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Abstract
In order to implement the topology optimization method, it is necessary to simulate the fluid flow dynamics and also obtain 
the sensitivities with respect to the design variable (such as through the adjoint method). However, more complex fluid flows, 
such as turbulent, non-Newtonian, and compressible flows, may turn the implementation of these two aspects difficult and 
non-intuitive. In order to solve this deadlock, this work proposes the combination of two well-known and established open-
source softwares: OpenFOAM® and FEniCS/dolfin-adjoint. OpenFOAM® already provides efficient implementations for 
various fluid flow models, while FEniCS, when combined with the dolfin-adjoint library, provides an efficient and automatic 
high-level discrete adjoint model. There have been various attempts for obtaining the adjoint model directly in OpenFOAM® 
, but they mostly rely on the following: (1) manually deducing the adjoint equations, which may become a hard and cumber-
some task for complex models; (2) C++ automatic differentiation tools, which are generally computationally inefficient; 
and (3) finite differences, which have been developed for shape optimization (not topology optimization, where there are 
many more design variable values). Nonetheless, these approaches generally do not provide an easy setup, and may be fairly 
complex to consider. The FEniCS platform does not provide any fluid flow model out of the box, but makes it fairly simple to 
“simplistically” define them. The main problem of the FEniCS implementation and even implementations “by hand” (such as 
in C++, Matlab® or Python) is the convergence of the simulation, which would possibly require fairly complex adjustments 
in the implementation in order to reach convergence. Therefore, the combination proposed in this work (OpenFOAM® and 
FEniCS/dolfin-adjoint) is a simpler but efficient approach to consider more complex fluid flows, countering the difficult 
adjoint model implementation in OpenFOAM® and also the convergence issues in FEniCS. The implemented framework, 
referred as “FEniCS TopOpt Foam”, can perform the coupling between the two softwares. Numerical examples are presented 
considering laminar and turbulent flows (Spalart-Allmaras model) for 2D, 2D axisymmetric, and 3D domains.
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1  Introduction

Topology optimization is the optimization method which 
relies on distributing a given design variable (which, in 
this work, represents the solid/fluid material) over a design 
domain. This method was originally considered for structural 

optimization (Rozvany et al. 1992; Rozvany 2001), but was 
later introduced in fluid flow problems (Borrvall and Peters-
son 2003). The first approach that has been considered in 
topology optimization is the “pseudo-density approach”, 
but there are also other approaches, such as the “level-set 
method” (Duan et al. 2016; Zhou and Li 2008), and topo-
logical derivatives (Sokolowski and Zochowski 1999; Sá 
et al. 2016). In this work, topology optimization is consid-
ered through the “pseudo-density approach”.

From the initial work of topology optimization for fluids, 
various other types of fluid flow types have been consid-
ered, such as Stokes flows (Borrvall and Petersson 2003), 
Navier-Stokes flows (Evgrafov 2004; Olesen et al. 2006), 
Darcy-Stokes flows (Guest and Prévost 2006; Wiker et al. 
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2007), compressible flows (Sá et al. 2021), non-Newtonian 
flows (Pingen and Maute 2010; Hyun et al. 2014; Alonso 
et al. 2020), thermal-fluid flows (Sato et al. 2018; Ramalin-
gom et al. 2018; Lv and Liu 2018), turbulent flows (Papout-
sis-Kiachagias et al. 2011, 2015; Yoon 2016; Dilgen et al. 
2018), 2D swirl flows (Alonso et al. 2018, 2019), unsteady 
flows (Nørgaard et al. 2016; Hasund 2017) etc. Also, various 
fluid flow devices can be designed through topology opti-
mization, such as valves (Song et al. 2009; Sato et al. 2017), 
mixers (Andreasen et al. 2009; Deng et al. 2018), rectifiers 
(Jensen et al. 2012), and flow machine rotors (Romero and 
Silva 2014, 2017; Zhang et al. 2016).

When performing topology optimization, it is necessary 
to compute the sensitivities for all of the distributed design 
variable values inside the design domain. One way to effi-
ciently compute them is by considering the adjoint model. 
For this, there are essentially two approaches: the continu-
ous adjoint approach and the discrete adjoint approach (see 
Fig. 1).

The continuous adjoint approach (indicated by the label 
“C” in Fig. 1) consists of directly specifying the adjoint 
equations and may be implemented by deriving the adjoint 
equations manually (“by hand”) [or symbolically, by using, 
for example, the SymPy library (Meurer et al. 2017)]. How-
ever, this approach is specific to each problem (Papoutsis-
Kiachagias et al. 2011, 2015), may be laborious (Funke 
2013), and even when it is symbolically derived, the adjoint 
equations may be presented in a format that is not com-
putationally efficient. In this last case, the equations would 
normally require further manipulation in order to get to a 
computationally efficient format. The implementation of 
the adjoint model may become highly non-intuitive, espe-
cially when considering more complex fluid flow modeling, 
such as turbulent, non-Newtonian, and compressible flows. 

When considering the finite volume method, the resulting 
continuous adjoint model equations are normally solved in 
the same way as the simulation, such as from the iterative 
SIMPLE (Semi-Implicit Method for Pressure-Linked Equa-
tions) algorithm (Patankar 1980; OpenFOAM Wiki 2014). 
It can also be mentioned that it should also be possible to 
derive the continuous adjoint model equations for a coupled 
approach (i.e., a single equation) in OpenFOAM® (Mangani 
et al. 2014).

The discrete adjoint approach would consist of using, for 
example, a low-level approach, from C++ generic automatic 
differentiation (AD) tools [such as CoDiPack (Sagebaum 
et al. 2018) and Adept (Adept 2021)] (indicated by the label 
“D.2” in Fig. 1), which are normally considered to be non-
intuitive and may be computationally inefficient (since the 
low-level C++ code would have to be automatically dif-
ferentiated at each iteration of the optimization). More into 
the implementation in OpenFOAM®, Towara and Naumann 
(2013) use a SIMPLE iterative scheme to solve the adjoint 
model and obtain the adjoint variables. An alternative is by 
performing finite differences (He et al. 2018, 2020) (indi-
cated by the label “D.3” in Fig. 1), which is automated, but 
there may be a significant increase in the computational cost 
of the topology optimization.

Another way is by considering the finite element method 
for a single equation (coupled pressure-velocity formula-
tion), by automatically deriving the adjoint equations in a 
high-level approach (i.e., in a high-level representation of 
the equations) (indicated by the label “D.1” in Fig. 1) (Far-
rell et al. 2013; Funke 2013). This way, the resulting linear 
system of equations can be solved directly, without the need 
of any iterative method such as the SIMPLE algorithm. In 
this work, the discrete adjoint approach is considered in this 
high-level representation.

Fig. 1   Diagram illustrating the 
continuous adjoint approach 
and some possibilities of the 
discrete adjoint approach [figure 
based on Farrell et al. (2013) 
and Funke (2013)]
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The well-known and established open-source software 
FEniCS (based on finite elements) (Logg et al. 2012; Farrell 
et al. 2013; Mitusch et al. 2019) can be used for fluid flow 
simulations (Mortensen et al. 2011) and, when coupled with 
the dolfin-adjoint library, can provide an efficiently com-
puted discrete adjoint solution from a defined forward model 
(indicated by the label “D.1” in Fig. 1). However, more com-
plex fluid flow modeling may require various possibly non-
intuitive adjustments to the implementation for convergence 
and may result in an implementation that is less efficient 
than what OpenFOAM® provides (Mortensen et al. 2011).

The also well-known and established open-source soft-
ware OpenFOAM® (based on finite volumes) (Weller et al. 
1998; Chen et al. 2014) is capable of performing efficient 
fluid flow simulations, but its main drawback is the com-
putation of the adjoint model (required for computing the 
sensitivities), which can be a highly demanding task for the 
programmer (indicated by the label “C” in Fig. 1) or may 
result in loss of computational efficiency (indicated by the 
labels “D.2” and “D.3” in Fig. 1).

Therefore, this work proposes using two well-known and 
established open-source softwares, combining the automated 
method provided by FEniCS/dolfin-adjoint with the simula-
tion computed by OpenFOAM®. In terms of implementa-
tion, this approach only requires the specification of both 
simulation solvers (in FEniCS and OpenFOAM®), which 
makes it relatively simpler to implement than the other 
approaches, and should be, therefore, interesting for per-
forming fluid flow topology optimization. In relation to the 
continuous adjoint approach, the proposed solution using the 
high-level discrete adjoint approach shows an inherent com-
putational cost due to the interfacing between OpenFOAM® 
and FEniCS/dolfin adjoint. However, in relation to a con-
tinuous adjoint model in OpenFOAM®, it does not require 
an iterative procedure (SIMPLE) to solve the adjoint model.

In the point of view of the OpenFOAM® software, the 
automation of the generation of the adjoint model means 
that any model (such as any objective function, any turbu-
lent/compressible/non-Newtonian model) may be considered 
with only an additional implementation consisting of speci-
fying the forward model both in finite elements and finite 
volumes, which is much easier than deriving the adjoint 
model by hand for a complex model. In the point of view 
of FEniCS/dolfin-adjoint, the fluid simulation may be com-
puted more efficiently by using OpenFOAM® (Mortensen 
et al. 2011), while significantly reducing the need of com-
plex implementations and adjustments for convergence in 
the FEniCS/dolfin-adjoint implementation (Mortensen et al. 
2011).

Therefore, the main objective of this work is to present a 
framework for topology optimization by using OpenFOAM® 
and finite element-based high-level discrete adjoint method 
(FEniCS/dolfin-adjoint). The numerical examples consider 

the traditional material model of fluid topology optimiza-
tion (Borrvall and Petersson 2003). Three types of com-
putational domains are illustrated: 2D, 2D axisymmetric, 
and 3D domains. Laminar or turbulent (Spalart-Allmaras 
model) flows are considered. The design variable is assumed 
to be nodal. The objective function is the energy dissipa-
tion. OpenFOAM® (Weller et al. 1998; Chen et al. 2014) is 
used for the finite volume simulation, while the sensitivities 
are computed by the adjoint model generated by FEniCS/
dolfin-adjoint (Logg et al. 2012; Farrell et al. 2013; Mitusch 
et al. 2019), and IPOPT (Interior-Point Optimization algo-
rithm) is used as the optimization algorithm (Wächter and 
Biegler 2006). The “FEniCS TopOpt Foam” library used in 
the implementation of this work is to be made available in 
a git repository.1

This paper is organized as follows: in Sect. 2, the fluid 
flow model is described; in Sect. 3, the weak formulation 
(finite element method) of the problem is presented; in 
Sect. 4, the finite element/volume modeling is presented; 
in Sect. 5, the topology optimization problem is stated; in 
Sect. 6, the numerical implementation is described, along 
with the interfacing between OpenFOAM® and FEniCS/
dolfin-adjoint; in Sect. 7, numerical examples are presented; 
and in Sect. 8, some conclusions are inferred.

2 � Equilibrium equations

In this work, in order to exemplify the approach of interfac-
ing OpenFOAM® with FEniCS/dolfin-adjoint, the fluid flow 
modeling is performed for incompressible fluid, and steady-
state regime (Munson et al. 2009; White 2011). Therefore, 
the continuity and linear momentum (Navier-Stokes) equa-
tions considered are:

where v is the fluid velocity, p is the fluid pressure, � is the 
fluid density, � is the fluid dynamic viscosity, �f  is the body 
force per unit volume acting on the fluid, f r(�) = −�(�)vmat 
is the resistance force of the porous medium used in topol-
ogy optimization ( �(�) is the inverse permeability (“absorp-
tion coefficient”), and vmat = v − vmaterial is the velocity in 
relation to the porous material – when vmaterial = 0 (i.e., the 
solid material is stationary), vmat = v ), � is the pseudo-den-
sity, which assumes values from 0 (solid) to 1 (fluid) (and is 
the design variable in topology optimization), and T is the 
fluid stress tensor given by

(1)∇⋅v = 0

(2)�∇v⋅v = ∇⋅(T + TR) + �f − �(�)vmat

1  https://​github.​com/​diego-​hayas​hi/​fenics_​topopt_​foam.

https://github.com/diego-hayashi/fenics_topopt_foam
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The term TR in Eq. (2) is the Reynolds (turbulent) stress 
tensor, which appears in RANS (Reynolds-Averaged Navier-
Stokes) formulations. When considering a RANS formula-
tion, the velocity ( v ) and pressure (p) fields refer to statistical 
time-averaged values.

In this work, the Spalart-Allmaras model is used for con-
sidering turbulence. The Spalart-Allmaras model (Spalart 
and Allmaras 1994; Bueno-Orovio et al. 2012; Wilcox 2006) 
is a single-equation turbulence RANS model, which is said 
to be adequate for mild boundary layer separations (Ansys 
2006). According to Bardina et al. (1997), the Spalart-All-
maras model does not require a finer mesh resolution near 
walls in wall-bounded flows as two-equation turbulence 
models (such as k-� and k-� models), and shows good con-
vergence for simpler flows. Also, it is said to show improve-
ments in the prediction of fluid flows under adverse pressure 
gradients (when the pressure increases toward the outlet) 
when compared to the standard k-� and k-� models (Bar-
dina et al. 1997). There are various modifications that have 
been proposed in the Spalart-Allmaras model along the years 
(NASA 2019). In this work, the modifications that are con-
sidered are based in the OpenFOAM® (OpenFOAM Foun-
dation 2020) implementation. An additional term based on 
Yoon (2016), Dilgen et al. (2018), and Papoutsis-Kiachagias 
and Giannakoglou (2016) is included in order to take the 
effect of the modeled solid material (of topology optimiza-
tion) into account. This way, the Spalart-Allmaras model is 
given by (OpenFOAM Foundation 2020):

where 𝜈̃T is the auxiliary turbulent viscosity of the Spalart-
Allmaras model, �T is the turbulent viscosity (i.e., the flow 
parameter which accounts for the statistical time-averaged 
effect of turbulence in the stress tensor), 𝜈̃T, mat = 𝜈̃T − 𝜈̃T, wall 

(3)T = 2�� − pI, � =
1

2
(∇v + ∇vT )

(4)TR = 𝜇T(∇v + ∇vT ), 𝜇T = 𝜌fv1𝜈̃T

(5)

𝜌v⋅∇ṽT = cb1𝜌S̃ṽT
���
Production

+

[
−cw1fw𝜌

(
ṽT

𝓁w

)2
]

�������������������������
Destruction

+
1

𝜎
∇⋅(𝜌(v + ṽT)∇ṽT)

�����������������������
Diffusion (conservative)

+
cb2

𝜎
𝜌∇ṽT⋅∇ṽT

�������������
Diffusion (non-conservative)

+
[
−𝜆ṽT𝜅(𝛼)ṽT, mat

]
�������������������
Attenuation of turbulence
in the porous medium

is the auxiliary turbulent viscosity in relation to its “wall 
value” ( ̃𝜈T, wall , which is assumed as equal to 0 m2/s), and 𝜆𝜈̃T 
is an adjustable parameter for the intensity of the attenuation 
of turbulence inside the solid material (it can be chosen, for 
example, as 𝜆𝜈̃T = 1 ). The other terms of Eq. (5) are speci-
fied as follows:

where � = 0.41 is the von Kármán constant, �w is the wall 
distance, and � =

�

�
 is the kinematic viscosity.

In fluid topology optimization, the walls change accord-
ing to the distribution of the pseudo-density ( � ), which 
means that the wall distance ( �w ) also changes accordingly. 
Thus, in order to consider such changes in the simulation 
and in the adjoint model, a modified Eikonal equation (Yoon 
2016) is considered, which is given as:

where G is the reciprocal wall distance, �ref is a reference 
value for the wall distance [which leads �w to emphasize 
objects that are larger than it, and can be chosen, for exam-
ple, as the maximum size of the elements of the mesh 
(largest of the maximum distances between two vertices 

(6)

cb1 = 0.1355, cb2 = 0.6220

cv1 = 7.1, 𝜎 =
2

3
, fΩ = 0.3

cw1 =
cb1

𝜅2
+

1 + cb2

𝜎
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𝜒 =
𝜈̃T

𝜈
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of an element)], �(�) is the wall penalization, which varies 
according to the pseudo-density ( � ) in order to consider the 
presence of a wall changing during the topology optimi-
zation, and �w is a relaxation factor for the wall distance 
computation.

2.1 � Boundary value problem

The three types of computational domain considered in this 
work are shown in Fig. 2. It can be reminded that the defini-
tion of the differential operators and coordinates are different 
in the 2D axisymmetric domain (due to axisymmetry and 
cylindrical coordinates) (Alonso et al. 2018). Generically, a 
2D axisymmetric domain may include the symmetry axis or 
not. The boundary value problem is specified for the three 
types of computational domain considered in this work as:

where Ω , Γin , Γwall , Γsym , and Γout can be visualized in Fig. 2. 
The inlet boundary ( Γin ) consists of an inlet velocity profile 
( vin ), an imposed auxiliary turbulent viscosity value ( ̃𝜈T,in ), 
and a zero normal flux boundary condition for the reciprocal 
wall distance (G). On the walls ( Γwall ), the no-slip condition 

(9)

𝜌∇v⋅v = ∇⋅(T + TR) + 𝜌f − 𝜅(𝛼)vmat in Ω

∇⋅v = 0 in Ω

𝜌v⋅∇𝜈̃T = cb1𝜌S̃𝜈̃T+[
−cw1fw𝜌

(
𝜈̃T

𝓁w

)2
]
+

1

𝜎
∇⋅(𝜌(𝜈 + 𝜈̃T)∇𝜈̃T)+

cb2

𝜎
𝜌∇𝜈̃T⋅∇𝜈̃T +

[
−𝜆𝜈̃T𝜅(𝛼)𝜈̃T, mat

]
in Ω

∇G⋅∇G + 𝜎wG(∇
2G) =

(1 + 2𝜎w)G
4 + 𝛾(𝛼)(G − G0) in Ω

v = vin and 𝜈̃T = 𝜈̃T,in and ∇G⋅n = 0 on Γin

v = 0 and 𝜈̃T = 𝜈̃T,wall and G = G0 on Γwall

vr = 0

and
𝜕vr

𝜕r
=

𝜕vz

𝜕r
=

𝜕p

𝜕r
=

𝜕𝜈̃T

𝜕r
=

𝜕G

𝜕r
= 0 on Γsym

(T + TR)⋅n = 0 and ∇𝜈̃T⋅n = 0

and ∇G⋅n = 0 on Γout

is imposed for the velocity, a fixed value is imposed for the 
auxiliary turbulent viscosity ( ̃𝜈T, wall = 0 m2/s ), and a fixed 
value is imposed for the reciprocal distance ( G0 ). The outlet 
boundary ( Γout ) consists of an outlet stress free condition 
(i.e., open to the atmosphere) for the pressure-velocity for-
mulation, where n is the normal vector to the boundaries, 
which points outside the computational domain. On the out-
let boundary ( Γout ), a developed auxiliary turbulent viscosity 
is imposed (through zero normal flux) and a zero normal 
flux boundary condition is imposed for the reciprocal wall 
distance (G). In the 2D axisymmetric domain, if there is a 
symmetry axis ( Γsym ) bordering it, the derivatives toward 
the r coordinate are imposed to be zero, as well as the radial 
velocity.

In the boundary value problem [Eq. (9)], the wall dis-
tance may be computed separately during topology optimi-
zation, since it only depends on the current distribution of 
the pseudo-density ( � ). However, it has to be later included 
in the adjoint model.

3 � Finite element method

In order to automatically derive the adjoint model, it 
is needed to specify the weak form of the finite element 
method in FEniCS. The weak form is defined as follows.

3.1 � Weak form

In the finite element method, the equilibrium equations 
are modeled by a corresponding weak form. In the follow-
ing equations, the computational domain is represented 
as dΠ , and the boundary of the computational domain is 
represented as dΓΠ . For 2D and 3D flows, dΠ = dΩ and 
dΓΠ = dΓ , while, for 2D axisymmetric flow, dΠ = 2�rdΩ 
and dΓΠ = 2�rdΓ . By considering the weighted-residual and 
Galerkin methods for the mixed (velocity-pressure) formula-
tion, (Reddy and Gartling 2010; Alonso et al. 2018)

(10)Rc = ∫Π

[∇⋅v]wpdΠ

(11)
Rm = ∫Π

[
�∇v ⋅ v − �f

]
wvdΠ + ∫Π

T ⋅
(
∇wv

)
dΠ

− ∫↺ΓΠ

(
T ⋅ wv

)
⋅ ndΓΠ − ∫Π

f r(�) ⋅ wvdΠ

Fig. 2   Examples of boundaries for 2D, 2D axisymmetric, and 3D 
domains
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where the subscripts “c”, “m”, “ SA ” and “w” refer to the 
“continuity” equation, the “linear momentum” (Navier-
Stokes) equations, the “Spalart-Allmaras” equation and 
the “wall distance” equation (modified Eikonal equation), 
respectively. The test functions of the state variables (p, v , 𝜈̃T 
and G) are given by wp , wv , w𝜈̃T

 and wG , respectively. Under 
2D axisymmetric flow, since the integration domain ( 2�rdΩ ) 
has a constant multiplier ( 2� ), which does not influence 
when solving the weak form, Eqs. (10), (11), (12) and (13) 
may be optionally divided by 2� (Alonso et al. 2018, 2019).

From the mutual independence of the test functions, 
the equations of the weak form can be summed to a single 
equation:

where it is also possible to solve Rw = 0 separately, because 
the computation of the wall distance is uncoupled from the 
other equations, depending only on the pseudo-density ( � ). 
In such case, which is considered in this work, the two weak 
forms may be sequentially solved:

4 � Finite element/finite volume modeling

The LBB (Ladyžhenskaya-Babuška-Brezzi) condition is a 
necessary condition for the numerical stability of the fluid 
flow simulation when considering the finite element formu-
lation (Brezzi and Fortin 1991; Reddy and Gartling 2010; 
Langtangen and Logg 2016). The main effect of respecting 

(12)

RSA =∫Π
[
𝜌v ⋅ ∇ṽT − cb1𝜌

�SṽT + cw1fw𝜌

(
ṽT

𝓁w

)2

−
cb2

𝜎
𝜌∇ṽT

]
wṽT

dΠ

+∫Π
1

𝜎

(
𝜌
(
v + ṽT

)
∇ṽT

)
⋅ ∇wṽT

dΠ

−∫↺ΓΠ

1

𝜎
n ⋅

(
𝜌
(
v + ṽT

)
∇ṽTwṽT

)
dΓΠ

−∫Π
[
−𝜆ṽT 𝜅(𝛼)ṽT, mat

]
wṽT

dΠ

(13)

Rw =∫Π

[
∇G ⋅ ∇G −

(
1 + 2�w

)
G4

]
wGdΠ

−∫Π

[
(∇G) ⋅ ∇

(
�wGwG

)]
dΠ

+∫↺ΓΠ

n ⋅
[
(∇G)

(
�wGwG

)]
dΓΠ

−∫Π

[
�(�)

(
G − G0

)]
wGdΠ

(14)F = Rc + Rm + RSA + Rw = 0

(15)F1 =Rw = 0

(16)F2 =Rc + Rm + RSA = 0

the LBB condition is numerical, in which the pressure dis-
tribution becomes consistent with the velocity field. Some 
LBB-stable elements are Taylor-Hood and MINI elements. 
In this work, MINI elements (linear elements enriched by a 
bubble function) (Arnold et al. 1984; Logg et al. 2012) are 
used for the velocity-pressure formulation (see Fig. 3) (in 
3D, the order of the bubble enrichment is increased to 4), 
due to their lower computational cost in relation to Taylor-
Hood elements. The auxiliary turbulent viscosity of the 
Spalart-Allmaras model ( ̃𝜈T ) and the wall distance ( �w and, 
therefore, G) are selected with 1st degree interpolation (P1 
element). The pseudo-density (design variable) is chosen 
with 1st degree interpolation (P1 element), which also ena-
bles the possible use of a Helmholtz filter in topology opti-
mization if needed (Lazarov and Sigmund 2010), due to the 
fact that this filter requires the existence of the first deriva-
tive (nonexistent for element-wise (dP0, “DG0”) variables). 
As can be noticed, there may be some “loss” of precision 
when converting between finite element and finite volume 
methods, due to the different interpolation schemes. In such 
case, it is also possible to consider different discretizations/
resolutions for the OpenFOAM® and FEniCS meshes, but, 
in this work, for simplicity, they are assumed to be the same.

Although Fig. 3 shows a 2D representation of the finite 
elements/volumes as triangles, they are implemented differ-
ently for each computational domain shown in Fig. 2 while 
taking into account Fig. 6: for the 2D case, the FEniCS mesh 
is composed of triangles, while the OpenFOAM® mesh is 
composed of prisms; for the 2D axisymmetric case, the FEn-
iCS mesh is composed of triangles, while the OpenFOAM® 
mesh is composed of prisms/tetrahedrons/pyramids; and, for 
the 3D case, the FEniCS mesh is composed of tetrahedrons, 
as well as the OpenFOAM® mesh. The conversion between 
the variables in FEniCS and OpenFOAM® is detailed in 
Sect. 6.2.

Fig. 3   Finite elements and volumes choice for the state variables: 
pressure, velocity, auxiliary turbulent viscosity of the Spalart-All-
maras model ( ̃𝜈

T
 ), wall distance ( �w and, therefore, G), and pseudo-

density (design variable) ( �)
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5 � Formulation of the topology optimization 
problem

5.1 � Material model for the inverse permeability

The material model in fluid topology optimization aims 
to block fluid flow, while aiming to obtain a sufficiently 
discrete distribution for the pseudo-density ( � ) inside the 
design domain (with values 0 for solid, and 1 for fluid). The 
subtle transition between solid (0) and fluid (1) (binary val-
ues) is normally relaxed for better numerical conditioning, 
allowing an intermediate porous medium (“gray”, with a 
pseudo-density between 0 and 1) (real values). The amount 
of “strength” to block the fluid is referred as “inverse per-
meability”, which, as the name says, provides an opposite 
behavior to that of permeability. Borrvall and Petersson 
(2003) consider a convex interpolation function for the 
inverse permeability, given by:

where �max and �min are, respectively, the maximum and 
minimum values of the inverse permeability of the porous 
medium. The parameter q > 0 is a penalization parameter 
that controls the convexity (i.e., the relaxation) of the mate-
rial model, where large values of q lead to a less relaxed 
material model. There is no clear rule on how q should be 
chosen, since the specific fluid flow topology optimization 
problem may behave better with either one value or another. 
In general, it is better not to leave the material model overly 
relaxed (i.e., q ⩽ 0.01 ), at least in the last optimization iter-
ations, due to the consequently worse fluid flow blocking 
capacity.

5.2 � Material model for the wall penalization

For the modified Eikonal equation, the material model may 
be based on Eq. (17), being given as the wall penalization

where �max and �min are, respectively, the maximum and min-
imum values of the wall penalization of the porous medium, 
and q is the same as in Eq. (17).

5.3 � Topology optimization problem

The topology optimization problem can be formulated as 
follows.

(17)�(�) = �max + (�min − �max)�
1 + q

� + q

(18)�(�) = �max + (�min − �max)�
1 + q

� + q

where f is the specified volume fraction, V0 = ∫
Π�

dΠ� is the 
volume of the design domain (represented as Π� ), 
J(p(𝛼), v(𝛼)𝜈̃T(𝛼),�w(𝛼), 𝛼) is the objective function, and 
p(�) , v(�) , 𝜈̃T(𝛼) and �w(�) are the state variables obtained 
by solving the boundary value problem [Eq. (9)], which fea-
tures an indirect dependency with respect to the design vari-
able �.

5.4 � Objective function

The objective function (J) is chosen as the energy dissipation 
( Φ ) (Borrvall and Petersson 2003) including the turbulence 
effect [as in Yoon (2016)]. The energy dissipation is closely 
related to the head loss (Borrvall and Petersson 2003), and 
generally behaves well in fluid topology optimization. By 
considering zero external body forces,

5.5 � Sensitivity analysis

The sensitivity is given by the adjoint method from the finite 
element matrices and automatic differentiation as

where J = Φ is the objective function, which is the energy 
dissipation, the weak form equation is given by F = 0 , “*” 
represents conjugate transpose, and �J is the adjoint variable 
(Lagrange multiplier of the weak form) for this case. If the 
uncoupled form given by Eqs. (15) and (16) is considered, 
the two weak form dependencies need to be sequentially 
combined into a new equation for the sensitivity.

(19)

(20)
Φ = ∫Π

[
1

2
(� + �T)(∇v + ∇vT )⋅(∇v + ∇vT )

]
dΠ

+ ∫Π

�(�)vmat⋅vdΠ

(21)
(
dJ

d�

)*

=
(
�J

��

)*

−
(
�F

��

)*

�J

(22)

(
𝜕F

𝜕(p, v, 𝜈̃T,�w)

)*

�J =

(
𝜕J

𝜕(p, v, 𝜈̃T,�w)

)*

(adjoint equation)
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5.6 � Helmholtz pseudo‑density filter

Some of the topology optimization results in this work 
consider the use of a regularization. Regularizations are a 
common mechanism in topology optimization in order to 
counter possible numerical instabilities due to the lack of 
smoothness in the finite element equations (Kawamoto et al. 
2013), which would possibly lead to mesh dependency and 
local minima (Sigmund and Petersson 1998; Bendsøe and 
Sigmund 2003; Sigmund 2007). The regularization that is 
considered is the use of a Helmholtz filter, which is a PDE-
based topology optimization pseudo-density filter, having 
been proposed by Lazarov and Sigmund (2010). It is sche-
matically shown in Fig. 4, where � is the original design 
variable and �f  is the filtered design variable.

Figure 4 illustrates the fact that the Helmholtz filter con-
sists of weighting all values of the original design variable 
( � ) with a Green’s function, which is a function that is 
always positive and whose integral is equal to 1 (“100%”) 
(Lazarov and Sigmund 2010). When choosing smaller values 
for the filter length parameter ( rH ), this function approaches 

a Dirac’s delta function 
(
�f

rH→0+

−−−−−→ �

)
 . This “Green’s func-

tion” averaging is the same as solving a modified Helmholtz 
equation with homogeneous Neumann boundary conditions, 
whose boundary value problem is given by (Lazarov and 
Sigmund 2010; Zauderer 1989)

where � is the original design variable, �f  is the filtered 
design variable, and rH is the filter length parameter.

(23)
−r2

H
∇2�f + �f = � in Π

��f

�n
= 0 on ΓΠ

The weak form is obtained by multiplying Eq. (23) by 
the test function wHF and integrating in the whole design 
domain, which leads to

When a Helmholtz filter is considered, the value given by �f  
is used in the place of � in all other equations, and the sen-
sitivities need to include the dependency of �f  in relation to 
� [i.e., from the chain rule for derivatives ( dJ

d�
=

dJ

d�f

d�f

d�
 )] 

(Lazarov and Sigmund 2010).

6 � Numerical implementation 
of the optimization problem

The fluid flow simulation is solved in the finite volumes soft-
ware OpenFOAM® (version from “The OpenFOAM foun-
dation”) (Weller et al. 1998; Chen et al. 2014), by using 
the SIMPLE (Semi-Implicit Method for Pressure-Linked 
Equations) algorithm (Patankar 1980; OpenFOAM Wiki 
2014). The implementation of the SIMPLE algorithm is 
practically the same as the “simpleFoam” solver from 
OpenFOAM®, but including the additional inverse perme-
ability term shown in Eq. (2). Then, the additional inverse 
permeability term is also included in the Spalart-Allmaras 
model in OpenFOAM®. The adjoint model is computed 
in the finite elements software FEniCS (Logg et al. 2012) 
through dolfin-adjoint (Farrell et al. 2013; Mitusch et al. 
2019). The topology optimization problem is solved with 
IPOPT (Wächter and Biegler 2006), from the interface pro-
vided by the dolfin-adjoint library.

6.1 � Interfacing OpenFOAM® with FEniCS/
dolfin‑adjoint

The main idea for performing an interfacing between 
OpenFOAM® (finite volume method) with FEniCS/dolfin-
adjoint (finite element method) is for efficiently comput-
ing the fluid flow simulation in OpenFOAM®, while the 
adjoint model can be automatically derived and computed 
in FEniCS/dolfin-adjoint.

FEniCS (Logg et al. 2012) is a finite element software 
implemented in C++ that uses automatic differentiation 
and a high-level language (UFL) for representing the weak 
form and functionals for the finite element matrices. From 
its high-level notation, the adjoint model can be automati-
cally derived from the weak form and objective functions by 
the dolfin-adjoint library (Farrell et al. 2013; Mitusch et al. 

(24)
r2
H ∫Π

(∇�f )⋅∇wHFdΠ + ∫Π

�f wHFdΠ

− ∫Π

�wHFdΠ = 0

Fig. 4   Application of a Helmholtz filter
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2019). The dolfin-adjoint library is restricted to the Python 
interface of FEniCS.

OpenFOAM® (Weller et al. 1998; Chen et al. 2014) is an 
open-source CFD (Computational Fluid Dynamics) software 
written in C++, in which the syntax for specifying the finite 
volume equations is, as in the case of FEniCS UFL, close 
to the representation of the equations themselves. Since 
OpenFOAM® operates in the lowest degree of finite volumes 
(element-wise), the simulation should become less computa-
tionally expensive than when using finite elements with the 
traditional Taylor-Hood elements or MINI elements for a 
same discretization (although the numerical precision should 
be lower due to the lower interpolation degree of the finite 
volumes in OpenFOAM®). Also, the finite volume method is 
based on the local conservation of fluxes (i.e., between finite 
volumes), which is different from the finite element method 
[i.e., based on the global conservation of fluxes – except for 
Discontinuous Galerkin finite elements (Li 2006)]. The main 
drawback regarding the use of OpenFOAM® in topology 
optimization is the derivation of the adjoint model, which 
was mentioned in Sect. 1.

Since dolfin-adjoint is a Python-only library, 
OpenFOAM®’s C++ and shell script functionalities should 
be made accessible in Python. The interfacing between FEn-
iCS/dolfin-adjoint and OpenFOAM®, for topology optimiza-
tion, is performed through a library developed in this work 
(“FEniCS TopOpt Foam”).

6.2 � Interfacing OpenFOAM® with dolfin‑adjoint 
for computing the sensitivities

The objective function is computed directly with FEniCS 
after the simulation with OpenFOAM® is performed, while 
the computation of the sensitivities uses the simulation result 
for later solving the adjoint model equations. A diagram 
illustrating the computation of the sensitivities is shown in 
Fig. 5.

The diagram of Fig. 5 starts with a call from the opti-
mizer for dolfin-adjoint to compute the sensitivities. The 
first step is computing the forward model (i.e., the simu-
lation). It starts by passing the mesh (FEniCS “Mesh”), 
together with a boundary marking (FEniCS “MeshFunc-
tion”) (i.e., names of each group of facets [edges (2D/2D 

Fig. 5   Diagram illustrating the computation of the sensitivities when using OpenFOAM® and the “FEniCS TopOpt Foam” library for the fluid 
flow simulation
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axisymmetry) or faces (3D)] of the boundary), to “FEniCS 
TopOpt Foam” to convert to the OpenFOAM® mesh format. 
It can be mentioned that OpenFOAM® operates only in 3D 
meshes/coordinates, but allows simulating for 2D and 2D 
axisymmetric flows if the mesh has a specific construction 
[i.e., one-element uniform thickness (for the 2D mesh), and 
one-element “wedge” thickness (i.e., thickness linearly vary-
ing from zero radius, for a sufficiently small wedge angle) 
(for the 2D axisymmetric mesh)] and specific boundary con-
ditions [“empty” for the parallel faces with respect to the 
2D plane (of the 2D mesh), and “wedge” for the parallel 
faces with respect to the 2D plane (of the 2D axisymmetric 
mesh)] (see Fig. 6). Since, in OpenFOAM®, the boundary 
conditions are applied on the external faces of the 3D mesh, 
the symmetry axis boundary condition (from 2D axisym-
metry) is implicitly considered when applying the “wedge” 
boundary conditions in OpenFOAM®. A similar scheme of 
using a 3D mesh for 2D/2D axisymmetric simulation is also 
used in Ansys®CFX. If the mesh is the same during all itera-
tions of the topology optimization, this conversion can be 
performed a single time.

Then, the state variables (FEniCS “Function” ’s), the 
design variable (FEniCS “Function”), the boundary con-
ditions (specified as required by OpenFOAM®) and other 
setup variables are converted by “FEniCS TopOpt Foam” 
to variable and configuration files. The variable and con-
figuration files in OpenFOAM® are located in three sub-
folders: “0” (initial guess for the simulation), “constant” 
(mesh and properties) and “system” (solver parameters). 
With the OpenFOAM® files prepared, a specific solver for 
OpenFOAM®, which corresponds to the simulation defined 
in FEniCS, is selected for using in the simulation. In case 
the simulation includes the design variable, the “default” 
OpenFOAM® solvers can not be used without an adjustment 
that includes the design variable in it (i.e., a “new” solver 

has to be programmed). Then, the OpenFOAM® simulation 
is performed. After the simulation, the state variable files 
of the result of the OpenFOAM® simulation are converted 
to the state variables in FEniCS. With the simulation result, 
dolfin-adjoint is now used to compute the adjoint model that 
is automatically generated from the forward model specified 
in FEniCS. The conversion from the OpenFOAM® files to 
the FEniCS variables (see Fig. 7) is performed by first map-
ping the internal values of the OpenFOAM® variables to 
element-wise variables in FEniCS (dP0, “DG0”). Then, the 
element-wise variables are projected (FEniCS “project”) 
into the interpolation that is being used in the adjoint model. 
The isolated state variables are then joined together in a 
single state vector by using a “FunctionAssigner” in 
FEniCS. In the case of turbulent variables, it may be needed 
to guarantee that their conversion to FEniCS is strictly posi-
tive and non-zero (compensating any numerical error that 
may appear in the conversions), because some turbulence 
models rely on some specific square-roots/divisions, and 
some other specific square-roots/divisions may arise due to 
the automatic differentiation performed by FEniCS. After 
this imposition, a small-radius Helmholtz filter (Lazarov and 
Sigmund 2010) may be applied in the turbulent variables in 
order to slightly filter (“alleviate”) some consequent sharp 
transitions which may hinder post-processing operations 
in FEniCS. An additional step is reimposing the original 
Dirichlet boundary conditions (FEniCS “DirichletBC”) 
onto the state vector, because the converted values from 
OpenFOAM® to FEniCS correspond only to the internal 
values of each cell and not to the external facets, which may 
generate numerical error on the boundaries. For the sake of 
completeness, the weak form that corresponds to a projec-
tion (FEniCS “project” function) is:

where aorig is the function that is being projected, while ap 
is the projected function [obtained from solving Eq. (25)] 
and wp is the corresponding test function for the projection.

The interfacing of the simulation with dolfin-adjoint 
requires “overloading” a specific internal function of the 
solver object in the dolfin-adjoint library, regarding the 

(25)∫Π

aorigwpdΠ = ∫Π

apwpdΠ

Fig. 6   Representation of 2D and 2D axisymmetric domains in FEn-
iCS and OpenFOAM®  (Obs. The specific boundary conditions 
“wedge” are presented separately, because they are imposed sepa-
rately on each “almost parallel” face with respect to the 2D plane in 
OpenFOAM®)

Fig. 7   Diagram illustrating the conversion of variables between 
OpenFOAM® and FEniCS
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“forward simulation” (which is called “_forward_
solve”, and is located inside the “SolveBlock” class).

In terms of a parallel computation of the simulation 
and optimization, both OpenFOAM® and FEniCS provide 
independent implementations of parallelism out of the box, 
which means that both softwares may partition the mesh 
differently according to their needs and what is set up by 
the user, and also independently call MPI operations. In the 
current version of “FEniCS TopOpt Foam”, it is possible 
to consider both parallelisms independently, which means 
that FEniCS may be set to run in parallel, such as from 
“mpiexec -n 2 python my_code.py” (for 2 pro-
cesses), while OpenFOAM® may be set up to run in parallel 
from “FEniCS TopOpt Foam” functions independently.

6.3 � Choice of boundary conditions in OpenFOAM®

The boundary conditions that are possible to impose 
in OpenFOAM® may be different from the ones that are 
imposed in FEniCS due to the different solution methods and 
systems of equations (of finite volumes and finite elements, 
respectively). Therefore, the boundary conditions should be 
chosen to be with a close resemblance for corresponding 
simulation results. Although other variations are possible, 
one possibility for velocity and pressure is shown in Fig. 8. 
For the auxiliary turbulent viscosity of the Spalart-Allmaras 
model ( ̃𝜈T ), the boundary conditions are the same as the 
ones used in Eq. (9) (i.e., the same as in the finite element 
method). The wall distance [ �w , from Eq. (8)] is computed 
through the finite element method and is later imported into 
OpenFOAM® – This procedure avoids having to implement 
and solve a similar equation that should aim to attain the 
same wall distance value from FEniCS in OpenFOAM®.

Although in finite elements (FEniCS), no boundary con-
ditions need to be explicitly imposed for the pressure, and for 
the outlet velocity (because of the stress free boundary con-
dition), OpenFOAM® (finite volumes) requires all boundary 
conditions to be explicitly imposed.

On the walls, the normal gradient of the pressure is set to 
zero ( �p

�n
= 0 ) in OpenFOAM® (Neumann boundary condi-

tion). This boundary condition is originated from Prandtl’s 
boundary layer equations (Schlichting 1979), where, inside 
the boundary layer, 1

�

�p

�n
= O(�BL) ≈ 0 , where �BL is the 

thickness of the boundary layer, O(�BL) represents the order 
of magnitude (i.e., in the “big O notation”) of �BL , and the 
fluid is assumed to be attached to the wall. Particularly when 
the fluid is incompressible, �p

�n
≈ 0 . Therefore, setting the 

normal gradient of the pressure to zero is an approximation. 
In reality, �p

�n
 is non-zero (Rempfer 2006), but the “correct” 

boundary condition would lead to a mathematically ill-posed 
problem (Rempfer 2006). According to Rempfer (2006), due 
to the approximation, the “pressure” value used in finite vol-
umes numerical methods [such as the SIMPLE algorithm 
(Patankar 1980; OpenFOAM Wiki 2014)], would, in reality, 
correspond to an “articial pressure” value, which should 
attain a systematic deviation from the “correct” pressure 
value, and may be corrected due the execution of the SIM-
PLE algorithm.

The normal gradient of the pressure is set to zero ( �p
�n

= 0 ) 
on the inlet in OpenFOAM® (Neumann boundary condi-
tion), because the velocity profile is already specified (Dir-
ichlet boundary condition) and no previous knowledge out-
side the computational domain is known.

The outlet boundary condition in OpenFOAM® is given 
by imposing zero normal gradient for the velocity ( �v

�n
= 0 ) 

(Neumann boundary condition) and a fixed pressure value 
( p = 0 ) (Dirichlet boundary condition). In FEniCS, the cor-
responding boundary condition is selected as “stress free”: 
(T + TR)⋅n = 0 , which corresponds to a weak imposition of 
a fixed zero pressure value ( p = 0).

6.4 � Topology optimization loop

The topology optimization loop is schematized in Fig. 9, 
showing the interconnection between the software pack-
ages. The topology optimization starts with an initial guess 
for the design variable (pseudo-density). Then, the forward 
model defined in FEniCS is “annotated” (“stored”) in dolfin-
adjoint for the automatic derivation of the adjoint model. 
The optimization loop is started with IPOPT, which inter-
acts with dolfin-adjoint for the computation of the objec-
tive function, constraints and sensitivities from the adjoint 
method. The solver that includes all computations of the 
forward and adjoint models is referred in Fig. 9, for sim-
plicity, as “Solver”. In order to obtain the sensitivities, it 
is necessary to compute the forward model, which is given 
from the following steps: (1) The wall distance is computed 
in FEniCS; (2) The computed wall distance is transferred to 
OpenFOAM® by using the “FEniCS TopOpt Foam” library; 
(3) The fluid flow simulation is executed in OpenFOAM®; 

Fig. 8   Correspondence of boundary conditions for velocity and 
pressure between finite elements (FEniCS) and finite volumes 
(OpenFOAM®) considered in this work
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(4) The fluid flow variables computed in OpenFOAM® are 
converted to FEniCS; (5) The converted variables and the 
computed wall distance are sent to dolfin-adjoint, for assem-
bling the adjoint model. Then, the objective function, con-
straints and sensitivities are computed in dolfin-adjoint by 
using FEniCS. In each loop of the IPOPT algorithm, the 
values of the design variable are updated, defining new 
topologies. The optimization loop proceeds until a speci-
fied tolerance is reached (convergence criterion).

The computed sensitivities (of the objective function 
and constraint) are adjusted by the volume of each element. 
This is similar to considering the use of a Riesz map in the 
sensitivity analysis, which leads to mesh independency in 
the computed sensitivities. This mesh independency is par-
ticularly interesting in the case of considering non-uniform 
meshes, where the non-adjusted sensitivity distribution may 
achieve a seemingly less-smooth distribution, which may 
hinder the topology optimization process. For a nodal design 
variable, the adjusted sensitivity is given by:

where V
neighbor elements

of the node

 is the summed volume of the 

neighbor elements touching a node/vertex in the mesh, and 
nnodes is the number of nodes/vertices in the mesh. In the 2D 
case, the volume computations ( V

neighbor elements

of the node

 ) are 

substituted by their area counterparts ( A
neighbor elements

of the node

 ), 

while in the 2D axisymmetric case, the volume computa-
tions are performed considering axisymmetry (i.e., “ring-
shaped” element volumes).

A comparison of the computed sensitivities from dolfin-
adjoint with respect to finite differences is presented in 
“Appendix A”.

7 � Numerical examples

In the following numerical examples (with the exception of 
Sect. 7.1), the fluid is considered as water, with a dynamic 
viscosity ( � ) of 0.001 Pa s, and a density ( � ) of 1000.0 kg/
m3.

An initial numerical example is performed for 2D laminar 
flow for checking the implementation. Then, three numerical 
examples (for 2D, 2D axisymmetric and 3D domains) are 
presented in order to illustrate the application of topology 
optimization with the coupling between OpenFOAM® and 
FEniCS/dolfin-adjoint.

The inlet velocity profiles are considered to be parabolic 
for the laminar flow examples, but are considered to be tur-
bulent velocity profiles for the turbulent flow examples (see 
Fig. 10). The turbulent velocity profiles are implemented 
according to De Chant (2005), in which the velocity pro-
file is analytically deduced from a simplified fluid flow 
model. The difference of this turbulent velocity profile with 
respect to the 1∕7th power law (Munson et al. 2009) is that 
the derivative is zero in the middle of the velocity profile 
(see the highly enlarged view of the difference in derivatives 
in Fig. 10). It can be reminded that this zero derivative in 
the middle of the turbulent velocity profile is expected for 
turbulent fluid flows (Munson et al. 2009). For reference, a 
turbulent velocity profile in the y direction, between a mini-
mum ( xmin ) and a maximum ( xmax ) coordinate becomes (De 
Chant 2005):

(26)

dJ

d�

����adjusted =

1

Vneighbor elements
of the node

dJ

d�

⎡
⎢⎢⎢⎣

∑
nodes

Vneighbor elements
of the node

nnodes

⎤
⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average neighbor elements’ volume

Fig. 9   Flowchart representing the topology optimization loop imple-
mented with OpenFOAM® and FEniCS/dolfin-adjoint
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where xmiddle =
xmax+xmin

2
 is the coordinate of the middle of the 

velocity profile, x1 =
xmax−xmin

2
 is an auxiliary coordinate, and 

vin,y,max is the maximum velocity of the turbulent velocity 
profile (computed from numerical integration for a given 
flow rate).

The optimization loop considers the convergence crite-
rion as a tolerance of 10−10 for the optimality error of the 
IPOPT barrier problem, which consists of the maximum 
norm of the KKT conditions (Wächter and Biegler 2006).

The external body force term ( �f  ) is not considered 
in the numerical examples ( �f = 0 ). The porous medium 
is considered to be stationary ( vmat = v ). The minimum 
value of the inverse permeability is considered as zero 
( �min = 0 kg/(m3 s) ). The parameter 𝜆𝜈̃T is chosen as 1.0.

The reference value for the wall distance ( �ref ) is used 
as the maximum size of the elements of the mesh (largest 
of the maximum distances between two vertices of an ele-
ment), and the relaxation factor for the wall distance com-
putation ( �w ) is chosen as 0.1. The minimum value of the 
wall penalization of the porous medium is considered as 
zero ( �min = 0 m−3).

The mesh is post-processed after topology optimization 
has been performed (i.e., for the optimized topology), from 
the values of the design variable, from a threshold (step) 
function:

where �th is the thresholded function. The resulting thres-
holded design variable ( �th ) is cut in order to remove the 

(27)vin,y = vin,y,max

√√√√
sin

(
�

2

√
1 −

||||
x − xmiddle

x1

||||

)

(28)𝛼th =

{
1 (fluid), if 𝛼 ⩾ 0.5

0 (solid), if 𝛼 < 0.5

solid material ( � = 0 ) from the computational domain (see 
Fig. 11). Therefore, the final simulations are performed with 
the fluid flow equations without the effect of the porous 
medium. In all of the optimized topologies, the final values 
of the design variable (pseudo-density) are close to the vari-
able bounds (0 and 1).

The post-processed simulations are computed 
entirely in OpenFOAM®, which means that a “default” 
OpenFOAM® wall distance calculation method can be used 
in this case (such as “meshWave”).

The inlet values for the turbulent variable ( ̃𝜈T,in ) are given 
from the turbulence intensity ( IT ) and the turbulence length 
scale ( �T ) based on the mean absolute velocity on the inlet 
( |vabs,in| ), as:

where |vabs,in| =
∫
ΓΠ,in

|vabs,in|dΓΠ,in

∫
ΓΠ,in

dΓΠ,in

 is the mean absolute velocity 

on the inlet, and nv is the number of velocity components (for 
2D, nv = 2 ; for 2D axisymmetry and 3D, nv = 3).

The maximum inlet Reynolds number (considering only 
the inlet velocity) and the maximum local Reynolds number 
(considering the local velocities) are defined as, respectively,

where Lref is a characteristic length given, in this work, as 
the inlet diameter (in the 2D case, it is given as the width 
of the inlet).

In order to accelerate the execution of the optimization, 
the OpenFOAM® simulation for each optimization step 
reuses the simulation result from the immediately previous 
optimization step. A maximum number of SIMPLE itera-
tions per optimization step is also considered, which is set, 
in this work, as 500∼2000.

(29)𝜈̃T,in =

√
nv

2
IT�T |vabs,in|

(30)Rein,max =
�||vabs,in||max

Lref

�

(31)Reext, �, max =
�||vabs||max

Lref

�

Fig. 10   Laminar and turbulent velocity profiles for the same “2D flow 
rate” (area below the curves)

Fig. 11   Post-processing applied to an optimized topology
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7.1 � Laminar flow 2D double pipe

This initial example is for checking the implemented frame-
work for the classical laminar flow 2D double pipe (Bor-
rvall and Petersson 2003) (see Fig. 12). Differently from 
the other numerical examples, the fluid properties, topology 
optimization setup, boundary conditions, and dimensions 
are set according to Borrvall and Petersson (2003): � = 1 
Pa s; � = 1 kg/m3 ; �max = 2.5 × 104� ; �min = 2.5 × 10−4� ; q 
is set as 0.01 for 20 iterations, and then changed to 0.1; the 
specified fluid volume fraction (f) is selected as 1

3
 ; parabolic 

velocity profiles are imposed (also including outlet veloc-
ity profiles) with the maximum value of the parabolas set 
as 1 m/s; and h = 1 m. Particularly, in this work, the more 
generic Navier-Stokes flow implementation is considered, 
which should not deviate much from the original Stokes flow 
results, since the Navier-Stokes equations tend to the Stokes 
equations when the Reynolds number is much smaller than 1 
(in this case, the maximum inlet Reynolds number is equal to 
0.17). The initial guess for topology optimization is chosen 
as “fluid fraction” ( � = f − 1% , where 1% is a margin, in 
order to avoid the fluid volume constraint to be violated due 
to numerical precision). The mesh is composed of 30,251 
nodes and 60,000 elements (see Fig. 13).

The convergence curve for the laminar flow 2D double 
pipe is shown in Fig. 14.

The optimized topology for the laminar flow 2D double 
pipe is shown in Fig. 15. As can be seen, the optimized 
topology is the same as Borrvall and Petersson (2003), which 
shows that the proposed framework is able to achieve the 
classical laminar flow 2D double pipe optimized topology.

7.2 � 2D bend channel

The second example is the design of the classical 2D bend 
channel. This numerical example has been extensively 
treated in topology optimization, such as for Stokes flow 
(Borrvall and Petersson 2003), Navier-Stokes flow (Gers-
borg-Hansen 2003; Dai et al. 2018), and turbulent flows 
(Dilgen et al. 2018; Yoon 2016). The 2D bend channel is 
illustrated in Fig. 16.

The mesh is composed of 5101 nodes and 10,000 ele-
ments (see Fig. 17). The input parameters and geometric 
dimensions of the design domain that are used are shown 
in Table 1. The inlet flow rates correspond to maximum 
inlet Reynolds numbers of 12.5 (for the laminar flow) and 
8460.0 (for the turbulent flow). The initial guesses are cho-
sen as “full fluid” ( � = 1 ) for the laminar flow case, and 
“fluid fraction” ( � = f − 1% ) for the turbulent flow case. The 
specified fluid volume fraction (f) is selected as 30%. For 
the wall distance computation, �max = 1010 m−3 . The inverse 
permeability ( �max ) and the penalization parameter (q) are 
selected, respectively, as 2.5 × 108� [kg/(m3s)] and 0.1, for 

Fig. 12   Design domain for the laminar flow 2D double pipe (Borrvall 
and Petersson 2003)

Fig. 13   Mesh used for the laminar flow 2D double pipe (check 
Fig.  6 for the correspondence of meshes between FEniCS and 
OpenFOAM®)

Fig. 14   Convergence curve for the laminar flow 2D double pipe

Fig. 15   Optimized topology for the laminar flow 2D double pipe
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the laminar flow; and as 1.5 × 109� [kg/(m3s)] and 0.1, for 
the turbulent flow.

The optimized topology for laminar flow is consistent 
with Borrvall and Petersson (2003), because the optimized 
topology directly connects the inlet to the outlet, in almost 
a straight line. In the optimized topology for turbulent flow, 
due to this same fact, and also due to the optimized chan-
nel slight bulging toward the origin ((0,  0) coordinates), it 
bears some resemblance to some of the results from Yoon 
(2016), but is essentially different mainly because of the dif-
ferent volume fraction (Yoon (2016) considered f = 20%), 

different problem dimensions, fluid properties, boundary 
conditions and Reynolds numbers.

The convergence curves for the 2D bend channel are 
shown in Fig. 18.

The simulation results for the post-processed meshes are 
shown in Fig. 19. The maximum local Reynolds numbers 
are computed as 143 (for the laminar flow) and 2.7 × 105 (for 
the turbulent flow). The energy dissipation values in the 
post-processed meshes are 6.66 × 10−8 W/m (for the laminar 
flow) and 1.48 W/m (for the turbulent flow). The difference 
in magnitude of the energy dissipation values is expected, 
because the fluid velocities are much higher in the turbulent 
flow, and also because of the presence of the turbulent vis-
cosity in Eq. (20), for turbulent flow. As can be noticed in 
Fig. 19, the topology optimization results show different 
formats for both cases: the optimized topology for the lami-
nar flow case shows a direct connection between inlet and 
outlet, with a small bulging toward the origin ((0, 0) coordi-
nates) of the left side of the channel, due to the change of 
direction near the inlet, probably in order to redirect the fluid 
flow toward the outlet; the optimized topology for the turbu-
lent flow case is more bent to the left, which is probably due 
to the higher viscosity (due to the turbulent viscosity) that is 
formed to the left of the channel. For reference, the maxi-
mum turbulent viscosity ratio, which is a simple measure of 
the influence of the turbulence in the simulation, is given as 
max(

�T

�
) = 40 , which shows that the effect of the turbulent 

viscosity is high in at least a part of the computational 
domain.

7.3 � 2D axisymmetric nozzle

The third example is a design that relies on 2D axisymmetry, 
which is considered in the design of a nozzle. A nozzle is a 
device that is used to control the fluid flow characteristics 

Fig. 16   Design domain for the 2D bend channel

Fig. 17   Mesh used for the 2D 
bend channel (check Fig. 6 
for the correspondence of 
meshes between FEniCS and 
OpenFOAM®)

Table 1   Parameters used for the 
topology optimization of the 2D 
bend channel

*Flow rates computed assuming that the width of the inlet ( �in ) corresponds to an “inlet diameter” (in 3D)
**The turbulent case is optimized considering a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set 
as 0.3 mm

Input parameters (laminar flow)

Inlet flow rate (Q) 0.0022 L/min*
Inlet velocity profile Parabolic

Input parameters (turbulent flow)**

Inlet flow rate (Q) 2.5 L/min*
Inlet velocity profile Turbulent
IT 5.0%
�T 0.186 mm

Dimensions

Ly = Lx 30 mm
hy = hx 18.75 mm
�in = �out 7.5 mm
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entering or leaving another fluid device. This type of design 
is here analyzed for 2D axisymmetric flow, but has already 
been considered for 2D flow in Borrvall and Petersson 
(2003) and 2D swirl flow in Alonso et al. (2018).

In this work, as opposed to Alonso et al. (2018), where 
the size of the fluid flow outlet was left to be determined 
according to the specified fluid volume fraction (f), the 
size of the fluid flow outlet is fixed with a radius Rout (see 
Fig. 20). Also, in order to avoid any issue of the topology 
optimization blocking the low velocity part of the inlet 
velocity profile [as can be seen in Borrvall and Petersson 
(2003)], a small non-optimizable inlet height is included 
before the design domain.

The mesh is composed of 19,401 nodes and 38,400 ele-
ments (see Fig. 21). The input parameters and geometric 
dimensions of the design domain that are used are shown in 
Table 2. The inlet flow rates correspond to maximum inlet 
Reynolds numbers of 325 (for the laminar flow) and 3,253 
(for the turbulent flow). In order to facilitate the conver-
gence of the topology optimization, a “conical” initial guess 
(i.e., connecting the inlet (R) of the design domain ( H − hin ) 
directly to the outlet ( Rout ) with a straight line) is considered 
for � . The specified fluid volume fraction (f) is selected as 
50%. For the wall distance computation, �max = 1010m−3 . 
The inverse permeability ( �max ) and the penalization param-
eter (q) are selected, respectively, as 2.5 × 107� [kg/(m3s)] 
and 1.0, for the laminar flow; and as 5 × 108� [kg/(m3s)] and 
1.0, for the turbulent flow.

The convergence curves for the 2D bend channel are 
shown in Fig. 22.

The simulation results for the post-processed meshes are 
shown in Fig. 23. The maximum local Reynolds numbers 
are computed as 505 (for the laminar flow) and 12,023 (for 

the turbulent flow). The energy dissipation values in the 
post-processed meshes are 1.04 × 10−7 W (for the laminar 
flow) and 3.10 × 10−4 W (for the turbulent flow). The differ-
ence in magnitude of the energy dissipation values is 
expected, as in the 2D bend channel example, because of the 
higher fluid velocities in relation to the turbulent flow, and 
also because of the presence of the turbulent viscosity in Eq. 
(20) for turbulent flow. As can be noticed in Fig. 23a, the 
laminar case topology features a small bump near the low 

Fig. 18   Convergence curves for the 2D bend channel

Fig. 19   Optimized topologies, pressure, and velocity for the 2D bend 
channel
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velocity part of the parabolic inlet velocity profile. This 
small velocity means that this zone of the fluid flow is given 
a lower importance with respect to the objective function in 
relation to the rest of the computational domain. A similar 
effect is also observed in Borrvall and Petersson (2003)’s 
nozzle example. In the optimized topology for tubulent flow 
(Fig. 23b), the inlet of the optimized topology becomes 
smoother than the optimized topology for the laminar flow 
case. This is probably due to the different inlet velocity pro-
file (turbulent velocity profile), which features higher veloc-
ity values at larger radii than the parabolic velocity profile, 
and the inlet turbulence value, which influences the objective 
function near the inlet. For reference, the maximum turbu-
lent viscosity ratio is given as max(

�T

�
) = 0.73 , which shows 

that the effect of the turbulent viscosity is comparable to the 
fluid (water) viscosity in at least a part of the computational 
domain.

7.4 � 3D channel

The fourth example is based on a 3D model, for the design 
of a channel that bifurcates into other two. Fig. 24 shows the 
computational domain with the inlet channel and the two 
outlet channels. The inlet and outlet channels are left outside 
the design domain.

The mesh is composed of 18,308 nodes and 102,254 tet-
rahedral elements (see Fig. 25), whose quantities are slightly 
increased for the turbulent case (18,344 nodes and 102,720 
tetrahedral elements). The input parameters and geometric 
dimensions of the design domain that are used are shown in 
Table 3. The inlet flow rates correspond to maximum inlet 
Reynolds numbers of 1,062 (for the laminar flow) and 2,603 
(for the turbulent flow). The initial guess for the laminar 
case is chosen as “fluid fraction” ( � = f − 1% ), while the 
initial guess for the turbulent case is chosen as the optimized 
topology of the laminar case. The specified fluid volume 
fraction (f) is selected as 20%. For the wall distance compu-
tation, �max = 108m−3 . The inverse permeability ( �max ) and 
the penalization parameter (q) are selected, respectively, as 
5.0 × 107� [kg/(m3s)] and 1, for the laminar flow; and as 
8.0 × 107� [kg/(m3s)] and 1000, for the turbulent flow.

The convergence curves for the 3D channel are shown 
in Fig. 26. It can be highlighted that there is a maximum 
number of SIMPLE iterations per optimization step (which 
is set, in this work, as 500), which means that the “quality” 
of the simulation is lower in the first iterations of the topol-
ogy optimization.

The simulation results for the post-processed meshes are 
shown in Fig. 27, where only a slice of the scalar fields (p, 
𝜈̃T , �T ) is plotted, for illustrative purposes. The maximum 
local Reynolds numbers are computed as 1,254 (for the lami-
nar flow) and 5,645 (for the turbulent flow). The energy dis-
sipation values in the post-processed meshes are 1.08 × 10−5 
W (for the laminar flow) and 3.65 × 10−4 W (for the turbu-
lent flow). The difference in magnitude of the energy dissi-
pation values is expected as mentioned in the other numeri-
cal examples. It can be noticed, when comparing Fig. 27a 
and b, that the channels are thicker in the laminar flow case, 
which is probably due to the effect of the lower velocities 
and the higher effect of the viscosity of the fluid. In the tur-
bulent flow case, the channels are thinner, which is probably 
due to the higher velocities and turbulent viscosity effect in 
the turbulent flow case. Also, the channels are split near the 
outlet in the laminar flow case, while they are split near the 
inlet in the turbulent flow case. This may be due to the fact 
that, if the channel is split near the outlet in the turbulent 
flow case, the fluid will be at a higher velocity, meaning that 

Fig. 20   Design domain for the 2D axisymmetric nozzle

Fig. 21   Mesh used for the 2D axisymmetric nozzle (check Fig. 6 for 
the correspondence of meshes between FEniCS and OpenFOAM®)
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the energy dissipated in the “collision” with the “splitting 
edge” would become higher. One more observation is that 
the fluid volume is different in both optimized topologies, 
which is acceptable, since the constraint that is being 
imposed is a maximum fluid volume constraint [Eq. (9)]. For 
reference, the maximum turbulent viscosity ratio is given as 
max(

�T

�
) = 6.24 , which shows that the effect of the turbulent 

viscosity is higher than the fluid (water) viscosity in at least 
a part of the computational domain.

8 � Conclusions

This work presents the approach of using the 
OpenFOAM® infrastructure for the computation of an effi-
cient fluid flow simulation, while the adjoint model is auto-
matically derived in an efficient manner by FEniCS/dolfin-
adjoint. Although an even higher computational efficiency 
would be possible to be achieved through manually deriving 
the continuous adjoint model and adjusting its implementa-
tion (such as through reordering the terms/operations, block 
matrices, local preconditionings etc.), this procedure may 
become a hard and cumbersome task, especially for complex 
models. Therefore, this work presents a more convenient 
and comprehensive approach of obtaining the automatically 
derived adjoint model in an efficient manner when consider-
ing OpenFOAM®. In the point of view of OpenFOAM®, this 
means that the adjoint equations do not need to be derived by 
hand, while, in the point of view of FEniCS, the fluid flow 
simulation may be computed more efficiently, without need-
ing to implement various adjustments for convergence of the 
algorithm. In terms of work required in the implementation, 
the additional work is to write the material model terms 
in the equations inside the OpenFOAM® solver and write 
the weak forms and boundary conditions in FEniCS. The 
required additional work for this implementation is far from 
having to derive the adjoint equations by hand, and even 
saves time when testing, since the derivation of the adjoint 
model is automated. In terms of computational cost, the 
implemented algorithm is able to deploy OpenFOAM® and 
FEniCS to run in parallel (independently), which may help 
in reducing the required computational time. Since the 
adjoint equations are linear, the resulting matrix system 
needs to be solved a single time at each iteration, and the 
computational cost is mostly due to the interpolation degrees 
of the state variables in finite elements (see Fig. 3), which 

Table 2   Parameters used for the 
topology optimization of the 2D 
axisymmetric nozzle

*The optimized cases consider a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set as 0.0625 mm

Input parameters (laminar flow)*

Inlet flow rate (Q) 0.05 L/min
Inlet velocity profile Parabolic

Input parameters (turbulent flow)*

Inlet flow rate (Q) 2.5 L/min
Inlet velocity profile Turbulent
IT 5.0%
�T 0.25 mm

Dimensions

R 10 mm
Rout 5 mm
H 15 mm
hin 1 mm

Fig. 22   Convergence curves for the 2D axisymmetric nozzle
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the authors tried reducing by considering the use of MINI 
elements instead of Taylor-Hood elements. It is also possible 
to use linear finite elements by including a stabilization term 
in the fluid flow equations (Reddy and Gartling 2010; Logg 

et al. 2012; Elhanafy et al. 2017; Langtangen et al. 2002; 
Franca 1992).

It is also possible to extend the implemented approach 
to any type of optimization method implemented in the 
FEniCS platform, by including the adequate conversions 
to OpenFOAM®simulations by using the “FEniCS TopOpt 
Foam” library. Although this work is focused in topology 
optimization for fluid flow, this approach is extensible to any 
kind of physics that is modellable in OpenFOAM®.

As future work, it is suggested to consider this scheme for 
investigating topology optimization for turbulent, compress-
ible, and non-Newtonian flows.

9 � Replication of results

The part of the implementation that is performed in the FEn-
iCS platform is direct from the description that is provided 
of the equations and numerical implementation in this arti-
cle. This is because FEniCS is based on a high-level descrip-
tion for the variational formulation (UFL), which automates 
the generation of the necessary matrix equations. It may be 
reminded that, in the 2D axisymmetric case, the coordi-
nates are considered to be cylindrical (i.e., the differential 
operators (“grad”, “curl”, “div”) must be programmed 
by hand by using the “Dx(var,component_num)” or 
“var.dx(component_num)” functions, because the 
default operators available in FEniCS consider Cartesian 
coordinates).

Fig. 23   Optimized topologies, 3D representation, pressure, and 
velocity for the 2D axisymmetric nozzle

Fig. 24   Design domain for the 3D channel

Fig. 25   Mesh used for the 3D channel (laminar case)
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The part of the implementation that is performed in 
OpenFOAM® is, as mentioned in Sect. 6, including the 
additional inverse permeability term in the “simple-
Foam” solver from OpenFOAM® (referred as “Custom-
SimpleFoam” in this work) [see Eq. (2)], and also in the 

“SpalartAllmaras” turbulence model (referred as 
“CustomSpalartAllmaras” in this work) [see Eq. 
(5)]. Another necessary implementation is to create an addi-
tional type of wall distance computation, which loads the 
wall distance from a file (referred as “Custom_exter-
nalImport” in this work).

The “FEniCS TopOpt Foam” library used in the imple-
mentation of this work is to be made available in a git reposi-
tory2. It also includes sample implementations of “Cus-
tomSimpleFoam”, “CustomSpalartAllmaras”, 
and “Custom_externalImport”. An implementation 
of a code by using “FEniCS TopOpt Foam” for a sample 2D 
bend channel topology optimization (slightly different from 
Sect. 7.2 in order to be simpler and easier to understand) is 
shown step by step in the following subsections. In the fol-
lowing code excerpts, when a line of code is split due to lack 
of space, its continuation is shown in the next line, preceded 
by an arrow (“ ”).

9.1 � Sample 2D bend channel problem

In this section, the 2D bend channel problem is considered 
through a sample implementation, where � is set as 1.0, � is 
set as 0.1, and the inlet velocity is defined as such that the 
maximum velocity of the inlet parabola is 1.0, while the 
computational domain is a 1×1 square. The implementation 
is performed by leaving a variable to set which flow regime 

Table 3   Parameters used for the 
topology optimization of the 3D 
channel

*The turbulent case is optimized considering a Helmholtz pseudo-density filter (Sect. 5.6), where rH is set 
as 0.457 mm

Input parameters (laminar flow)

Inlet flow rate (Q) 0.5 L/min
Inlet velocity profile Parabolic

Input parameters (turbulent flow)*

Inlet flow rate (Q) 2 L/min
Inlet velocity profile Turbulent
IT 5.0%
�T 0.25 mm

Dimensions

Lx = Ly 30 mm
Lz 20 mm
d
1
= d

2
= d

3
10 mm

�
1
= �

2
= �

3
2.5 mm

h
1,x = h

1,y 10 mm
h
2,y = h

3,x 20 mm
h
2,z = h

3,z 10 mm
H 15 mm

Fig. 26   Convergence curves for the 3D channel (Obs. For ease of 
visualization of the optimized topology, only the values of � with 
� ⩾ 0.5 are shown in nontransparent color). It can be highlighted that 
the optimized topologies (in the final iterations) are highly discrete

2  https://​github.​com/​diego-​hayas​hi/​fenics_​topopt_​foam.

https://github.com/diego-hayashi/fenics_topopt_foam
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(laminar or turbulent) is being considered (“flow_regime” 
variable) and another variable is left to set whether to 
consider OpenFOAM® in parallel or not (“run_open-
foam_in_parallel”). The optimization parameters 
are prepared for the laminar and turbulent cases, but their 
specific values are set for a laminar flow topology optimiza-
tion, and may be adjusted by the user for a turbulent flow 
case. Table 4 presents the main variable naming differences 
between this article and the implementations in FEniCS and 
OpenFOAM®.

9.2 � Necessary imports

The necessary imports should be included in the beginning 
of the code.

9.3 � General configurations

The general configurations can be set as follows: First, an 
additional variable (“run_openfoam_in_parallel”) 

Fig. 27   Optimized topologies, pressure, and velocity for the 3D chan-
nel

Table 4   Variable naming in the equations of this article and the 
implementations in FEniCS and OpenFOAM®.

Equations of this 
article

FEniCS OpenFOAM®

v v U

p p p

𝜈̃
T

nu_T_aux nuTilda

�w l_wall yWall_to_load

� alpha alpha_design
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is set in order to control whether OpenFOAM® should run 
in parallel or not.

Then, the fluid properties are set alongside the corre-
sponding inlet values and the flow regime.

9.4 � Set topology optimization‑related parameters

The topology optimization-related parameters are defined.

9.5 � Create the output folder

A folder for including the results is created.

9.6 � Create the 2D mesh in FEniCS

The mesh is created in FEniCS and saved to file for visuali-
zation. It can be mentioned that any mesh or mesh generation 
scheme in FEniCS may be considered, such as from FEniCS 
itself, from an external mesh imported to FEniCS, and from 
“mshr” (additional meshing module from FEniCS).

9.7 � Define the function spaces for FEniCS

The FEniCS implementation requires the definition of the 
function spaces for the state and design variables.

9.8 � Prepare the boundary definition in FEniCS

The boundaries of the computational domain are given 
names in FEniCS, which will also be used in OpenFOAM®, 
and saved to file, for visualization.
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9.9 � Prepare boundary values (for Dirichlet 
Boundary conditions) in FEniCS

Some of the boundary values that will be used for Dirichlet 
Boundary conditions are defined.

9.10 � Function to set “FEniCS TopOpt Foam”

The function “prepareFEniCSFoamSolverWithUp-
date” is created in order to prepare the whole setup for 
the OpenFOAM® simulation from “FEniCS TopOpt Foam”. 

First, the boundary data are gathered in a format that is more 
closely related to OpenFOAM® definitions.

Then, the basic parameters necessary for defining a solver 
in “FEniCS TopOpt Foam” are defined.

Fol lowing,  i t  is  necessary to  prepare the 
OpenFOAM® dictionary entries for “controlDict”, 
“fvSchemes”, and “fvSolution”. These three dic-
tionaries are required by OpenFOAM® for any simulation 
and are essential for controlling how these simulations will 
be executed, which means that they should be completely 
defined by the user. It should be reminded, though, that 
“writeFormat” (from “controlDict”) needs to be 
set to “ascii” for “FEniCS TopOpt Foam”.
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The “libs” entry from “controlDict” is set to con-
sider some C++ OpenFOAM® libraries provided by “FEn-
iCS TopOpt Foam” (i.e., the OpenFOAM® libraries that are 

already mentioned in the beginning of Sect. 9), but the user 
may include any user-made library in this entry.

9.11 � Solver that interacts with FEniCS 
and OpenFOAM®

Now, the solver can be created (called
“FEniCSFoamSolverWithUpdate”) with the previ-

ously defined parameters, variables, mesh, boundary condi-
tions, and the fluid properties.

The parallelism in OpenFOAM® is set here (if “run_
openfoam_in_parallel = True”), where the “par-
allel_data” dictionary needs to be set according to 
OpenFOAM® conventions, and the value set for the “num-
berOfSubdomains” entry also corresponds to the num-
ber of processes for OpenFOAM® parallelism.
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The boundary conditions are set as follows:

The fluid flow properties are set as follows:

The “plotResults” function from
“FEniCSFoamSolver” can be left more readily 

accessible.

The main function for solving the simulation can then 
be defined as follows. First, the variables are retrieved from 
dolfin-adjoint (“replace_map”), and an initial guess for 
the state vector (called “u”) is set.
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Then, the wall distance is computed in FEniCS and set 
to OpenFOAM®.

Following, the properties are optionally updated (if a con-
tinuation scheme in the property values is desired during 
topology optimization).

The variables are set to OpenFOAM®.

The OpenFOAM® simulation can now be performed. 
In this case, in order to help monitoring the residuals from 
the simulation, the parameter “continuously_plot_
residuals_from_log” is set to “True”. This means 
that, inside the OpenFOAM®  simulation folder (called 
“foam_problem” in Sect. 9.3), there will be a “logs” 
folder which will contain the plots made with Matplot-
lib (image files, “.png”) for each residual. These plots are 
renewed at each optimization iteration. In order for Matplot-
lib to be able to plot, it is essential that “matplotlib.
use(‘Agg’)” is used in the beginning of the code, as 
shown in Sect. 9.3, because Matplotlib is set to create the 
plots simultaneously to the simulation in OpenFOAM® by 
spawning a child process, because it requires Matplotlib to 
be using a non-interactive backend (such as “Agg”), which 
is able to directly generate image files, but disables the 
capacity of Matplotlib opening GUI windows.

After the simulation, the computed variables are set back 
to FEniCS/dolfin-adjoint.
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With “FEniCSFoamSolverWithUpdate” defined, 
it is now created.

9.12 � Forward model in FEniCS

A function that prepares the forward model in FEniCS 
from a design variable distribution (“alpha”) has to be 
defined, because it will be used by dolfin-adjoint for the 
automatic derivation of the adjoint model. First, the state 
vector and test functions are defined, alongside some aux-
iliary definitions.

In the case of using a turbulence model (Spalart-Allmaras 
model), the computation of the wall distance is performed.

Then, the remaining weak forms and boundary conditions 
for FEniCS are defined and combined.
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Then, the “prepareFEniCSFoamSolverWithUp-
date” is created and used as an input parameter for 
“UncoupledNonlinearVariationalSolver”, 
which will perform the coupling between the optimization 
and the simulation.

9.13 � Preparations for topology optimization

The initial setup for topology optimization is performed.

An initial simulation is performed for dolfin-adjoint to 
prepare the automatic derivation of the adjoint model.

Some visualization files are prepared for visualizing 
the optimized topology during the topology optimization 
iterations.

Fig. 28   Topology considered 
for the finite differences com-
parison
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In order to continuously save the visualization files, it 
is necessary to create a callback for dolfin-adjoint, such 
as immediately after the computation of the sensitivities 
(“derivative_cb_post”).

9.14 � Topology optimization

The topology optimization problem can now be defined, 
as well as the IPOPT solver can be instantiated from 
dolfin-adjoint.

To finalize, the topology optimization is performed.

9.15 � Plot the simulation

The simulation from OpenFOAM®  may be plotted as 
follows.

9.16 � Running the code

The resulting code may be run as: (1) totally in serial mode, 
(2) with only OpenFOAM® in parallel, (3) with only FEn-
iCS in parallel, or (4) with FEniCS and OpenFOAM® in 
parallel. Parallelism in OpenFOAM® is enabled by setting 
“run_openfoam_in_parallel = True” (Sect. 9.3) 
and adequately setting (depending on your computational 
resources) the “parallel_data” dictionary (Sect. 9.11). 
Parallelism in FEniCS is set directly in the Python call, such 
as “mpiexec -n 2 python my_code.py” (for 2 
processes). The number of processes for each type of paral-
lelism is set as desired by the user and in a value allowed by 
the user’s computational resources (such as 2,3,4 etc.). For 
no parallelism in OpenFOAM® and FEniCS (“serial mode”), 
set “run_openfoam_in_parallel = False” and run 

Fig. 29   Sensitivity values computed with the “FEniCS TopOpt 
Foam” approach (from dolfin-adjoint) and from finite differences, for 
laminar and turbulent flows

Fig. 30   Relative differences for 
the cases shown in Fig. 29



4438	 D. H. Alonso et al.

1 3

the code as “python my_code.py”. The plots, which 
contain the extensions .pvd and .vtk, may be visualized with 
the ParaView software.

Appendix A: Comparison of sensitivities 
with finite differences

In this appendix, a comparison of the computed sensitivi-
ties from dolfin-adjoint with finite differences is presented. 
The comparison is performed for the initial guess of the 2D 
axisymmetric nozzle (Sect. 7.3). A set of points is selected in 
the computational domain for comparison with finite differ-
ences (see Fig. 28): one near the inlet, one near the symme-
try axis, one near the middle of the computational domain, 
one near the outlet, and a last one inside the solid material. 
The comparison is performed for the same configurations 
considered for laminar and turbulent flows in Sect. 7.3, by 
restricting the simulation to 6000 SIMPLE iterations. The 
finite differences are considered through the backward dif-
ference approximation (for � = 1 ): dJ

d�
=

J(�)−J(�−Δ�)

Δ�
 , where 

J = Φ . The finite difference approximation is changed to for-
ward difference approximation for point number 5 ( � = 0 ): 
dJ

d�
=

J(�+Δ�)−J(�)

Δ�
 , where J = Φ . A better approximation 

would be the use of a central finite difference approxima-
tion ( dJ

d�
=

J(�+Δ�)−J(�−Δ�)

2Δ�
 ), which is, however, inadequate for 

� = 0 and � = 1 (bounds of � ). The computed sensitivities 
are shown in Fig. 29, for a step size of 10−3 . As can be seen, 
the computed sensitivities for the “FEniCS TopOpt Foam” 
approach (from dolfin-adjoint) and finite differences are 
close to each other. In order to get a better insight about the 
differences between the two sensitivities, Fig. 30 shows the 
relative differences as defined below, which resulted small.

where the subscript “FTF” indicates the “FEniCS TopOpt 
Foam” approach (from dolfin-adjoint) and “FD” indicates 
“Finite Differences”.
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