
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2021) 64:4409–4440
https://doi.org/10.1007/s00158-021-03061-4

EDUCATIONAL PAPER

Flexible framework for fluid topology optimization with OpenFOAM®
and finite element‑based high‑level discrete adjoint method (FEniCS/
dolfin‑adjoint)

Diego Hayashi Alonso1  · Luis Fernando Garcia Rodriguez1  · Emílio Carlos Nelli Silva1 

Received: 11 December 2020 / Revised: 16 July 2021 / Accepted: 19 August 2021 / Published online: 26 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
In order to implement the topology optimization method, it is necessary to simulate the fluid flow dynamics and also obtain
the sensitivities with respect to the design variable (such as through the adjoint method). However, more complex fluid flows,
such as turbulent, non-Newtonian, and compressible flows, may turn the implementation of these two aspects difficult and
non-intuitive. In order to solve this deadlock, this work proposes the combination of two well-known and established open-
source softwares: OpenFOAM® and FEniCS/dolfin-adjoint. OpenFOAM® already provides efficient implementations for
various fluid flow models, while FEniCS, when combined with the dolfin-adjoint library, provides an efficient and automatic
high-level discrete adjoint model. There have been various attempts for obtaining the adjoint model directly in OpenFOAM®
, but they mostly rely on the following: (1) manually deducing the adjoint equations, which may become a hard and cumber-
some task for complex models; (2) C++ automatic differentiation tools, which are generally computationally inefficient;
and (3) finite differences, which have been developed for shape optimization (not topology optimization, where there are
many more design variable values). Nonetheless, these approaches generally do not provide an easy setup, and may be fairly
complex to consider. The FEniCS platform does not provide any fluid flow model out of the box, but makes it fairly simple to
“simplistically” define them. The main problem of the FEniCS implementation and even implementations “by hand” (such as
in C++, Matlab® or Python) is the convergence of the simulation, which would possibly require fairly complex adjustments
in the implementation in order to reach convergence. Therefore, the combination proposed in this work (OpenFOAM® and
FEniCS/dolfin-adjoint) is a simpler but efficient approach to consider more complex fluid flows, countering the difficult
adjoint model implementation in OpenFOAM® and also the convergence issues in FEniCS. The implemented framework,
referred as “FEniCS TopOpt Foam”, can perform the coupling between the two softwares. Numerical examples are presented
considering laminar and turbulent flows (Spalart-Allmaras model) for 2D, 2D axisymmetric, and 3D domains.

Keywords  Fluid topology optimization · Discrete adjoint method · Turbulence · OpenFOAM® · FEniCS · dolfin-adjoint

1  Introduction

Topology optimization is the optimization method which
relies on distributing a given design variable (which, in
this work, represents the solid/fluid material) over a design
domain. This method was originally considered for structural

optimization (Rozvany et al. 1992; Rozvany 2001), but was
later introduced in fluid flow problems (Borrvall and Peters-
son 2003). The first approach that has been considered in
topology optimization is the “pseudo-density approach”,
but there are also other approaches, such as the “level-set
method” (Duan et al. 2016; Zhou and Li 2008), and topo-
logical derivatives (Sokolowski and Zochowski 1999; Sá
et al. 2016). In this work, topology optimization is consid-
ered through the “pseudo-density approach”.

From the initial work of topology optimization for fluids,
various other types of fluid flow types have been consid-
ered, such as Stokes flows (Borrvall and Petersson 2003),
Navier-Stokes flows (Evgrafov 2004; Olesen et al. 2006),
Darcy-Stokes flows (Guest and Prévost 2006; Wiker et al.

Responsible Editor: Qing Li

 *	 Emílio Carlos Nelli Silva
	 ecnsilva@usp.br

1	 Department of Mechatronics and Mechanical Systems
Engineering, Polytechnic School of the University of São
Paulo, São Paulo, SP, Brazil

https://orcid.org/0000-0002-6032-9989
https://orcid.org/0000-0001-5445-1876
http://orcid.org/0000-0003-1715-1713
http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-021-03061-4&domain=pdf

4410	 D. H. Alonso et al.

1 3

2007), compressible flows (Sá et al. 2021), non-Newtonian
flows (Pingen and Maute 2010; Hyun et al. 2014; Alonso
et al. 2020), thermal-fluid flows (Sato et al. 2018; Ramalin-
gom et al. 2018; Lv and Liu 2018), turbulent flows (Papout-
sis-Kiachagias et al. 2011, 2015; Yoon 2016; Dilgen et al.
2018), 2D swirl flows (Alonso et al. 2018, 2019), unsteady
flows (Nørgaard et al. 2016; Hasund 2017) etc. Also, various
fluid flow devices can be designed through topology opti-
mization, such as valves (Song et al. 2009; Sato et al. 2017),
mixers (Andreasen et al. 2009; Deng et al. 2018), rectifiers
(Jensen et al. 2012), and flow machine rotors (Romero and
Silva 2014, 2017; Zhang et al. 2016).

When performing topology optimization, it is necessary
to compute the sensitivities for all of the distributed design
variable values inside the design domain. One way to effi-
ciently compute them is by considering the adjoint model.
For this, there are essentially two approaches: the continu-
ous adjoint approach and the discrete adjoint approach (see
Fig. 1).

The continuous adjoint approach (indicated by the label
“C” in Fig. 1) consists of directly specifying the adjoint
equations and may be implemented by deriving the adjoint
equations manually (“by hand”) [or symbolically, by using,
for example, the SymPy library (Meurer et al. 2017)]. How-
ever, this approach is specific to each problem (Papoutsis-
Kiachagias et al. 2011, 2015), may be laborious (Funke
2013), and even when it is symbolically derived, the adjoint
equations may be presented in a format that is not com-
putationally efficient. In this last case, the equations would
normally require further manipulation in order to get to a
computationally efficient format. The implementation of
the adjoint model may become highly non-intuitive, espe-
cially when considering more complex fluid flow modeling,
such as turbulent, non-Newtonian, and compressible flows.

When considering the finite volume method, the resulting
continuous adjoint model equations are normally solved in
the same way as the simulation, such as from the iterative
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) algorithm (Patankar 1980; OpenFOAM Wiki 2014).
It can also be mentioned that it should also be possible to
derive the continuous adjoint model equations for a coupled
approach (i.e., a single equation) in OpenFOAM® (Mangani
et al. 2014).

The discrete adjoint approach would consist of using, for
example, a low-level approach, from C++ generic automatic
differentiation (AD) tools [such as CoDiPack (Sagebaum
et al. 2018) and Adept (Adept 2021)] (indicated by the label
“D.2” in Fig. 1), which are normally considered to be non-
intuitive and may be computationally inefficient (since the
low-level C++ code would have to be automatically dif-
ferentiated at each iteration of the optimization). More into
the implementation in OpenFOAM®, Towara and Naumann
(2013) use a SIMPLE iterative scheme to solve the adjoint
model and obtain the adjoint variables. An alternative is by
performing finite differences (He et al. 2018, 2020) (indi-
cated by the label “D.3” in Fig. 1), which is automated, but
there may be a significant increase in the computational cost
of the topology optimization.

Another way is by considering the finite element method
for a single equation (coupled pressure-velocity formula-
tion), by automatically deriving the adjoint equations in a
high-level approach (i.e., in a high-level representation of
the equations) (indicated by the label “D.1” in Fig. 1) (Far-
rell et al. 2013; Funke 2013). This way, the resulting linear
system of equations can be solved directly, without the need
of any iterative method such as the SIMPLE algorithm. In
this work, the discrete adjoint approach is considered in this
high-level representation.

Fig. 1   Diagram illustrating the
continuous adjoint approach
and some possibilities of the
discrete adjoint approach [figure
based on Farrell et al. (2013)
and Funke (2013)]

4411Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

The well-known and established open-source software
FEniCS (based on finite elements) (Logg et al. 2012; Farrell
et al. 2013; Mitusch et al. 2019) can be used for fluid flow
simulations (Mortensen et al. 2011) and, when coupled with
the dolfin-adjoint library, can provide an efficiently com-
puted discrete adjoint solution from a defined forward model
(indicated by the label “D.1” in Fig. 1). However, more com-
plex fluid flow modeling may require various possibly non-
intuitive adjustments to the implementation for convergence
and may result in an implementation that is less efficient
than what OpenFOAM® provides (Mortensen et al. 2011).

The also well-known and established open-source soft-
ware OpenFOAM® (based on finite volumes) (Weller et al.
1998; Chen et al. 2014) is capable of performing efficient
fluid flow simulations, but its main drawback is the com-
putation of the adjoint model (required for computing the
sensitivities), which can be a highly demanding task for the
programmer (indicated by the label “C” in Fig. 1) or may
result in loss of computational efficiency (indicated by the
labels “D.2” and “D.3” in Fig. 1).

Therefore, this work proposes using two well-known and
established open-source softwares, combining the automated
method provided by FEniCS/dolfin-adjoint with the simula-
tion computed by OpenFOAM®. In terms of implementa-
tion, this approach only requires the specification of both
simulation solvers (in FEniCS and OpenFOAM®), which
makes it relatively simpler to implement than the other
approaches, and should be, therefore, interesting for per-
forming fluid flow topology optimization. In relation to the
continuous adjoint approach, the proposed solution using the
high-level discrete adjoint approach shows an inherent com-
putational cost due to the interfacing between OpenFOAM®
and FEniCS/dolfin adjoint. However, in relation to a con-
tinuous adjoint model in OpenFOAM®, it does not require
an iterative procedure (SIMPLE) to solve the adjoint model.

In the point of view of the OpenFOAM® software, the
automation of the generation of the adjoint model means
that any model (such as any objective function, any turbu-
lent/compressible/non-Newtonian model) may be considered
with only an additional implementation consisting of speci-
fying the forward model both in finite elements and finite
volumes, which is much easier than deriving the adjoint
model by hand for a complex model. In the point of view
of FEniCS/dolfin-adjoint, the fluid simulation may be com-
puted more efficiently by using OpenFOAM® (Mortensen
et al. 2011), while significantly reducing the need of com-
plex implementations and adjustments for convergence in
the FEniCS/dolfin-adjoint implementation (Mortensen et al.
2011).

Therefore, the main objective of this work is to present a
framework for topology optimization by using OpenFOAM®
and finite element-based high-level discrete adjoint method
(FEniCS/dolfin-adjoint). The numerical examples consider

the traditional material model of fluid topology optimiza-
tion (Borrvall and Petersson 2003). Three types of com-
putational domains are illustrated: 2D, 2D axisymmetric,
and 3D domains. Laminar or turbulent (Spalart-Allmaras
model) flows are considered. The design variable is assumed
to be nodal. The objective function is the energy dissipa-
tion. OpenFOAM® (Weller et al. 1998; Chen et al. 2014) is
used for the finite volume simulation, while the sensitivities
are computed by the adjoint model generated by FEniCS/
dolfin-adjoint (Logg et al. 2012; Farrell et al. 2013; Mitusch
et al. 2019), and IPOPT (Interior-Point Optimization algo-
rithm) is used as the optimization algorithm (Wächter and
Biegler 2006). The “FEniCS TopOpt Foam” library used in
the implementation of this work is to be made available in
a git repository.1

This paper is organized as follows: in Sect. 2, the fluid
flow model is described; in Sect. 3, the weak formulation
(finite element method) of the problem is presented; in
Sect. 4, the finite element/volume modeling is presented;
in Sect. 5, the topology optimization problem is stated; in
Sect. 6, the numerical implementation is described, along
with the interfacing between OpenFOAM® and FEniCS/
dolfin-adjoint; in Sect. 7, numerical examples are presented;
and in Sect. 8, some conclusions are inferred.

2 � Equilibrium equations

In this work, in order to exemplify the approach of interfac-
ing OpenFOAM® with FEniCS/dolfin-adjoint, the fluid flow
modeling is performed for incompressible fluid, and steady-
state regime (Munson et al. 2009; White 2011). Therefore,
the continuity and linear momentum (Navier-Stokes) equa-
tions considered are:

where v is the fluid velocity, p is the fluid pressure, � is the
fluid density, � is the fluid dynamic viscosity, �f is the body
force per unit volume acting on the fluid, f r(�) = −�(�)vmat
is the resistance force of the porous medium used in topol-
ogy optimization ( �(�) is the inverse permeability (“absorp-
tion coefficient”), and vmat = v − vmaterial is the velocity in
relation to the porous material – when vmaterial = 0 (i.e., the
solid material is stationary), vmat = v ), � is the pseudo-den-
sity, which assumes values from 0 (solid) to 1 (fluid) (and is
the design variable in topology optimization), and T is the
fluid stress tensor given by

(1)∇⋅v = 0

(2)�∇v⋅v = ∇⋅(T + TR) + �f − �(�)vmat

1  https://​github.​com/​diego-​hayas​hi/​fenics_​topopt_​foam.

https://github.com/diego-hayashi/fenics_topopt_foam

4412	 D. H. Alonso et al.

1 3

The term TR in Eq. (2) is the Reynolds (turbulent) stress
tensor, which appears in RANS (Reynolds-Averaged Navier-
Stokes) formulations. When considering a RANS formula-
tion, the velocity ( v ) and pressure (p) fields refer to statistical
time-averaged values.

In this work, the Spalart-Allmaras model is used for con-
sidering turbulence. The Spalart-Allmaras model (Spalart
and Allmaras 1994; Bueno-Orovio et al. 2012; Wilcox 2006)
is a single-equation turbulence RANS model, which is said
to be adequate for mild boundary layer separations (Ansys
2006). According to Bardina et al. (1997), the Spalart-All-
maras model does not require a finer mesh resolution near
walls in wall-bounded flows as two-equation turbulence
models (such as k-� and k-� models), and shows good con-
vergence for simpler flows. Also, it is said to show improve-
ments in the prediction of fluid flows under adverse pressure
gradients (when the pressure increases toward the outlet)
when compared to the standard k-� and k-� models (Bar-
dina et al. 1997). There are various modifications that have
been proposed in the Spalart-Allmaras model along the years
(NASA 2019). In this work, the modifications that are con-
sidered are based in the OpenFOAM® (OpenFOAM Foun-
dation 2020) implementation. An additional term based on
Yoon (2016), Dilgen et al. (2018), and Papoutsis-Kiachagias
and Giannakoglou (2016) is included in order to take the
effect of the modeled solid material (of topology optimiza-
tion) into account. This way, the Spalart-Allmaras model is
given by (OpenFOAM Foundation 2020):

where 𝜈̃T is the auxiliary turbulent viscosity of the Spalart-
Allmaras model, �T is the turbulent viscosity (i.e., the flow
parameter which accounts for the statistical time-averaged
effect of turbulence in the stress tensor), 𝜈̃T, mat = 𝜈̃T − 𝜈̃T, wall

(3)T = 2�� − pI, � =
1

2
(∇v + ∇vT)

(4)TR = 𝜇T(∇v + ∇vT), 𝜇T = 𝜌fv1𝜈̃T

(5)

𝜌v⋅∇ṽT = cb1𝜌S̃ṽT
���
Production

+

[
−cw1fw𝜌

(
ṽT

𝓁w

)2
]

�������������������������
Destruction

+
1

𝜎
∇⋅(𝜌(v + ṽT)∇ṽT)

�����������������������
Diffusion (conservative)

+
cb2

𝜎
𝜌∇ṽT⋅∇ṽT

�������������
Diffusion (non-conservative)

+
[
−𝜆ṽT𝜅(𝛼)ṽT, mat

]
�������������������
Attenuation of turbulence
in the porous medium

is the auxiliary turbulent viscosity in relation to its “wall
value” ( ̃𝜈T, wall , which is assumed as equal to 0 m2/s), and 𝜆𝜈̃T
is an adjustable parameter for the intensity of the attenuation
of turbulence inside the solid material (it can be chosen, for
example, as 𝜆𝜈̃T = 1 ). The other terms of Eq. (5) are speci-
fied as follows:

where � = 0.41 is the von Kármán constant, �w is the wall
distance, and � =

�

�
 is the kinematic viscosity.

In fluid topology optimization, the walls change accord-
ing to the distribution of the pseudo-density ( � ), which
means that the wall distance ( �w ) also changes accordingly.
Thus, in order to consider such changes in the simulation
and in the adjoint model, a modified Eikonal equation (Yoon
2016) is considered, which is given as:

where G is the reciprocal wall distance, �ref is a reference
value for the wall distance [which leads �w to emphasize
objects that are larger than it, and can be chosen, for exam-
ple, as the maximum size of the elements of the mesh
(largest of the maximum distances between two vertices

(6)

cb1 = 0.1355, cb2 = 0.6220

cv1 = 7.1, 𝜎 =
2

3
, fΩ = 0.3

cw1 =
cb1

𝜅2
+

1 + cb2

𝜎
, cw2 = 0.3, cw3 = 2

𝜒 =
𝜈̃T

𝜈

S̃ = max

�
S +

𝜈̃T

𝜅2𝓁2
w

fv2, fΩΩm

�

S = Ωm,Ωm =
√
2�⋅�,� =

1

2
(∇v − ∇vT)

fv1 =
𝜒3

𝜒3 + c3
v1

, fv2 = 1 −
𝜒

1 + 𝜒 fv1

fw = g

�
1 + c6

w3

g6 + c6
w3

�1∕6

, g = ri + cw2(r
6
i
− ri)

ri = min

�
𝜈̃T

S̃r𝜅
2𝓁2

w

, 10

�
, S̃r = max

�
S̃, 10−6

�

(7)�w =
1

G
−

1

G0

, G0 =
1

�ref

(8)

∇G ⋅ ∇G
⏟⏞⏟⏞⏟

From the original
Eikonal equation

+ �wG
(
∇2G

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
Elliptic diffusion
for allevaiting
non - linearities

=

(
1 + 2�w

)
⏟⏞⏞⏟⏞⏞⏟
For satisfying
inverse linear
behaviour

G4

⏟⏟⏟
From the original
Eikonal equation

+ �(�)
(
G − G0

)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Porousmedium
penalization

4413Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

of an element)], �(�) is the wall penalization, which varies
according to the pseudo-density ( � ) in order to consider the
presence of a wall changing during the topology optimi-
zation, and �w is a relaxation factor for the wall distance
computation.

2.1 � Boundary value problem

The three types of computational domain considered in this
work are shown in Fig. 2. It can be reminded that the defini-
tion of the differential operators and coordinates are different
in the 2D axisymmetric domain (due to axisymmetry and
cylindrical coordinates) (Alonso et al. 2018). Generically, a
2D axisymmetric domain may include the symmetry axis or
not. The boundary value problem is specified for the three
types of computational domain considered in this work as:

where Ω , Γin , Γwall , Γsym , and Γout can be visualized in Fig. 2.
The inlet boundary ( Γin ) consists of an inlet velocity profile
( vin ), an imposed auxiliary turbulent viscosity value ( ̃𝜈T,in ),
and a zero normal flux boundary condition for the reciprocal
wall distance (G). On the walls ( Γwall ), the no-slip condition

(9)

𝜌∇v⋅v = ∇⋅(T + TR) + 𝜌f − 𝜅(𝛼)vmat in Ω

∇⋅v = 0 in Ω

𝜌v⋅∇𝜈̃T = cb1𝜌S̃𝜈̃T+[
−cw1fw𝜌

(
𝜈̃T

𝓁w

)2
]
+

1

𝜎
∇⋅(𝜌(𝜈 + 𝜈̃T)∇𝜈̃T)+

cb2

𝜎
𝜌∇𝜈̃T⋅∇𝜈̃T +

[
−𝜆𝜈̃T𝜅(𝛼)𝜈̃T, mat

]
in Ω

∇G⋅∇G + 𝜎wG(∇
2G) =

(1 + 2𝜎w)G
4 + 𝛾(𝛼)(G − G0) in Ω

v = vin and 𝜈̃T = 𝜈̃T,in and ∇G⋅n = 0 on Γin

v = 0 and 𝜈̃T = 𝜈̃T,wall and G = G0 on Γwall

vr = 0

and
𝜕vr

𝜕r
=

𝜕vz

𝜕r
=

𝜕p

𝜕r
=

𝜕𝜈̃T

𝜕r
=

𝜕G

𝜕r
= 0 on Γsym

(T + TR)⋅n = 0 and ∇𝜈̃T⋅n = 0

and ∇G⋅n = 0 on Γout

is imposed for the velocity, a fixed value is imposed for the
auxiliary turbulent viscosity ( ̃𝜈T, wall = 0 m2/s ), and a fixed
value is imposed for the reciprocal distance ( G0 ). The outlet
boundary ( Γout ) consists of an outlet stress free condition
(i.e., open to the atmosphere) for the pressure-velocity for-
mulation, where n is the normal vector to the boundaries,
which points outside the computational domain. On the out-
let boundary ( Γout ), a developed auxiliary turbulent viscosity
is imposed (through zero normal flux) and a zero normal
flux boundary condition is imposed for the reciprocal wall
distance (G). In the 2D axisymmetric domain, if there is a
symmetry axis ( Γsym ) bordering it, the derivatives toward
the r coordinate are imposed to be zero, as well as the radial
velocity.

In the boundary value problem [Eq. (9)], the wall dis-
tance may be computed separately during topology optimi-
zation, since it only depends on the current distribution of
the pseudo-density ( � ). However, it has to be later included
in the adjoint model.

3 � Finite element method

In order to automatically derive the adjoint model, it
is needed to specify the weak form of the finite element
method in FEniCS. The weak form is defined as follows.

3.1 � Weak form

In the finite element method, the equilibrium equations
are modeled by a corresponding weak form. In the follow-
ing equations, the computational domain is represented
as dΠ , and the boundary of the computational domain is
represented as dΓΠ . For 2D and 3D flows, dΠ = dΩ and
dΓΠ = dΓ , while, for 2D axisymmetric flow, dΠ = 2�rdΩ
and dΓΠ = 2�rdΓ . By considering the weighted-residual and
Galerkin methods for the mixed (velocity-pressure) formula-
tion, (Reddy and Gartling 2010; Alonso et al. 2018)

(10)Rc = ∫Π

[∇⋅v]wpdΠ

(11)
Rm = ∫Π

[
�∇v ⋅ v − �f

]
wvdΠ + ∫Π

T ⋅
(
∇wv

)
dΠ

− ∫↺ΓΠ

(
T ⋅ wv

)
⋅ ndΓΠ − ∫Π

f r(�) ⋅ wvdΠ

Fig. 2   Examples of boundaries for 2D, 2D axisymmetric, and 3D
domains

4414	 D. H. Alonso et al.

1 3

where the subscripts “c”, “m”, “ SA ” and “w” refer to the
“continuity” equation, the “linear momentum” (Navier-
Stokes) equations, the “Spalart-Allmaras” equation and
the “wall distance” equation (modified Eikonal equation),
respectively. The test functions of the state variables (p, v , 𝜈̃T
and G) are given by wp , wv , w𝜈̃T

 and wG , respectively. Under
2D axisymmetric flow, since the integration domain ( 2�rdΩ )
has a constant multiplier ( 2� ), which does not influence
when solving the weak form, Eqs. (10), (11), (12) and (13)
may be optionally divided by 2� (Alonso et al. 2018, 2019).

From the mutual independence of the test functions,
the equations of the weak form can be summed to a single
equation:

where it is also possible to solve Rw = 0 separately, because
the computation of the wall distance is uncoupled from the
other equations, depending only on the pseudo-density ( � ).
In such case, which is considered in this work, the two weak
forms may be sequentially solved:

4 � Finite element/finite volume modeling

The LBB (Ladyžhenskaya-Babuška-Brezzi) condition is a
necessary condition for the numerical stability of the fluid
flow simulation when considering the finite element formu-
lation (Brezzi and Fortin 1991; Reddy and Gartling 2010;
Langtangen and Logg 2016). The main effect of respecting

(12)

RSA =∫Π
[
𝜌v ⋅ ∇ṽT − cb1𝜌

�SṽT + cw1fw𝜌

(
ṽT

𝓁w

)2

−
cb2

𝜎
𝜌∇ṽT

]
wṽT

dΠ

+∫Π
1

𝜎

(
𝜌
(
v + ṽT

)
∇ṽT

)
⋅ ∇wṽT

dΠ

−∫↺ΓΠ

1

𝜎
n ⋅

(
𝜌
(
v + ṽT

)
∇ṽTwṽT

)
dΓΠ

−∫Π
[
−𝜆ṽT 𝜅(𝛼)ṽT, mat

]
wṽT

dΠ

(13)

Rw =∫Π

[
∇G ⋅ ∇G −

(
1 + 2�w

)
G4

]
wGdΠ

−∫Π

[
(∇G) ⋅ ∇

(
�wGwG

)]
dΠ

+∫↺ΓΠ

n ⋅
[
(∇G)

(
�wGwG

)]
dΓΠ

−∫Π

[
�(�)

(
G − G0

)]
wGdΠ

(14)F = Rc + Rm + RSA + Rw = 0

(15)F1 =Rw = 0

(16)F2 =Rc + Rm + RSA = 0

the LBB condition is numerical, in which the pressure dis-
tribution becomes consistent with the velocity field. Some
LBB-stable elements are Taylor-Hood and MINI elements.
In this work, MINI elements (linear elements enriched by a
bubble function) (Arnold et al. 1984; Logg et al. 2012) are
used for the velocity-pressure formulation (see Fig. 3) (in
3D, the order of the bubble enrichment is increased to 4),
due to their lower computational cost in relation to Taylor-
Hood elements. The auxiliary turbulent viscosity of the
Spalart-Allmaras model ( ̃𝜈T ) and the wall distance ( �w and,
therefore, G) are selected with 1st degree interpolation (P1
element). The pseudo-density (design variable) is chosen
with 1st degree interpolation (P1 element), which also ena-
bles the possible use of a Helmholtz filter in topology opti-
mization if needed (Lazarov and Sigmund 2010), due to the
fact that this filter requires the existence of the first deriva-
tive (nonexistent for element-wise (dP0, “DG0”) variables).
As can be noticed, there may be some “loss” of precision
when converting between finite element and finite volume
methods, due to the different interpolation schemes. In such
case, it is also possible to consider different discretizations/
resolutions for the OpenFOAM® and FEniCS meshes, but,
in this work, for simplicity, they are assumed to be the same.

Although Fig. 3 shows a 2D representation of the finite
elements/volumes as triangles, they are implemented differ-
ently for each computational domain shown in Fig. 2 while
taking into account Fig. 6: for the 2D case, the FEniCS mesh
is composed of triangles, while the OpenFOAM® mesh is
composed of prisms; for the 2D axisymmetric case, the FEn-
iCS mesh is composed of triangles, while the OpenFOAM®
mesh is composed of prisms/tetrahedrons/pyramids; and, for
the 3D case, the FEniCS mesh is composed of tetrahedrons,
as well as the OpenFOAM® mesh. The conversion between
the variables in FEniCS and OpenFOAM® is detailed in
Sect. 6.2.

Fig. 3   Finite elements and volumes choice for the state variables:
pressure, velocity, auxiliary turbulent viscosity of the Spalart-All-
maras model ( ̃𝜈

T
 ), wall distance ( �w and, therefore, G), and pseudo-

density (design variable) ( �)

4415Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

5 � Formulation of the topology optimization
problem

5.1 � Material model for the inverse permeability

The material model in fluid topology optimization aims
to block fluid flow, while aiming to obtain a sufficiently
discrete distribution for the pseudo-density ( � ) inside the
design domain (with values 0 for solid, and 1 for fluid). The
subtle transition between solid (0) and fluid (1) (binary val-
ues) is normally relaxed for better numerical conditioning,
allowing an intermediate porous medium (“gray”, with a
pseudo-density between 0 and 1) (real values). The amount
of “strength” to block the fluid is referred as “inverse per-
meability”, which, as the name says, provides an opposite
behavior to that of permeability. Borrvall and Petersson
(2003) consider a convex interpolation function for the
inverse permeability, given by:

where �max and �min are, respectively, the maximum and
minimum values of the inverse permeability of the porous
medium. The parameter q > 0 is a penalization parameter
that controls the convexity (i.e., the relaxation) of the mate-
rial model, where large values of q lead to a less relaxed
material model. There is no clear rule on how q should be
chosen, since the specific fluid flow topology optimization
problem may behave better with either one value or another.
In general, it is better not to leave the material model overly
relaxed (i.e., q ⩽ 0.01 ), at least in the last optimization iter-
ations, due to the consequently worse fluid flow blocking
capacity.

5.2 � Material model for the wall penalization

For the modified Eikonal equation, the material model may
be based on Eq. (17), being given as the wall penalization

where �max and �min are, respectively, the maximum and min-
imum values of the wall penalization of the porous medium,
and q is the same as in Eq. (17).

5.3 � Topology optimization problem

The topology optimization problem can be formulated as
follows.

(17)�(�) = �max + (�min − �max)�
1 + q

� + q

(18)�(�) = �max + (�min − �max)�
1 + q

� + q

where f is the specified volume fraction, V0 = ∫
Π�

dΠ� is the
volume of the design domain (represented as Π� ),
J(p(𝛼), v(𝛼)𝜈̃T(𝛼),�w(𝛼), 𝛼) is the objective function, and
p(�) , v(�) , 𝜈̃T(𝛼) and �w(�) are the state variables obtained
by solving the boundary value problem [Eq. (9)], which fea-
tures an indirect dependency with respect to the design vari-
able �.

5.4 � Objective function

The objective function (J) is chosen as the energy dissipation
( Φ ) (Borrvall and Petersson 2003) including the turbulence
effect [as in Yoon (2016)]. The energy dissipation is closely
related to the head loss (Borrvall and Petersson 2003), and
generally behaves well in fluid topology optimization. By
considering zero external body forces,

5.5 � Sensitivity analysis

The sensitivity is given by the adjoint method from the finite
element matrices and automatic differentiation as

where J = Φ is the objective function, which is the energy
dissipation, the weak form equation is given by F = 0 , “*”
represents conjugate transpose, and �J is the adjoint variable
(Lagrange multiplier of the weak form) for this case. If the
uncoupled form given by Eqs. (15) and (16) is considered,
the two weak form dependencies need to be sequentially
combined into a new equation for the sensitivity.

(19)

(20)
Φ = ∫Π

[
1

2
(� + �T)(∇v + ∇vT)⋅(∇v + ∇vT)

]
dΠ

+ ∫Π

�(�)vmat⋅vdΠ

(21)
(
dJ

d�

)*

=
(
�J

��

)*

−
(
�F

��

)*

�J

(22)

(
𝜕F

𝜕(p, v, 𝜈̃T,�w)

)*

�J =

(
𝜕J

𝜕(p, v, 𝜈̃T,�w)

)*

(adjoint equation)

4416	 D. H. Alonso et al.

1 3

5.6 � Helmholtz pseudo‑density filter

Some of the topology optimization results in this work
consider the use of a regularization. Regularizations are a
common mechanism in topology optimization in order to
counter possible numerical instabilities due to the lack of
smoothness in the finite element equations (Kawamoto et al.
2013), which would possibly lead to mesh dependency and
local minima (Sigmund and Petersson 1998; Bendsøe and
Sigmund 2003; Sigmund 2007). The regularization that is
considered is the use of a Helmholtz filter, which is a PDE-
based topology optimization pseudo-density filter, having
been proposed by Lazarov and Sigmund (2010). It is sche-
matically shown in Fig. 4, where � is the original design
variable and �f is the filtered design variable.

Figure 4 illustrates the fact that the Helmholtz filter con-
sists of weighting all values of the original design variable
( � ) with a Green’s function, which is a function that is
always positive and whose integral is equal to 1 (“100%”)
(Lazarov and Sigmund 2010). When choosing smaller values
for the filter length parameter ( rH ), this function approaches

a Dirac’s delta function
(
�f

rH→0+

−−−−−→ �

)
 . This “Green’s func-

tion” averaging is the same as solving a modified Helmholtz
equation with homogeneous Neumann boundary conditions,
whose boundary value problem is given by (Lazarov and
Sigmund 2010; Zauderer 1989)

where � is the original design variable, �f is the filtered
design variable, and rH is the filter length parameter.

(23)
−r2

H
∇2�f + �f = � in Π

��f

�n
= 0 on ΓΠ

The weak form is obtained by multiplying Eq. (23) by
the test function wHF and integrating in the whole design
domain, which leads to

When a Helmholtz filter is considered, the value given by �f
is used in the place of � in all other equations, and the sen-
sitivities need to include the dependency of �f in relation to
� [i.e., from the chain rule for derivatives ( dJ

d�
=

dJ

d�f

d�f

d�
 )]

(Lazarov and Sigmund 2010).

6 � Numerical implementation
of the optimization problem

The fluid flow simulation is solved in the finite volumes soft-
ware OpenFOAM® (version from “The OpenFOAM foun-
dation”) (Weller et al. 1998; Chen et al. 2014), by using
the SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm (Patankar 1980; OpenFOAM Wiki
2014). The implementation of the SIMPLE algorithm is
practically the same as the “simpleFoam” solver from
OpenFOAM®, but including the additional inverse perme-
ability term shown in Eq. (2). Then, the additional inverse
permeability term is also included in the Spalart-Allmaras
model in OpenFOAM®. The adjoint model is computed
in the finite elements software FEniCS (Logg et al. 2012)
through dolfin-adjoint (Farrell et al. 2013; Mitusch et al.
2019). The topology optimization problem is solved with
IPOPT (Wächter and Biegler 2006), from the interface pro-
vided by the dolfin-adjoint library.

6.1 � Interfacing OpenFOAM® with FEniCS/
dolfin‑adjoint

The main idea for performing an interfacing between
OpenFOAM® (finite volume method) with FEniCS/dolfin-
adjoint (finite element method) is for efficiently comput-
ing the fluid flow simulation in OpenFOAM®, while the
adjoint model can be automatically derived and computed
in FEniCS/dolfin-adjoint.

FEniCS (Logg et al. 2012) is a finite element software
implemented in C++ that uses automatic differentiation
and a high-level language (UFL) for representing the weak
form and functionals for the finite element matrices. From
its high-level notation, the adjoint model can be automati-
cally derived from the weak form and objective functions by
the dolfin-adjoint library (Farrell et al. 2013; Mitusch et al.

(24)
r2
H ∫Π

(∇�f)⋅∇wHFdΠ + ∫Π

�f wHFdΠ

− ∫Π

�wHFdΠ = 0

Fig. 4   Application of a Helmholtz filter

4417Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

2019). The dolfin-adjoint library is restricted to the Python
interface of FEniCS.

OpenFOAM® (Weller et al. 1998; Chen et al. 2014) is an
open-source CFD (Computational Fluid Dynamics) software
written in C++, in which the syntax for specifying the finite
volume equations is, as in the case of FEniCS UFL, close
to the representation of the equations themselves. Since
OpenFOAM® operates in the lowest degree of finite volumes
(element-wise), the simulation should become less computa-
tionally expensive than when using finite elements with the
traditional Taylor-Hood elements or MINI elements for a
same discretization (although the numerical precision should
be lower due to the lower interpolation degree of the finite
volumes in OpenFOAM®). Also, the finite volume method is
based on the local conservation of fluxes (i.e., between finite
volumes), which is different from the finite element method
[i.e., based on the global conservation of fluxes – except for
Discontinuous Galerkin finite elements (Li 2006)]. The main
drawback regarding the use of OpenFOAM® in topology
optimization is the derivation of the adjoint model, which
was mentioned in Sect. 1.

Since dolfin-adjoint is a Python-only library,
OpenFOAM®’s C++ and shell script functionalities should
be made accessible in Python. The interfacing between FEn-
iCS/dolfin-adjoint and OpenFOAM®, for topology optimiza-
tion, is performed through a library developed in this work
(“FEniCS TopOpt Foam”).

6.2 � Interfacing OpenFOAM® with dolfin‑adjoint
for computing the sensitivities

The objective function is computed directly with FEniCS
after the simulation with OpenFOAM® is performed, while
the computation of the sensitivities uses the simulation result
for later solving the adjoint model equations. A diagram
illustrating the computation of the sensitivities is shown in
Fig. 5.

The diagram of Fig. 5 starts with a call from the opti-
mizer for dolfin-adjoint to compute the sensitivities. The
first step is computing the forward model (i.e., the simu-
lation). It starts by passing the mesh (FEniCS “Mesh”),
together with a boundary marking (FEniCS “MeshFunc-
tion”) (i.e., names of each group of facets [edges (2D/2D

Fig. 5   Diagram illustrating the computation of the sensitivities when using OpenFOAM® and the “FEniCS TopOpt Foam” library for the fluid
flow simulation

4418	 D. H. Alonso et al.

1 3

axisymmetry) or faces (3D)] of the boundary), to “FEniCS
TopOpt Foam” to convert to the OpenFOAM® mesh format.
It can be mentioned that OpenFOAM® operates only in 3D
meshes/coordinates, but allows simulating for 2D and 2D
axisymmetric flows if the mesh has a specific construction
[i.e., one-element uniform thickness (for the 2D mesh), and
one-element “wedge” thickness (i.e., thickness linearly vary-
ing from zero radius, for a sufficiently small wedge angle)
(for the 2D axisymmetric mesh)] and specific boundary con-
ditions [“empty” for the parallel faces with respect to the
2D plane (of the 2D mesh), and “wedge” for the parallel
faces with respect to the 2D plane (of the 2D axisymmetric
mesh)] (see Fig. 6). Since, in OpenFOAM®, the boundary
conditions are applied on the external faces of the 3D mesh,
the symmetry axis boundary condition (from 2D axisym-
metry) is implicitly considered when applying the “wedge”
boundary conditions in OpenFOAM®. A similar scheme of
using a 3D mesh for 2D/2D axisymmetric simulation is also
used in Ansys®CFX. If the mesh is the same during all itera-
tions of the topology optimization, this conversion can be
performed a single time.

Then, the state variables (FEniCS “Function” ’s), the
design variable (FEniCS “Function”), the boundary con-
ditions (specified as required by OpenFOAM®) and other
setup variables are converted by “FEniCS TopOpt Foam”
to variable and configuration files. The variable and con-
figuration files in OpenFOAM® are located in three sub-
folders: “0” (initial guess for the simulation), “constant”
(mesh and properties) and “system” (solver parameters).
With the OpenFOAM® files prepared, a specific solver for
OpenFOAM®, which corresponds to the simulation defined
in FEniCS, is selected for using in the simulation. In case
the simulation includes the design variable, the “default”
OpenFOAM® solvers can not be used without an adjustment
that includes the design variable in it (i.e., a “new” solver

has to be programmed). Then, the OpenFOAM® simulation
is performed. After the simulation, the state variable files
of the result of the OpenFOAM® simulation are converted
to the state variables in FEniCS. With the simulation result,
dolfin-adjoint is now used to compute the adjoint model that
is automatically generated from the forward model specified
in FEniCS. The conversion from the OpenFOAM® files to
the FEniCS variables (see Fig. 7) is performed by first map-
ping the internal values of the OpenFOAM® variables to
element-wise variables in FEniCS (dP0, “DG0”). Then, the
element-wise variables are projected (FEniCS “project”)
into the interpolation that is being used in the adjoint model.
The isolated state variables are then joined together in a
single state vector by using a “FunctionAssigner” in
FEniCS. In the case of turbulent variables, it may be needed
to guarantee that their conversion to FEniCS is strictly posi-
tive and non-zero (compensating any numerical error that
may appear in the conversions), because some turbulence
models rely on some specific square-roots/divisions, and
some other specific square-roots/divisions may arise due to
the automatic differentiation performed by FEniCS. After
this imposition, a small-radius Helmholtz filter (Lazarov and
Sigmund 2010) may be applied in the turbulent variables in
order to slightly filter (“alleviate”) some consequent sharp
transitions which may hinder post-processing operations
in FEniCS. An additional step is reimposing the original
Dirichlet boundary conditions (FEniCS “DirichletBC”)
onto the state vector, because the converted values from
OpenFOAM® to FEniCS correspond only to the internal
values of each cell and not to the external facets, which may
generate numerical error on the boundaries. For the sake of
completeness, the weak form that corresponds to a projec-
tion (FEniCS “project” function) is:

where aorig is the function that is being projected, while ap
is the projected function [obtained from solving Eq. (25)]
and wp is the corresponding test function for the projection.

The interfacing of the simulation with dolfin-adjoint
requires “overloading” a specific internal function of the
solver object in the dolfin-adjoint library, regarding the

(25)∫Π

aorigwpdΠ = ∫Π

apwpdΠ

Fig. 6   Representation of 2D and 2D axisymmetric domains in FEn-
iCS and OpenFOAM® (Obs. The specific boundary conditions
“wedge” are presented separately, because they are imposed sepa-
rately on each “almost parallel” face with respect to the 2D plane in
OpenFOAM®)

Fig. 7   Diagram illustrating the conversion of variables between
OpenFOAM® and FEniCS

4419Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

“forward simulation” (which is called “_forward_
solve”, and is located inside the “SolveBlock” class).

In terms of a parallel computation of the simulation
and optimization, both OpenFOAM® and FEniCS provide
independent implementations of parallelism out of the box,
which means that both softwares may partition the mesh
differently according to their needs and what is set up by
the user, and also independently call MPI operations. In the
current version of “FEniCS TopOpt Foam”, it is possible
to consider both parallelisms independently, which means
that FEniCS may be set to run in parallel, such as from
“mpiexec -n 2 python my_code.py” (for 2 pro-
cesses), while OpenFOAM® may be set up to run in parallel
from “FEniCS TopOpt Foam” functions independently.

6.3 � Choice of boundary conditions in OpenFOAM®

The boundary conditions that are possible to impose
in OpenFOAM® may be different from the ones that are
imposed in FEniCS due to the different solution methods and
systems of equations (of finite volumes and finite elements,
respectively). Therefore, the boundary conditions should be
chosen to be with a close resemblance for corresponding
simulation results. Although other variations are possible,
one possibility for velocity and pressure is shown in Fig. 8.
For the auxiliary turbulent viscosity of the Spalart-Allmaras
model ( ̃𝜈T ), the boundary conditions are the same as the
ones used in Eq. (9) (i.e., the same as in the finite element
method). The wall distance [ �w , from Eq. (8)] is computed
through the finite element method and is later imported into
OpenFOAM® – This procedure avoids having to implement
and solve a similar equation that should aim to attain the
same wall distance value from FEniCS in OpenFOAM®.

Although in finite elements (FEniCS), no boundary con-
ditions need to be explicitly imposed for the pressure, and for
the outlet velocity (because of the stress free boundary con-
dition), OpenFOAM® (finite volumes) requires all boundary
conditions to be explicitly imposed.

On the walls, the normal gradient of the pressure is set to
zero ( �p

�n
= 0 ) in OpenFOAM® (Neumann boundary condi-

tion). This boundary condition is originated from Prandtl’s
boundary layer equations (Schlichting 1979), where, inside
the boundary layer, 1

�

�p

�n
= O(�BL) ≈ 0 , where �BL is the

thickness of the boundary layer, O(�BL) represents the order
of magnitude (i.e., in the “big O notation”) of �BL , and the
fluid is assumed to be attached to the wall. Particularly when
the fluid is incompressible, �p

�n
≈ 0 . Therefore, setting the

normal gradient of the pressure to zero is an approximation.
In reality, �p

�n
 is non-zero (Rempfer 2006), but the “correct”

boundary condition would lead to a mathematically ill-posed
problem (Rempfer 2006). According to Rempfer (2006), due
to the approximation, the “pressure” value used in finite vol-
umes numerical methods [such as the SIMPLE algorithm
(Patankar 1980; OpenFOAM Wiki 2014)], would, in reality,
correspond to an “articial pressure” value, which should
attain a systematic deviation from the “correct” pressure
value, and may be corrected due the execution of the SIM-
PLE algorithm.

The normal gradient of the pressure is set to zero ( �p
�n

= 0 )
on the inlet in OpenFOAM® (Neumann boundary condi-
tion), because the velocity profile is already specified (Dir-
ichlet boundary condition) and no previous knowledge out-
side the computational domain is known.

The outlet boundary condition in OpenFOAM® is given
by imposing zero normal gradient for the velocity ( �v

�n
= 0 )

(Neumann boundary condition) and a fixed pressure value
( p = 0 ) (Dirichlet boundary condition). In FEniCS, the cor-
responding boundary condition is selected as “stress free”:
(T + TR)⋅n = 0 , which corresponds to a weak imposition of
a fixed zero pressure value ( p = 0).

6.4 � Topology optimization loop

The topology optimization loop is schematized in Fig. 9,
showing the interconnection between the software pack-
ages. The topology optimization starts with an initial guess
for the design variable (pseudo-density). Then, the forward
model defined in FEniCS is “annotated” (“stored”) in dolfin-
adjoint for the automatic derivation of the adjoint model.
The optimization loop is started with IPOPT, which inter-
acts with dolfin-adjoint for the computation of the objec-
tive function, constraints and sensitivities from the adjoint
method. The solver that includes all computations of the
forward and adjoint models is referred in Fig. 9, for sim-
plicity, as “Solver”. In order to obtain the sensitivities, it
is necessary to compute the forward model, which is given
from the following steps: (1) The wall distance is computed
in FEniCS; (2) The computed wall distance is transferred to
OpenFOAM® by using the “FEniCS TopOpt Foam” library;
(3) The fluid flow simulation is executed in OpenFOAM®;

Fig. 8   Correspondence of boundary conditions for velocity and
pressure between finite elements (FEniCS) and finite volumes
(OpenFOAM®) considered in this work

4420	 D. H. Alonso et al.

1 3

(4) The fluid flow variables computed in OpenFOAM® are
converted to FEniCS; (5) The converted variables and the
computed wall distance are sent to dolfin-adjoint, for assem-
bling the adjoint model. Then, the objective function, con-
straints and sensitivities are computed in dolfin-adjoint by
using FEniCS. In each loop of the IPOPT algorithm, the
values of the design variable are updated, defining new
topologies. The optimization loop proceeds until a speci-
fied tolerance is reached (convergence criterion).

The computed sensitivities (of the objective function
and constraint) are adjusted by the volume of each element.
This is similar to considering the use of a Riesz map in the
sensitivity analysis, which leads to mesh independency in
the computed sensitivities. This mesh independency is par-
ticularly interesting in the case of considering non-uniform
meshes, where the non-adjusted sensitivity distribution may
achieve a seemingly less-smooth distribution, which may
hinder the topology optimization process. For a nodal design
variable, the adjusted sensitivity is given by:

where V
neighbor elements

of the node

 is the summed volume of the

neighbor elements touching a node/vertex in the mesh, and
nnodes is the number of nodes/vertices in the mesh. In the 2D
case, the volume computations ( V

neighbor elements

of the node

 ) are

substituted by their area counterparts ( A
neighbor elements

of the node

 ),

while in the 2D axisymmetric case, the volume computa-
tions are performed considering axisymmetry (i.e., “ring-
shaped” element volumes).

A comparison of the computed sensitivities from dolfin-
adjoint with respect to finite differences is presented in
“Appendix A”.

7 � Numerical examples

In the following numerical examples (with the exception of
Sect. 7.1), the fluid is considered as water, with a dynamic
viscosity ( � ) of 0.001 Pa s, and a density ( � ) of 1000.0 kg/
m3.

An initial numerical example is performed for 2D laminar
flow for checking the implementation. Then, three numerical
examples (for 2D, 2D axisymmetric and 3D domains) are
presented in order to illustrate the application of topology
optimization with the coupling between OpenFOAM® and
FEniCS/dolfin-adjoint.

The inlet velocity profiles are considered to be parabolic
for the laminar flow examples, but are considered to be tur-
bulent velocity profiles for the turbulent flow examples (see
Fig. 10). The turbulent velocity profiles are implemented
according to De Chant (2005), in which the velocity pro-
file is analytically deduced from a simplified fluid flow
model. The difference of this turbulent velocity profile with
respect to the 1∕7th power law (Munson et al. 2009) is that
the derivative is zero in the middle of the velocity profile
(see the highly enlarged view of the difference in derivatives
in Fig. 10). It can be reminded that this zero derivative in
the middle of the turbulent velocity profile is expected for
turbulent fluid flows (Munson et al. 2009). For reference, a
turbulent velocity profile in the y direction, between a mini-
mum ( xmin ) and a maximum ( xmax ) coordinate becomes (De
Chant 2005):

(26)

dJ

d�

����adjusted =

1

Vneighbor elements
of the node

dJ

d�

⎡
⎢⎢⎢⎣

∑
nodes

Vneighbor elements
of the node

nnodes

⎤
⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average neighbor elements’ volume

Fig. 9   Flowchart representing the topology optimization loop imple-
mented with OpenFOAM® and FEniCS/dolfin-adjoint

4421Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

where xmiddle =
xmax+xmin

2
 is the coordinate of the middle of the

velocity profile, x1 =
xmax−xmin

2
 is an auxiliary coordinate, and

vin,y,max is the maximum velocity of the turbulent velocity
profile (computed from numerical integration for a given
flow rate).

The optimization loop considers the convergence crite-
rion as a tolerance of 10−10 for the optimality error of the
IPOPT barrier problem, which consists of the maximum
norm of the KKT conditions (Wächter and Biegler 2006).

The external body force term ( �f  ) is not considered
in the numerical examples ( �f = 0 ). The porous medium
is considered to be stationary ( vmat = v ). The minimum
value of the inverse permeability is considered as zero
( �min = 0 kg/(m3 s) ). The parameter 𝜆𝜈̃T is chosen as 1.0.

The reference value for the wall distance ( �ref ) is used
as the maximum size of the elements of the mesh (largest
of the maximum distances between two vertices of an ele-
ment), and the relaxation factor for the wall distance com-
putation ( �w ) is chosen as 0.1. The minimum value of the
wall penalization of the porous medium is considered as
zero ( �min = 0 m−3).

The mesh is post-processed after topology optimization
has been performed (i.e., for the optimized topology), from
the values of the design variable, from a threshold (step)
function:

where �th is the thresholded function. The resulting thres-
holded design variable ( �th ) is cut in order to remove the

(27)vin,y = vin,y,max

√√√√
sin

(
�

2

√
1 −

||||
x − xmiddle

x1

||||

)

(28)𝛼th =

{
1 (fluid), if 𝛼 ⩾ 0.5

0 (solid), if 𝛼 < 0.5

solid material ( � = 0 ) from the computational domain (see
Fig. 11). Therefore, the final simulations are performed with
the fluid flow equations without the effect of the porous
medium. In all of the optimized topologies, the final values
of the design variable (pseudo-density) are close to the vari-
able bounds (0 and 1).

The post-processed simulations are computed
entirely in OpenFOAM®, which means that a “default”
OpenFOAM® wall distance calculation method can be used
in this case (such as “meshWave”).

The inlet values for the turbulent variable ( ̃𝜈T,in ) are given
from the turbulence intensity ( IT ) and the turbulence length
scale ( �T ) based on the mean absolute velocity on the inlet
( |vabs,in| ), as:

where |vabs,in| =
∫
ΓΠ,in

|vabs,in|dΓΠ,in

∫
ΓΠ,in

dΓΠ,in

 is the mean absolute velocity

on the inlet, and nv is the number of velocity components (for
2D, nv = 2 ; for 2D axisymmetry and 3D, nv = 3).

The maximum inlet Reynolds number (considering only
the inlet velocity) and the maximum local Reynolds number
(considering the local velocities) are defined as, respectively,

where Lref is a characteristic length given, in this work, as
the inlet diameter (in the 2D case, it is given as the width
of the inlet).

In order to accelerate the execution of the optimization,
the OpenFOAM® simulation for each optimization step
reuses the simulation result from the immediately previous
optimization step. A maximum number of SIMPLE itera-
tions per optimization step is also considered, which is set,
in this work, as 500∼2000.

(29)𝜈̃T,in =

√
nv

2
IT�T |vabs,in|

(30)Rein,max =
�||vabs,in||max

Lref

�

(31)Reext, �, max =
�||vabs||max

Lref

�

Fig. 10   Laminar and turbulent velocity profiles for the same “2D flow
rate” (area below the curves)

Fig. 11   Post-processing applied to an optimized topology

4422	 D. H. Alonso et al.

1 3

7.1 � Laminar flow 2D double pipe

This initial example is for checking the implemented frame-
work for the classical laminar flow 2D double pipe (Bor-
rvall and Petersson 2003) (see Fig. 12). Differently from
the other numerical examples, the fluid properties, topology
optimization setup, boundary conditions, and dimensions
are set according to Borrvall and Petersson (2003): � = 1
Pa s; � = 1 kg/m3 ; �max = 2.5 × 104� ; �min = 2.5 × 10−4� ; q
is set as 0.01 for 20 iterations, and then changed to 0.1; the
specified fluid volume fraction (f) is selected as 1

3
 ; parabolic

velocity profiles are imposed (also including outlet veloc-
ity profiles) with the maximum value of the parabolas set
as 1 m/s; and h = 1 m. Particularly, in this work, the more
generic Navier-Stokes flow implementation is considered,
which should not deviate much from the original Stokes flow
results, since the Navier-Stokes equations tend to the Stokes
equations when the Reynolds number is much smaller than 1
(in this case, the maximum inlet Reynolds number is equal to
0.17). The initial guess for topology optimization is chosen
as “fluid fraction” ( � = f − 1% , where 1% is a margin, in
order to avoid the fluid volume constraint to be violated due
to numerical precision). The mesh is composed of 30,251
nodes and 60,000 elements (see Fig. 13).

The convergence curve for the laminar flow 2D double
pipe is shown in Fig. 14.

The optimized topology for the laminar flow 2D double
pipe is shown in Fig. 15. As can be seen, the optimized
topology is the same as Borrvall and Petersson (2003), which
shows that the proposed framework is able to achieve the
classical laminar flow 2D double pipe optimized topology.

7.2 � 2D bend channel

The second example is the design of the classical 2D bend
channel. This numerical example has been extensively
treated in topology optimization, such as for Stokes flow
(Borrvall and Petersson 2003), Navier-Stokes flow (Gers-
borg-Hansen 2003; Dai et al. 2018), and turbulent flows
(Dilgen et al. 2018; Yoon 2016). The 2D bend channel is
illustrated in Fig. 16.

The mesh is composed of 5101 nodes and 10,000 ele-
ments (see Fig. 17). The input parameters and geometric
dimensions of the design domain that are used are shown
in Table 1. The inlet flow rates correspond to maximum
inlet Reynolds numbers of 12.5 (for the laminar flow) and
8460.0 (for the turbulent flow). The initial guesses are cho-
sen as “full fluid” ( � = 1 ) for the laminar flow case, and
“fluid fraction” ( � = f − 1% ) for the turbulent flow case. The
specified fluid volume fraction (f) is selected as 30%. For
the wall distance computation, �max = 1010 m−3 . The inverse
permeability ( �max ) and the penalization parameter (q) are
selected, respectively, as 2.5 × 108� [kg/(m3s)] and 0.1, for

Fig. 12   Design domain for the laminar flow 2D double pipe (Borrvall
and Petersson 2003)

Fig. 13   Mesh used for the laminar flow 2D double pipe (check
Fig. 6 for the correspondence of meshes between FEniCS and
OpenFOAM®)

Fig. 14   Convergence curve for the laminar flow 2D double pipe

Fig. 15   Optimized topology for the laminar flow 2D double pipe

4423Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

the laminar flow; and as 1.5 × 109� [kg/(m3s)] and 0.1, for
the turbulent flow.

The optimized topology for laminar flow is consistent
with Borrvall and Petersson (2003), because the optimized
topology directly connects the inlet to the outlet, in almost
a straight line. In the optimized topology for turbulent flow,
due to this same fact, and also due to the optimized chan-
nel slight bulging toward the origin ((0, 0) coordinates), it
bears some resemblance to some of the results from Yoon
(2016), but is essentially different mainly because of the dif-
ferent volume fraction (Yoon (2016) considered f = 20%),

different problem dimensions, fluid properties, boundary
conditions and Reynolds numbers.

The convergence curves for the 2D bend channel are
shown in Fig. 18.

The simulation results for the post-processed meshes are
shown in Fig. 19. The maximum local Reynolds numbers
are computed as 143 (for the laminar flow) and 2.7 × 105 (for
the turbulent flow). The energy dissipation values in the
post-processed meshes are 6.66 × 10−8 W/m (for the laminar
flow) and 1.48 W/m (for the turbulent flow). The difference
in magnitude of the energy dissipation values is expected,
because the fluid velocities are much higher in the turbulent
flow, and also because of the presence of the turbulent vis-
cosity in Eq. (20), for turbulent flow. As can be noticed in
Fig. 19, the topology optimization results show different
formats for both cases: the optimized topology for the lami-
nar flow case shows a direct connection between inlet and
outlet, with a small bulging toward the origin ((0, 0) coordi-
nates) of the left side of the channel, due to the change of
direction near the inlet, probably in order to redirect the fluid
flow toward the outlet; the optimized topology for the turbu-
lent flow case is more bent to the left, which is probably due
to the higher viscosity (due to the turbulent viscosity) that is
formed to the left of the channel. For reference, the maxi-
mum turbulent viscosity ratio, which is a simple measure of
the influence of the turbulence in the simulation, is given as
max(

�T

�
) = 40 , which shows that the effect of the turbulent

viscosity is high in at least a part of the computational
domain.

7.3 � 2D axisymmetric nozzle

The third example is a design that relies on 2D axisymmetry,
which is considered in the design of a nozzle. A nozzle is a
device that is used to control the fluid flow characteristics

Fig. 16   Design domain for the 2D bend channel

Fig. 17   Mesh used for the 2D
bend channel (check Fig. 6
for the correspondence of
meshes between FEniCS and
OpenFOAM®)

Table 1   Parameters used for the
topology optimization of the 2D
bend channel

*Flow rates computed assuming that the width of the inlet ( �in ) corresponds to an “inlet diameter” (in 3D)
**The turbulent case is optimized considering a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set
as 0.3 mm

Input parameters (laminar flow)

Inlet flow rate (Q) 0.0022 L/min*
Inlet velocity profile Parabolic

Input parameters (turbulent flow)**

Inlet flow rate (Q) 2.5 L/min*
Inlet velocity profile Turbulent
IT 5.0%
�T 0.186 mm

Dimensions

Ly = Lx 30 mm
hy = hx 18.75 mm
�in = �out 7.5 mm

4424	 D. H. Alonso et al.

1 3

entering or leaving another fluid device. This type of design
is here analyzed for 2D axisymmetric flow, but has already
been considered for 2D flow in Borrvall and Petersson
(2003) and 2D swirl flow in Alonso et al. (2018).

In this work, as opposed to Alonso et al. (2018), where
the size of the fluid flow outlet was left to be determined
according to the specified fluid volume fraction (f), the
size of the fluid flow outlet is fixed with a radius Rout (see
Fig. 20). Also, in order to avoid any issue of the topology
optimization blocking the low velocity part of the inlet
velocity profile [as can be seen in Borrvall and Petersson
(2003)], a small non-optimizable inlet height is included
before the design domain.

The mesh is composed of 19,401 nodes and 38,400 ele-
ments (see Fig. 21). The input parameters and geometric
dimensions of the design domain that are used are shown in
Table 2. The inlet flow rates correspond to maximum inlet
Reynolds numbers of 325 (for the laminar flow) and 3,253
(for the turbulent flow). In order to facilitate the conver-
gence of the topology optimization, a “conical” initial guess
(i.e., connecting the inlet (R) of the design domain ( H − hin )
directly to the outlet ( Rout ) with a straight line) is considered
for � . The specified fluid volume fraction (f) is selected as
50%. For the wall distance computation, �max = 1010m−3 .
The inverse permeability ( �max ) and the penalization param-
eter (q) are selected, respectively, as 2.5 × 107� [kg/(m3s)]
and 1.0, for the laminar flow; and as 5 × 108� [kg/(m3s)] and
1.0, for the turbulent flow.

The convergence curves for the 2D bend channel are
shown in Fig. 22.

The simulation results for the post-processed meshes are
shown in Fig. 23. The maximum local Reynolds numbers
are computed as 505 (for the laminar flow) and 12,023 (for

the turbulent flow). The energy dissipation values in the
post-processed meshes are 1.04 × 10−7 W (for the laminar
flow) and 3.10 × 10−4 W (for the turbulent flow). The differ-
ence in magnitude of the energy dissipation values is
expected, as in the 2D bend channel example, because of the
higher fluid velocities in relation to the turbulent flow, and
also because of the presence of the turbulent viscosity in Eq.
(20) for turbulent flow. As can be noticed in Fig. 23a, the
laminar case topology features a small bump near the low

Fig. 18   Convergence curves for the 2D bend channel

Fig. 19   Optimized topologies, pressure, and velocity for the 2D bend
channel

4425Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

velocity part of the parabolic inlet velocity profile. This
small velocity means that this zone of the fluid flow is given
a lower importance with respect to the objective function in
relation to the rest of the computational domain. A similar
effect is also observed in Borrvall and Petersson (2003)’s
nozzle example. In the optimized topology for tubulent flow
(Fig. 23b), the inlet of the optimized topology becomes
smoother than the optimized topology for the laminar flow
case. This is probably due to the different inlet velocity pro-
file (turbulent velocity profile), which features higher veloc-
ity values at larger radii than the parabolic velocity profile,
and the inlet turbulence value, which influences the objective
function near the inlet. For reference, the maximum turbu-
lent viscosity ratio is given as max(

�T

�
) = 0.73 , which shows

that the effect of the turbulent viscosity is comparable to the
fluid (water) viscosity in at least a part of the computational
domain.

7.4 � 3D channel

The fourth example is based on a 3D model, for the design
of a channel that bifurcates into other two. Fig. 24 shows the
computational domain with the inlet channel and the two
outlet channels. The inlet and outlet channels are left outside
the design domain.

The mesh is composed of 18,308 nodes and 102,254 tet-
rahedral elements (see Fig. 25), whose quantities are slightly
increased for the turbulent case (18,344 nodes and 102,720
tetrahedral elements). The input parameters and geometric
dimensions of the design domain that are used are shown in
Table 3. The inlet flow rates correspond to maximum inlet
Reynolds numbers of 1,062 (for the laminar flow) and 2,603
(for the turbulent flow). The initial guess for the laminar
case is chosen as “fluid fraction” ( � = f − 1% ), while the
initial guess for the turbulent case is chosen as the optimized
topology of the laminar case. The specified fluid volume
fraction (f) is selected as 20%. For the wall distance compu-
tation, �max = 108m−3 . The inverse permeability ( �max ) and
the penalization parameter (q) are selected, respectively, as
5.0 × 107� [kg/(m3s)] and 1, for the laminar flow; and as
8.0 × 107� [kg/(m3s)] and 1000, for the turbulent flow.

The convergence curves for the 3D channel are shown
in Fig. 26. It can be highlighted that there is a maximum
number of SIMPLE iterations per optimization step (which
is set, in this work, as 500), which means that the “quality”
of the simulation is lower in the first iterations of the topol-
ogy optimization.

The simulation results for the post-processed meshes are
shown in Fig. 27, where only a slice of the scalar fields (p,
𝜈̃T , �T ) is plotted, for illustrative purposes. The maximum
local Reynolds numbers are computed as 1,254 (for the lami-
nar flow) and 5,645 (for the turbulent flow). The energy dis-
sipation values in the post-processed meshes are 1.08 × 10−5
W (for the laminar flow) and 3.65 × 10−4 W (for the turbu-
lent flow). The difference in magnitude of the energy dissi-
pation values is expected as mentioned in the other numeri-
cal examples. It can be noticed, when comparing Fig. 27a
and b, that the channels are thicker in the laminar flow case,
which is probably due to the effect of the lower velocities
and the higher effect of the viscosity of the fluid. In the tur-
bulent flow case, the channels are thinner, which is probably
due to the higher velocities and turbulent viscosity effect in
the turbulent flow case. Also, the channels are split near the
outlet in the laminar flow case, while they are split near the
inlet in the turbulent flow case. This may be due to the fact
that, if the channel is split near the outlet in the turbulent
flow case, the fluid will be at a higher velocity, meaning that

Fig. 20   Design domain for the 2D axisymmetric nozzle

Fig. 21   Mesh used for the 2D axisymmetric nozzle (check Fig. 6 for
the correspondence of meshes between FEniCS and OpenFOAM®)

4426	 D. H. Alonso et al.

1 3

the energy dissipated in the “collision” with the “splitting
edge” would become higher. One more observation is that
the fluid volume is different in both optimized topologies,
which is acceptable, since the constraint that is being
imposed is a maximum fluid volume constraint [Eq. (9)]. For
reference, the maximum turbulent viscosity ratio is given as
max(

�T

�
) = 6.24 , which shows that the effect of the turbulent

viscosity is higher than the fluid (water) viscosity in at least
a part of the computational domain.

8 � Conclusions

This work presents the approach of using the
OpenFOAM® infrastructure for the computation of an effi-
cient fluid flow simulation, while the adjoint model is auto-
matically derived in an efficient manner by FEniCS/dolfin-
adjoint. Although an even higher computational efficiency
would be possible to be achieved through manually deriving
the continuous adjoint model and adjusting its implementa-
tion (such as through reordering the terms/operations, block
matrices, local preconditionings etc.), this procedure may
become a hard and cumbersome task, especially for complex
models. Therefore, this work presents a more convenient
and comprehensive approach of obtaining the automatically
derived adjoint model in an efficient manner when consider-
ing OpenFOAM®. In the point of view of OpenFOAM®, this
means that the adjoint equations do not need to be derived by
hand, while, in the point of view of FEniCS, the fluid flow
simulation may be computed more efficiently, without need-
ing to implement various adjustments for convergence of the
algorithm. In terms of work required in the implementation,
the additional work is to write the material model terms
in the equations inside the OpenFOAM® solver and write
the weak forms and boundary conditions in FEniCS. The
required additional work for this implementation is far from
having to derive the adjoint equations by hand, and even
saves time when testing, since the derivation of the adjoint
model is automated. In terms of computational cost, the
implemented algorithm is able to deploy OpenFOAM® and
FEniCS to run in parallel (independently), which may help
in reducing the required computational time. Since the
adjoint equations are linear, the resulting matrix system
needs to be solved a single time at each iteration, and the
computational cost is mostly due to the interpolation degrees
of the state variables in finite elements (see Fig. 3), which

Table 2   Parameters used for the
topology optimization of the 2D
axisymmetric nozzle

*The optimized cases consider a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set as 0.0625 mm

Input parameters (laminar flow)*

Inlet flow rate (Q) 0.05 L/min
Inlet velocity profile Parabolic

Input parameters (turbulent flow)*

Inlet flow rate (Q) 2.5 L/min
Inlet velocity profile Turbulent
IT 5.0%
�T 0.25 mm

Dimensions

R 10 mm
Rout 5 mm
H 15 mm
hin 1 mm

Fig. 22   Convergence curves for the 2D axisymmetric nozzle

4427Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

the authors tried reducing by considering the use of MINI
elements instead of Taylor-Hood elements. It is also possible
to use linear finite elements by including a stabilization term
in the fluid flow equations (Reddy and Gartling 2010; Logg

et al. 2012; Elhanafy et al. 2017; Langtangen et al. 2002;
Franca 1992).

It is also possible to extend the implemented approach
to any type of optimization method implemented in the
FEniCS platform, by including the adequate conversions
to OpenFOAM®simulations by using the “FEniCS TopOpt
Foam” library. Although this work is focused in topology
optimization for fluid flow, this approach is extensible to any
kind of physics that is modellable in OpenFOAM®.

As future work, it is suggested to consider this scheme for
investigating topology optimization for turbulent, compress-
ible, and non-Newtonian flows.

9 � Replication of results

The part of the implementation that is performed in the FEn-
iCS platform is direct from the description that is provided
of the equations and numerical implementation in this arti-
cle. This is because FEniCS is based on a high-level descrip-
tion for the variational formulation (UFL), which automates
the generation of the necessary matrix equations. It may be
reminded that, in the 2D axisymmetric case, the coordi-
nates are considered to be cylindrical (i.e., the differential
operators (“grad”, “curl”, “div”) must be programmed
by hand by using the “Dx(var,component_num)” or
“var.dx(component_num)” functions, because the
default operators available in FEniCS consider Cartesian
coordinates).

Fig. 23   Optimized topologies, 3D representation, pressure, and
velocity for the 2D axisymmetric nozzle

Fig. 24   Design domain for the 3D channel

Fig. 25   Mesh used for the 3D channel (laminar case)

4428	 D. H. Alonso et al.

1 3

The part of the implementation that is performed in
OpenFOAM® is, as mentioned in Sect. 6, including the
additional inverse permeability term in the “simple-
Foam” solver from OpenFOAM® (referred as “Custom-
SimpleFoam” in this work) [see Eq. (2)], and also in the

“SpalartAllmaras” turbulence model (referred as
“CustomSpalartAllmaras” in this work) [see Eq.
(5)]. Another necessary implementation is to create an addi-
tional type of wall distance computation, which loads the
wall distance from a file (referred as “Custom_exter-
nalImport” in this work).

The “FEniCS TopOpt Foam” library used in the imple-
mentation of this work is to be made available in a git reposi-
tory2. It also includes sample implementations of “Cus-
tomSimpleFoam”, “CustomSpalartAllmaras”,
and “Custom_externalImport”. An implementation
of a code by using “FEniCS TopOpt Foam” for a sample 2D
bend channel topology optimization (slightly different from
Sect. 7.2 in order to be simpler and easier to understand) is
shown step by step in the following subsections. In the fol-
lowing code excerpts, when a line of code is split due to lack
of space, its continuation is shown in the next line, preceded
by an arrow (“ ”).

9.1 � Sample 2D bend channel problem

In this section, the 2D bend channel problem is considered
through a sample implementation, where � is set as 1.0, � is
set as 0.1, and the inlet velocity is defined as such that the
maximum velocity of the inlet parabola is 1.0, while the
computational domain is a 1×1 square. The implementation
is performed by leaving a variable to set which flow regime

Table 3   Parameters used for the
topology optimization of the 3D
channel

*The turbulent case is optimized considering a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set
as 0.457 mm

Input parameters (laminar flow)

Inlet flow rate (Q) 0.5 L/min
Inlet velocity profile Parabolic

Input parameters (turbulent flow)*

Inlet flow rate (Q) 2 L/min
Inlet velocity profile Turbulent
IT 5.0%
�T 0.25 mm

Dimensions

Lx = Ly 30 mm
Lz 20 mm
d
1
= d

2
= d

3
10 mm

�
1
= �

2
= �

3
2.5 mm

h
1,x = h

1,y 10 mm
h
2,y = h

3,x 20 mm
h
2,z = h

3,z 10 mm
H 15 mm

Fig. 26   Convergence curves for the 3D channel (Obs. For ease of
visualization of the optimized topology, only the values of � with
� ⩾ 0.5 are shown in nontransparent color). It can be highlighted that
the optimized topologies (in the final iterations) are highly discrete

2  https://​github.​com/​diego-​hayas​hi/​fenics_​topopt_​foam.

https://github.com/diego-hayashi/fenics_topopt_foam

4429Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

(laminar or turbulent) is being considered (“flow_regime”
variable) and another variable is left to set whether to
consider OpenFOAM® in parallel or not (“run_open-
foam_in_parallel”). The optimization parameters
are prepared for the laminar and turbulent cases, but their
specific values are set for a laminar flow topology optimiza-
tion, and may be adjusted by the user for a turbulent flow
case. Table 4 presents the main variable naming differences
between this article and the implementations in FEniCS and
OpenFOAM®.

9.2 � Necessary imports

The necessary imports should be included in the beginning
of the code.

9.3 � General configurations

The general configurations can be set as follows: First, an
additional variable (“run_openfoam_in_parallel”)

Fig. 27   Optimized topologies, pressure, and velocity for the 3D chan-
nel

Table 4   Variable naming in the equations of this article and the
implementations in FEniCS and OpenFOAM®.

Equations of this
article

FEniCS OpenFOAM®

v v U

p p p

𝜈̃
T

nu_T_aux nuTilda

�w l_wall yWall_to_load

� alpha alpha_design

4430	 D. H. Alonso et al.

1 3

is set in order to control whether OpenFOAM® should run
in parallel or not.

Then, the fluid properties are set alongside the corre-
sponding inlet values and the flow regime.

9.4 � Set topology optimization‑related parameters

The topology optimization-related parameters are defined.

9.5 � Create the output folder

A folder for including the results is created.

9.6 � Create the 2D mesh in FEniCS

The mesh is created in FEniCS and saved to file for visuali-
zation. It can be mentioned that any mesh or mesh generation
scheme in FEniCS may be considered, such as from FEniCS
itself, from an external mesh imported to FEniCS, and from
“mshr” (additional meshing module from FEniCS).

9.7 � Define the function spaces for FEniCS

The FEniCS implementation requires the definition of the
function spaces for the state and design variables.

9.8 � Prepare the boundary definition in FEniCS

The boundaries of the computational domain are given
names in FEniCS, which will also be used in OpenFOAM®,
and saved to file, for visualization.

4431Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

9.9 � Prepare boundary values (for Dirichlet
Boundary conditions) in FEniCS

Some of the boundary values that will be used for Dirichlet
Boundary conditions are defined.

9.10 � Function to set “FEniCS TopOpt Foam”

The function “prepareFEniCSFoamSolverWithUp-
date” is created in order to prepare the whole setup for
the OpenFOAM® simulation from “FEniCS TopOpt Foam”.

First, the boundary data are gathered in a format that is more
closely related to OpenFOAM® definitions.

Then, the basic parameters necessary for defining a solver
in “FEniCS TopOpt Foam” are defined.

Fol lowing, i t is necessary to prepare the
OpenFOAM® dictionary entries for “controlDict”,
“fvSchemes”, and “fvSolution”. These three dic-
tionaries are required by OpenFOAM® for any simulation
and are essential for controlling how these simulations will
be executed, which means that they should be completely
defined by the user. It should be reminded, though, that
“writeFormat” (from “controlDict”) needs to be
set to “ascii” for “FEniCS TopOpt Foam”.

4432	 D. H. Alonso et al.

1 3

The “libs” entry from “controlDict” is set to con-
sider some C++ OpenFOAM® libraries provided by “FEn-
iCS TopOpt Foam” (i.e., the OpenFOAM® libraries that are

already mentioned in the beginning of Sect. 9), but the user
may include any user-made library in this entry.

9.11 � Solver that interacts with FEniCS
and OpenFOAM®

Now, the solver can be created (called
“FEniCSFoamSolverWithUpdate”) with the previ-

ously defined parameters, variables, mesh, boundary condi-
tions, and the fluid properties.

The parallelism in OpenFOAM® is set here (if “run_
openfoam_in_parallel = True”), where the “par-
allel_data” dictionary needs to be set according to
OpenFOAM® conventions, and the value set for the “num-
berOfSubdomains” entry also corresponds to the num-
ber of processes for OpenFOAM® parallelism.

4433Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

The boundary conditions are set as follows:

The fluid flow properties are set as follows:

The “plotResults” function from
“FEniCSFoamSolver” can be left more readily

accessible.

The main function for solving the simulation can then
be defined as follows. First, the variables are retrieved from
dolfin-adjoint (“replace_map”), and an initial guess for
the state vector (called “u”) is set.

4434	 D. H. Alonso et al.

1 3

Then, the wall distance is computed in FEniCS and set
to OpenFOAM®.

Following, the properties are optionally updated (if a con-
tinuation scheme in the property values is desired during
topology optimization).

The variables are set to OpenFOAM®.

The OpenFOAM® simulation can now be performed.
In this case, in order to help monitoring the residuals from
the simulation, the parameter “continuously_plot_
residuals_from_log” is set to “True”. This means
that, inside the OpenFOAM® simulation folder (called
“foam_problem” in Sect. 9.3), there will be a “logs”
folder which will contain the plots made with Matplot-
lib (image files, “.png”) for each residual. These plots are
renewed at each optimization iteration. In order for Matplot-
lib to be able to plot, it is essential that “matplotlib.
use(‘Agg’)” is used in the beginning of the code, as
shown in Sect. 9.3, because Matplotlib is set to create the
plots simultaneously to the simulation in OpenFOAM® by
spawning a child process, because it requires Matplotlib to
be using a non-interactive backend (such as “Agg”), which
is able to directly generate image files, but disables the
capacity of Matplotlib opening GUI windows.

After the simulation, the computed variables are set back
to FEniCS/dolfin-adjoint.

4435Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

With “FEniCSFoamSolverWithUpdate” defined,
it is now created.

9.12 � Forward model in FEniCS

A function that prepares the forward model in FEniCS
from a design variable distribution (“alpha”) has to be
defined, because it will be used by dolfin-adjoint for the
automatic derivation of the adjoint model. First, the state
vector and test functions are defined, alongside some aux-
iliary definitions.

In the case of using a turbulence model (Spalart-Allmaras
model), the computation of the wall distance is performed.

Then, the remaining weak forms and boundary conditions
for FEniCS are defined and combined.

4436	 D. H. Alonso et al.

1 3

Then, the “prepareFEniCSFoamSolverWithUp-
date” is created and used as an input parameter for
“UncoupledNonlinearVariationalSolver”,
which will perform the coupling between the optimization
and the simulation.

9.13 � Preparations for topology optimization

The initial setup for topology optimization is performed.

An initial simulation is performed for dolfin-adjoint to
prepare the automatic derivation of the adjoint model.

Some visualization files are prepared for visualizing
the optimized topology during the topology optimization
iterations.

Fig. 28   Topology considered
for the finite differences com-
parison

4437Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

In order to continuously save the visualization files, it
is necessary to create a callback for dolfin-adjoint, such
as immediately after the computation of the sensitivities
(“derivative_cb_post”).

9.14 � Topology optimization

The topology optimization problem can now be defined,
as well as the IPOPT solver can be instantiated from
dolfin-adjoint.

To finalize, the topology optimization is performed.

9.15 � Plot the simulation

The simulation from OpenFOAM® may be plotted as
follows.

9.16 � Running the code

The resulting code may be run as: (1) totally in serial mode,
(2) with only OpenFOAM® in parallel, (3) with only FEn-
iCS in parallel, or (4) with FEniCS and OpenFOAM® in
parallel. Parallelism in OpenFOAM® is enabled by setting
“run_openfoam_in_parallel = True” (Sect. 9.3)
and adequately setting (depending on your computational
resources) the “parallel_data” dictionary (Sect. 9.11).
Parallelism in FEniCS is set directly in the Python call, such
as “mpiexec -n 2 python my_code.py” (for 2
processes). The number of processes for each type of paral-
lelism is set as desired by the user and in a value allowed by
the user’s computational resources (such as 2,3,4 etc.). For
no parallelism in OpenFOAM® and FEniCS (“serial mode”),
set “run_openfoam_in_parallel = False” and run

Fig. 29   Sensitivity values computed with the “FEniCS TopOpt
Foam” approach (from dolfin-adjoint) and from finite differences, for
laminar and turbulent flows

Fig. 30   Relative differences for
the cases shown in Fig. 29

4438	 D. H. Alonso et al.

1 3

the code as “python my_code.py”. The plots, which
contain the extensions .pvd and .vtk, may be visualized with
the ParaView software.

Appendix A: Comparison of sensitivities
with finite differences

In this appendix, a comparison of the computed sensitivi-
ties from dolfin-adjoint with finite differences is presented.
The comparison is performed for the initial guess of the 2D
axisymmetric nozzle (Sect. 7.3). A set of points is selected in
the computational domain for comparison with finite differ-
ences (see Fig. 28): one near the inlet, one near the symme-
try axis, one near the middle of the computational domain,
one near the outlet, and a last one inside the solid material.
The comparison is performed for the same configurations
considered for laminar and turbulent flows in Sect. 7.3, by
restricting the simulation to 6000 SIMPLE iterations. The
finite differences are considered through the backward dif-
ference approximation (for � = 1 ): dJ

d�
=

J(�)−J(�−Δ�)

Δ�
 , where

J = Φ . The finite difference approximation is changed to for-
ward difference approximation for point number 5 ( � = 0 ):
dJ

d�
=

J(�+Δ�)−J(�)

Δ�
 , where J = Φ . A better approximation

would be the use of a central finite difference approxima-
tion ( dJ

d�
=

J(�+Δ�)−J(�−Δ�)

2Δ�
 ), which is, however, inadequate for

� = 0 and � = 1 (bounds of � ). The computed sensitivities
are shown in Fig. 29, for a step size of 10−3 . As can be seen,
the computed sensitivities for the “FEniCS TopOpt Foam”
approach (from dolfin-adjoint) and finite differences are
close to each other. In order to get a better insight about the
differences between the two sensitivities, Fig. 30 shows the
relative differences as defined below, which resulted small.

where the subscript “FTF” indicates the “FEniCS TopOpt
Foam” approach (from dolfin-adjoint) and “FD” indicates
“Finite Differences”.

Funding  This research was partly supported by CNPq (Brazilian
Research Council) and FAPESP (São Paulo Research Foundation).
The authors thank the supporting institutions. The first author thanks
the financial support of FAPESP under Grant 2017/27049-0. The sec-
ond author thanks the financial support of CAPES. The third author
thanks the financial support of CNPq (National Council for Research
and Development) under grant 302658/2018-1 and of FAPESP under

(32)rd
||laminar

=

dJ

d�

|||FD −
dJ

d�

|||FTF
max

|||
dJ

d�

|||FTF, all points

|||||||laminar

(33)rd
||turbulent =

dJ

d�

|||FD −
dJ

d�

|||FTF
max

|||
dJ

d�

|||FTF, all points

|||||||turbulent

Grant 2013/24434-0. The authors also acknowledge the support of the
RCGI (Research Centre for Gas Innovation), hosted by the University
of São Paulo (USP) and sponsored by FAPESP (2014/50279-4) and
Shell Brazil.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

Adept (2021) Adept—a combined automatic differentiation and array
library for c++. http://​www.​met.​readi​ng.​ac.​uk/​clouds/​adept/.
Accessdd May 2021

Alonso DH, de Sá LFN, Saenz JSR, Silva ECN (2018) Topology opti-
mization applied to the design of 2d swirl flow devices. Struct
Multidisc Optim 58(6):2341–2364. https://​doi.​org/​10.​1007/​
s00158-​018-​2078-0

Alonso DH, de Sá LFN, Saenz JSR, Silva ECN (2019) Topology opti-
mization based on a two-dimensional swirl flow model of tesla-
type pump devices. Comput Math Appl 77(9):2499–2533. https://​
doi.​org/​10.​1016/j.​camwa.​2018.​12.​035

Alonso DH, Saenz JSR, Silva ECN (2020) Non-Newtonian lami-
nar 2d swirl flow design by the topology optimization method.
Struct Multidisc Optim 62(1):299–321. https://​doi.​org/​10.​1007/​
s00158-​020-​02499-2

Andreasen CS, Gersborg AR, Sigmund O (2009) Topology optimiza-
tion of microfluidic mixers. Int J Numer Methods Fluid 61:498–
513. https://​doi.​org/​10.​1002/​fld.​1964

Ansys I (2006) Modeling turbulent flows - introductory fluent training.
www.​south​ampton.​ac.​uk/​~nwb/​lectu​res/​GoodP​racti​ceCFD/​Artic​
les/​Turbu​lence_​Notes_​Fluent-​v6.3.​06.​pdf. Accessed Nov 2020

Arnold D, Brezzi F, Fortin M (1984) A stable finite element method
for the stokes equations. Calcolo 21:337–344

Bardina JE, Huang PG, Coakley TJ (1997) Turbulence modeling
validation, testing and development. Tech. rep, NASA Technical
Memorandum, p 110446

Bendsøe MP, Sigmund O (2003) Topology optimization: theory, meth-
ods, and applications, 2nd edn. Springer, Berlin

Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes
flow. Int J Numer Methods Fluids 41(1):77–107. https://​doi.​org/​
10.​1002/​fld.​426

Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods.
Springer, Berlin

Bueno-Orovio A, Castro C, Palacios F, Zuazua E (2012) Continuous
adjoint approach for the spalart-allmaras model in aerodynamic
optimization. AIAA J 50(3):631–646

Chen G, Xiong Q, Morris PJ, Paterson EG, Sergeev A, Wang Y
(2014) Openfoam for computational fluid dynamics. Not AMS
61(4):354–363

Dai X, Zhang C, Zhang Y, Gulliksson M (2018) Topology optimization
of steady Navier-Stokes flow via a piecewise constant level set
method. Struct Multidisc Optim 57(6):2193–2203

De Chant LJ (2005) The venerable 1/7th power law turbulent velocity
profile: a classical nonlinear boundary value problem solution
and its relationship to stochastic processes. J Appl Math Comput
Mech 161:463–474

Deng Y, Zhou T, Liu Z, Wu Y, Qian S, Korvink JG (2018) Topology
optimization of electrode patterns for electroosmotic micromixer.
Int J Heat Mass Transf 126:1299–1315

Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov BS (2018)
Topology optimization of turbulent flows. Comput Methods Appl

http://www.met.reading.ac.uk/clouds/adept/
https://doi.org/10.1007/s00158-018-2078-0
https://doi.org/10.1007/s00158-018-2078-0
https://doi.org/10.1016/j.camwa.2018.12.035
https://doi.org/10.1016/j.camwa.2018.12.035
https://doi.org/10.1007/s00158-020-02499-2
https://doi.org/10.1007/s00158-020-02499-2
https://doi.org/10.1002/fld.1964
http://www.southampton.ac.uk/%7enwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf
http://www.southampton.ac.uk/%7enwb/lectures/GoodPracticeCFD/Articles/Turbulence_Notes_Fluent-v6.3.06.pdf
https://doi.org/10.1002/fld.426
https://doi.org/10.1002/fld.426

4439Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based…

1 3

Mech Eng 331:363–393. https://​doi.​org/​10.​1016/j.​cma.​2017.​11.​
029

Duan X, Li F, Qin X (2016) Topology optimization of incompressible
Navier-Stokes problem by level set based adaptive mesh method.
Comput Math Appl 72(4):1131–1141. https://​doi.​org/​10.​1016/j.​
camwa.​2016.​06.​034

Elhanafy A, Guaily A, Elsaid A (2017) Pressure stabilized finite ele-
ments simulation for steady and unsteady Newtonian fluids. J
Appl Math Comput Mech 16(3):17–26

Evgrafov A (2004) Topology optimization of navier-stokes equations.
Nordic MPS 2004. The Ninth Meeting of the Nordic Section of
the Mathematical Programming Society, vol 014. Linköping Uni-
versity Electronic Press, pp 37–55

Farrell PE, Ham DA, Funke SW, Rognes ME (2013) Automated deriva-
tion of the adjoint of high-level transient finite element programs.
SIAM J Sci Comput 35(4):C369–C393

Franca LP (1992) Stabilized finite element methods: II. The incom-
pressible Navier-Stokes equations. Comput Methods Appl Mech
Eng 99(258):209–233

Funke S (2013) The automation of PDE-constrained optimisation and
its applications. PhD thesis. Imperial College London

Gersborg-Hansen A (2003) Topology optimization of incompressible
Newtonian flows at moderate Reynolds numbers. Master’s thesis,
Technical University of Denmark

Guest JK, Prévost JH (2006) Topology optimization of creeping fluid
flows using a Darcy-Stokes finite element. Int J Numer Methods
Eng 66(3):461–484. https://​doi.​org/​10.​1002/​nme.​1560

Hasund KES (2017) Topology optimization for unsteady flow with
applications in biomedical flows. Master’s thesis, NTNU

He P, Mader CA, Martins JRRA, Maki KJ (2018) An aerodynamic
design optimization framework using a discrete adjoint approach
with OpenFOAM. Comput Fluids 168:285–303. https://​doi.​org/​
10.​1016/j.​compf​luid.​2018.​04.​012

He P, Mader CA, Martins JRRA, Maki KJ (2020) DAFoam: an open-
source adjoint framework for multidisciplinary design optimiza-
tion with OpenFOAM. AIAA J 10(2514/1):J058853

Hyun J, Wang S, Yang S (2014) Topology optimization of the shear
thinning non-Newtonian fluidic systems for minimizing wall shear
stress. Comput Math Appl 67(5):1154–1170. https://​doi.​org/​10.​
1016/j.​camwa.​2013.​12.​013

Jensen KE, Szabo P, Okkels F (2012) Topology optimizatin of viscoe-
lastic rectifiers. Appl Phys Lett 100(23):234102

Kawamoto A, Matsumori T, Kondoh T (2013) Regularization in topol-
ogy optimization. ROKS 2013, Leuven

Langtangen HP, Logg A (2016) Solving PDEs in minutes —The FEn-
iCS Tutorial Volume I. https://​fenic​sproj​ect.​org/​book/. Accessed
Nov 2020

Langtangen HP, Mardal KA, Winther R (2002) Numerical meth-
ods for incompressible viscous f low. Adv water Resour
25(8–12):1125–1146

Lazarov BS, Sigmund O (2010) Filters in topology optimization based
on Helmholtz-type differential equations. Int J Numer Methods
Eng 86(6):765–781

Li BQ (2006) Discontinuous finite elements in fluid dynamics and heat
transfer. Springer, London

Logg A, Mardal KA, Wells G (2012) Automated solution of differential
equations by the finite element method: The FEniCS book, vol 84.
Springer, https://​fenic​sproj​ect.​org/​book/

Lv Y, Liu S (2018) Topology optimization and heat dissipation per-
formance analysis of a micro-channel heat sink. Meccanica
53(15):3693–3708

Mangani L, Buchmayr M, Darwish M (2014) Development of a novel
fully coupled solver in openfoam: Steady-state incompressible tur-
bulent flows. Numer Heat Transf B 66(1):1–20. https://​doi.​org/​10.​
1080/​10407​790.​2014.​894448

Meurer A, Smith CP, Paprocki M, Čertík O, Kirpichev SB, Rocklin M,
Kumar A, Ivanov S, Moore JK, Singh S, Rathnayake T, Vig S,
Granger BE, Muller RP, Bonazzi F, Gupta H, Vats S, Johansson
F, Pedregosa F, Curry MJ, Terrel AR, Roučka Š, Saboo A, Fer-
nando I, Kulal S, Cimrman R, Scopatz A (2017) Sympy: symbolic
computing in python. Peer J Comput Sci. https://​doi.​org/​10.​7717/​
peerj-​cs.​103

Mitusch S, Funke S, Dokken J (2019) dolfin-adjoint 2018.1: automated
adjoints for Fenics and Firedrake. J Open Sour Softw 4(38):1292.
https://​doi.​org/​10.​21105/​joss.​01292

Mortensen M, Langtangen HP, Wells GN (2011) A Fenics-based
programming framework for modeling turbulent flow by the
Reynolds-averaged Navier-Stokes equations. Adv Water Resour
34(9):1082–1101. https://​doi.​org/​10.​1016/j.​advwa​tres.​2011.​02.​
013

Munson BR, Young DF, Okiishi TH (2009) Fundamentals of fluid
mechanics, 6th edn. Wiley, New York

NASA (2019) Turbulence modeling resource—the spalart-allmaras
turbulence model . https://​turbm​odels.​larc.​nasa.​gov/​spala​rt.​html

Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization
of unsteady flow problems using the lattice Boltzmann method.
J Comput Phys 307(C):291–307. https://​doi.​org/​10.​1016/j.​jcp.​
2015.​12.​023

Olesen LH, Okkels F, Bruus H (2006) A high-level programming-
language implementation of topology optimization applied to
steady-state Navier-stokes flow. Int. J. Numer. Methods Eng.
65(7):975–1001

OpenFOAM Foundation (2020) Official openfoam repository. https://​
github.​com/​OpenF​OAM

OpenFOAM Wiki (2014) Openfoam guide/the simple algorithm in
openfoam. http://​openf​oamwi​ki.​net/​index.​php/​The_​SIMPLE_​
algor​ithm_​in_​OpenF​OAM

Papoutsis-Kiachagias E, Kontoleontos E, Zymaris A, Papadimitriou
D, Giannakoglou K (2011) Constrained topology optimization for
laminar and turbulent flows, including heat transfer. CIRA, editor,
EUROGEN, Evolutionary and Deterministic Methods for Design,
Optimization and Control, Capua, Italy

Papoutsis-Kiachagias E, Zymaris A, Kavvadias I, Papadimitriou D,
Giannakoglou K (2015) The continuous adjoint approach to the
k-� turbulence model for shape optimization and optimal active
control of turbulent flows. Eng Optim 47(3):370–389. https://​doi.​
org/​10.​1080/​03052​15X.​2014.​892595

Papoutsis-Kiachagias EM, Giannakoglou KC (2016) Continuous
adjoint methods for turbulent flows, applied to shape and topol-
ogy optimization: industrial applications. Arch Comput Methods
Eng 23(2):255–299

Patankar SV (1980) Numerical heat transfer and fluid flow, 1st edn.
McGraw-Hill, New York

Pingen G, Maute K (2010) Optimal design for non-Newtonian flows
using a topology optimization approach. Comput Math Appl
59(7):2340–2350

Ramalingom D, Cocquet PH, Bastide A (2018) A new interpolation
technique to deal with fluid-porous media interfaces for topology
optimization of heat transfer. Comput Fluids 168:144–158. https://​
doi.​org/​10.​1016/j.​compf​luid.​2018.​04.​005

Reddy JN, Gartling DK (2010) The finite element method in heat trans-
fer and fluid dynamics, 3rd edn. CRC Press, Boca Raton

Rempfer D (2006) On boundary conditions for incompressible Navier-
Stokes problems. Appl Mech Rev 59(3):107–125. https://​doi.​org/​
10.​1115/1.​21776​83

Romero J, Silva E (2014) A topology optimization approach applied to
laminar flow machine rotor design. Comput Methods Appl Mech
Eng 279(Supplement Supplement C):268–300. https://​doi.​org/​10.​
1016/j.​cma.​2014.​06.​029

https://doi.org/10.1016/j.cma.2017.11.029
https://doi.org/10.1016/j.cma.2017.11.029
https://doi.org/10.1016/j.camwa.2016.06.034
https://doi.org/10.1016/j.camwa.2016.06.034
https://doi.org/10.1002/nme.1560
https://doi.org/10.1016/j.compfluid.2018.04.012
https://doi.org/10.1016/j.compfluid.2018.04.012
https://doi.org/10.1016/j.camwa.2013.12.013
https://doi.org/10.1016/j.camwa.2013.12.013
https://fenicsproject.org/book/
https://fenicsproject.org/book/
https://doi.org/10.1080/10407790.2014.894448
https://doi.org/10.1080/10407790.2014.894448
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.21105/joss.01292
https://doi.org/10.1016/j.advwatres.2011.02.013
https://doi.org/10.1016/j.advwatres.2011.02.013
https://turbmodels.larc.nasa.gov/spalart.html
https://doi.org/10.1016/j.jcp.2015.12.023
https://doi.org/10.1016/j.jcp.2015.12.023
https://github.com/OpenFOAM
https://github.com/OpenFOAM
http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
http://openfoamwiki.net/index.php/The_SIMPLE_algorithm_in_OpenFOAM
https://doi.org/10.1080/0305215X.2014.892595
https://doi.org/10.1080/0305215X.2014.892595
https://doi.org/10.1016/j.compfluid.2018.04.005
https://doi.org/10.1016/j.compfluid.2018.04.005
https://doi.org/10.1115/1.2177683
https://doi.org/10.1115/1.2177683
https://doi.org/10.1016/j.cma.2014.06.029
https://doi.org/10.1016/j.cma.2014.06.029

4440	 D. H. Alonso et al.

1 3

Romero JS, Silva ECN (2017) Non-Newtonian laminar flow machine
rotor design by using topology optimization. Struct Multidisc
Optim 55(5):1711–1732

Rozvany G (2001) Aims, scope, methods, history and unified termi-
nology of computer-aided topology optimization in structural
mechanics. Struct Multidisc Optim 21(2):90–108. https://​doi.​org/​
10.​1007/​s0015​80050​174

Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimiza-
tion without homogenization. Struct Optim 4(3):250–252. https://​
doi.​org/​10.​1007/​BF017​42754

Sá LFN, Amigo RCR, Novotny AA, Silva ECN (2016) Topological
derivatives applied to fluid flow channel design optimization prob-
lems. Struct Multidisc Optim 54(2):249–264. https://​doi.​org/​10.​
1007/​s00158-​016-​1399-0

Sá LFN, Okubo Jr CM, Silva ECN (2021) Topology optimization of
subsonic compressible flows. Struct Multidisc Optim 64:1–22.
https://​doi.​org/​10.​1007/​s00158-​021-​02903-5

Sagebaum M, Albring T, Gauger NR (2018) Expression templates for
primal value taping in the reverse mode of algorithmic differentia-
tion. Optim Methods Softw 33(4–6):1207–1231. https://​doi.​org/​
10.​1080/​10556​788.​2018.​14711​40

Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2017) Topology opti-
mization of a no-moving-part valve incorporating pareto frontier
exploration. Struct Multidisc Optim 56(4):839–851. https://​doi.​
org/​10.​1007/​s00158-​017-​1690-8

Sato Y, Yaji K, Izui K, Yamada T, Nishiwaki S (2018) An optimum
design method for a thermal-fluid device incorporating multiob-
jective topology optimization with an adaptive weighting scheme.
J Mech Des 140(3):031402

Schlichting H (1979) Boundary-layer theory, 7th edn. McGraw-Hill,
New York

Sigmund O (2007) Morphology-based black and white filters for topol-
ogy optimization. Struct Multidisc Optim 33(4):401–424. https://​
doi.​org/​10.​1007/​s00158-​006-​0087-x

Sigmund O, Petersson J (1998) Numerical instabilities in topology
optimization: a survey on procedures dealing with checkerboards,
mesh-dependencies and local minima. Struct Optim 16(1):68–75

Sokolowski J, Zochowski A (1999) On the topological derivative in
shape optimization. SIAM J Control Optim 37(4):1251–1272

Song XG, Wang L, Baek SH, Park YC (2009) Multidisciplinary opti-
mization of a butterfly valve. ISA Trans 48(3):370–377

Spalart PRA, Allmaras S (1994) A one-equation turbulence model for
aerodynamic flows. Cla Recherche Aérospatiale 1:5–21

Towara M, Naumann U (2013) A discrete adjoint model for openfoam.
Proced Comput Sci 18:429–438. https://​doi.​org/​10.​1016/j.​procs.​
2013.​05.​206

Wächter A, Biegler LT (2006) On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear pro-
gramming. Math Program 106(1):25–57

Weller HG, Tabor G, Jasak H, Fureby C (1998) A tensorial approach to
computational continuum mechanics using object-oriented tech-
niques. Comput Phys 12(6):620–631

White FM (2011) Fluid mechanics, 7th edn. McGraw-Hill, New York

Wiker N, Klarbring A, Borrvall T (2007) Topology optimization of
regions of Darcy and Stokes flow. Int Jo Numer Methods Eng
69(7):1374–1404

Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW
Industries Inc., La Canada

Yoon GH (2016) Topology optimization for turbulent flow with
Spalart-Allmaras model. Comput Methods Appl Mech Eng
303:288–311. https://​doi.​org/​10.​1016/j.​cma.​2016.​01.​014

Zauderer E (1989) Partial differential equations of applied mathemat-
ics, 2nd edn. Wiley, Hoboken

Zhang B, Liu X, Sun J (2016) Topology optimization design of non-
Newtonian roller-type viscous micropumps. Struct Multidisc
Optim 53(3):409–424

Zhou S, Li Q (2008) A variationals level set method for the topology
optimization of steady-state Navier-Stokes flow. J Comput Phys
227(24):10178–10195

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s001580050174
https://doi.org/10.1007/s001580050174
https://doi.org/10.1007/BF01742754
https://doi.org/10.1007/BF01742754
https://doi.org/10.1007/s00158-016-1399-0
https://doi.org/10.1007/s00158-016-1399-0
https://doi.org/10.1007/s00158-021-02903-5
https://doi.org/10.1080/10556788.2018.1471140
https://doi.org/10.1080/10556788.2018.1471140
https://doi.org/10.1007/s00158-017-1690-8
https://doi.org/10.1007/s00158-017-1690-8
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1007/s00158-006-0087-x
https://doi.org/10.1016/j.procs.2013.05.206
https://doi.org/10.1016/j.procs.2013.05.206
https://doi.org/10.1016/j.cma.2016.01.014

	Flexible framework for fluid topology optimization with OpenFOAM® and finite element-based high-level discrete adjoint method (FEniCSdolfin-adjoint)
	Abstract
	1 Introduction
	2 Equilibrium equations
	2.1 Boundary value problem

	3 Finite element method
	3.1 Weak form

	4 Finite elementfinite volume modeling
	5 Formulation of the topology optimization problem
	5.1 Material model for the inverse permeability
	5.2 Material model for the wall penalization
	5.3 Topology optimization problem
	5.4 Objective function
	5.5 Sensitivity analysis
	5.6 Helmholtz pseudo-density filter

	6 Numerical implementation of the optimization problem
	6.1 Interfacing OpenFOAM® with FEniCSdolfin-adjoint
	6.2 Interfacing OpenFOAM® with dolfin-adjoint for computing the sensitivities
	6.3 Choice of boundary conditions in OpenFOAM®
	6.4 Topology optimization loop

	7 Numerical examples
	7.1 Laminar flow 2D double pipe
	7.2 2D bend channel
	7.3 2D axisymmetric nozzle
	7.4 3D channel

	8 Conclusions
	9 Replication of results
	9.1 Sample 2D bend channel problem
	9.2 Necessary imports
	9.3 General configurations
	9.4 Set topology optimization-related parameters
	9.5 Create the output folder
	9.6 Create the 2D mesh in FEniCS
	9.7 Define the function spaces for FEniCS
	9.8 Prepare the boundary definition in FEniCS
	9.9 Prepare boundary values (for Dirichlet Boundary conditions) in FEniCS
	9.10 Function to set “FEniCS TopOpt Foam”
	9.11 Solver that interacts with FEniCS and OpenFOAM®
	9.12 Forward model in FEniCS
	9.13 Preparations for topology optimization
	9.14 Topology optimization
	9.15 Plot the simulation
	9.16 Running the code

	References

