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Abstract
In this work we demonstrate a methodology for performing robust optimization using multivariable parameterized lattice 
microstructures. By introducing material uncertainties at the microscale, we are able to simulate the variations in geometry 
that occur during the manufacturing stage and design structures which are tolerant to variations in the microscale geometry. 
We impose both uniform and spatially-varying, non-uniform material uncertainties to generate structures which, in terms 
of standard deviation, are up to 77% more robust in the non-spatially uncertainty varying case, and 74% more robust in the 
spatially-varying case. We also explore the utility of imposing spatially-varying material uncertainties compared to using 
homogeneous, uniform material uncertainties, which are much less computationally expensive. It is found that when designs 
that have been optimized assuming uniform uncertainties are subject to spatially-varying uncertainties, their standard devia-
tions of compliance are similar to designs optimized assuming spatially-varying uncertainties. However, their mean compli-
ances are far higher in comparison to designs generated by assuming spatially-varying material uncertainties.

Keywords  Robust optimization · Lattice microstructures · Spatially-varying material uncertainty · Additive manufacturing · 
Karhunen–Loéve expansion · Polynomial chaos expansion

1  Introduction

Additive manufacturing (AM) has enabled the realization of 
geometries and designs which were previously impossible 
or highly impractical to achieve with traditional manufactur-
ing processes. Ensuring that designs can be manufactured 
using subtractive manufacturing techniques leads to sig-
nificant constraints on their geometric complexity. A good 
example of this is a cellular structure, whose global material 
properties is derived from the arrangement and configuration 
of (micro)structures on their finer scales. These structures, 
commonly found in wood, bones and coral, have been known 
for a long time to exhibit desirable properties, particularly 
useful for engineering design applications (Ashby 1983). 
However, due to the intricate geometries of the cellular 

structures existing across multiple scales, their fabrication 
was limited until the advent of reliable AM techniques.

Interest in cellular structures arises as a result of their 
highly adaptable material properties and potential for light-
weight designs, which lend themselves towards high specific 
stiffness or strength (Sigmund et al. 2016; Xu et al. 2019), 
lightweighting (Lynch et al. 2018; Plocher and Panesar 
2019), thermal (Sigmund and Torquato 1996) and energy 
absorption (Ashby 1983; Brennan-Craddock et al. 2012; 
Maskery et al. 2017) applications. Sigmund et al. (2016) 
show that closed thin-wall structures are able to attain 
stiffness values near the theoretical bound, as given by the 
Hashin–Shtrikman bounds. However, as the authors note, it 
may be impossible to manufacture these structures in real-
ity, leading to the use of minimum length scale conditions 
or alternative, less optimal, microstructures. As their global 
properties are derived from the arrangement and configura-
tion of the underlying (micro)structures, individual micro-
structures can be optimized to attain application specific 
material properties. This process, known as inverse homog-
enization (Sigmund 1994), involves generating microstruc-
tures with favourable material properties, such as maximum 
stiffness for compliance related applications, or enabling 
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maximum, zero or negative thermal expansions (Sigmund 
and Torquato 1996) for thermal problems. Approaches for 
concurrently optimizing across two scales have also been 
proposed. Here, the optimization tailors the topology on the 
macroscale, as well as optimizing the configuration of the 
microstructures on the finer microscale. For example Liu 
et al. (2008) present a concurrent optimization methodology 
where microstructures are optimized on the microscale using 
a SIMP methodology, while the macrostructure material lay-
out using the porous anisotropic material with penalization 
(PAMP) method at the same time to discourage intermediate 
densities. Methodologies for pre-defining or parameterizing 
unit cells using density or geometric design variables have 
also been presented in literature. As the unit cell designs are 
known prior to the optimization, one of the benefits of these 
methodologies is the ability to pre-compute the material 
properties of the microstructures. For example, Zhu et al. 
(2017) generated a database of multi-material microstructure 
prior to performing topology optimization (TO). To enable 
AM, the continuous optimized solution is then mapped to 
discrete microstructures. Imediegwu et al. (2019) presented 
a multiscale 3D optimization framework using a 7-design 
variable lattice parameterization. By creating a full facto-
rial design of experiments (DOE), the authors assembled 
response surface models (RSMs) to generate continuous 
material models, which were used to perform gradient-
based macroscale optimization. A variation of this frame-
work, which concurrently couples the micro and macroscale 
models, significantly reduces the computational expense of 
optimisation, enabling a previously intractable number of 
design variables to be used in the parameterization of the 
microscale geometry (Murphy et al. 2021).

As with any manufacturing process, uncertainties arise 
during AM, particularly during the manufacturing of intri-
cate cellular structures. These uncertainties, which typically 
lead to defects in the microscale geometry, ultimately cause 
the material properties of the additively manufactured parts 
to differ significantly from the material properties of the 
original intended design. For example, Boniotti et al. (2017) 
utilized 3D tomography to show that defects in a body-cen-
tred cubic (BCC) lattice structure, manufactured using selec-
tive laser melting (SLM), lead to local strain concentrations 
that may cause poorer strength or fatigue characteristics, evi-
dence of which was later provided by Boniotti et al. (2019). 
Here, the authors found that strain concentrations, induced 
by local variations in the geometry, negatively impacted 
the fatigue strength of the lattice structures. Imperfections 
arising during the manufacturing process have been consid-
ered in topology optimization. Sigmund (2009) proposed 
a robust topology optimization formulation for a SIMP-
based interpolation by simulating the erosion and dilation 
of the structure. More recently, Moussa et al. (2021) pre-
sented a methodology for considering material uncertainties 

within a multiscale optimization framework. In this work, 
the authors use the imperfect geometry of printed lattice 
structures to create a library of the typical non-uniform strut 
thicknesses and deviations of the truss centre lines found 
in the printed structures. Using the material properties of 
the imperfect microstructures, rather than the deterministic, 
ideal structures, the authors performed TO using a density 
variable to represent the underlying imperfect microstructure 
configurations.

In this work, we utilize the multiscale optimization frame-
work presented by Imediegwu et al. (2019), which allows 
the optimizer to directly control the underlying lattice con-
figurations, indirectly tailoring the distribution of stiffness 
tensors throughout the macroscale domain. To ensure that 
the performance of the design does not deteriorate as a result 
of the material uncertainties introduced during the AM pro-
cess, we utilize the formulation presented by Thillaithevan 
et al. (2021a, b). This methodology introduces material 
uncertainties by directly perturbing the underlying lattice 
microstructure truss radii, simulating the variations in geom-
etry that may arise during the AM process. By coupling this 
uncertainty model with a robust optimization formulation, 
it is possible to design structures which are more tolerant to 
variations in the microscale geometry.

To the authors’ best knowledge, this paper presents the 
first introduction of material uncertainties within multi-
scale optimization frameworks which are parameterized 
using multiple microstructure design variables. We extend 
the methodology proposed by Thillaithevan et al. (2021a, 
b), by utilizing a parameterized 7-design variable lattice 
microstructure and formulating spatially-varying material 
uncertainties within the robust optimization framework. We 
begin by introducing the standard deterministic optimization 
framework in Sect. 2. We then introduce the material uncer-
tainty methodology in Sect. 3, including the consideration 
of uniform and spatially-varying uncertainties. Finally, in 
Sect. 4.2 we perform robust optimization using uniform and 
spatially-varying material uncertainties, tackling two classi-
cal geometries, a cantilever and bridge structure, to explore 
the efficacy of this material uncertainty formulation.

2 � Deterministic formulation

2.1 � Microscale modelling

The multiscale optimization framework consists of two 
scales: the microscale and the macroscale. The microscale is 
composed of periodic truss based lattice microstructures. In 
particular, the body-centred 7-truss unit cell design, as intro-
duced by Imediegwu et al. (2019), is utilized. These lattice 
microstructures are parameterized by the 7-truss radii, each of 
which can be independently altered to give rise to a wide range 
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of material properties during the optimization. This is some-
what similar to the free material optimization (FMO) (Zowe 
et al. 1997) approach, where the stiffness matrix at every cell 
in a discretized domain is optimized directly. In this case we 
are indirectly optimizing the stiffness matrices by varying the 
microstructure configuration in each cell. It should also be 
noted that although the final macroscale structures are com-
posed of highly connected trusses, this work is not related to 
ground structure optimization schemes, where the layout of 
a set of highly connected discrete trusses is optimized. As 
shown in Fig. 1, the lattice is composed of three axis aligned 
trusses and four diagonal trusses, connecting each opposing 

vertex of the unit cell. The macroscale is constructed from a 
discretized 3D domain, where each cell is assigned the homog-
enized material properties of a chosen lattice configuration, 
as shown in Fig. 2. To avoid the need for expensive, fullscale 
finite element analysis (FEA) of macroscale structures consist-
ing of several thousand lattices, the asymptotic homogeniza-
tion method is employed (Bendsøe and Kikuchi 1988; Francu 
1982; Hollister and Kikuchi 1992). Here is it assumed that 
the lattice microstructures can be represented as homogeneous 
solids on the macroscale, provided there is a sufficient scale of 
separation between the macro and microscales, as illustrated 
in Fig. 2. It should be noted that the micro and macroscale are 
agnostic to the actual length scales that are used, which means 
that the microscale unit cell size does not need to be below 
a certain predefined length for this assumption to hold. The 
important factor is the relative difference in the length scales. 
However, due to manufacturing constraints in practical appli-
cations, a minimum unit cell size is usually required. Typi-
cally, at least six layers of microstructures are required along 
each dimension (in 3D) to achieve sufficient scale separation 
for compression or tension dominated load cases (Thillaithe-
van et al. 2021a, b), with additional layers required for shear 
dominated cases.

To obtain the homogenized material properties of the lattice 
microstructures, finite element analysis (FEA) using periodic 
boundary conditions (PBCs) is performed. From the FEA, the 
homogenized stiffness tensor, EH is obtained using

Fig. 1   Lattice microstructure parameterization

Fig. 2   Illustration of multiscale modelling process
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where �0 represents the six unit macroscale strains applied, 
�∗ is the microscopic strain field resulting from the mac-
roscopic strain field, � is the domain volume and E is the 
stiffness tensor of the bulk material. The full stiffness tensor 
is assembled by solving the finite element system six times, 
once for each independent unit macroscale strain applied. 
In this work, the bulk material is assumed to be a generic 
polymer with base stiffness E = 2 GPa and � = 0.3. The 
finite element modelling is performed using a voxel-based 
method with a fixed hexahedral mesh to avoid remeshing 
each lattice microstructure, reducing the computational 
effort required for the homogenization process. Based on a 
mesh convergence study, the domain was discretized using 1 
million linear hexahedral elements for the FEA. To improve 
the stability of the solver, a nodal averaging algorithm was 
employed, as outlined in Imediegwu et al. (2019). Here the 
perpendicular distance to the centre line of each truss from 
the vertices of every cell is used to determine the stiffness 
assigned to any given cell. By determining the number of 
vertices of a cell that lie ‘inside’ any of the lattice trusses, 
the stiffness assigned to the cell is calculated by linearly 
scaling between Evoid and E, where Evoid = 100 Pa. Any 
cells without vertices within the radius of the trusses are 
assigned a stiffness of Evoid to avoid numerical instabilities 
in the FEA. The FEA was performed using the open-source 
partial differential equation (PDE) solver FEniCS 2019.1.0 
(Alnæs et al. 2015).

2.2 � Response surface modelling

To efficiently link the micro and macroscales, RSMs are gen-
erated. The RSMs are used to quickly evaluate the homog-
enized material properties of any lattice microstructure in 
the macroscale domain during the optimization process and 
are also used to compute the gradients required for the gra-
dient-based optimization algorithm used in this work. The 
data points used to generate the RSMs are obtained from a 
full factorial design of experiments (DOE). The lattice radii 
are independently perturbed in the range 0.08 ≤ ri ≤ 0.38 , 
i = {1, .., 7} , enabling fully dense cells, using 7 levels to 
generate a total of 77 (823,543) lattice configurations within 
the DOE. However, as shown by Imediegwu et al. (2019), 
due to the symmetries present in the lattice parameteriza-
tion, the number of unique lattice configurations that require 
simulation can be reduced to 40,817, significantly reducing 
the computational expense of constructing the DOE and by 
extension the RSMs. A non-zero lower bound, rmin > 0 , is 
used as the number of cells required for convergence due to 
the increasingly thin trusses as r → 0 , becomes impractical 
for the construction of the DOE. To overcome the issue of 

(1)E
H =

1

� ∫�

E(�0 − �∗)d�
non-zero radii during the optimization, we introduce a den-
sity parameter to simulate the effects of void cells during the 
optimization. Further details of this are outlined in Sect. 2.3.

To convert the discreet property space formed by the 
DOE, into continuous, differentiable RSMs, multivariate 
polynomials are used. To construct the polynomials a series 
of least squares problems are solved. The general form of 
the polynomials is given by

where k = 7 is the number of independent variables, � are 
the coefficients terms, ŷ is the dependent variable, m denotes 
the maximum order of the polynomial, and j represents the 
number of coefficient terms in the polynomial. Here the 
independent variables are the 7-truss radii which can be 
altered to give rise to the desired material properties, in 
particular the homogenized stiffness and volume fraction, 
which are represented by the RSM approximations

where Ẽ
H and ṽ are the approximations of the true functions 

E
H and v. To assemble Ẽ

H , 21 RSMs are fitted, one for each 
unique term of the stiffness tensor, resulting in 22 RSMs in 
total, including the volume fraction model. Polynomials with 
a maximum order m = 7 were chosen heuristically, leading 
to an average R2 = 0.99 . Once the RSMs are constructed 
they can be used repeatedly in any subsequent optimization 
problems.

2.3 � Macroscale optimization

The macroscale optimization is performed by varying the 
radii of each truss of each lattice in the macroscale domain. 
Here the optimizer is indirectly tailoring the local stiffness 
tensor in each cell to generate the ideal load path which 
minimizes or maximizes the given objective, which has 
similarities to the methodology used in free material opti-
mization (Zowe et al. 1997). As mentioned earlier, to quickly 
evaluate the material properties of the lattices during the 
optimization, the RSMs shown in Eq. 3 are utilized. The 
radii used to evaluate the RSMs are constrained by a non-
zero lower bound, as shown in the previous section. This 
limits the macroscale optimization to lattice-only designs, 
where lattices are present everywhere in the domain, without 
changes to the overall topology, albeit with local changes 
in truss radii. To enable binary, lattice/void designs, which 
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v ≈ ṽ(r1, r2, r3, r4, r5, r6, r7)
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allow for more efficient use of materials, an additional den-
sity parameter, 0 ≤ � ≤ 1 , is introduced into the multiscale 
lattice optimization framework. The density variable is used 
to penalize regions with low density lattices that offer little 
or no structural support by using

where EH is the RSM defined in Eq. 3 where the tilde and 
subscripts have been dropped for convenience, and p = 3 is 
the chosen penalty term. To accurately simulate void cells, 
the volume fraction model is also modified using

where v is the RSM for the volume fraction as seen in Eq. 3.
Helmholtz filtering (Lazarov and Sigmund 2011) is 

applied to the design variables to avoid checkboarding (Díaz 
and Sigmund 1995), where low density and high density 
cells are found in an alternating pattern, and to generate 
mesh-independent designs. In this formulation, the filtered 
design variables are obtained from the solution of a Helm-
holtz type PDE

where x and x̃ are the unfiltered and filtered design variables. 
The filtering radius is defined by rf  , which can be considered 
as a 3D spherical region of influence where the filtering is 
performed. Choosing large values of rf  leads to extreme fil-
tering with very smooth variations in the design variables, 
limiting the scope of the optimization, and rf → 0 results in 
an unfiltered design with potentially checkerboarded lay-
outs. In this work, rf  is assigned a value of D, where D is 
the cell width used in the macroscale mesh. To overcome 
the artificial ‘sticking’ of material to the domain boundaries 
that occurs in standard Helmholtz filtering schemes, Robin 
boundary conditions are applied to any exterior surface 
which is unloaded and does not act as a support, as proposed 
by Wallin et al. (2020). Once the density variables and truss 
radii are filtered using the Helmholtz filter, a threshold filter-
ing (Wang et al. 2011) scheme is applied to � , to ensure a 
‘binary’ design containing only void and material (lattice) 
cells is achieved. The thresholded density variables, ̂̃𝜌 are 
defined as

where 𝜌̃ is the Helmholtz filtered density variable. The lin-
earity of the thresholding is determined by � , where in the 
limit � → ∞ , the projection filter leads to a fully binary 
design. However, as large values of � can lead to stability 
issues in the optimization, � is updated adaptively through-
out the optimization. In this work, � is incremented by 0.5 

(4)Ē = �pEH(r1, r2, r3, r4, r5, r6, r7)

(5)v̄ = 𝜌v(r1, r2, r3, r4, r5, r6, r7)

(6)x̃ = x + r2
f
∇2

x̃

(7)̂̃𝜌 =
tanh

(
𝛽𝜂

)
+ tanh

(
𝛽(𝜌̃ − 𝜂)

)

tanh
(
𝛽𝜂

)
+ tanh

(
𝛽(1 − 𝜂)

)

every 30 iterations, from an initial value of 0.5 up to a maxi-
mum value of 3.5. These values were chosen heuristically to 
avoid stability issues. The thresholding level is determined 
by � , which is set to 0.5. Finally, the thresholded and filtered 
density variable are used in the scaling of the stiffness tensor 
and volume fraction, so the relationships shown in Eqs. 4 
and 5, are updated to

The design variables used in the optimization, are defined 
through the design variable matrix, � , which is assembled 
from the truss radii and density variables

where e is the number of cells or lattices in the macroscale 
domain, ri,j represents radii of the ith truss of the jth lattice 
and similarly, �j corresponds to the density variable attached 
to the jth lattice. For the optimization problems tackled in 
this work a compliance minimization formulation is adopted. 
This optimization problem can be defined as

where the maximum volume fraction and actual volume 
fractions are defined as Vmax = 0.3 and Vf  respectively. To 
compute Vf  , the individual lattice volume fractions given by 
vj are summed. The global stiffness matrix, denoted by K , is 
a function of both the truss radii and the density parameter 
� , the force and displacement vectors are given by F and U 
respectively. To assemble K , the elemental stiffness matri-
ces, ke , are used, where

and ̂̃E is the SIMP stiffness tensor shown in Eq. 8, �e is the 
volume of the cell and B is the strain-displacement matrix. 
The gradients of the objective and constraints required for 

(8)
̂̃
E = ̂̃𝜌pEH(r1, r2, r3, r4, r5, r6, r7)

̂̃v = ̂̃𝜌v(r1, r2, r3, r4, r5, r6, r7)

(9)� =

⎡
⎢⎢⎢⎢⎢⎣

r1,1 r2,1 r3,1 r4,1 r5,1 r6,1 r7,1 �1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

r1,e r2,e r3,e r4,e r5,e r6,e r7,e �e

⎤
⎥⎥⎥⎥⎥⎦

minimize
χ

C = UTF

subject to: Vf =
e∑

j=1

ˆ̃ρvj ≤ Vmax

K(r, ρ)U = F

0 < rmin ≤ ri ≤ rmax i = {1, . . . , 7}
0 ρ 1≤ ≤

(10)

(11)ke = ∫
�e

B
T ̂̃
EB��e
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the optimization are obtained using the chain rule. The gra-
dients relative to the truss radii are obtained using

where dC
dE

 is obtained using the algorithmic differentiation 
capabilities provided by the Python library dolphin-adjoint 
(Mitusch et al. 2019). The library is able to efficiently derive 
the adjoint and gradient of the FE model by manipulating 
the symbolic mathematical representation of the FE model 
implemented within the Python library FEniCS. The filtered 
radii gradients dE

dr̃i
 and dVf

dr̃i
 are obtained by differentiating the 

polynomials used to construct the RSMs shown in the previ-
ous section. The filtering gradient, dr̃i

dri
 , is computed by dif-

ferentiating the Helmholtz PDE given in Eq. 6. The gradi-
ents of the density variable, � , are given by

where dC
d ̂̃𝜌

 is computed using algorithmic differentiation and 
dVf

d ̂̃𝜌
 is derived by differentiating Eq. 8. Finally, the remaining 

gradients are computed using the differentials of the Helm-
holtz equation and the threshold projection.

3 � Modelling manufacturing uncertainty

By definition, an efficient deterministic optimization algo-
rithm should generate solutions which lie in local or (ideally) 
global minima. As a result, the objective or response of the 
optimal solution may be highly sensitive to changes in the 
design variables. This means that designs generated using 
deterministic optimization formulations can be particularly 
susceptible to uncertainties that arise in the real world. For 
example, components designed using a standard determin-
istic structural optimization formulation may perform worse 
than expected due to the uncertainties that occur during 
manufacturing or uncertainties in the loading conditions. 
In this paper we tackle the problem of material uncertainty 
that arises during the AM of optimized multiscale structures. 
As the solutions obtained by the deterministic optimization 

(12)

dC

dri
=

dC

dE

dE

dr̃i

dr̃i

dri
dVf

dri
=

dVf

dr̃i

dr̃i

dri
i ∈ {1,… , 7}

(13)

dC

d𝜌
=

dC

d ̂̃𝜌

d ̂̃𝜌

d𝜌̃

d𝜌̃

d𝜌

dC

d𝜌
=

dVf

d ̂̃𝜌

d ̂̃𝜌

d𝜌̃

d𝜌̃

d𝜌

framework presented in Sect. 2.3 may contain highly tailored 
local material properties, the designs are likely to be highly 
sensitive to the variations in the geometry that can occur 
during the AM process. To counter this, it is important to 
consider the uncertainties that arise in the real world during 
the optimization stage to generate designs that are robust and 
behave as expected.

3.1 � Non‑spatially‑varying uncertainties

To account for the material uncertainties that arise as a result 
of variations in the printed geometry, we utilize the meth-
odology presented by Thillaithevan et al. (2021a, b). In this 
methodology, material uncertainties are introduced at the 
microscale by imposing uncertain perturbations to the lat-
tice truss radii. The perturbation to each lattice is given by 
the relationship

where � is an uncertain perturbation and ři is the vector of 
perturbed truss radii for the ith truss. Here, � represents 
the uncertainty in the additively manufactured geometry 
and gives rise to uncertain material properties. It should be 
noted that this formulation only considers the constant dila-
tion and erosion of truss radii, rather than defects that may 
occur along the trusses themselves. As shown in Eq. 14, the 
uncertainties are assumed to be constant for all 7 trusses that 
make up each lattice cell within the optimization domain. In 
this section, the uncertainties are also assumed to be uniform 
and thus, non-spatially-varying. A methodology for intro-
ducing spatially-varying material uncertainty is presented 
in Sect. 3.2.

Although not tackled in this work, this methodology 
offers the potential to introduce truss dependent uncertain-
ties or correlated truss uncertainties, where for example the 
uncertainty present in the horizontal trusses are assumed 
to be larger than those in the vertical trusses, to reflect the 
influence of the AM print direction on the uncertainties. This 
could easily be achieved by adding another dimension to the 
perturbation such that � → �i , albeit at increased computa-
tional cost. This methodology can also be applied to other 
parameterized unit cell designs, provided the microstructure 
geometry is explicitly defined. It should also be noted that 
the only source of uncertainty considered in this work is 
the manufacturing uncertainty. The underlying framework, 
including the FE modelling and RSM, is assumed to be 
deterministic.

To generate optimized designs which are resistant to vari-
ations in the printed geometry and the resulting uncertain 

(14)ři = ri + � i ∈ {1,… , 7}
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material properties, we employ a robust optimization for-
mulation. In this formulation, the optimizer is tasked with 
reducing both the mean compliance, as well as ensuring the 
deviation of the compliance remains low in the presence of 
material uncertainties. The robust formulation is defined as

where �[⋅] and �[⋅] denote the mean and standard deviation 
operators, respectively. The variable � is a scaling parameter 
used to vary the influence of the standard deviation within 
the optimization. In this work � = 3 is chosen to favour 
robust designs. It should be noted that the choice of � is 
a trade-off between robustness (minimizing the standard 
deviation of compliance) and the mean performance (mini-
mizing the mean compliance). Increasing the value of � is 
expected to lead to further reductions in the standard devia-
tion at the cost of the mean performance, and reducing it 
is expected to lead to designs which on average, perform 
better, but may have larger variability in their performance. 
To ensure the RSMs defined in Sect. 2.2 remain valid once 
the perturbations are applied to the truss radii, the lower and 
upper bounds of radii are updated as řmin = rmin + 𝜔min and 
řmax = rmax − 𝜔max respectively. This reduction in the bounds 
is a drawback of the proposed methodology as it reduces the 
available design space. However, the reduction in design 
space is viewed as a trade-off between microstructure opti-
mality and overall design robustness. As the radii are no 
longer deterministic, the stiffness matrix becomes an uncer-
tain function and is assembled using the following equation

where Ě is derived from the RSMs using the perturbed radii 
according to

where ̂̃𝜌 is the Helmholtz and Heaviside projection filtered 
density variable and ři are the filtered uncertain truss radii. 
Using this formulation it is clear that using a range of uncer-
tain perturbations, it is possible to derive a series of mate-
rial properties which correspond to variations in the micro-
scale truss radii which may arise during the manufacturing 
process.

minimize
χ

J = E
[
C(ri, ρ, ω)

]
+ κσ

[
C(ri, ρ, ω)

]

subject to: E
[
Vf (ri, ρ, ω)

]
≤ Vmax

Ǩ(ri, ρ, ω)U = F

0< řmin ≤ ri ≤ řmax i ∈ {1, . . . , 7}
(15)

(16)k̂e = ∫
𝛺e

B
T
ĚB𝜕𝛺e

(17)Ě = ̂̃𝜌pE(ř1,… , ř7)

One of the main difficulties of solving robust optimization 
problems is the increased computational burden that arises 
from calculating the statistical moments required for the objec-
tive function and constraints. In this work, the first two statisti-
cal moments, the mean and standard deviation, as shown in 
Eq. 15, are required to perform the optimization. While it is 
possible to easily implement Monte Carlo (MC) simulations to 
obtain the statistical moments, they are very inefficient; typi-
cally requiring hundreds of simulations to obtain converged 
results. Instead, in this work, non-intrusive polynomial chaos 
expansions (PCE) (Ghanem and Spanos 2003) are utilized to 
obtain the mean and standard deviation of compliance. As 
well as reducing the number of simulations required to obtain 
converged statistics, the non-intrusive PCE method requires 
no modifications to the underlying FE solver. For a discus-
sion on intrusive and non-intrusive PCE methods, the reader 
referred to Keshavarzzadeh et al. (2016). In the PCE method 
a stochastic function, the objective in this case, is represented 
by a linear sum of deterministic coefficients, ci and orthogonal 
polynomials, �i , expressed as

For practicality, the summation is truncated to k = 3 terms, 
which was chosen heuristically to ensure converged low-
order statistics. The polynomials, �i are chosen to be orthog-
onal with respect to the probability density function of the 
underlying random variables, � , which in this case are cho-
sen to be Legendre polynomials, since � are drawn from a 
uniform distribution (Xiu and Karniadakis 2002). The poly-
nomials are defined in such a way that �0 = 1 , and due to 
their orthogonality the relationship

is found, where � is the Kronecker delta. Using this property, 
the mean can be derived as

where we observe that the mean of the stochastic function 
can be determined simply from the first coefficient term, 
c0 . The variance (square of standard deviation) is computed 
using

(18)C(�) =

∞∑
i=0

ci�i(�)

(19)⟨�n,�m⟩ = �mn

(20)

�[J] = �[�0C]

=

k�
i=0

ci⟨�0,�i⟩

= c0
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Lastly, the coefficients ci are obtained using a quadrature 
scheme

where nq are the number of integration points, �j are the 
integration points and wj are the weights corresponding 
to each integration point, which are generated using the 
Gauss--Legendre quadrature scheme, resulting in nq = 4 . 
Here nq represents the number of simulations of the com-
pliance that are required. In comparison, for the problems 
tested in this work, the standard MC simulation approach 
required up to 1000 simulations to obtain converged statis-
tics, representing a large saving in computational expense 
in terms of resources and time required to perform the opti-
mization. As each �j is independent, the simulations of 
C(�j) ( j ∈ {1,… , nq} ) are performed in parallel to further 
reduce the computational effort. The sensitivities required 
for the gradient-based optimization algorithm are computed 
by extending the PCE method to the gradients defined in 
Eqs. 12 and 13, resulting in

where � are the truss radii and density design variables 
shown in Eq. 9. It should be noted that the individual com-
pliance derivatives, �C

��
 , corresponding to each random field 

are computed using the same algorithmic differentiation 
approach employed in the deterministic framework, shown 
in Eqs. 12 and 13. These gradients are used to construct a 
PCE which provides the final gradients of the mean and 
standard deviation.

3.2 � Spatially‑varying uncertainties

The uncertainties which arise during the AM process are 
unlikely to be homogeneous or uniform, as assumed in the 
previous section. In reality, the perturbation or material 

(21)

�[J]2 = �[C2] − �[C]2

=

k�
i=0

c2
i
⟨�2

i
⟩

=

k�
i=0

c2
i

(22)

ci =
⟨C�i⟩
⟨�2

i
⟩

⟨C�i⟩ =
nq�
j=1

C(�j)�i(�
j)wj

(23)

��[C]

��
= �

[
�C

��

]

��[C]

��
=

1

(nq − 1)�[C]

(( nq∑
j=1

C(�j)
�C

��

)
− nq�[C]

��[C]

��

)

uncertainty that occurs is likely to differ from one location 
to another during the AM process. To accurately represent 
the spatially-varying material uncertainties, the methodol-
ogy shown in the previous section is modified by represent-
ing � as a random field, �(x) , where x represents the spatial 
dimensions. The flowchart shown in Fig. 3 describes the 
updated methodology for including spatially-varying mate-
rial uncertainties within the robust optimization framework.

The addition of the spatial dimensions to the perturbation 
requires careful treatment due to a phenomenon commonly 
referred to as the curse of dimensionality. As the number 
of stochastic dimensions are increased linearly, the number 
of simulations required to accurately represent the system 
increases exponentially. As we are now concerned with the 
spatial variation of material uncertainty, an infinite series of 
random variables would be required to capture the behaviour 
of the uncertain system. A widely used methodology for 
representing random fields using a finite number of random 
variables is the Karhunen–Loéve expansion (KLE) (Gha-
nem and Spanos 1991). Using a KLE a random field can be 
represented as

where �m and �m are the ordered eigenvalue and eigenvector 
pair of the correlation matrix C , which is assumed to be of 
a squared exponential form

where l is the correlation length, which is assigned a value 
of 0.8L, where L is the length of the optimization domain. It 
should be noted that the choice of correlation length impacts 
the fineness of the random field shown in Eq. 24. Longer 
correlation lengths lead to fewer fine scale variations in 
the random field and shorter lengths create many more fine 
variations in the random field. As there is fast decay in the 
eigenmodes, meaning that higher modes provide increas-
ingly smaller contributions to the random field, the series 
shown in Eq. 24 can be truncated to the first nkl modes. In 
this work the first nkl = 3 modes are used to compute the 
random field, the efficacy of which is further discussed in 
Sect. 4.1.

In Eq. 24, �m represents uncorrelated random variables 
with a mean of zero ( �[�m] = 0). When employing KLE, for 
simplicity, the random field is typically modelled as a Gauss-
ian random field by prescribing � as a Gaussian variable. 
However, the uncertainty model shown in Eq. 14 is not com-
patible with Gaussian distributions as they are unbounded 
and would therefore result in nonphysical radii values (due 
to overly large perturbations). To enable a more physical 
representation of the material uncertainties, the Gaussian 

(24)�(x) = ��(x) +

∞�
m=1

√
�m�m(x)�m

(25)C[x1, x2] = exp
(
−

|x1 − x2|2
2l2

)
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random field is transformed into a random field bound by 
a uniform distribution as shown by Lazarov et al. (2012), 
ensuring that the resulting perturbed radii are physical and 
well defined by the RSMs. Using the Gaussian cumulative 
distribution function, Φ[⋅] , the Gaussian random field is 
transformed according to

where �min and �max are the lower and upper bounds of the 
uniform distribution.

The PCE method, as introduced in Sect. 3.1, is once 
again utilized to efficiently compute the low-order statistics 
required for the optimization. To reduce the number of inte-
gration points, the Leja nested quadrature scheme (Narayan 
and Jakeman 2014) is utilized. As this scheme is nested, the 
Smolyak sparse grid algorithm (Smolyak 1964) is used to 
further reduce the number of integration points. Tradition-
ally, moving from univariate to multivariate quadratures 
requires full tensor grids, invoking the curse of dimension-
ality, where the number of integration points increases expo-
nentially, i.e. Nd where N is the number of points in the uni-
variate case and d is the number of dimensions. Combined 
with the nested quadratures generated by the Leja scheme, 
the Smolyak algorithm reduces the number of integration 

(26)�u(x) = �min + (�max − �min)Φ[�(x)]

points compared to a standard full tensor grid, which ulti-
mately reduces the number of simulations required for each 
iteration of the optimization. Using nkl = 3 eigenmodes in 
the generation of the random field and k = 6 PCE modes in 
the construction of the PCE, a total of nq = 84 quadrature 
points are required to compute the low-order statistics. This 
leads to 84 random perturbation fields, �j

u(x), j ∈ {1,… , nq} , 
requiring 84 simulations of the compliance, Cj( ̂̃𝜌, ř

j

1
,… , ř

j

7
) , 

where ̂̃𝜌 is the filtered and threshold projected density vari-
ables and řj

i
 are jth vector of perturbed truss radii, computed 

by perturbing the deterministic truss radii ri

To avoid stability issues during the optimization, the nq ran-
dom fields are computed once at the beginning of each opti-
mization and are reused in every iteration. Four examples 
of the random fields generated for the cantilever problem 
tackled in Sect. 4.2 is shown in Fig. 4. For further clarity, 
a flowchart of the entire robust optimization process using 
spatially-varying material uncertainty is shown in Fig. 3. 
To reduce the computational expense of the nq compliance 
simulations, 32 cores are utilized to perform some of the 
computations in parallel.

(27)ř
j

i
= ri + �j

u
(x) j ∈ {1,… , nq}

Fig. 3   Flowchart outlining the steps performed in the robust optimization using spatially-varying material uncertainty
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4 � Application to robust optimization

4.1 � Optimization setup

To demonstrate the efficacy of the uncertain perturbation 
method, we optimize two classical problems: a cantilever 
and a bridge problem, as shown in Fig. 5. For both prob-
lems the inclusion of uniform and spatially-varying mate-
rial uncertainties is considered. The uncertain perturbation 
is heuristically chosen to be defined by a uniform distribu-
tion in the range −0.05 ≤ � ≤ 0.05 , defined in terms of 
normalized radii units for both the uniform and spatially-
varying cases. For a unit cell size of 10 mm, this uncer-
tainty is equivalent to a tolerance of ±0.5 mm in the lattice 
truss radii. The two optimization problems were run for 
300 iterations, with an adaptive � value which is incre-
mented by 0.5 every 30 iterations, up to �max = 3.5 . If the 
change in objective is less than 0.01% over three succes-
sive iterations, once �max is reached, the optimization is 
terminated. The compliance simulations required each 
iteration for the uniform ( nq = 4 ) and spatially-varying 
( nq = 84 ) uncertainty cases were solved in parallel using 
the Multiprocessing library within Python. The 
Python library ChaosPy (Feinberg and Langtangen 2015) 
was used to implement the non-intrusive PCE method and 
to generate the Leja integration points. The gradients of 
the compliance dC

d
̂̃
E

 and dC
d ̂̃𝜌

 were obtained using algorithmic 
differentiation using the Python library dolfin-
adjoint (Mitusch et al. 2019).

Prior to the tackling the optimization problems, we exam-
ine the effectiveness of the KLE construction, outlined in 
Sect. 3.2. Using the first 100 eigenmodes as a reference, 
we to quantify the percentage ‘energy’ captured when using 
nkl = 3 modes in Table 1. From these results, we observe 
that over 95% of the ‘energy’ is captured by the first three 
modes for both problems, which is deemed sufficient for the 
present study.

Fig. 4   Four examples of random fields, �(x) , generated using KLE

Table 1   Energy captured using nkl = 3 modes for each problem

Problem ∑3

m=1
�m ∕

∑100

m=1
�m

Cantilever 97.5%
Bridge 98.2%
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4.2 � Results

In this section we present two numerical examples of per-
forming robust optimization using the lattice based multi-
scale framework considering material uncertainties on the 
microscale. In each example three material uncertainty cases 
are considered: deterministic (no material uncertainty), 

uniform uncertainty and spatially-varying material uncer-
tainty. First, a detailed discussion of the cantilever case is 
provided, followed by a comparison to the bridge optimiza-
tion case.

4.2.1 � Cantilever

Non-spatially-varying uncertainty
This example examines the impact of considering mate-
rial uncertainties on the design of a classical end-loaded 
cantilever, as shown in Fig. 5a. To examine the efficacy of 
the uncertainty model presented in this work, we first con-
sider the uniform material uncertainty case. Compared to 
the standard deterministic design, the inclusion of uniform 
material uncertainties during the optimization process leads 
to a 21.8% reduction in the mean compliance and a 77.1% 
reduction in the standard deviation of compliance. These 
results indicate that the robust optimization model proposed 
in this work is able to generate designs which are more toler-
ant of uniform material uncertainties compared to the stand-
ard deterministic optimization framework.

To provide some context and examine the sensitivity 
of the original deterministic design we also computed the 
increase in compliance that would result from a fixed uni-
form perturbation of � = −0.05 (the most extreme perturba-
tion allowed within this work) to the optimized truss radii. 
Compared to the deterministic compliance value (where 
� = 0 ), the compliance value increases by 62.9%, when the 
deterministically optimized design was exposed to a uni-
form perturbation of � = −0.05 . While a uniform erosion 

Fig. 5   Optimization problem setups

Fig. 6   Lattice reconstruction of deterministic, uniform and spatially-varying uncertainty optimized cantilever designs (top row—iso view, bot-
tom row—rear view)
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of the truss radii everywhere in the structure during the AM 
process is unlikely, this result does highlight the sensitivity 
of the deterministic design. In contrast, exposing the robust 
design, obtained considering uniform uncertainties during 
the optimization, to the same perturbation results in a 17.0% 
increase in the compliance relative to the deterministic com-
pliance value.

To visualize the impact of considering uniform uncer-
tainties in the robust optimization, 3D reconstructions of 
the deterministic and uniform case designs are shown in 
Fig. 6a and b, respectively. Here, we observe significant 
differences in the topology between the two cases, with a 
hollow, shell structure generated in the deterministic case, 
whereas the uniform case leads to the formation of a I-beam 
type structure, as seen in Fig. 6b. The presence of a single 
central structure transferring the load from the loaded, free 
end to the fixed end of the cantilever, forms a single, more 
substantial load path. This leads to a structure which is more 
tolerant of variations in the lattice radii and contributes to 
the improved robustness, both in terms of the mean and the 
standard deviation of compliance, relative to the determinis-
tic design. Based on optimized designs presented for similar 
setups in literature, we speculate that the shell like struc-
ture formed in the deterministic case may be due to a local 

minimum in the design space rather than the true global 
optimum solution for the deterministic case. For example, 
examples of designs similar to that observed in the uniform 
uncertainty case, shown in Fig. 6b, have been reported in 
deterministic optimizations (see for example Robbins et al. 
(2016)).

To further examine the mechanism by which the robust 
optimization model generates designs which are tolerant of 
the uniform material uncertainty, histograms showing the 
underlying material distribution for the design variables ( � 
and ri ) for both the deterministic and uniform material 
uncertainty cases are shown in Fig. 7. Focusing on the truss 
radii ( r1,… , r7 ), shown in Fig. 7b–h, we note that there is a 
significantly larger number of trusses with radii in the upper 
bound ( 0.29 ≤ r ≤ 0.33 ) for the uniform uncertainty case in 
comparison to the standard deterministic result, for every 
one of the seven trusses. This makes sense as the gradient of 
the stiffness tensor ( dE

dri
 ) is much shallower for thicker lattice 

trusses, compared to thinner lattice trusses, indicating that 
denser lattices are more tolerant of variations in the truss 
radii. As a result, the optimizer pushes the lattice radii 
towards lattices with larger volume fractions (due to the 
increase in truss radii) in the optimization domain.
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Fig. 7   Material distribution histograms for the cantilever optimization problem

Table 2   Comparison of the 
mean and standard deviation 
calculated using k = 6 and k = 
14 PCE modes

Problem
k = 6 ( nq = 84) k = 14 ( nq = 680) Error (%)

�[C] �[C] �[C] �[C] �[C] �[C]

Bridge 4.333 0.421 4.332 0.388 0.005 8.55
Cantilever 1.317 0.118 1.318 0.112 − 0.028 4.890
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The symmetry present in the microstructure (both in the 
diagonal trusses and in the x and z axis aligned trusses), 
is also evident in the optimized designs. From the histo-
grams, we observe that the distributions for the four diagonal 
trusses, r1 to r4 and the x and the z aligned trusses, r5 and r7 , 
are identical due to the symmetries present on the macro-
scale. To ensure the volume fraction constraint is met, we 
observe an increase in the number of void cells, as indicated 
by the distribution of � , shown in Fig. 7a, which overall 
leads to fewer material regions. However, where lattices 
still exist, they have increased volume fractions, leading to 
increased robustness. It should also be noted that the effec-
tiveness of the threshold filtering, as defined in Eq. 7, can be 
clearly observed from the binary distribution of the density 
variable in Fig. 7a, highlighting that the designs generated 
are composed of binary, material or void elements only.

Spatially-varying uncertainty
In this section we examine the efficacy of the spatially-
varying material uncertainty model proposed in Sect. 3.2, 
through the robust optimization of a cantilever design. Rela-
tive to the deterministic case, the design optimized consider-
ing spatially-varying material uncertainties is found to have 
a 16.2% reduction in the mean compliance and a 67.7% 
reduction in the standard deviation of compliance, giving 
confidence that the robust design is more tolerant of spatial 
variations in the microscale geometry that may occur during 
the manufacturing process.

To investigate the accuracy of the low-order statistics, 
computed using k = 3 PCE modes with nq = 84 integration 
points, the ‘true’ mean and standard deviation of the final 
optimized designs are computed using k = 14 with nq = 680 
integration points, the results of which are shown in Table 2. 
Errors less than 0.1% for the mean and less than 10% for the 
standard deviation are observed, which is deemed sufficient 
for the present study. Improvements in the accuracy can be 
achieved by increasing the number of PCE modes, k, and 
or by utilizing Gaussian quadrature rules with a full tensor 
grid, which may perform better as they are less reliant on 
the smoothness of the stochastic space (Elesin et al. 2012). 
However, both of these modifications will result in a signifi-
cant increase in the number of integration points, which can 
be highly impractical for optimization purposes.

The overall topology, shown in Fig. 6c, is very similar to 
the design seen in the uniform uncertainty case, shown in 
Fig. 6b, with an I-beam type structure carrying the load. As 
with the uniform case design, in the spatially-varying case 
larger lattice radii are utilized, compared to the determinis-
tic case design, to improve the robustness, as shown in the 
histograms in Fig. 7b–h. To compensate for the resulting 
increase in volume, there is an increase in the number of 
void cells, which is highlighted in Fig. 7a by the increase in 
the number of cells with 𝜌 < 0.2.

Spatially-varying uncertainty vs. uniform uncertainty
A natural question arises regarding the utility of imposing 
spatially-varying material uncertainties during the robust 
optimization. Relative to the uniform uncertainty case, there 
is more than a 20-fold increase in the number of simula-
tions required each iteration (for the setup used in this work), 
alongside the added complexity of simulating random fields 
in the first place. In this section we investigate the benefit 
of considering spatially-varying material uncertainties dur-
ing the robust optimization, compared to assuming uniform 
uncertainties. To do this, the low-order statistics of structures 
designed assuming uniform and spatially-varying material 
uncertainties were computed by imposing spatially-varying 
uncertainties on the optimized designs. To clarify, this study 
simulates the behaviour of structures optimized assuming 
uniform and spatially-varying material uncertainties in the 
presence of spatially-varying uncertainties. Therefore, this 
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Fig. 8   Comparison of the relative mean and standard deviation for the 
uniform and spatially-varying designs
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comparison helps to understand if there is any benefit in 
utilizing spatially-varying material uncertainties, which 
are much more computationally intensive, compared to the 
inclusion of uniform material uncertainties.

For the cantilever problem, based on the data presented in 
Fig. 8, the relative mean compliance values are − 21.7% and 
− 30.5% for the uniform and spatially-varying case designs 
respectively, when exposed to spatially-varying uncertainties, 
relative to the deterministic design. This result is somewhat 
expected and shows that the mean compliance is improved by 
considering spatially-varying uncertainties during the optimi-
zation process compared to considering uniform uncertainties. 
However, the relative standard deviation of compliance values 
are − 76.8% and − 74.1% for the uniform and spatially-var-
ying case designs, respectively, when exposed to spatially-
varying uncertainties, relative to the deterministic design. In 
the context of the standard deviations of compliance, for the 
cantilever problem, it appears that there is no real benefit in 
considering spatially-varying uncertainties during the optimi-
zation process. This may be due to the fact that the uniform 
uncertainty case imposes more extreme changes in material 
properties, since it always adds or removes material every-
where in the domain. On the other hand, in the spatially-vary-
ing case, material is added in some places and removed mate-
rial in others, causing smaller variations in the compliance. 

This means that, designs which have been optimized using 
uniform material uncertainty are somewhat more tolerant to 
spatially-varying uncertainties, as the optimizer deals with 
more extreme scenarios in the uniform case.

Further evidence of this can also be found by comparing 
the underlying material distribution histograms, shown in 
Fig. 7. Here we note that the changes in material distribution 
relative to the deterministic case are much larger in the designs 
optimized using uniform uncertainty compared to those opti-
mized using spatially-varying uncertainty. For example, there 
is a larger increase in the number of void cells meaning that 
there is a larger reduction in the number of cells containing 
lattices in the uniform uncertainty optimized designs com-
pared to the spatially-varying uncertainty optimized designs. 
Similarly, the increase in number of thick truss radii are also 
much more significant in the uniform uncertainty optimized 
cases compared to those with non-uniform uncertainty.

Overall, when considering both the mean and standard 
deviation of compliance, there is a benefit to using spatially-
varying uncertainties during the optimization process, 
despite the increased computational cost. Although, for the 
setup considered in this work, there is a slight increase in 
the standard deviation of compliance for the spatially-var-
ying case design relative to the uniform case design, when 
exposed to spatially-varying material uncertainties, a signifi-
cant reduction in the mean compliance is achieved. Further 
analysis is required to examine the impact of the standard 
deviation factor, � , on these results, however this is outside 
the scope of the current work.

4.2.2 � Bridge

Robust optimization was also used to tackle a bridge design 
problem, as shown in Fig. 5b, to further examine the effi-
cacy of the proposed uncertainty model. As shown in the 

Table 3   Change in mean and standard deviation of compliance, for 
the robust optimized designs using uniform uncertainty compared to 
deterministic designs

Problem Mean (%) Standard deviation (%)

Cantilever − 21.8 − 77.1
Bridge − 0.2 − 72.9

Fig. 9   Lattice reconstruction of deterministic, uniform and spatially-varying uncertainty optimized bridge designs (top row—iso view, bottom 
row—side view)
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cantilever problem, the sensitivity of the deterministic and 
robust solutions for the bridge problem were examined by 
applying a fixed uniform perturbation to optimized designs. 
When a perturbation of � = −0.05 was applied to the deter-
ministic bridge design, the compliance values increased 
by 63.1%, relative to the deterministic compliance (where 
� = 0 ). However, the increase in compliance was only 
16.1% for the bridge design obtained by robust optimiza-
tion considering uniform uncertainties, further highlighting 
the need for robust optimization techniques and the inherent 
sensitivity of deterministically optimized designs.

Similarly to the cantilever problem, the bridge design 
optimized considering uniform uncertainty was found to 
have a significantly lower standard deviation of compliance 
(− 72.9%), as seen in Table 3. This indicates that the robust 
optimized design has an increased tolerance of variations in 
the microscale geometry. However, the improvement in the 
mean compliance is considerably lower, almost negligible, 
in the bridge case with a reduction of 0.2% in the mean com-
pliance relative to the deterministic design. Compared to the 

reduction of 21.8% for the mean compliance in the cantilever 
design, this result appears to be worse than expected, but it 
may be explained by two factors. Firstly, from the visualiza-
tions shown in Fig. 9, we note that the degree of change in 
topology is very small in comparison to the changes between 
the deterministic and uniform case designs for the cantilever 
problem shown in Fig. 6a and b. As there is a limited change 
in the topology, the improvement in mean compliance that 
is achieved by the optimized design is therefore also lim-
ited. Secondly, as noted in Sect. 3.1, the standard deviation 
weighting factor used in the objective function was � = 3 , 
which forces the optimizer to prioritize the reduction of the 
standard deviation over reductions in the mean compliance, 
which may explain why, despite a significant reduction in 
the standard deviation of compliance, only a slight reduction 
in the mean compliance is observed in the bridge designs.

As discussed in the cantilever problem in Sect. 4.2.1, 
when spatially-varying uncertainties are considered in the 
robust optimization the final designs are found to be more 
robust, due to reductions in the standard deviation of com-
pliance, and more optimal, due to a reduction in the mean 
compliance, as summarized in Table 4. Once again the mate-
rial distribution histograms for the bridge design, shown in 
Fig. 10, can be used to examine the underlying changes 
which lead to these improved statistics. From the histograms 
we note an increase in the number of dense lattices, which 
are less sensitive to variations in the truss radii. The sym-
metries noted in the cantilever problem are also observed 
in the bridge design histograms, with identical distribution 
for the diagonal trusses, as shown in Fig. 10b–e. Further 

Table 4   Relative mean and standard deviation of the robust optimized 
designs using spatially-varying uncertainty relative to the determinis-
tic designs

Problem Mean (%) Standard 
deviation (%)

Cantilever − 30.5 − 74.1
Bridge − 16.2 − 67.7
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Fig. 10   Material distribution histograms for the bridge optimization problem
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evidence of this can be seen in the 3D reconstructions shown 
in Fig. 9. For example in the bottom row of Fig. 9a–c we can 
see that the trusses r1 and r4 are dominant on the left side of 
the arches and the trusses r2 and r3 are dominant on the right 
side of the arches to enable more efficient load paths from 
the loaded surface to the supports.

Finally, we can perform a comparison between the uni-
form and spatially-varying case designs, to examine any 
benefits of considering spatially-varying uncertainties. 
As previously discussed, this comparison is performed by 
imposing spatially-varying uncertainties on the final designs 
obtained by assuming uniform or spatially-varying mate-
rial uncertainty during the optimization process. Similarly 
to the cantilever case, from the results displayed in Fig. 8, 
we find that considering uniform uncertainties during the 
optimization process leads to similar standard deviations of 
compliance in the presence of spatially-varying uncertain-
ties, compared to designs obtained by assuming spatially-
varying uncertainties during the optimization. As mentioned 
earlier, this is due to the fact that uniform uncertainties can 
be viewed as the extreme case of spatially-varying uncer-
tainty, since material is always added or removed, leading 
to greater changes in the compliance. However, this leads 
to sub-optimal structures in terms of the mean compliance, 
when the uniform uncertainty case designs are exposed to 
spatially-varying uncertainties, as seen in Fig. 8a. For the 
bridge problem, the mean performance is almost identical 
to the deterministic solution (− 0.2%), when we only con-
sider uniform uncertainty. However, in the spatially-varying 
uncertainty optimized designs, we find significant improve-
ments in the mean compliance (− 16.2%). These results 
suggest that uniform uncertainty based robust optimized 
does provide some robustness (in terms of standard devia-
tion), against spatially-varying uncertainties. However, these 
designs are sub-optimal in terms of the mean compliance 
and so spatially-varying uncertainty based robust optimi-
zation is beneficial when considering both the mean and 
standard deviation of compliance based on the setup used in 
this work and assuming that real-world uncertainties arising 
during the AM process are indeed spatially-varying.

5 � Conclusions

Many efficient deterministic multiscale optimization frame-
works exist. However, to ensure that designs generated by 
the optimization algorithms are viable in the real world, 
the impact of uncertainties must be considered within the 
optimization framework. In this work we have extended 
the flexible material uncertainty methodology proposed 
by Thillaithevan et al. (2021a, b) by performing robust 
optimization, utilizing a 7-truss lattice microstructure and 

by imposing spatially-varying material uncertainties. By 
directly perturbing the microstructure trusses, the uncer-
tainty model simulates the linear erosion and dilation of the 
microstructures. While this does not capture local defects 
that may occur along individual trusses, it serves as a start-
ing point for the inclusion of material uncertainty in multi-
scale optimization frameworks that utilize multiple variable 
parameterization, something that, to the authors’ best knowl-
edge, has not yet been addressed in literature.

Two numerical examples were presented to highlight the 
efficacy of the proposed uncertainty model, considering both 
uniform and spatially-varying uncertainties. The main con-
clusions from these results are as follows:

–	 Deterministically optimized designs were shown to be 
highly sensitive to the type of manufacturing uncertain-
ties that may occur in an AM process, highlighting the 
need for robust optimization.

–	 The proposed uniform and spatially-varying material 
uncertainty formulations generate structures which 
are significantly more robust in terms of the standard 
deviation of compliance. For both problems tackled in 
this work, reductions of ∼70% in the standard deviation 
of compliance were observed in the robust designs in 
comparison to the standard deterministic designs. These 
results give confidence that these robust optimized 
designs would be more tolerant to uncertainties arising 
during the AM process.

–	 Direct comparisons between the uniform and spatially-
varying case designs indicate that, for the setup used in 
this work, the consideration of spatially-varying uncer-
tainties during the optimization is beneficial. While 
the uniform case leads to similar standard deviations, 
the mean compliance is significantly worse than in the 
designs optimized using spatially-varying uncertainties.

As the characteristics of real-world defects are heavily influ-
enced by the printer and print settings, in practical applica-
tions it will be necessary to tune the uncertain parameters 
presented in this work using experimental results. This will 
be the subject of future research.
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