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Abstract
A literature survey reveals that many structural optimization problems involve constraint functions that demand high com-
putational effort. Therefore, optimization algorithms which are able to solve these problems with just a few evaluations of 
such functions become necessary, in order to avoid prohibitive computational costs. In this context, surrogate models have 
been employed to replace constraint functions whenever possible, which are much faster to be evaluated than the original 
functions. In the present paper, a global optimization framework based on the Kriging surrogate model is proposed to deal 
with structural problems that have expensive constraints. The framework consists of building a single Kriging model for 
all the constraints and, in each iteration of the optimization process, the metamodel is improved only in the regions of the 
design space that are promising to contain the optimal design. In this way, many constraints evaluations in regions of the 
domain that are not important for the optimization problem are avoided. To determine these regions, three search strategies 
are proposed: a local search, a global search, and a refinement step. This optimization procedure is applied in benchmark 
problems and the results show that the approach can lead to results close to the best found in the literature, with far fewer 
constraints evaluations. In addition, when problems with more complex structural models are considered, the computational 
times required by the framework are significantly shorter than those required by other methods from the literature, including 
another Kriging-based adaptative method.

Keywords Kriging · Structural optimization · Constraints · Surrogate models

1 Introduction

Structural optimization problems consist of finding a vector 
of design variables which minimizes an objective function 
and is subject to constraints (Spillers and MacBain 2009). 
Usually, the objective function is related to the weight 
or cost of the structure and the constraints correspond to 
design criteria, such as allowable stresses and displacements. 
Therefore, in these cases, evaluations of objective functions 
are simple to perform, while evaluations of constraints many 
times depend on the application of numerical models to rep-
resent the structural behavior.

Application of complex computational models, in an 
attempt to better represent the real behavior of structures, 
raised challenges in the field of structural optimization. Usu-
ally, such models lead to high computational efforts. For 
example, a single run of a structural analysis which takes 
into account the effects of material and geometric nonlin-
earities may easily demand several minutes of computational 
time, and many structural analyses are usually necessary to 
perform an optimization. Therefore, the optimization pro-
cess must require as few as possible evaluations of the con-
straints to avoid prohibitive computational costs. If the prob-
lem presents many local minima, its solution becomes much 
more challenging, since application of global optimization 
procedures, such as metaheuristic optimizations algorithms 
(Holland 1975; Kennedy and Eberhart 1995; Yang 2005; 
Atashpaz-Gargari and Lucas 2007; Gonçalves et al. 2015), 
usually requires too many constraints evaluations.

In the literature, surrogate models, also known as met-
amodels, have been used to deal with problems that have 
expensive functions (Zhao et al. 2020; Chunna et al. 2020; 
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Kroetz et al. 2020). These metamodels correspond to an 
approximation of a function, in the entire design space, 
based on a small number of sample points. Thus, compu-
tationally expensive functions can be replaced by surrogate 
models which are much faster to be evaluated than the origi-
nal functions (Forrester et al. 2008). In optimization, many 
authors proposed to include samples in an adaptive man-
ner, according to metrics that try to identify regions which 
are important to improve the accuracy of the metamodel. 
However, the main focus of these studies is related to expen-
sive objective functions, while a more limited number has 
addressed problems with constraints (Durantin et al. 2016; 
Qian et al. 2020; Zhang et al. 2018; Wu et al. 2018; Dong 
et al. 2020; Yang et al. 2020). In addition, studies that apply 
such approaches to structural problems are even more lim-
ited (Parr et al. 2012; Dong et al. 2016; Liu et al. 2017; Li 
et al. 2017; Dong et al. 2018; Shi et al. 2019).

Usually, these procedures adopt infill sampling criteria 
based on the concepts of expected improvement, probabil-
ity of feasibility or model error, and some also apply space 
reduction strategies. Among the surrogate models applied 
for this purpose, Kriging (Krige 1951; Jones et al. 1998) can 
be highlighted due to the great flexibility of the model and 
the ability to estimate its uncertainty, which may facilitate 
the identification of important regions, under an optimiza-
tion point of view.

Lee and Jung (2008) proposes the so-called constraint 
boundary sampling method (CBS) to build a metamodel that 
can accurately predict the optimal point while satisfying con-
straints, where sample points are sequentially located along 
the constraint boundary by using the mean squared error of 
the Kriging estimate. Meng et al. (2019) proposes another 
active learning method, which presents high performance in 
comparison with CBS. References Lee and Jung (2008) and 
Meng et al. (2019) both focus on reliability-based design 
optimization problems.

Dong et al. (2018) present, as an extension of a previous 
study (Dong et al. 2016), a global optimization approach based 
on space reduction, where two subspaces of the search space 
are created, one in the neighborhood of the best solution and 
the other in a region that covers promising samples, and a 
multi-start optimization is performed alternately on the sub-
spaces and the global space, to explore the surrogate models 
and add new samples. Qian et al. (2020) presents an update 
approach of the Kriging surrogate model when applied to 
represent constraints. The approach is based on confidence 
intervals, and tries to assess if the feasibility status of the can-
didate design can be changed due to the interpolation uncer-
tainty related to the Kriging predictor. In Dong et al. (2020) 
a discrete constrained optimization method based on Kriging 
is proposed, where a multi-start optimization is performed to 
find promising solutions in the continuous design range. After 
a projection of the solutions to the discrete space takes place, 

a k-nearest neighbors search strategy is used, in conjunction 
with the expected improvement criterion, to find supplemen-
tary samples.

Although the approaches found in the literature seem 
promising and have been continually discussed, they usually 
focus on specific types of optimization problems. Studies that 
employ surrogate models for the constraints and aim at more 
general structural optimization problems were not found by 
the authors of the present paper, and this is one of the main 
purposes of the method presented herein.

In this context, the present paper proposes a global optimi-
zation framework based on surrogate models, for structural 
problems with computationally expensive constraints. The 
approach consists of building a single Kriging model for all 
the constraints from a set of sample points and, in each itera-
tion of the method, adding points to this set only in the regions 
of the domain that are promising to contain the global opti-
mum. In this way, many unnecessary constraints evaluations 
are avoided. For this, three search strategies are performed 
during the optimization process, using the metamodel: a local 
search, which is based on the farthest apart subset concept 
and applies a metaheuristic optimization method to look for 
multiple local minima along the design space; a global search, 
which is also performed by using a metaheuristic optimization 
method in an attempt to find the global minima; and a refine-
ment step, which aims to improve the best solution found so 
far using a gradient-based method. Seven optimization prob-
lems from the literature are evaluated, where different types of 
structures, design variables, objective functions and constraints 
are addressed.

It is noteworthy that the objective here is not necessarily to 
obtain the best result in comparison with the results presented 
in the literature, but rather to find feasible results close to the 
best, with far fewer constraints evaluations. This may signifi-
cantly accelerate the solution of large structural optimization 
problems, leading to viable solutions to practical engineering 
problems. Moreover, as the objective functions of the prob-
lems defined here demand low computational effort, it is not 
advantageous to replace them by a surrogate model, since the 
time to determine the parameters of the metamodel could be 
longer than the time to evaluate the true functions.

The remainder of this paper is organized as follows: Sect. 2 
presents the surrogate model considered herein; the proposed 
global optimization framework is described in Sect. 3; Sect.  4 
presents the application of the proposed approach in numerical 
examples; conclusions about the performance and accuracy of 
the framework are drawn in Sect. 5.
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2  Surrogate model

Surrogate model is a mathematical model constructed 
based on a limited data set from a computational or physi-
cal experiment. Thus, it is possible to use the surrogate 
model in order to predict the results assumed by the exper-
iment, without performing it (Forrester et al. 2008). In the 
context of optimization, surrogate models can be used, for 
example, to replace objective and/or constraint functions, 
when these functions demand high computational efforts 
to be evaluated. The main idea is to obtain metamodels 
sufficiently accurate and with construction and evaluation 
time considerably shorter than the evaluations of the origi-
nal functions.

Considering a sampling plan � =
[
�(1), ..., �(n)

]T formed 
by n points of the m-dimensional design space. Each one 
of these points can be associated with a value of the func-
tion f (�) to be replaced. In this way, one can calculate the 
responses vector � =

[
y(1), ..., y(n)

]T , where y(i) = f (�(i)) , with 
i = 1, ..., n . From these data, it is possible to fit a surrogate 
model and to obtain predictions ŷ(�) ≈ f (�) at any point � 
from design space, via metamodel. There are several surro-
gate models that can be used for this purpose, and Kriging 
is adopted.

2.1  Kriging

Kriging models can be seen as the realization of a Gaussian 
process, understood as

where � is the deterministic part which gives an approxima-
tion of the response in the mean (global trend) and Z(�) is a 
stationary Gaussian process with zero mean (Echard et al. 
2011), which represents a local deviation from the model 
(local trend). Z(�) can be obtained by using the correla-
tion between the local position and its nearby observations 
(Chunna et al. 2020). The covariance between outputs of the 
Gaussian process Z is given by

where �2 is the process variance and R
(
�(i), �(j)

)
 is the cor-

relation function (or basis function) between points �(i) and 
�(j) , with i, j = 1, ..., n (Bichon 2008). The most commonly 
used correlation function is Gaussian (Eq. (3)), which is also 
used herein, where � =

[
�1, ..., �m

]T are the unknown param-
eters of the model.

(1)G(�) = � + Z(�),

(2)Cov
[
Z
(
�(i)

)
, Z

(
�(j)

)]
= �2R

(
�(i), �(j)

)
,

(3)R
(
�i, �j

)
= exp

[
−

m∑
l=1

�l
|||x

(i)

l
− x

(j)

l

|||
2

]

In Kriging, the unknown parameters � are usually found 
by using the Maximum Likelihood Estimate (MLE). More 
details of the procedure can be obtained in Forrester et al. 
(2008).

For given � , � and � , �̂� and �̂� can be estimated by

where � is the correlation matrix of all the observed data 
and � is an n × 1 column vector of ones (Forrester et al. 
2008). Therefore, the resulting prediction function and the 
respective mean squared error (MSE) can be written as in 
Eqs. (5) and (6), respectively, where � is the vector of cor-
relations between the observed data and the new prediction.

Figure 1 shows an example of a function prediction via Krig-
ing, as well as the estimate of the prediction error.

3  Global optimization framework

The optimization problem addressed herein consists of find-
ing the values of the design variables � that minimize the 
objective function f (�) , subject to inequality constraints 
gi(�) ≤ 0 and to lower and upper bounds of each variable 
xj , with i = 1, ..., p and j = 1, ...,m , where p and m are the 
numbers of constraints and design variables (or dimension of 

(4)�̂� =
�T�−1�

�T�−1�
, �̂�2 =

(� − ��̂�)T�−1(� − ��̂�)

n
,

(5)ŷ(�) = �̂� + �T�−1(� − ��̂�)

(6)s2(�) = �̂�2

[
1 − �T�−1� +

(
1 − �T�−1�

)2
�T�−1�

]

Fig. 1  Example of Kriging metamodel prediction
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the design space), respectively. It is considered that objective 
functions are cheap to evaluate and that constraints require 
high computational effort, as previously discussed.

Since the surrogate model is used as an approximation 
of the constraints, based on sampled points, it is prudent to 
improve the accuracy of the metamodel during the optimiza-
tion process, by inserting infill points (IPs) in regions of the 
design space that may contain the best design. In general, an 
optimization procedure based on metamodels can be sum-
marized in the following main steps:

(1) Determine a sampling plan;
(2) Fit a surrogate model to the sampled points;
(3) Insert infill points in the sampling plan and go to the 

step 2. The procedure is performed until a stop criterion 
is reached.

The approaches adopted in the framework proposed 
herein are presented in the following sections, with some 
illustrations of the method when applied in the solution of 
the Toy problem, adapted from Gramacy et al. (2015). Equa-
tions (7), (8) and (9) present the objective function and the 
constraints of the Toy problem addressed herein. For a better 

understanding of the framework, Fig. 2 shows the flowchart 
of the optimization process. All codes are developed in 
MATLAB (MathWorks 2017) and the Kriging algorithm 
adopted herein is the one available in Forrester et al. (2008).

3.1  Sampling plan

The sampling plan � =
[
�(1), ..., �(n)

]T is generated in such 
a way that the points selected to compose the sample are 
the points most distant from each other in the design space, 
ensuring wide coverage of the search space. To do so, nsamp 
random points are generated uniformly in the design space. 
Among these points, the one closest to the center of the 
search space is selected and included in the sampling plan. 
The next selected point is defined as the farthest apart point 
from those selected previously. The selection proceeds by 
the criterion of the maximum Euclidean distance between 
the points, until the n points which define the initial sampling 
plan are obtained. The design space used in the framework is 
normalized, so that the lower and upper bounds correspond 
to 0 and 1, respectively. Thus, variables with different mag-
nitudes have the same contribution to the distances. Figure 3 
shows a sample generated by the proposed procedure for 
the Toy problem, with n = 12 . Note that other procedures 
could be used to obtain similar initial sampling plans. For 

(7)f (�) = x1 + x2

(8)g1(�) =
3

2
− x1 − 2x2 −

1

2
sin

(
4�

(
x2
1
− 2x2

))

(9)g2(�) = x2
1
+ x2

2
−

3

2

Fig. 2  Flowchart of the framework Fig. 3  Sampling plan of Toy problem
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example, if Latin Hypercube Sampling (McKay et al. 1979) 
is employed, aiming at maximizing the minimum distance 
between points and with a sufficient number of improving 
iterations, it would lead to similar results.

3.2  Construction of the Kriging model

Here, a single surrogate model is created to represent all 
constraints of the problem, although different surrogates 
could be used to represent different constraints or groups 
of constraints. For this, it is necessary to evaluate the con-
straints at each sampled point, obtaining the response vector 
� =

[
g(1), ..., g(n)

]T , where g(i) = max
([
g1(�

(i)), ..., gp(�
(i))

])
 , 

with i = 1, ..., n , and max is the operator that returns the 
maximum value among elements. So, the surrogate model 
is created based on the sampling plan � and the respec-
tive constraints values � . The prediction obtained via the 
metamodel is denoted by ĝ(�) . To fit the parameters � of 
the basis function to the data set, the MLE is performed by 
Particle Swarm Optimization (PSO) (Kennedy and Eberhart 
1995), which proved to be more accurate and faster than the 
genetic algorithm (GA) used in Forrester et al. (2008). Other 
metaheuristic optimization methods could also be employed, 
but the results obtained via PSO seemed to be good enough 
for the purposes of this paper.

3.3  Search strategies

Three search strategies used to select infill points are pro-
posed herein. Note that the proposed framework differs from 
what has been found in the literature because it combines 
these three different strategies, which have complementary 
characteristics. As a result, the framework becomes more 
robust and sometimes faster than other procedures presented 
in the literature. To avoid further evaluations of the true 
time-consuming constraints, all of these strategies make use 
of a surrogate optimization problem, where the constraints 
are replaced by the prediction function ĝ(�) . The optimum 
points �̂∗ found in these optimizations are inserted as infill 
points in the sampling plan, even if they are classified as 
infeasible by the true functions. During the entire optimiza-
tion process, the true constraints are evaluated only once, at 
each point of the sampling plan. The total number of evalu-
ations of the constraints equals the size of the sampling plan. 
More details about the strategies are presented below.

3.3.1  Local search and global search

The local search is performed in order to look for mul-
tiple local minima over the design space, so that a num-
ber of promising regions may be explored. For this, ns 
design subspaces are defined and, in each one of these 
subspaces, the surrogate optimization problem is solved 

via a metaheuristic optimization method. Firefly algorithm 
(FA) (Yang 2005) was chosen to be used herein due to its 
good performance in structural problems (Gandomi et al. 
2011; Miguel and Fadel Miguel 2012; Miguel et al. 2015; 
Gebremedhen et al. 2020), although other global optimi-
zation methods could be employed. The best design �̂∗ 
found in each optimization subproblem is taken as an infill 
point. To generate the design subspaces, first a point in the 
sampling plan is randomly selected, defining �1

s
 . The next 

points �i
s
 , with i = 2, ..., ns , are chosen based on the farthest 

apart subset concept, selecting the point from the sampling 
plan which is the farthest from the already selected points. 
The lower and upper bounds of the i-th design subspace, 
defined as ��i

s
 and ��i

s
 , respectively, are given by

where all vectors sizes are m × 1 and each row is associ-
ated with a dimension of the design space: �� and �� are 
the lower and upper bounds of the problem, respectively, � 
represents the widths of the subspace and △��

i and △��
i 

are calculated by

In addition, max and min are the operators that return 
the maximum and minimum value of a row, respec-
tively. All subspaces have the same size, chosen as 
� = (�� − ��)∕(�

�∕�
� ) , which result in some superpositions 

between them if the value of � is greater than half the range 
defined by �� and �� , in any dimension of the problem. The 
boundaries given by Eqs. (10) and (11) tend to center the 
subspaces in their respective �i

s
 . However, when these points 

are close to the bounds, the subspace cannot be centered on 
them. The subspaces must be relocated so that the upper and 
lower bounds are not violated. Figure 4 shows two possible 
sets of subspaces generated from different �1

s
 . It should be 

noted that, given the random aspect of the selection of the 
first subspace point and due to the updating of the sampling 
plan throughout the process, the subspaces change with 
each iteration of the method, so that different regions of the 
domain are explored during the optimization process.

On the other hand, the global search is employed in 
an attempt to find the global minima. Here, the surrogate 
optimization problem is solved considering the entire 
design space. The optimum point �̂∗ found in the process 
is selected as an IP. The optimization is also performed by 
the Firefly algorithm (FA).

(10)
��i

s
= max

([
��,

(
�i
s
+△��

i
−△��

i
)
−

�

2

])

��i
s
= min

([
��,

(
�i
s
+△��

i
−△��

i
)
+

�

2

])
,

(11)
△��

i
= max

([
�, �� −

(
�i
s
−

�

2

)])

△��
i
= max

([
�,
(
�i
s
+

�

2

)
− ��

])
.



 M. A. Juliani, W. J. S. Gomes 

1 3

4 Page 6 of 16

The local and global searches are performed until a stop 
criteria is reached, which is defined in Sect. 3.4. Although 
the combination of these strategies has been found to be 
quite robust in finding the region of the global minimum, 
one more search strategy is needed to obtain more accurate 
results in this region, which corresponds to the refinement 
step.

3.3.2  Refinement

The refinement step corresponds to the solution of the sur-
rogate optimization problem via a gradient-based method, 
starting from the best design �∗ found so far. This point is 
chosen among those of the sampling plan which are feasi-
ble. The optimum point �̂∗ obtained in the refinement step 
is also taken as an IP. This procedure is performed several 
times, until a stop criterion is reached (Sect. 3.4). Similar 
strategies, when applied alone, can converge to a local mini-
mum, as exemplified in Jones et al. (1998), in which a sur-
rogate model is built for the objective function. However, 
in this framework, the design space is explored by the pre-
vious strategies, so that this step has only the objective of 

improving the best result found in the region of the global 
minimum. The gradient-based method adopted herein is the 
Interior point (Coleman and Li 1996), which is an estab-
lished method in the literature and is available in MATLAB.

Figure 5 illustrates the Toy problem and the points evalu-
ated by g(�) during the solution process, and Fig. 6 shows 
the behavior of ĝ(�) in different stages of the framework. In 
the last iteration of the global search (Fig. 6b), it is possible 
to observe that most of the IPs were added in two regions 
of minimums and that in the refinement step (Fig. 6c), the 
IPs were added only in the region of the global minimum. 
In addition, the method was able to deal with the fact that, 
initially (Fig. 6a), the global optimum was considered to be 
unfeasible by the Kriging model.

3.4  Stopping criteria and optimal result

The stopping criterion adopted corresponds to the num-
ber itstall of iterations in which the optimum result does not 
present improvements greater than a given tolerance ftol 
between consecutive iterations, also attending to a minimum 
itmin and maximum itmax number of iterations. After the stop-
ping criterion is achieved, the optimal design �∗ is taken as 
the feasible point of the sampling plan that has the lowest 
value of the objective function.

4  Numerical examples

The proposed methodology is applied in the solution of 
seven structural optimization problems. In order to evaluate 
the performance of the framework, each example is run sev-
eral times and some metrics such as best and mean results, 

Fig. 4  Different subspaces obtained with the proposed formulation

Fig. 5  Toy problem and the sampled points of the optimization pro-
cess
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standard deviation (Std) and mean number of constraint 
function evaluations (FE) are presented.

The numerical examples are divided in two sections: the 
first (Sect. 4.1) corresponds to the solution of benchmark 
examples, and the results of the framework are compared 
with the results of the literature; the second (Sect. 4.2) pre-
sents the solution of examples also taken from the literature, 
but with modifications in the structural model adopted. In 
this case, as no results were found in the literature for these 
examples, they are also solved by other methods from the 
literature for comparison purposes. The first method is the 
Firefly algorithm (FA) discussed in Sect.  3.3.1. The sec-
ond is an adaptive metamodeling-based method described 
in Forrester et al. (2008), represented herein by KG-GA. 
In KG-GA, initially a Kriging model is constructed for the 
constraints, based on a Latin Hypercube sampling plan, and 
subsequently, the minimums found in successive solutions 
of the surrogate optimization problem via genetic algorithms 
are selected as infill points.

Although each one of these approaches has a different 
main purpose, the objective of these comparisons is to inves-
tigate if the proposed method is capable of providing similar 
results with fewer constraints evaluations, for the problems 
at hand.

The input data of the framework used in all examples, 
except when specified otherwise, are given by the following: 
nsamp = 1 ⋅ 106 ; n = min ([10m 150]) ; ns = min ([2m 20]) ; 
itstall = 2 , ftol = 0.1 , itmin = 3 and itmax = 12 for the first 
stop criterion, related to the global and local searches; 
itstall = min ([2m 30]) , ftol = 0.001 , itmin = min ([10m 150]) 
and itmax = min ([20m 300]) for the second stop criterion, 
related to the refinement step. In Sect. 4.1, each example is 
run 100 times, while the examples in Sect. 4.2 are run only 15 
times due to the high computational effort of some of them. It 

is noteworthy that most of the parameters adopted herein are 
defined as proportional to the number of dimensions of the 
optimization problems. For example, the number of subspaces 
adopted corresponds to twice the number of design variables 
of the evaluated problem, since preliminary tests indicated that 
this value is sufficient to adequately cover the design space 
with subspaces. Such value is limited to 20, in order to avoid 
prohibitive computational effort in large problems. However, 
a more rigorous analysis of some of these parameters could 
be performed in future studies to try to further improve the 
proposed framework.

4.1  Benchmark problems

4.1.1  Tubular column

The first optimization problem corresponds to a tubular col-
umn, illustrated in Fig. 7, addressed by Hsu and Liu (2007), 
Gandomi et al. (2013) and Rao (2020), which has length 
L = 250 cm and is under a compressive load P = 2500 kgf. 
The material has a yield stress �y = 500 kgf/cm2 and modulus 
of elasticity E = 0.85 ⋅ 106 kgf/cm2 . The aim is to find the 
dimensions t and d that minimize the cost of the structure (Eq. 
(12)) and that meets the constraints of yield stress (Eq. (13)) 
and buckling stress (Eq. (14)). The lower and upper bounds 
are, in cm, 2 ≤ d ≤ 14 and 0.2 ≤ t ≤ 0.8 . Table  1 shows 
the results obtained herein and some others available in the 
literature.

(12)f (�) = 9.82dt + 2d

(13)g1(�) =
P

�dt�y
− 1 ≤ 0

Fig. 6  Search strategies during the optimization process of Toy problem
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4.1.2  I‑beam

The second problem corresponds to a simply supported 
I-beam, studied by Wang (2003), Gandomi et al. (2013) and 
Cheng and Prayogo (2014). The problem consists of finding 
the dimensions of the cross section of the structure, which 
minimizes the vertical displacement and which meets the 
constraints of maximum cross-sectional area and of bend-
ing stress. Figure 8 shows the structure, where L = 200 cm, 
P = 600 kN and Q = 50 kN (both loads in the middle of the 
span), with modulus of elasticity equal to 2 ⋅ 104 kN/cm2 , 
maximum allowable bending stress of 6 kN/cm2 and maxi-
mum cross-sectional area of 300 cm2 . The design space is, in 
cm, 10 ≤ h ≤ 80 , 10 ≤ b ≤ 50 , 0.9 ≤ tw ≤ 5 and 0.9 ≤ tf ≤ 5 . 
Equation (15) corresponds to the objective function and Eqs. 
(16) and (17) define the constraints. Due to the order of 
magnitude of the f (�) , ftol = 0.001 and ftol = 0.00001 are 

(14)g2(�) =
8PL2

�3Edt
(
t2 + d2

) − 1 ≤ 0

adopted for the first and second stopping criteria, respec-
tively, and the results achieved are shown in Table 2.

4.1.3  10‑bar truss

The 10-bar truss problem shown in Fig. 9 is often used 
as a benchmark example (Wei et al. 2005; Gomes 2011; 
Wei et al. 2011; Kaveh and Zolghadr 2011; Miguel and 
Fadel Miguel 2012; Kaveh and Zolghadr 2012; Zuo et al. 
2014; Kaveh and Zolghadr 2017; Tejani et al. 2016, 2018; 
Kumar et al. 2019). The problem consists in finding the 

(15)
f (�) =

5000

tw(h−2tf )
3

12
+

bt3
f

6
+ 2tf b

(
h−tf

2

)2

(16)g1(�) = 2btf + tw
(
h − 2tf

)
− 300 ≤ 0

(17)

g2(�) =
180000h

tw
(
h − 2tf

)3
+ 2btf

(
4t2

f
+ 3h

(
h − 2tf

))

+
15000b

2tf b
3 +

(
h − 2tf

)
t3
w

− 6 ≤ 0

Fig. 7  Tubular column problem

Table 1  Optimal design and statistical results obtained by different 
methods for Tubular column problem

Design CS (Gandomi et al. 2013) Present study

d (cm) 5.45139 5.45285
t (cm) 0.29196 0.29194
g
1

− 0.0241 − 2.12 × 10−4

g
2

− 0.1095 − 8.30 × 10−4

Best 26.53217 26.53802
Mean 26.53504 26.59322
Std 0.00193 0.06226
FE 15000 67

Fig. 8  I-beam problem

Table 2  Optimal design and statistical results obtained by different 
methods for I-beam problem

Design CS (Gandomi 
et al. 2013)

SOS (Cheng and 
Prayogo 2014)

Present study

h (cm) 80.000000 80.00000 80.0000000
b (cm) 50.000000 50.00000 49.9999999
tw (cm) 0.900000 0.90000 0.9000000
tf  (cm) 2.3216715 2.32179 2.3217905
g
1
 (cm2) – – −1.71 × 10−4

g
2
 (kN/cm2) – – −1.57

Best (cm) 0.0130747 0.0130741 0.0130741
Mean (cm) 0.0132165 0.0130884 0.0132591
Std (cm) 0.0001345 0.00004 0.0003577
FE 5000 5000 122
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cross-sectional areas of the elements that minimize the mass 
of the structure, taking into account constraints based on the 
natural frequencies. Thus, 10 areas are considered as design 
variables, whose design space is 0.645 cm2 ≤ Ai ≤ 50 cm2 , 
with i = 1, ..., 10 . The material has Young modulus equal to 
6.98 ⋅ 1010 Pa and density of 2770 kg/m3 . At all free nodes 
(nodes 1–4) non-structural masses of 454 kg are attached 
to the truss. The natural frequency constraints are f1 ≥ 7 
Hz, f2 ≥ 15 Hz and f3 ≥ 20 Hz. Table 3 shows the results 
obtained by the framework using itstall = 4 and itmin = 6 for 
the first stop criterion, due to the large number of variables.

Fig. 9  10-bar truss problem

Table 3  Optimal design and statistical results obtained by different methods for 10-bar truss problem

Design PSO NHPGA Enhanced SOS- ISOS MSOS Present study
(Gomes 2011) (Wei et al. 2011) CSS (Kaveh and 

Zolghadr 2011)
ABF2 (Tejani 
et al. 2016)

(Tejani et al. 2018) (Kumar et al. 2019)

A
1
 (cm2) 37.712 36.630 39.569 35.3013 35.2654 35.2834 34.9471

A
2
 (cm2) 9.959 13.043 16.740 14.8119 14.6803 14.4487 14.2342

A
3
 (cm2) 40.265 34.229 34.361 34.9522 34.4273 34.5268 33.7359

A
4
 (cm2) 16.788 15.289 12.994 14.9436 14.9605 14.6773 16.2597

A
5
 (cm2) 11.576 0.645 0.645 0.6450 0.6450 0.6450 0.6451

A
6
 (cm2) 3.955 4.8472 4.802 4.5828 4.5927 4.5878 4.9807

A
7
 (cm2) 25.308 22.140 26.182 23.5712 23.3417 23.5452 22.6882

A
8
 (cm2) 21.613 27.983 21.260 23.5602 23.8236 24.1081 24.1722

A
9
 (cm2) 11.576 15.034 11.766 11.9314 12.8497 12.7202 13.5150

A
10

 (cm2) 11.186 10.216 11.392 13.0401 12.5321 12.4136 13.1714
f
1
 (Hz) 7.000 7.0003 7.000 7.0003 7.0001 7.0000 7.0083

f
2
 (Hz) 17.786 16.080 16.238 16.1997 16.1703 16.1666 16.1812

f
3
 (Hz) 20.000 20.002 20.000 20.0022 20.0024 20.0012 20.0482

Best (kg) 537.98 535.14 529.25 524.8289 524.7341 524.5747 528.9017
Mean (kg) 540.89 542.1816 538.53 528.5501 530.0286 527.7970 537.9182
Std (kg) 6.84 1.722717 5.97 2.9827 3.4763 2.9121 6.7098
FE 2000 – 4000 4000 4000 4000 470

Fig. 10  37-bar truss problem
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4.1.4  37‑bar truss

The fourth problem select, as shown in Fig. 10, is a simply 
supported bridge studied by several authors (Wei et al. 2005; 
Gomes 2011; Wei et al. 2011; Kaveh and Zolghadr 2011; 
Miguel and Fadel Miguel 2012; Kaveh and Zolghadr 2017; 
Tejani et al. 2016, 2018; Kumar et al. 2019). Similar to the 
previous example, here the objective is to minimize the mass 
of the structure subjected to natural frequency constraints. 
However, in addition to the size variables (cross-sectional 
area), shape variables (vertical position of the nodes) are 
also adopted. Lower nodes are considered to be fixed and 
lower elements (bar 28 to 37) are assumed to have fixed 

cross-sections of 40 cm2 . Since symmetry of structure about 
its middle vertical plane is considered, the problem has 14 
size variables, whose design space is 1 cm2 ≤ Ai ≤ 10 cm2 , 
with i = 1, ..., 14 , and 5 shape variables, whose design space 
is 0.1 m ≤ yj ≤ 3 m, with j = 3, 5, 7, 9, 11 . The material has 
Young modulus equal to 2.1 ⋅ 1011 Pa and density of 7800 
kg/m3 . In addition, non-structural masses equal to 10 kg 
are attached at each of the nodes on the lower chord. The 
natural frequency constraints are f1 ≥ 20 Hz, f2 ≥ 40 Hz 
and f3 ≥ 60 Hz. As in the previous problem, itstall = 4 and 
itmin = 6 are used to the first stop criterion, due to the large 
number of variables, while the other parameters are kept 
as previously defined. Table 4 compares the results of the 
problem.

Table 4  Optimal design and statistical results obtained by different methods for 37-bar truss problem

Design PSO NHPGA Enhanced FA TWO SOS- ISOS MSOS Present
(Gomes 
2011)

(Wei et al. 
2011)

CSS (Kaveh 
and Zol-
ghadr 2011)

(Miguel 
and Fadel 
Miguel 
2012)

(Kaveh and 
Zolghadr 
2017)

ABF2 
(Tejani et al. 
2016)

(Tejani et al. 
2018)

(Kumar et al. 
2019)

study

y
3
,y

19
 (m) 0.9637 1.09693 1.0289 0.9392 1.0039 0.9413 0.9257 1.0111 0.9536

y
5
,y

17
 (m) 1.3978 1.45558 1.3868 1.3270 1.3531 1.3393 1.3188 1.4030 1.3066

y
7
,y

15
 (m) 1.5929 1.59539 1.5893 1.5063 1.5339 1.5434 1.4274 1.6095 1.4661

y
9
,y

13
 (m) 1.8812 1.76551 1.6405 1.6086 1.6768 1.6744 1.5806 1.7610 1.5907

y
11

 (m) 2.0856 1.87413 1.6835 1.6679 1.7728 1.7571 1.6548 1.8513 1.6180
A
1
,A

27
 (cm2) 2.6797 2.62463 3.4484 2.9838 2.8892 2.9344 2.6549 2.9619 4.0651

A
2
,A

26
 (cm2) 1.1568 1 1.5045 1.1098 1.0949 1.0256 1.0383 1.0202 1.0000

A
3
,A

24
 (cm2) 2.3476 1.00176 1.0039 1.0091 1.0213 1.0095 1.0000 1.0000 1.0000

A
4
,A

25
 (cm2) 1.7182 2.07586 2.5533 2.5955 2.6776 2.5838 3.0083 2.3282 3.0694

A
5
,A

23
 (cm2) 1.2751 1.22071 1.0868 1.2610 1.1981 1.1569 1.0024 1.1719 1.0000

A
6
,A

21
 (cm2) 1.4819 1.48922 1.3382 1.1975 1.1387 1.2548 1.4499 1.2374 1.0001

A
7
,A

22
 (cm2) 4.6850 2.30847 3.1626 2.4264 2.6537 2.5104 3.1724 2.1430 2.3981

A
8
,A

20
 (cm2) 1.1246 1.43236 2.2664 1.3588 1.4171 1.4626 1.2661 1.5308 1.4774

A
9
,A

18
 (cm2) 2.1214 1.64678 1.2668 1.4771 1.3934 1.5245 1.4659 1.4839 1.4455

A
10

,A
19

 
(cm2)

3.8600 2.87072 1.7518 2.5648 2.7741 2.4586 2.9013 2.4001 2.9988

A
11

,A
17

 (cm2) 2.9817 1.50405 2.7789 1.1295 1.2759 1.1888 1.1537 1.1678 1.0000
A
12

,A
15

 
(cm2)

1.2021 1.31328 1.4209 1.3199 1.2776 1.3765 1.3465 1.5085 1.2751

A
13

,A
16

 
(cm2)

1.2563 2.32277 1.0100 2.9217 2.1666 2.2341 2.6850 2.0768 2.5864

A
14

 (cm2) 3.3276 1.04258 2.2919 1.0004 1.0099 1.0007 1.0000 1.0075 1.0000
f
1
 (Hz) 20.0001 20.0819 20.0028 20.0024 20.0279 20.0052 20.0119 20.0017 20.0659

f
2
 (Hz) 40.0003 40.0961 40.0155 40.0019 40.0146 40.0048 40.0964 40.0018 40.0390

f
3
 (Hz) 60.0001 60.0321 61.2798 60.0043 60.0946 60.0077 60.0066 60.0164 60.0774

Best (kg) 377.20 363.032 362.38 360.05 360.27 359.9050 360.7432 360.3018 361.4900
Mean (kg) 381.2 369.7024 365.75 360.37 363.75 363.0816 363.3978 362.9610 364.3028
Std (kg) 4.26 2.353248 3.461 0.26 2.48 1.8304 1.5675 1.7265 2.4106
FE 12500 – 4000 5000 – 4000 4000 4000 571
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4.1.5  Discussion of results

In all examples, the best and the mean values found by the 
proposed framework were close to those indicated in the 
literature, with differences less than 1.92% in relation to the 
best reference found. On the other hand, the number of con-
straints evaluations required by the framework was at least 
85.73% lower than the number of evaluations employed in 
the literature. Throughout the runs, the framework tended 
to provide similar results, as indicated by the small standard 
deviations observed.

4.2  Problems with nonlinear structural analysis

For each example in this section, two constraint scenarios 
are considered: scenario 1 corresponds to that taken from the 
literature, and scenario 2 evaluates a structural model that 
takes into account material and/or geometric nonlinearities. 
In both scenarios, the structural analysis is performed using 
the MASTAN2 software (McGuire et al. 2014; Ziemian and 
McGuire 2007).

Here, the performance of the framework is also evaluated 
in relation to the computational time required in the execu-
tion of the algorithms. For all examples, a population of 
10 individuals and 100 iterations are adopted to the Firefly 
algorithm as well as to the genetic algorithm of the adaptive 
metamodeling-based method. For both methods, the num-
ber of constraints evaluations is limited to 1000, due to the 
high computational effort of some examples. In addition, 
the number of points that define the initial sampling plan 
of KG-GA is the same of the framework proposed herein.

4.2.1  8‑story frame

The example consists of finding the cross-sectional areas 
of the elements of a frame, which minimize its weight and 
which meets a displacement constraint. This example has 
been studied by some authors (Camp et al. 1998; Nanakorn 
and Meesomklin 2001; Kaveh and Hassani 2009; Schevenels 
et al. 2014), but among these only Kaveh and Hassani (2009) 
use continuous variables. Figure 11 shows the frame where 
the elements are categorized into 8 groups. The lateral dis-
placement at the top of the frame must be less than 2 in 
(5.08 cm). The material has modulus of elasticity equal to 
29 ⋅ 103 ksi (200 GPa) and density of 2.83 ⋅ 10−4 kip/in3 (76.8 
kN/m3 ). Kaveh and Hassani (2009) disregards the effects of 
axial internal forces, but here it is considered. The design 
space adopted is 5 in2 (32.26 cm2 ) ≤ Ai ≤ 30 in2 (193.55 
cm2 ), with i = 1, ..., 8 , and the following empirical relation-
ship between the cross-sectional area (A) and the moment of 
inertia (I) is applied (Kaveh and Hassani 2009):

While in the first scenario linear structural analyses are per-
formed, geometric nonlinearities are considered in the sec-
ond scenario. In this situation, the effects of deformations 
and displacements related to a load increase are included in 
the formulations of equilibrium equations. Table 5 shows the 
results obtained in both scenarios.

4.2.2  A model of Forth bridge

This example was previously evaluated by Gil and Andreu 
(2001) and Kaveh and Khayatazad (2013), although some 
modifications in relation to the number of design variables 
have been adopted herein, in order to reduce the compu-
tational time associated with the solution of the problem. 
The structure is shown in Fig. 12, where the configuration 
is symmetrical in relation to the middle vertical plane and 
the bars are categorized into three groups. The objective 
is to find the vertical position yi of the nodes and the areas 
of the cross-sections Aj that minimize the weight of the 
structure, whose search space is -1.4 m ≤ yi ≤ 1.4 m and 25 
cm2 ≤ Aj ≤ 100 cm2 , with i = 2, ..., 11 and j = 1, ..., 3. The 

(18)I =

⎧⎪⎨⎪⎩

4.592A2 0 ≤ A ≤ 15

4.638A2 15 ≤ A ≤ 44

256.229A − 2300 44 ≤ A ≤ 100

Fig. 11  8-story frame problem
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modulus of elasticity of material is 2.1×108 kN/m2 and the 
specific weight of material is 7.8 ton/m3.

In the first scenario, the stress � of the structural elements 
cannot exceed the maximum allowable stress �adm = 25 kN/
cm2 . Therefore, the following constraint must be verified 
for each bar

In the second scenario, a single constraint is considered, 
given by

where P is the applied load and Pcr(�) is the critical load, 
which is the maximum load value that the structure can 
handle before reaching failure. In this scenario, failure may 
occur due to buckling or yielding of one or more bars. In 

(19)g(�) =
�(�)

�adm
− 1 ≤ 0.

(20)g(�) =
P

Pcr(�)
− 1 ≤ 0,

order to incorporate the possibility of buckling and yield-
ing in the computation of the critical load, it is necessary to 
impose initial imperfections to each bar of the structure and 
to perform inelastic and geometrically nonlinear structural 
analyses. To do so, in this paper the initial imperfections are 
based on the first vibration mode of the structure, according 
to Eq. 21, and the materials are assumed to have elastic-
perfectly plastic characteristics.

where
� = Vector of nodal coordinates after perturbation;
�0 = Vector of inicial nodal coordinates;
� = Vector of nodal displacements, according the vibra-

tion mode considered in the eigenvalue analysis.
In structural analysis, truss bars are modeled using sev-

eral frame elements with moment releases at hinged connec-
tions. So elements that are connected to hinges are modeled 
as fixed-hinge frame element, while others are modeled as 
fixed-fixed elements. For more details about the model the 
readers are referred to Madah and Amir (2017) and Juliani 
et al. (2019), since the structural model adopted herein is 
very similar to the ones described in these references.

Table 6 shows the results, using itstall = 4 and itmin = 6 to 
the first stop criterion, due to the large number of variables, 
while the other parameters are kept as previously defined.

4.2.3  120‑bar dome truss

The 120-bar space truss was studied by several authors, with 
different variables, constraints, dimensions and loads (Soh and 

(21)� = �0 + 0.001�

Table 5  Optimal design and 
statistical results obtained by 
different methods for 8-story 
frame problem

1 in = 2.54 cm; 1 in2 = 6.4516 cm2 ; 1 kip = 4448.22 N

Design Scenario 1: Linear analysis Scenario 2: Nonlinear analysis

FA KG-GA Present study FA KG-GA Present study

A
1
 (cm2) 70.6766 75.5689 75.5347 83.4353 87.2656 87.5108

A
2
 (cm2) 59.9734 57.4128 57.4709 74.0315 66.9592 67.1115

A
3
 (cm2) 39.5928 44.7122 44.7941 49.6489 51.4812 51.4044

A
4
 (cm2) 36.4819 33.7664 33.8470 38.3522 37.6773 37.4548

A
5
 (cm2) 68.8199 67.3760 67.0528 67.5734 73.9128 74.7263

A
6
 (cm2) 74.1360 69.2999 68.9192 80.4347 79.7076 79.0115

A
7
 (cm2) 65.8799 62.1599 62.2444 68.0218 70.7863 70.4444

A
8
 (cm2) 46.8470 42.5025 42.7438 56.7270 46.3451 46.3625

d (cm) 5.08 5.08 5.08 5.08 5.08 5.08
Best (N) 31,335.0410 31,106.8473 31,106.4025 35,763.2440 35,474.1097 35,473.2200
Mean (N) 33,533.3513 31,113.9644 31,108.1817 37,482.0362 35,483.4509 35,476.7786
Std (N) 1923.4103 4.0034 1.3345 1441.2233 5.3379 2.6689
FE 1000 1000 269 1000 1000 280
Time (min) 0.75 30.03 3.17 1.90 32.80 3.61

Fig. 12  A model of Forth bridge problem
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Yang 1996; Fallahian et al. 2009; Kaveh and Talatahari 2010; 
Kaveh and Khayatazad 2013; Kumar et al. 2019). Here, the 
configuration studied is the one presented by Fallahian et al. 
(2009) (Fig. 13).

In the first scenario, the allowable stresses �adm follow the 
requirements of the AISC ASD (1989) code, calculated by

In these equations, Cc =
√
2�2E∕Fy is the slenderness 

ratio dividing the elastic and inelastic buckling regions 
and �i = kli∕ri is the member slenderness ratio, where 
Fy is the yield stress of steel, E is the modulus of elastic-
ity, k is the effective length factor; li is the member length 
and ri = 0.4993A0.6777

i
 is the radius of gyration, with 

i = 1, ..., 120 . The vertical loads applied are − 13.49 kips 
(− 60 kN) at node 1, − 6.744 kips (− 30 kN) ate node 2 
through 13 and − 2.248 kips (− 10 kN) at the rest of free 
nodes. The design variables are the cross-sectional areas of 
the bars, which are categorized into 7 groups, as shown in 
Fig. 13, whose design space adopted is 1.2 in2 (7.74 cm2 ) 
≤ Aj ≤ 10 in2 (64.52 cm2 ), with j = 1, ..., 7 . The parameters 
Fy = 58 ksi (400 MPa), E = 30450 ksi (210 GPa), k = 1 are 

(22)�adm =

{
0.6Fy for tensile stress

Fcr for compression stress

(23)

Fcr =

{ [(
1 −

𝜆2
i

2C2
c

)
Fy

]
∕
[
5

3
+

3𝜆i

8Cc

−
𝜆3
i

8C3
c

]
𝜆i < Cc

[10pt]12𝜋2E∕23𝜆2
i

𝜆i ≥ Cc

.

Table 6  Optimal design and 
statistical results obtained by 
different methods for a model of 
Forth bridge problem

Design Scenario 1: Linear analysis Scenario 2: Nonlinear analysis

FA KG-GA Present study FA KG-GA Present study

y
2
,y

18
 (m) 0.1933 1.1890 0.7495 − 0.5901 0.1468 − 0.0428

y
3
,y

19
 (m) 0.6219 0.3844 0.6346 1.0950 0.9888 1.0732

y
4
,y

16
 (m) 0.0083 0.6445 0.1797 − 1.0205 − 0.7475 − 0.4594

y
5
,y

17
 (m) 0.9399 1.0822 1.4000 0.2930 1.3999 1.4000

y
6
,y

14
 (m) − 0.8461 − 0.3977 − 1.4000 − 0.5256 − 1.0159 − 0.9085

y
7
,y

15
 (m) 0.0423 0.9620 0.0497 − 0.1170 1.1200 0.6771

y
8
,y

12
 (m) − 0.6268 − 1.1110 − 1.4000 − 0.4673 − 1.1889 − 1.4000

y
9
,y

13
 (m) 0.2558 1.0615 − 0.3173 − 0.2111 0.6084 0.2867

y
10

 (m) − 0.1674 − 0.7230 − 0.8924 − 0.4277 − 1.2772 − 0.6163
y
11

 (m) − 0.3654 1.0795 − 0.3031 − 0.1858 0.3192 0.4591
A
1
 (cm2) 27.0098 25.8654 25.0000 44.7308 44.1858 35.5438

A
2
 (cm2) 43.2129 38.1016 33.8999 59.8616 57.0754 51.9524

A
3
 (cm2) 51.2630 41.1818 31.6320 55.4994 58.2271 50.0472

max(g) − 2 ×10−5 − 0.0199 − 0.0053 − 0.0909 − 0.0109 − 0.0004
Best (N) 22,103.2770 19,163.1136 17,363.0220 30,288.0173 25,575.2898 22,830.0997
Mean (N) 27,190.8137 20,738.1630 18,282.4584 35,777.2050 27,904.5688 24,432.9214
Std (N) 2561.8445 759.1776 591.9464 4911.7407 1644.2231 1552.6187
FE 1000 1000 517 1000 1000 527
Time (min) 0.79 36.68 13.87 38.72 62.11 25.87

Fig. 13  120-bar dome truss problem
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adopted, and the material density is taken equal to 0.288 lb/
in3 (7971.81 kg/m3).

The second scenario is similar to the previous example, 
where a single constraint based on a critical load is verified 
as a safety criterion. Table 7 shows the results obtained in 
both scenarios, where itstall = 4 and itmin = 6 was adopted to 
the first stop criterion, as in the previous example.

4.2.4  Discussion of results

In all scenarios, the best results in terms of final objective 
function values were provided by the proposed framework, 
with means approximately 19% and 7% smaller than the 
ones provided by FA and KG-GA, respectively. In addition, 
the number of constraints evaluations required by the frame-
work was at least 47.30% lower, reaching a 73.10% reduction 
in one case. It is noteworthy that the mean results achieved 
by the KG-GA with the same number of evaluations per-
formed by the framework are on average 17.80% higher than 
those of the framework. This indicates a good performance 
of the proposed method, especially when dealing with com-
plex problems, even in comparison with another metamodel-
based method.

Regarding computational time, when simple problems 
are considered, the running time of Firefly is the lowest, 
although the standard deviation of its final responses is 
still very large. However, when nonlinear structural anal-
yses are considered for larger structures, the framework 
surpasses both FA and KG-GA also in terms of running 
time. It should be noted the performance of the framework 
in scenario 2 of the 120-bar dome truss, where the times 
required by FA and KG-GA were above 2 h and almost 2 
h, respectively, while better results were achieved by the 

framework in about half an hour. This emphasizes the fact 
that, due to its own computational demands, the frame-
work should be applied only if the evaluations of the con-
straints are expensive enough.

5  Conclusion

In this paper, an optimization framework based on Kriging 
was presented to deal with structural problems that have 
expensive constraints. The main idea is to improve the accu-
racy of the surrogate model during the optimization process 
and only in promising regions of the design space. In order 
to identify these regions in a robust manner, the framework 
is composed of three search strategies: local search, global 
search, and refinement step. Seven examples from the lit-
erature were evaluated and the results were compared with 
those obtained by other optimization methods. It was found 
that the proposed framework achieved results close to the 
best presented in the literature, with far fewer constraints 
evaluations. Thus, the approach is found to be promising 
in reducing the computational effort associated with the 
solution of expensive constrained structural optimization 
problems, although as pointed out in other papers from the 
literature, there is a tendency of loss of efficiency when the 
dimensionality of the problems increases.
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Table 7  Optimal design and 
statistical results obtained by 
different methods for 120-bar 
dome truss problem

1 in2 = 6.4516 cm2 ; 1 lb = 0.45359237 kg

Design Scenario 1: AISC ASD (1989) Scenario 2: Nonlinear analysis

FA KG-GA Present study FA KG-GA Present study

A
1
 (cm2) 24.8574 20.8419 20.2522 30.2186 31.7386 30.5116

A
2
 (cm2) 22.8871 15.4929 15.0638 28.0961 24.0658 23.5051

A
3
 (cm2) 19.8167 20.3961 20.0625 34.3148 32.0948 31.7025

A
4
 (cm2) 12.6845 12.7819 12.9329 18.4548 19.0458 19.6103

A
5
 (cm2) 11.3877 9.0509 7.7419 24.3741 7.7529 7.7419

A
6
 (cm2) 27.9980 18.8400 18.2296 27.5258 27.8909 27.8335

A
7
 (cm2) 15.1535 15.6503 15.2109 22.4735 22.5090 22.6703

max(g) − 0.0008 − 0.0190 − 0.0099 − 0.0010 − 0.0010 − 0.0119
Best (kg) 8849.9240 7859.4448 7646.3781 12,506.0140 11,438.4958 11,398.3306
Mean (kg) 10,379.0716 8525.1939 8014.0666 13,708.6872 12,947.6762 11,766.6041
Std (kg) 923.7732 613.4274 290.4149 618.2429 1853.8914 421.2633
FE 1000 1000 325 1000 1000 328
Time (min) 0.79 29.24 5.97 146.83 114.19 35.64
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