condition
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are marked in bold type, and these results are used to verify 
the accuracy of the results achieved from the proposed DR-
based hybrid uncertainty analysis method.

To quantificationally compare the optimized designs of 
both deterministic and robust cases, we present the robust 
objective values as well as the corresponding mean and 
standard variance values obtained from the proposed DR-
based method and the MCS reference method under the 
same hybrid uncertainties for both deterministic and robust 
designs in the Table 3. Smaller mean and standard variance 
values indicate better robustness for structural stiffness under 
uncertainties. The robust objective value of the determinis-
tic design is 908.61, while the value of the robust design is 
841.11. That is to say, the robustness of the robust design is 

7.4% better than that of the deterministic design. For robust 
design, the robust objective value is 841.11 calculated by 
the proposed DR-based method and 837.45 calculated by the 
MCS method, so the errors of the robust objective function 
values for both designs are less than 0.5%. The accuracies 
of the mean value and standard variance values can also be 
clearly seen in Table 1. During the robust topology optimi-
zation process, the hybrid uncertainty analysis is required 
in each iteration of the robust topology optimization. In this 
example, if a traditional multi-dimensional integration is 
applied for the polynomial expansion coefficients, the func-
tion calls would be 243 times. By the proposed DR-based 
method, the number of the FEA calls is only 70 in each 
evaluation, while still maintain a very good accuracy.

a(1)                            b(1)

a(2)                                                                               b(2)

Fig. 6  Optimized results for deterministic and robust designs

Table 5  Hybrid uncertainty 
analysis results of optimized 
designs

Case Method Mean Standard variance Robust objective 
function

FEA calls

Deterministic design DR-based 284.16 32.99 317.15 100
MCS 284.29 32.97 317.26 107

Robust design DR-based 234.61 30.22 264.83 100
MCS 234.66 30.37 265.03 107
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4.2  Example 2

As shown in Fig. 3, a simply supported beam is considered in 
this example. The length of the beam is 0.8 m, and the width 
of the beam is 0.4 m. A temperature rise ΔT ∼ N(1, 0.1) °C 
is considered over the design domain.

The Poisson’s ratio � is set as 0.3. The elastic tensor 
and the thermal expansion coefficient are given as ran-
dom normal variables with mean values E= 70GPa and 
� = 2.3 × 10−5∕°C, and the variation coefficients are 
both 0.1. The lower left and lower right corners of the 
beam are fixed and three mechanical loads F1 = 300KN , 
F2 = 1000KN and F3=300KN are vertically applied on the 
lower side of the beam at one-fourth, half, and three-fourth 
points, respectively. The angles of directions of the three 
external loads and the vertival directions are regarded as 
interval variables �1=

[
−�∕20, �∕20

]
 , �2=

[
−�∕20, �∕20

]
 

and �3=
[
−�∕20, �∕20

]
 . The structure is discretized by 80 

× 40 elements, and the volume fraction is set as 0.4.
The optimized results for deterministic and robust 

designs are shown in Fig. 4. The topological designs of the 
deterministic and robust topology optimizations are pro-
vided in Fig. 4 a(1) and b(1), and the iteration histories 
of the deterministic and robust topology optimizations are 
provided in Fig. 4 a(2) and b(2). In the robust design results, 
the structure topology in Fig. 4 b(1) is obviously different 
from the structure topology in Fig. 4 a(1). From Fig. 4 a(1) 
and b(1), we can intuitively feel that the robust topological 
design is more stable. Several additional transverse sup-
ports appear in the robust design in some local places in 
the robust design comparing with the deterministic design. 
These changes may expect to have some positive effects 
for the structure with uncertainties. To quantificationally 
compare the deterministic and robust optimized designs, 
the robust objective function values including the mean and 
standard variance of the structural compliance for the robust 
and deterministic design under the same uncertain condi-
tions are given in Table 4. Both the results achieved from 
the proposed DR-based hybrid uncertainty analysis method 
and the reference MCS method are provided for compari-
son. Under the same uncertain conditions, the robust objec-
tive function value for the deterministic design is 423.89, 
which is 6.5% larger than the value for the robust design. 
By comparison, it can also be seen that the results of the 
proposed method are quite close to the reference results of 
MCS. However, the number of the FEA calls are only 100 
in the proposed method, while the function calls would be 
729 times by traditional multi-dimensional integration. In 
conclusion, the hybrid uncertainties have important influ-
ence on the thermo-mechanical topology optimization. By 
the proposed RTO method, the robust designs are proved 

to have better robustness compared with the deterministic 
ones. It is also verified that the proposed method has very 
good accuracy and stability (Fig. 5).

4.3  Example 3

A two-side clamped beam is investigated in this work. The 
length of the beam is 0.8 m, and the width of the beam 
is 0.4 m. A temperature rise ΔT = 1 °C is considered over 
the design domain. The elastic tensor E= 70GPa , the 
Poisson’s ratio �=0.3 , and thermal expansion coefficient 
� = 2.3 × 10−5∕°C. Three mechanical loads are vertically 
applied on the lower side of the beam at one-fourth, half, 
and three-fourth points, respectively. The magnitudes of 
the loads are considered to obey normal distributions with 
mean values F1 = 300KN , F2 = 800KN and F3=300KN , 
and the variation coefficients are 0.1. The directions of the 
three external loads are regarded to have interval uncertain-
ties. The interval variables �1, �2 and �3 represent the angles 
of the direction of the loadings and the vertical directions. 
The lower bounds and the upper bounds of the interval vari-
ables are 

[
−�∕20,−�∕20,−�∕20

]
 and 

[
�∕20,�∕20,�∕20

]
 . 

The structure is discretized by 80 × 40 elements, and the 
volume fraction is set as 0.3.

In this example, the loading magnitudes and directions 
are considered as hybrid uncertain parameters. The robust 
design is obtained based on the proposed RTO method, and 
the deterministic design is obtained when the random vari-
ables are set as the mean values and the interval variables 
are set as the midpoint values. The structural topologies and 
the iteration histories are presented in Fig. 6. It is obvious 
that the robust design taken the hybrid uncertainties into 
consideration is different from the deterministic design, so 
it is important to incorporate uncertainties during the opti-
mization process. In Table 5, we evaluate the robust objec-
tive function values for both deterministic and robust design 
results. The robust objective function value of the determin-
istic design is 317.15, which is much higher than the robust 
design. The mean and standard deviation of the deterministic 
design (284.16 and 32.99, respectively) are both larger than 
those of the robust design (234.61 and 30.22, respectively). 
This shows that the robust design performs better than the 
deterministic design when uncertainty involves. Reference 
results are also provided by the MCS method in Table 5 to 
verify the accuracy. For this problem with six uncertain vari-
ables, the number of the required FEA calls of the DR-based 
method is far below that of the traditional multi-integration, 
but the numerical accuracy is kept well. In summary, the 
proposed method can get a robust topological design con-
sidering hybrid uncertainties, and the method is proved to 
have good accuracy and calculation efficiency.
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5  Conclusion

In engineering, the structures of advanced equipment gen-
erally work under thermo-mechanical coupling field, while 
the thermal field as well as the mechanical field may both 
have unneglectable influence on the structural performances. 
Hybrid uncertainties related to material properties and load-
ings unavoidably exist in the thermo-mechanical coupled 
structures, so it is important to study RTO problems for 
topology optimization incorporating the uncertainties. Con-
sidering random and interval hybrid uncertainties, a new 
robust topology optimization method for structures under 
thermo-mechanical coupled loadings is proposed in this 
work. In order to efficiently calculate the statistical moments 
of the structural compliance, an efficient DR-based orthogo-
nal polynomial expansion method is developed for hybrid 
uncertainty analysis, in which the multi-dimensional inte-
grations to calculate the expansion coefficients is approxi-
mated by a series of univariate integrations. Several numeri-
cal examples are provided to verify the effectiveness of the 
proposed method. It is proved that the robust designs have 
better robustness than the deterministic designs considering 
uncertainties. The proposed DR-based hybrid uncertainty 
analysis method is a general approach that can be applied 
for structural response analysis in many robust topology 
optimization problems with hybrid uncertainties. However, 
for problems with large uncertainties or high non-linearity, 
the proposed method can be further extended by introduc-
ing bivariate or multivariate DR methods to maintain good 
accuracy as well as good efficiency.
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