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Abstract
Multi-fidelity (MF) surrogate models have been widely adopted in simulation-based engineering design problems to reduce 
the computational cost by fusing data with diverse fidelity levels. Most of the MF modeling methods only apply to the prob-
lems with hierarchical low-fidelity (LF) models. However, the LF models obtained from different simplification approaches 
often vary in fidelity levels throughout the design space, namely, the multiple LF models are non-hierarchical. To address 
this challenge, a MF surrogate modeling method based on variance-weighted sum (VWS-MFS) is developed to flexibly 
handle multiple non-hierarchical LF data in this work. Firstly, each set of the non-hierarchical LF data is allocated diverse 
weights according to uncertainties quantified by variances of constructed Kriging models, which enables all the LF data 
to be fused and contribute to the trend function reflecting the response trend of the true model. Secondly, for more precise 
scaling factor between HF and LF models and mean square error (MSE) estimation, an improved hierarchical kriging 
(IHK) model is introduced to construct the MF surrogate model enabling the LF model scaled by a varied scaling factor to 
capture the characteristics of the HF model. The performance of the proposed VWS-MFS method is compared to three MF 
surrogate models through several numerical examples and one engineering case. Results show that the proposed method 
provides more accurate MF surrogate models under the same computational cost. Additionally, the proposed method saved 
the computational cost by more than 59.61% with the same model accuracy compared to the Kriging model built with HF 
data for the engineering case.
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1 Introduction

Surrogate models have been widely adopted in the simu-
lation-based engineering design problem as a substitute 
to expensive simulation models or physical experiments 

to alleviate the computational cost (Chatterjee et al. 2019; 
Jiang et al. 2019). Surrogate models are built from avail-
able samples to give predictions based on the interpolated 
or fitted mathematical relationships. There are many widely 
used surrogate models, such as polynomial response surface 
(PRS) (Kleijnen 2008), kriging (Zhou et al. 2015), support 
vector regression (Shi et al. 2020; Vafeiadis et al. 2015), 
radial basis function (RBF) (Tripathy 2010) and so on. Wang 
and Shan (2007) compared the application of these models 
in different scenarios. In the process of building a surrogate 
model, models with diverse fidelities are usually available 
to obtain sampling data. Taking the aerodynamic design 
optimization of an airfoil as an example, the fidelity levels 
of simulation models may vary in terms of mathematical 
description of models (e.g., the Euler non-cohesive equa-
tions vs the Reynolds-averaged Navier–Stokes equations), 
degree of discretization of the models (e.g., coarse mesh vs 
refined mesh), and level of resolution errors (e.g., inadequate 
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vs iterations adequate iterations). In general, the high-fidelity 
(HF) model can give more accurate and reliable simulation 
results. However, it is time-consuming and even computa-
tional prohibitive to construct a surrogate model entirely 
relying on the HF model to obtain the quantity of interest 
(QOIs) in many cases (Xia and Shi 2018). On the other hand, 
the low-fidelity (LF) model is able to obtain the simulation 
results with a considerable lower computational demand, 
whereas it may lead to the inaccuracy or even distortion of 
the final surrogate model entirely relying on the LF model.

To relieve this problem, multi-fidelity (MF) surrogate 
models have increased in popularity which strike a balance 
between the computational cost and prediction accuracy by 
integrating the HF and LF data (Rokita and Friedmann 2018; 
Song et al. 2013). In the construction of the MF surrogate 
models, small amounts of HF data are used to guarantee 
the prediction accuracy, while large amounts of LF data are 
used to relieve the computational burden (Hao et al. 2020; 
Tao et al. 2019). The decisive condition for the successful 
use of MF surrogate models is an assumption that the LF 
model should reflect the general trend of responses given 
by the HF model (Liu et al. 2018). In general, the MF surro-
gate modeling methods can be divided into three categories 
according to diverse means of data fusion (Zhou et al. 2017a, 
b), which includes the scaling function-based method, the 
space-mapping method, and the Co-Kriging method.

First, in the process of scaling function-based surrogate 
modeling, a scaling function is built to capture the discrep-
ancy between the HF and LF models. As a correction-based 
method, it calibrates the LF model according to the response 
of the HF model. There are three types of scaling function: 
the additive scaling function (Song et al. 2019; Sun et al. 
2020; Wu et al. 2021; Zhou et al. 2021), the multiplicative 
scaling function (Liu and Collette 2014; Zhu et al. 2014), 
and the hybrid scaling function (Ariyarit et al. 2018; Beachy 
et al. 2020; Bryson and Rumpfkeil 2017; Li et al. 2016). 
Song et al. (2019) developed a radial basis function (RBF) 
and regarded it as an additive scaling function to narrow 
the discrepancy between the HF and LF models; Wu et al. 
(2021) approximated the additive scaling function by Krig-
ing model, and then applied it to the optimization problem 
of missile radome; Sun et al. (2020) developed a Kriging 
model to fit the error between the HF and LF models to 
serve as an additive scaling function, and then applied it to a 
novel MF bi-level optimization method for the shape design 
problem of underwater wings; Bryson and Rumpfkeil (2017) 
developed a novel hybrid gradient-enhanced MF surrogate 
modeling method using polynomial chaos expansions, which 
seeks complementary multiplicative and additive corrections 
to LF data; Li et al. (2016) proposed a hybrid scaling method 
based on least squares and then applied the MF model con-
structed to substitute for the implicit performance function in 
reliability-based design optimization by using the values of 

HF function and its gradient at design points. On the account 
of its relatively simple forms which are easy to understand, 
the scaling function-based method is the most extensively 
for MF surrogate modeling.

Second, in the space-mapping method, the aim is to 
establish a mapping relation between the HF and LF design 
space, ultimately bringing about an accurate MF surrogate 
model which is able to reflect the behavior of the HF model. 
There are two ways of space-mapping according to diverse 
mapping space. One is input-to-input mapping which means 
mapping the input space of the HF model to that of the LF 
model. The other is output-to-output mapping which means 
mapping the output space of the LF model to that of the HF 
model. Zhou et al. (2017a, b) put forward an output-to-out-
put space-mapping strategy based on radial basis function by 
integrating information obtained from models with diverse 
fidelity levels, in which the multiple-to-one-dimensional 
structures of the scaling function are transformed to a novel 
one-to-one-dimensional structure alleviating the burden of 
model-fitting; Jiang et al. (2018) proposed an output-to-out-
put space-mapping approach based on a Gaussian process, 
where the LF data is regarded as prior information in the 
process of MF surrogate modeling; Zhang et al. (2021a) put 
forward a novel space-mapping-based surrogate model, in 
which two mapping functions are constructed to accelerate 
the multiphysics design for high power microwave filters; 
Jin et al. (2021) combined the input-to-input space-mapping 
method and Gaussian process auto regression, thus enabling 
flexible learning for the complex cross-correlations, and 
then developed a complementary data-fusion algorithm in 
order to monitor the strain of structural system. The obvi-
ous advantage of the space-mapping method lies in that it 
allows the HF and LF models to have different dimensions 
of design space.

Lastly, the Co-Kriging model is a space interpolation 
approach, which can be regarded as the extension of the 
Kriging model with multi-variable under the assistance of 
auxiliary or secondary information (Han et al. 2012). The 
Co-Kriging model is originally derived from the geo-statis-
tics community Howarth  (1979). Afterward, Han and Görtz 
(2012) put forward a MF surrogate modeling method called 
hierarchical kriging (HK), where the LF function serves as 
the trend of HF function and a more reasonable value of the 
MSE is estimated ultimately; Han et al. (2020) extended the 
original HK model with two-level fidelities to multi-level 
HK model, which can fuse the simulation data with multi-
ple fidelity levels; Cheng et al. (2021) put forward a novel 
nearest-neighbor co-kriging Gaussian process, in which 
the nearest-neighbor Gaussian process and auto-regressive 
model are coupled employing augmentation ideas; Xing 
et al. (2021) put forward a novel additive structure for multi-
level MF modeling using co-kriging, where the HF response 
is written in the form of the sum of model response with the 
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lowest-fidelity and all the residuals between the responses of 
models with successive fidelity levels using Gaussian pro-
cesses. Apart from the variation and extension of the Co-
Kriging model, the Co-Kriging model is widely used in the 
intelligent manufacturing field (Krishna and Ganguli 2021; 
Yang et al. 2021), marine industry (Sun et al. 2020; Zhang 
et al. 2021b), aerospace field (Priyanka and Sivapragasam 
2021; Wauters et al. 2020) and so on. For example, Krishnan 
and Ganguli (2021) adopted a co-kriging model to determine 
the natural frequencies of the beam by integrating the HF 
and LF finite element models, which belong to Timoshenko 
beam and Euler–Bernoulli beam separately; Yang et al. 
(2021) employed the HK to predict the temperature and spe-
cific energy consumption in the process of corner milling.

During the construction of the MF surrogate model, most 
of the work mentioned above assumed that the models avail-
able are hierarchical. However, the fidelity levels of models 
could not be identified and ranked distinctly in many other 
situations. Namely, the models are non-hierarchical that no 
fidelity gap exists between each other. It is a less-noticed 
but common-exist situation, where multiple non-hierarchical 
LF models are generated in different ways to simplify the 
HF model. For instance, it could be hard to distinguish the 
3-D finite element model with coarse mesh from the 1-D 
finite element model with refined mesh in model fidelity. 
To address this issue, a MF surrogate modeling method 
based on variance-weighted sum (VWS-MFS) for multiple 
non-hierarchical LF models is proposed to make the utmost 
of the non-hierarchical LF data. In the proposed method, 
Kriging models are built for each set of non-hierarchical LF 
data using the Gaussian process, which gives the variance 
to quantify corresponding uncertainties. Specifically, the 
VWS-MFS method is developed by aggregating the HF data 
and the fused non-hierarchical LF data. In the process of fus-
ing LF data, Kriging models are constructed for each set of 
non-hierarchical LF data using the Gaussian process, which 
can give the variance to quantify corresponding uncertain-
ties. Then the mean and variance of the non-hierarchical 
LF surrogate models obtained above are fused by allocating 
diverse weights according to the uncertainties, which ena-
bles each set of the non-hierarchical LF data to contribute to 
the trend function. The weighting approach enables the fidel-
ity of the LF data to change throughout the design space, 
thus relaxing the fidelity assumption of hierarchical rela-
tionships among LF models. Furthermore, the framework of 
an improved hierarchical kriging (IHK) model developed in 
our previous work (Hu et al. 2017) is extended to construct 
a single MF surrogate model incorporating the HF data and 
the fused LF data, thus making it possible to provide not 
only more precise scaling factor between HF and LF models 
but also more accurate MSE estimation. The performance 
of the proposed VWS-MFS method will be demonstrated 

through several numerical examples and one engineering 
case. It is expected that accurate MF surrogate models will 
be developed using the proposed method.

The remaining of this paper is organized as follows: In 
Sect. 2, a brief description of the Kriging method is pro-
vided, and the background of MF surrogate modeling is 
given. The details of the proposed VWS-MFS method are 
described in Sect. 3. In Sect. 4, several numerical exam-
ples and an engineering case are utilized to demonstrate the 
merits and effectiveness of the proposed VWS-MFS method 
in the comparison with three other MF surrogate models 
existed. Besides, the effects of key factors are explored. 
Finally, Sect. 5 concludes this paper with the summary and 
future work.

2  Background

In the process of the MF surrogate modeling, the Kriging 
technique is utilized. For the reason that Kriging is able to 
provide a reasonable estimation of the MSE at an untried 
point, which is particularly significant to obtain the predic-
tion accuracy of the surrogate model with finite samples. In 
this section, a brief description of the Kriging model and the 
background of MF surrogate modeling are provided.

2.1  Kriging technique

Kriging technique is a surrogate modeling method with sin-
gle fidelity using interpolation approach, where the model 
constructed goes through all the design points. Generally, 
the Kriging model can be expressed as:

where x is the design variable, p(x) represents a polynomial 
function that reflects the mean of the output performance, 
f (x) represents a vector of functions of x , � represents a 
vector of regression coefficients, z(x) serves as a random 
process with zero mean whose covariance can be written as:

where �2 indicates the process variance of z(x) , and R
(
x1, x2

)
 

is a spatial correlation function between points x1 and x2 , 
which depends only on the Euclidean distance between 
them. The correlation functions that are commonly used 
include power function, exponential function, Gaussian 
function, linear function, and so on.

Suppose that the responses of the HF model could be 
approximated with the linear combination of the HF design 
points. Thus, the IHK predictor can be expressed as:

(1)ŷ(x) = p(x) + z(x)f (x)T� + z(x)

(2)Cov
[
z
(
x1
)
, z
(
x2
)]

= �2R
(
x1, x2

)
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where Y indicates the vector of responses, c =
[
c1, c2,⋯ , cN

]
 

represents the vector of weight coefficients related to the 
design points, N  indicates the number of design points. 
Thus, the error between the true response and predicted 
response can be written as:

where Z =
[
z1 z2 … zN

]
 . To guarantee the unbiased predic-

tion, it is demanded that FTc − f (x) = 0 , thus

Under this condition, the mean squared error (MSE) of 
the predictor can be expressed as:

To minimize the MSE, the Lagrangian multiplier � is 
introduced. Thus, the Lagrangian function with respect to c 
can be expressed as:

The gradient of the Lagrangian function with respect to 
c could be written as:

Considering the first-order necessary conditions for opti-
mality, the following system of equations can be obtained:

where

The solution to the equation above is:

(3)ŷ(x) = cTY

(4)

ŷ(x) − y(x) = cTY − y(x)cT (F� + Z)

−
(
f (x)T� + z(x)

)
cTZ − z +

(
FTc − f (x)

)T
�

(5)FTc = f (x)

(6)
𝜑(x) = E

[
(ŷ(x) − y(x))2

]
E

[(
cTZ − z

)2]

E
[
z2 + cTZZTc − 2cTZz

]
𝜐2
(
1 + cTRc − 2cTr

)

(7)L(c,�) = �2
(
1 + cTRc − 2cTr

)
− �T

(
FTc − f

)

(8)L�
c
(c,�) = 2�2(Rc − r) − F�

(9)
[
R F

FT 0

][
c

�̃�

]
=

[
r

f

]

(10)F =
[
f
(
s1
)
,⋯ , f

(
sN
)]T

(11)�̃� = −
𝝀

2�2

(12)R∶ =
(
R
(
si, sj

))
i,j
∈ RN×N

(13)r ∶=
(
R
(
si, x

))
i
∈ RN

Finally, referring to Simpson et al. (2001), the Kriging 
predictor can be written as:

 where �∗=
(
FTR−1F

)−1
FTR−1Y denotes the coefficient of 

the scaling factor, the matrices �∗ and �∗ depends only on 
the design data which can be calculated in the process of 
model-fitting. For every prediction point x , only f (x) and 
r(x) need to be recalculated and two simple products added.

The MSE of the Kriging model for an unobserved point 
can be calculated by:

2.2  Multi‑fidelity surrogate modeling

The MF surrogate modeling technology is under the assump-
tion that HF models are more accurate to represent the char-
acteristics of the real physical model but require expensive 
computational cost, while the LF models are less accurate 
but considerably demand less computation. In the process of 
MF surrogate modeling, an LF surrogate model is calibrated 
with the responses of the HF model from a suitable size of 
design experiments. In other words, a small amount of HF 
data are used to modify the LF surrogate model to ensure the 
modeling accuracy, while more LF data are used to reflect 
the trend of real response. By reducing the computationally 
demanding of the HF model, a more high-accuracy surrogate 
model can be constructed at the same computational cost. In 
this way, the MF surrogate technology can take advantage 
of the merits of both HF and LF models.

In general, the MF surrogate modeling based on the inter-
action of the HF model and LF model can be written as 
follows (Qi et al. 2016):

where F̂(x, g) represents the MF surrogate model which 
serves as the substitution of the actual HF model, g is the 
vector of tuning parameters to minimize the discrepancy 
between HF and LF models, F(x) denotes the true response 
of the HF model, and f l(x) denotes the response of the LF 
model. From the above definitions, the MF surrogate model 
tends to approach the high accuracy of the HF model with 
considerably less computational cost.

(14)�̃� =
(
FTR−1F

)−1(
FTR−1Y − f

)

(15)c = R−1
(
r − �̃�

)

(16)ŷ(x) = fT�∗ + rTR−1(Y − F�∗) = fT�∗ + r(x)T�∗

(17)
�(x) = �2

[
1 +

(
FTR−1r − f

)T(
FTR−1F

)−1(
FTR−1r − f

)
− rTR−1r

]

(18)F̂(x, g) = F̂
(
f l(x), g

)
≈ F(x)
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3  A multi‑fidelity surrogate modeling 
method based on variance‑weighted sum 
(VWS‑MFS)

Except for the hierarchical data that exist in MF surrogate 
modeling, the non-hierarchical data also exist in many pre-
diction scenarios. Namely, the LF models are non-hierar-
chical that no clear fidelity hierarchy exists between each 
other. To describe the differences between hierarchical and 
non-hierarchical models, a simple illustration in Fig. 1 is 
utilized. Figure 1 depicts the models with one high fidelity 
and two non-hierarchical low fidelities. The red line denotes 
the true model, which is usually replaced by the HF model in 
most cases. The black line denotes the HF model, while the 
yellow and blue lines denote two LF models. Obviously, the 
HF model can more accurately represent the true model than 
two LF models. However, neither of the two LF models is 
always closer to the true model throughout the design space.

Supposing that this situation is regarded as a problem of 
fusing hierarchical data by ranking the fidelities among the 
LF models artificially. So here comes the question that the 
data with higher accuracy also exist in the lower-fidelity 
model which is artificially defined, which will result in the 
loss of useful information. As a result, the prediction accu-
racy of the MF surrogate model will inevitably decrease. 
Thus, the current hierarchical MF modeling method may 
lead to the loss of information and the reduction of pre-
diction accuracy when applied to the situation with non-
hierarchical models.

The motivation of this work is to put forward a non-hier-
archical modeling method that can make the utmost of the 
information from non-hierarchical LF data, which is then 
incorporated the non-hierarchical LF data with the HF data. 

To this end, the VWS-MFS method is proposed, in which the 
uncertainty of each non-hierarchical LF model is character-
ized and weighted by variance enabling all the LF models to 
contribute to the trend function, then combined with the HF 
data to construct a single MF surrogate model.

In the following subsections, the details of the VWS-MFS 
modeling method are presented. The modeling process is 
demonstrated in Subsect. 3.1. Then, the correlation model 
and the hyperparameter tuning strategy are illustrated in 
Subsect. 3.2 and 3.3, respectively. Finally, the framework 
of VWS-MFS is shown in Subsect. 3.4.

3.1  Model solving

The process of the MF surrogate modeling consists of the 
fusion of non-hierarchical LF data and the integration of HF 
data with fused LF data. The formulation of the proposed 
VWS-MFS model can be expressed as:

where m denotes the number of non-hierarchical LF models, 
�i denotes the weights allocated to each set of LF data, h(x) 
is a function to modify the LF model.

The details of the solving this formulation and process 
of constructing the VWS-MFS model are described in the 
following of this subsection, which can be divided into three 
steps. First, build the intermediate Kriging models for each 
set of non-hierarchical LF data with Gaussian processes, 
thus obtaining the mean and variance respectively to quan-
tify the uncertainty. Second, fuse the above means and 
variances of the non-hierarchical LF data by weighting and 
summing. Third, the IHK model is employed to construct a 
single MF surrogate model combining the HF data and the 
fused LF data.

3.1.1  Establishment of intermediate models with Kriging 
technique

It is assumed that there are m non-hierarchical LF models 
l1
L
,… , lm

L
 , all mapping from the design space x ∈ Rd to R . 

The LF models are evaluated with a finite number of designs, 
specified by the design set Di, i = 1,… ,m , which consists 
of ni design points. The design points can be written in 
matrix form as Si

L
=
[
si
1,L

,… , si
ni ,L

]T
∈ R

ni×d while the corre-

sponding ni response is written as Yi
L
=
[
yi
1,L
,… , yi

ni,L

]T
∈ Rni 

with si
j,L

∈ Rd denoting the jth design point of the ith LF 
model and yi

j,L
 denoting the corresponding response. It is 

noted that the design points of all LF models are consistent. 
The design set Di can be expressed as 

(
Si
L
,Yi

L

)
.

(19)ŷH(x) = h(x)

m∑

i=1

𝜔iŷi,L(x) + z(x)

Fig. 1  Illustration of the differences between hierarchical and non-
hierarchical models
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For each design set, the Kriging technique is used to build 
the surrogate model. A square exponential covariance func-
tion with additive Gaussian noise is chosen, while the hyper-
parameters of the covariance function and noise variance 
are selected based on the maximum likelihood approach. 
For each LF model, the Kriging predictor can be expressed 
as a function:

where mi
L
(x) is a mean function to describe the trend in the 

output space, zi
L
(x) serves as a random process with zero 

mean whose covariance can be written as �2
i
Ri

(
xp, xq

)
 . And 

Ri

(
xp, xq

)
 is a covariance function to encode the relationship 

between two points xp and xq in the design space, �2
i
 indicates 

the process variance of zi
L
(x).

The hyperparameters and the noise variance depend 
on the design set Di . Therefore, the covariance function 
Ri

(
xp, xq

)
 varies with the different LF data sets. Finally, the 

Kriging predictor obtained at any prediction point x in the 
design space consists of posterior mean and prior variance.

For any design point x , the posterior mean for each Krig-
ing predictor can be explicitly calculated and serve as a sur-
rogate model of li

L
:

For each LF model, the prior variance can be computed 
as follows:

where the parameters share the same meaning and solution 
processes as those in Sect. 2.1.

(20)ŷi
L
(x) = mi

L
(x) + zi

L
(x)

(21)ŷi
L
(x) = fT

i
�∗
i
+ rT

i
R−1
i

(
Yi − Fi�

∗
i

)

(22)
�2

i
(x) = �i

L
(x) = �2

i[
1 +

(
FT

i
R−1
i
ri − f i

)T(
FT

i
R−1
i
Fi

)−1(
FT

i
R−1
i
ri − f i

)
− rT

i
R−1
i
ri

]

3.1.2  Fusion of non‑hierarchical low‑fidelity data

Once the intermediate surrogate models have been built for 
each set of the non-hierarchical LF data, the LF information 
concluding all the posterior means and prior variances are 
available. For each set of LF information, the prior variance 
can serve as an indicator to quantify the uncertainty of the 
LF surrogate models. To describe the quantified uncertainty 
of each surrogate model, a simple illustration in Fig. 2 is 
used. Figure 2 depicts three LF surrogate models with pos-
terior mean and prior variance. The black dots are design 
points, the solid line is the posterior mean ŷi

L
(x), i = 1, 2, 3 

of the Gaussian process, the gray shading represents plus or 
minus three times the prior variance �2

i
(x) . The predicted 

uncertainty of each model at a certain point is represented 
by the probability distribution density function, shown as 
the colorized shading.

The fused non-hierarchical LF data can be obtained by 
combining all the LF information available using a weighted 
sum of all the estimates suggested by Lam et al. (2015). The 
weight is inversely proportional to the prior variance. There-
fore, for any area in the design space higher local fidelity the 
model shows, larger the weight is.

The weighting method utilizes the long-established the-
ory of combining probability distributions. Figure 3 illus-
trates this method for m = 3 LF surrogate models. At the 
given design point in Fig. 2, The predicted uncertainty of 
each model represented by the green, yellow and blue shad-
ing is fused. The red shading denotes the distribution of 
the predicted response after fusion: a normally distributed 
random variable with mean yL(x) and variance �2

L
(x).

The fused mean estimate is computed by a variance-
weighted sum of posterior means:

(23)yL(x) =

m∑

i=1

𝜔iŷ
i
L
(x)

Fig. 2  Illustration of quantified uncertainty of surrogate models
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where the �2

L
(x) is the fused variance estimate calculated 

by summing the inverses of variances and then inverting 
the sum:

The fused non-hierarchical LF data can be expressed as 
fL ∼

(
yL(x), �

2

L
(x)

)
 . Significantly, a larger prior variance 

indicates greater uncertainty of the corresponding model, 
leading to a less contribution to the trend function obtained 
ultimately.

3.1.3  Construction of MF surrogate model

There is a HF model lH with the same design space as LF 
models. The HF model is evaluated at nH designs, specified 
by the design set DH . The design points can be written as 
SH =

[
s1,H ,… , snH ,H

]
∈ Rd×nH while the corresponding nH 

response is written as YH =
[
y1,H ,… , ynH ,H

]T
∈ RnH with 

sj,H =
[
s1
j,H

s2
j,H

… sd
j,H

]
∈ Rd denoting the jth design point 

and yj,H denoting the corresponding response. The design set 
DH can be expressed as 

(
SH ,YH

)
.

Then construct a single MF surrogate model using the 
improved hierarchical Kriging (IHK) model by combining 
the HF data 

(
SH ,YH

)
 and the fused LF data 

(
yL(x), �

2

L
(x)

)
 . 

IHK is a MF surrogate modeling method suggested by Hu 
et al. (2017), which is an extension of the HK method. The 
LF design points gained from considerably less computa-
tionally demanding model is used to reflect the general trend 
of the true response, while the HF design points gained from 
the expensive-to-compute model are used to modify it. 
Hence, the HF function can be depicted in the form:

(24)�i = �
2

L
(x) ×

1

�2
i
(x)

(25)�
2

L
(x) =

(
m∑

i=1

1

�2
i
(x)

)−1

where yL(x) represents the fused mean estimate of LF mod-
els, which is given in Eq. (23). z(x) denotes a random pro-
cess with zero mean whose covariance can share the same 
expression with the Kriging model mentioned above h(x) 
represents the global function of the scaling factor that 
reflects the correlation relationship between the responses 
of the fused LF model and HF model throughout the design 
space. In IHK, h(x) is a polynomial response surface (PRS) 
model to map the fused LF data to the HF data whose value 
varies with the location of the prediction point. Thus, the LF 
model is scaled by a varied scaling factor to capture the char-
acteristics of the HF model. However, the scaling factor is a 
constant in the HK model. By contrast, h(x) is more specific 
to express the relationship between the fused LF model and 
HF model in IHK. which can be written as:

where d denotes the dimensions of the design space, xi , xj , xk 
are different design variables, and �i , �jk are the coefficients 
in front of them.

Take a two-dimensional case for example:

can be written as:

where

Finally, the IHK predictor and the MSE can be obtained 
according to Eqs. (16) and (17). According to the expression 
of MSE, the matrix f  associates not only with the response 
of the LF model but with the location of the prediction point, 
indicating that the IHK model can provide more precise 
MSE estimation in comparison to the HK model.

3.2  Correlation model

The correlation function R
(
x1, x2

)
 that depends on the 

Euclidean distance between points x1 and x2 is calculated 

(26)Y(x) = h(x)yL(x) + z(x) = h(x)

m∑

i=1

𝜔iŷ
i
L
(x) + z(x)

(27)h(x) = �0 +

d∑

i=1

�ixi +
∑

1≤j≤k≤d

�jkxjxk

(28)
ŷH
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(29)y(x) = f (x)T� + z(x)

(30)� =
[
�1 �2 … �6

]

(31)
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Fig. 3  Illustration of fusing uncertainty
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in the process of modeling, and it is often expressed as the 
form:

where � =
[
�1,… , �d

]
∈ Rd are the hyperparameters to be 

turned which determine the decrease rate of the correlation 
function, and a smaller � leads to a slower decrease. xk

1
 and 

xk
2
 denote the inputs of the kth dimension of points x1 and x2.
The types of correlation functions can be categorized 

into two groups. In the first group, the correlation functions 
contain spline function, Gaussian function, cubic function, 
and so on, showing a parabolic behavior near the origin. In 
the second group, the correlation functions contain a linear 
function, exponential function, spherical function, and so 
on, showing a linear behavior near the origin. In general, 
the selection of correlation functions is up to the underlying 
phenomenon. The correlation function in the most popular 
use is the Gaussian exponential function calculated by:

Considering the correlation matrix of Gaussian exponen-
tial function is relatively large thus leading to a singular 
matrix easily, a cubic spline correlation (Lophaven et al. 
2002) is also utilized in the modeling process. The cubic 
spline correlation is not only second-order differentiable all 
the time but also maintains a good balance between smooth-
ness and robustness of the function. The function is calcu-
lated by:

where �k = �k
|||x

k
1
− xk

2

|||.

3.3  Hyperparameter tuning strategy

In the proposed method, the hyperparameters � =
[
�1,… , �d

]
 

are needed to be estimated in the process of model construc-
tion. Generally, the unknown hyperparameters � are calcu-
lated using the maximum likelihood estimation (MLE). The 
likelihood function could be written as:

(32)R
(
x1, x2

)
=

d∏

k=1

Rk

(
� , xk

1
− xk

2

)

(33)

Rk

(
� , xk

1
− xk

2

)
= exp

(
−�k

|||x
k
1
− xk

2

|||
pk
)
R
(
� , xk

1
, xk

2

)

=

d∏

k=1

exp
(
−�k

|||x
k
1
− xk

2

|||
pk
)
, 1 ≤ pk ≤ 2

(34)

Rk

(
� , xk

1
− xk

2

)
=

{
1 − 15�2

k
+ 30�3

k
for 0 ≤ �k ≤ 0.21.25

(
1 − �k

)3

for 0.2 ≤ �k ≤ 10 for �k ≥ 1

(35)

L
(
�∗, �2, �

)
=

1
√(

2��2
)n|R|

exp

(
−

(
Y − F�∗

)T
R
−1
(
Y − F�∗

)T

2�2

)

The corresponding MLE of the coefficient �∗ and the var-
iance �2 can be obtained by maximizing the above equation.

Substitute Eq. (36) and Eq. (37) into Eq. (35) and then 
take the logarithm, the following expression is obtained to 
be maximized:

where Θ is the vector of � , � and R are functions of Θ . The 
optimization problem is difficult to be solved analytically. In 
terms of this issue, a modified version of the direct search of 
the Hooke and Jeeves algorithm can be used.

3.4  The framework of VWS‑MFS

The framework of the proposed method is shown in Fig. 4. 
It is the integration algorithm of a non-hierarchical LF data 
fusing method and IHK. Considering the non-hierarchical 
LF models, the uncertainty is characterized and weighted by 
variance so that the fidelity of each set of LF data can change 
throughout the design space. Furthermore, IHK is chosen 
to combine the HF data with the fused LF data to provide a 
more precise MSE estimation. The specific steps are shown 
as the flow chart below follows:

Step 1:  Use Latin hypercube sampling (LHS) to generate 
a certain number of LF design points enabling that 
the points are uniformly distributed in the design 
space.

Step 2:  Based on the LF design points given in step 1, run 
simulations or conduct physical experiments for 
each LF model to obtain the responses of the LF 
design points respectively.

Step 3:  For each design set, a Gaussian process modeling 
approach is used to build the surrogate model, thus 
obtaining all the posterior mean and prior variance 
of LF models.

Step 4:  Fused the above non-hierarchical LF data avail-
able by combining all the LF information available 
using a weighted sum of all the estimates, giving 
the fused mean and variance of LF models.

Step 5:  Use LHS to generate a smaller number of HF 
design points.

Step 6:  Based on the LF design points given in step 5, 
run simulations or conduct physical experiments 

(36)�∗ =
(
FTR−1F

)−1
FTR−1F

(37)�2 =
1

d

(
Y − F�∗

)T
R−1

(
Y − F�∗

)

(38)
max f (Θ) = −n ln �2(�) − ln |R(�)|

s.t.Θ > 0
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to obtain the responses of the HF model at the HF 
design points.

Step 7:  Considering that IHK can provide better MSE 
estimation, construct a single MF surrogate model 
using the IHK by combining the fused LF data 
obtained in Step 4 and the HF data obtained in 
Step 6.

4  Experimental study

In this section, the proposed VWS-MFS is verified using 
multiple numerical test examples and one engineering case. 
First, a one-dimensional numerical example with three LF 
models is utilized to demonstrate the details of the proposed 
VWS-MFS model. Then, eight numerical test examples of 
different dimensions and numbers of LF models are uti-
lized to verify the merits and effectiveness of the proposed 
method. In addition, explore the effects of key VWS-MFS 
factors employing one two-dimensional numerical example 
and one ten-dimensional numerical example. In the end, the 
proposed method is applied to the engineering case of a cyl-
inder pressure vessel.

For comparison, model the examples above with three 
other MF surrogate models available: (1) the VWS-HK 
model developed by combining two exiting methods from 
Han and Görtz (2012) and Lam et al. (2015), (2) the linear 
regression multi-fidelity surrogate (LR-MFS) from Zhang 
et al. (2017), (3) the extended Co-Kriging construction with 

multi-level multi-fidelity (MLMF-CK) from Xiao et  al. 
(2018).

Two different error metrics are adopted to evaluate the 
accuracy of the surrogate model obtained by each method: 
(1) maximum absolute error (MAE) that reveals the local 
accuracy, (2) root mean square error (RMSE) that reveals 
the global accuracy. The smaller the value of MAE/RMSE 
is, the better prediction performance the surrogate model 
owes. These two metrics can be expressed as:

where N  represents the number of test points, yi and ŷi 
denote the true value and the prediction value of response 
at the ith test point, respectively.

4.1  Demonstration example

To verify the proposed VWS-MFS framework above, a 
one-dimensional numerical example with three LF models 
is adopted to demonstrate the details and test the prediction 
performance. In this example, the HF function is taken from 
Forrester et al. (2007). The expression of the HF model and 
three LF models are as follows:

Figure 5 shows the true value of models and correlation 
coefficients between the HF model and every LF model in 
each interval. The black line is the HF model, while the oth-
ers are LF models. It can be seen that none of the three LF 
models always hold a better correlation to the true model 
throughout the design space, which means that there is no 
clear level of fidelity among the data of LF models. Besides, 
the correlation coefficients between the HF model and every 
LF model are calculated from each interval which divides 
the design space into 10 equal sections. It can be observed 
that the values of correlation coefficients in most intervals 
for every LF model are large enough to reflect the trend of 
the response of the HF model. Moreover, the correlation 
coefficient between the HF model and every LF model varies 
in each interval, thus the three LF models rank variably in 
fidelity. The data of LF models are non-hierarchical.

The numbers of design points of the HF model and LF 
models are six and ten, respectively. To avoid the situation the 
design point is located too close to the global maximum or 
minimum of the function, the HF design points are selected 

(39)

MAE = max ||yi − ŷi
|| , i = 1,… ,NRMSE

=

√√√√ 1

N

N∑

i=1

(
yi − ŷi

)2
, i = 1,… ,N

(40)

yH = (6x − 2)2 sin (12x − 4)yL
1

=
(
3x2 − 0.1x − 1.3

)
yH − (x + 8)yL

2

=
(
x3 + x2 − 0.1x + 0.5

)
yH − (x + 8)yL

3

= (−2x + 4)yH − (x + 8)x ∈ [0, 1]

Start

Stop

Step 1: Sampling for LF 
models 

Step 3: Fit LF models

Step 5: Sampling for HF 
model 

Step 2: Run simulation to 
obtain the response 

value of each LF model 

Step 4: Fuse LF data

Step 6: Run simulation to 
obtain the response 
value of HF model 

Step 7: Construct  the MF surrogate model

Fig. 4  Flow diagram of the modeling based on VWS-MFS
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manually. The design points of the HF model are S
H
=

[0, 0.2, 0.4, 0.6, 0.9, 1.0] , while the design points of LF models 
are S

L
= [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0].

Figure 6 illustrates the results of weighting and summing 
LF variances. The red solid line in the left graph indicates 
the fused variance, while the other three lines in different 
colors indicate the variances of the three LF models. In 
addition, the right graph gives the corresponding weights 
throughout the design space, which are computed by vari-
ances. It can be noted that the variances obtained in differ-
ent areas of design space change in magnitude, resulting in 
variable weights of different LF models. In any area of the 
design space, a larger prior variance indicates greater uncer-
tainty of the corresponding LF model, leading to a smaller 
weight to the fused mean and a less contribution to the trend 
function obtained ultimately.

The result of fusing LF surrogate models is given in 
Fig. 7, in which the black line represents the LF model, 

while the red line represents the fused LF surrogate model 
based on the three LF surrogate models drawn in different 
styles and colors. The fused responses namely the estimates 
of fused mean are computed by the variance-weighted sum 
of the three LF responses. It can be concluded that the fused 
LF surrogate model can reflect the trend of the HF model 
well in most areas of the design space.

Figure 8 shows the comparison results of different mod-
eling methods mentioned above. And the three methods for 
comparison share the same HF and LF design points with 
the proposed VWS-MFS method. Besides, the IHK model is 
also constructed for comparison, which is based on the data 
from the HF model and LF model 1. To keep the same total 
budget, the data to construct the IHK model consist of 6 HF 
design points sharing the same locations with the proposed 
VWS-MFS model and 3 × 10 LF design points selected uni-
formly in the design space. The black line represents the HF 
model which can be regarded as the true model, the filled 

Fig. 5  Illustration of HF and LF models and correlation coefficient

Fig. 6  Illustration of weighting and summing LF variances
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stars represent the HF design points. The red solid line rep-
resents the result using the proposed VWS-MFS model to 
fit this function, and the brown dashed line represents the 
result using the IHK model. Besides, the other three lines in 
different styles and colors denote the approximated functions 
using VWS-HK, MR-MFS, and MLMF-CK, respectively 
using the same design points. It can be concluded that the 
VWS-MFS model constructed by fusing the data from one 
HF model and three LF models achieves great improvement 
in accuracy compared to the IHK model with only one LF 
model taken into consideration. In addition, the proposed 
VWS-MFS model outperforms the other three MF surrogate 

models in most areas of design space. Besides, the proposed 
VWS-MFS model is closer to the true value than the VWS-
HK model verifying that IHK can provide better MSE esti-
mation to obtain prediction values of higher accuracy.

In this example, 2000 test points are generated randomly 
to calculate the values of error metrics. Table 1 shows the 
values of different modeling methods. It can be concluded 
that the MAE and RMSE of the proposed method are both 
smaller than the others. It is also proved that the proposed   
VWS-MFS model performs better in local accuracy and 
global accuracy.

4.2  Additional test examples

4.2.1  Experiments of a series of numerical examples

To demonstrate the effectiveness and merits of the VWS-
MFS model, eight numerical examples with different 
dimensions of design space and numbers of LF models are 
also tested. Table 2 summarizes in the features of the eight 
numerical test examples, including the dimension, number 
of LF models, nonlinear degree, and sampling configurations 
for the HF model and each LF model. The expressions of the 
eight examples are listed in Appendix A. There are two types 
of strategies to select samples for MF surrogate modeling 
methods: the one-shot sampling approach (Jones 2001) and 
the sequential sampling approach (Hao et al. 2018, 2020; 
Peng et al. 2021). The research of sampling approach for 
MF models are is out of the scope of this work. For each test 
problem, the HF and LF data are randomly and uniformly 
generated using Latin hypercube sampling. The number of 

Fig. 7  Illustration of fusing LF surrogate models

Fig. 8  Comparison results of different modeling methods

Table 1  Accuracy comparison of different modeling methods

The best results are marked in bold

VWS-MFS VWS-HK LR-MFS MLMF-CK IHK

MAE 1.4121 3.6556 2.3151 7.4085 5.7882
RMSE 0.4519 1.4957 0.7010 2.5515 2.2189

Table 2  Features of the eight numerical test examples

Example No Dimension Number of 
LF models

Nonlinear 
degree

Design points

1 d = 1 2 Low 5H|20L
2 d = 2 2 Low 10H|40L
3 d = 2 3 Low 10H|60L
4 d = 4 2 High 20H|80L
5 d = 4 3 Low 40H|240L
6 d = 6 3 High 60H|360L
7 d = 8 2 Low 150H|600L
8 d = 10 3 High 200H|1200L
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data for constructing the MF surrogate model depends on 
the dimension and characteristics of the problems. Gener-
ally, the problem with a higher dimension, a higher degree 
of nonlinearity, and a larger number of LF models deserve 
more sample data. Besides, the selection of the number of 
samples concluding HF data and LF data is obtained from 
our previous experience. Precisely, the number of high-
fidelity data is about 5d–20d, where d is the dimension of 
the input design space. And the number of LF data for each 
model is about 4–6 times that of HF data.

Each numerical example is duplicated 100 times at the 
same number of design points to avoid the influence of the 
distribution of design points on the prediction accuracy. For 
each test example, 2000 test points are selected randomly to 
calculated the values of two error metrics. The boxplots of 
the values of MAE and RMSE for different modeling meth-
ods are shown in Fig. 9. The upper (75%) and lower (25%) 
quartile values are included in the boxes. And the solid lines 
that extend from the top and bottom of the box indicate 1.5 
times the inter-quartile range.

As observed in Fig. 9, there are also a few outliers that 
lie out of the range among the results. To make a fair com-
parison, the average values of MAE and RMSE shown as 
horizontal solid lines in the boxes are summarized after 
removing the outliers. The specific values are list in Table 3 
with the smallest one in bold.

As can be seen from Table 3, the results of the VWS-MFS 
model have the smallest values of both MAE and RMSE 
in the eight numerical test examples, namely, the proposed 
method shows the best prediction performance in both global 
accuracy and local accuracy. In general, the proposed VWS-
MFS model method can be promising and effective in most 
function problems.

4.2.2  Effect of the cost ratio of LF to HF models

In this subdivision, the effect of the cost ratio of the LF 
models to the HF model is explored employing a two-dimen-
sional example, Example 3. It is under the assumption that 
the total budget of generating points for the design of experi-
ments (DoE) is fixed. Besides, the cost of generating one HF 
design point is fixed as well, while the cost of generating one 
LF design point varies with the cost ratio. For a single-fidel-
ity surrogate model, the number of total HF design points is 
set to be k × d , where d is the dimension of the design space 
and k is a self-defined constant. To construct a MF surrogate 
model, the number of HF design points is assumed to be 
l × d(l < k) and l is a self-defined constant, and the remain-
ing (k − l) × d simulations are allocated to generating more 
LF design points. It is noted that the value of k and l are 
obtained from experience. The total cost ratio of LF to HF 
models is �0 . Thus the number of total LF design points is 
(k − l) × d

/
�0 . It is assumed that the cost ratio is the same for 

each LF model. Therefore, the number of LF design points is 
(k − l) × d∕� for each LF model, where � = m × �0 denotes 
the cost ratio of each LF model to the HF model and m indi-
cates the number of LF models.

In addition, 4/5 of the total budget is allocated to HF design 
points, while the remaining 1/5 of the total budget is allocated 
to LF design points. And the value of k is set to be 5, thus the 
total budget is going to be 10 to keep the same with the number 
of HF design points in subsection 4.2.1 ensuring enough design 
points to construct the MF surrogate model. In other words, 
the total number of HF design points is 10 for a single-fidelity 
surrogate model. In the process of constructing a MF surrogate 
model for Example 3, the number of HF design points is 8, 
while the number of LF design points is 2∕�

(
� = m × �0

)
 for 

each LF model. To better explore the effect of cost ratio �0 on 
the prediction performance of the MF surrogate model, eight 
values of �0 are compared, and the values of � are 0.25, 0.2, 
0.1, 0.05, 0.04, 0.025, 0.02, and 0.01. Thus, the correspond-
ing values of �0 are 0.083, 0.067, 0.033, 0.016, 0.013, 0.0083, 
0.0067 and 0.0033. The detailed sampling configurations of the 
HF model and each LF model for different values of cost ratio 
for Example 3 are listed in Table 4.

Figure 10 shows the effect of different cost ratios on 
the prediction performance of the proposed VWS-MFS 
model for Example 3 employing two error metrics. It can 
be observed that the values of MAE and RMSE go down as 
the cost ratio �0 decreases from 0.083 to 0.013. In addition, 
when the cost ratio �0 continues decreasing after less than 
0.013, the MAE and RMSE tend to be constant values. That 
is, with the cost ratio �0 decreasing, the number of LF design 
points is increasing, which enables more LF information 
provided to VWS-MFS to reflect the trend of real response. 
Thus, the accuracy of VWS-MFS is improved gradually. It 
hits the peak when �0 = 0.013 . And then the reduction of 
the cost ratio �0 cannot make the performance to be better.

To better evaluate the LF information provided, Fig. 11 
illustrates the maximum values of MAE and RMSE for all 
the three LF models when only LF design points are used. 
It can be observed that when the cost ratio �0 decreases from 
0.083 to 0.013 which means the number of LF design points 
of each LF model increases from 8 to 50, the maximum val-
ues of MAE and RMSE go down and the decline is becom-
ing more and more gentle until they reach constant values. 
It means that when the number of LF design points of each 
LF model reaches 50, the LF information available becomes 
saturated and the surrogate model built only by LF design 
points is close enough to the real LF models. No more LF 
information can be provided by increasing the number of LF 
design points. That explains why the performance of the MF 
surrogate model cannot be improved anymore when the cost 
ratio �0 decreases after less than 0.013.

It can be concluded that when the total budget of generat-
ing points and the allocation to the HF model are fixed, the 
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Fig. 9  Boxplots of the values of 
MAE and RMSE for different 
modeling methods
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Fig. 9  (continued)
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decrease of the cost ratio �0 in a certain range contributes to 
providing more useful LF information, obtaining an ultimate 
improvement in the performance of VWS-MFS.

4.2.3  Effect of the diverse combinations of HF and LF 
design points

In this subdivision, the effect of diverse combinations of HF 
and LF design points is explored employing a two-dimen-
sional example and a ten-dimensional example, Examples 3 
and8. It is under the same assumption as the last subdivision 

that the total budget of generating design points is limited. 
And the value of k is set to be 5 for Examples 3 and 20 for 
Example 8. For better illustration of the effect of diverse 
combinations of HF and LF design points, the value of the 
cost ratio � is set to be 0.125 and the �0 is set to be 0.042.

For Example 3, the allocation cases of the total budget for 
generating HF design points of the single-fidelity surrogate 
is named “3-2”, “3.5-1.5”, “4-1”, “4.5-0.5”, respectively. 
The total budget for Example 3 can run 5d = 10 HF simula-
tions. The case “3-2” means that the 3/5 budget is allocated 
to generate the HF design points, while the remaining 2/5 
budget is allocated to generate the LF design points. In other 

Table 3  Accuracy comparison 
of different modeling methods

The best results are marked in bold

Example No VWS-MFS VWS-HK LR-MFS MLMF-CK

1 MAE 0.2137 1.0171 2.8654 1.8250
RMSE 0.0511 0.3489 0.8552 1.2687

2 MAE 2.2366 4.3319 4.7129 27.9555
RMSE 0.7326 1.0211 0.8696 6.5958

3 MAE 0.0042 0.0142 0.1019 0.1453
RMSE 0.0010 0.0028 0.0966 0.03901

4 MAE 0.4999 0.5469 1.0921 6.3531
RMSE 0.0791 0.0878 0.2094 1.3112

5 MAE 16,179.5348 37,696.5633 122,873.5643 95,956.4880
RMSE 2804.8701 4734.0451 28,979.2420 21,271.0585

6 MAE 1.0173 2.7223 7.5658 10.3098
RMSE 0.2072 0.3895 1.6842 2.1475

7 MAE 626.4299 716.8855 850.1480 5387.9113
RMSE 59.8304 72.50199 88.2305 201.1041

8 MAE 8.5113E+7 3.2998E+8 6.7283E+9 5.7282E+11
RMSE 7.9317E+6 2.7578E+7 9.3096E+7 7.2720E+10

Table 4  Sampling 
configurations for Example 3

�
0

0.083 0.067 0.033 0.016 0.013 0.0083 0.0067 0.0033

Samples HF 8 8 8 8 8 8 8 8
LF 8 10 20 40 50 80 100 200

Fig. 10  Comparison of different cost ratios
Fig. 11  Maximum values of MAE and RMSE for LF models
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words, the number of HF and LF design points for each 
model are 6 and 32, respectively. The same goes for the other 
cases. For Example 8, the nine allocation cases of the total 
budget for generating HF design points of the single-fidelity 
surrogate is named “4-6”, “4.5-5.5”, “5-5”, “5.5-4.5”, “6-4”, 
“6.5-3.5”, “7-3”, “7.5-2.5”, “8-2”, respectively. The total 
budget for Example 3 can run 20d = 200 HF simulations. 
The case “4-6” means that the 4/10 budget is allocated to 
generate HF design points, with the remaining 6/10 budget 
allocated to generate LF design points. In other words, the 
number of HF and LF design points for each model are 80 
and 960, respectively. The same goes for the other cases. 
Tables 5 and 6 summarized the detailed allocations of sam-
ples for diverse combinations of design points for the HF 
model and each LF model in Example 3 and 8, respectively.

Figure 12 shows the effect of diverse combinations of HF 
and LF design points on the prediction performance of the 
proposed VWS-MFS model for Example 3 and 8 using MAE 
and RMSE to indicate the variation of accuracy.

For Example 8, VWS-MFS performs better with the num-
ber of the HF design points increasing from 80 to 120, and 
the decline is becoming more and more gentle. During this 
stage, the increasing HF design points provide more HF data 
to modify the LF approximation model to ensure the mod-
eling accuracy. Although the number of LF design points 
decreases, the negative impact on the accuracy is much 
smaller than the positive impact brought by the HF data. 
However, this leads to the decline more and more gentle.

Ultimately, when the number of HF design points reaches 
120, the performance of VWS-MFS becomes worse as the 
number of HF design points increases and the number of 
LF design points decreases. This is because the negative 
impact brought by decreasing LF design points becomes 
larger than the positive impact brought by the increasing 
HF design points. During the stage where the number of HF 
design points is larger than 120, the fewer LF data maybe 
not enough to reflect the trend of real response, or the HF 

information available may begin to be saturated. Thus, this 
results in poor accuracy of VWS-MFS.

For Example 3, VWS-MFS performs better with the num-
ber of the HF design points increasing from 6 to 8 but worse 
when it increases to 9, which shows the same trend with 
Example 8. The performance of VWS-MFS hits the best 
when the number of HF design points and LF design points 
is 8 and 16, respectively. In this case, the HF data to ensure 
the modeling accuracy and the LF data to reflect the trend 
of real response achieve the balance.

The black dot dash lines in Fig. 12 indicate the single-
fidelity surrogate model built only by HF design points 
using the Kriging model. The number of HF design points 
for Examples 3 and 8 are 8 and 100 in the same total budget 

Table 5  Sampling configurations for Example 3

Cases 1 2 3 4
3-2 3.5-1.5 4-1 4.5-0.5

Samples HF 6 7 8 9
LF 32 24 16 8

Table 6  Sampling 
configurations for Example 8

Cases 1 2 3 4 5 6 7 8 9
4-6 4.5-5.5 5.5 5.5-4.5 6-4 6.5-3.5 7-3 7.5-2.8 8-2

Samples HF 80 90 100 110 120 130 140 150 160
LF 960 880 800 720 640 560 480 400 320

Fig. 12  Comparison of diverse combinations of HF and LF design 
points
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as the VWS-MFS model. Obviously, VWS-MFS performs 
better than the HF Kriging model except for the first case.

It can be concluded that when the total budget of gen-
erating points is fixed, an appropriate combination of HF 
and LF design points can strike a balance between them, 
ultimately improve the performance of VWS-MFS to the 
maximum extent.

4.3  Engineering case

In this subsection, the implementation of the proposed 
VWS-MFS is demonstrated on the prediction problem of a 
long cylinder pressure vessel for the compressed natural gas 
from Zhou et al. (2016) to verify the engineering applica-
bility. The corresponding geometry, model parameters, and 
loading force of the long cylinder pressure vessel are shown 
in Fig. 13.

In the design process of the cylinder pressure vessel for 
the compressed natural gas, the less total consumption of 
the manufacturing material, the better. There are five inde-
pendent design variables: the inside diameter of end part 
r1 , the inside diameter of body part r2 , the thickness of end 
part t1 , the thickness of body part t2 , and the height of end 
part h1 . And the respective range of the above five design 
variables is list in Table 7, while other parameters are preset 
and maintain unchanged. The long cylinder pressure vessel 
is subject to the action of an evenly distributed loading force 

P = 23MPa . The Poisson’s ratio and Young’s modulus are 
� = 0.3 and E = 207MPa , respectively. The total consump-
tion of the manufacturing material f  can be computed using 
the following mathematical equation:

However, the Von Mises stress will change according to 
the five design parameters. In addition, the maximum Von 
Mises stress is limited by the maximum allowable stress 
with the value �max = 250MPa . The stress constraint can be 
expressed in the following form:

However, the maximum Von Mises stress � of the long 
cylinder pressure vessel cannot be calculated analytically. 
Therefore, the proposed VWS-MFS is employed to approxi-
mate the relationship between the design variables and the 
stress response. In this study, ANSYS 18.0 is used as a simu-
lation tool to obtain the stress response. In addition, MAT-
LAB R2017a is utilized to change the values of five design 
variables in the source file to call the simulations.

In this prediction problem, one HF model and two LF 
models are available. Considering the symmetry shape of the 
long cylinder pressure vessel, the axial symmetry 3-D finite 
element model with Hexahedral meshes with 5 mm mesh 
size is chosen as the HF model, while the mesh size is set as 
40 mm for the first LF model. And the second LF model is 
a 1-D finite element model with 10 mm mesh size. The grid 
models and corresponding simulation analysis results are 
depicted in Fig. 14, respectively.

For comparison, the VWS-HK, LR-MFS, and MLMF-
CK are also constructed to integrate data from the simula-
tion models. In this engineering case, one simulation for 
3-D HF model took approximately 25.5008 s on a Inter(R) 
CORE(TM) i9-9820X CPU (3.3 GHz) computer, while 
3.9923 s for the 3-D LF model and 3.8836 s for the 1-D 
LF model. The cost ratios are both approximately 6.5. The 
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Fig. 13  Schematic diagram of the long cylinder pressure vessel

Table 7  Sampling configurations for the long cylinder pressure vessel

Design variables Range/mm

the inside diameter of end part r
1

40–50
the inside diameter of body part r

2
165–205

the thickness of end part t
1

19–27
the thickness of body part t

2
13–23

the height of end part h
1

280–320
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numbers of HF and LF design points are 25 and 50, respec-
tively. And 25 test points are chosen randomly to calculate 
the error metrics MAE and RMSE of the four MF surrogate 
models. The VWS -HK, LR-MFS, and MLMF-CK share 

the same HF and LF design points. Table 8 lists the accurate 
results of the values of two error metrics for the different 
methods. It is found that the proposed VWS-MFS method 
provides the most accurate surrogate model, in which both 

Fig. 14  HF and LF models of the cylinder pressure vessel
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the values of MAE and RMSE are the smallest. To keep 
the same total budget, the number of design points for the 
Kriging model with single fidelity constructed only based 
on HF data is (25 + ((100/6.5)), which approximately equals 
to be 40. It can be observed that the proposed VWS-MFS 
method performs better than the Kriging model with single 
fidelity, which verified the usefulness of the LF information. 
In addition, the values of MAE and RMSE for the Krig-
ing model obtained by 100 design points are 7.7131 and 
2.0539 respectively, which still show a little bit of distance 
to reach the same accuracy with the proposed VWS-MFS 
method. Compared to the Kriging model with single fidelity, 
the VWS-MFS method can save the computational cost by 
more than 59.61%.

Take the MAE and RMSE of MLMF-CK as the reference 
values, the percentages of improvement in corresponding 
local and global accuracy for each surrogate model can be 
obtained as relative values to reflect the performance more 
intuitively. The relative values of accuracy improvement for 
the other three methods are illustrated in Fig. 15. The column 
filled with an orange dense pattern indicates the percentage 
of improvement in local accuracy which is calculated by the 
value of MAE. And the green one indicates the improvement 
of global accuracy calculated by the value of RMSE. It can be 
concluded that the proposed method achieves the maximum 
improvement with the local accuracy improved by 82.71% 
and the global accuracy improved by 81.29%.

The HF simulation responses and prediction responses 
of test points based on different MF modeling methods 
are shown in Fig. 16. The dashed line denotes the ideal 

prediction responses, where the prediction responses are 
equal to the HF simulation responses at test points. The 
points with diverse colors and symbols indicate the predic-
tion responses of diverse MF surrogate models. The predic-
tion response is closer to the HF simulation result as the 
point is nearer to the dashed line, which indicates the MF 
surrogate model with more accurate prediction performance. 
It can be concluded that the proposed VWS-MFS performs 
better than the other methods at most points, which has veri-
fied its engineering applicability as well.

5  Conclusion

In this work, the VWS-MFS method is developed to con-
struct the MF surrogate model by incorporating the multiple 
non-hierarchical LF data with HF data, in which the avail-
able information is fully utilized. Since the uncertainties of 
non-hierarchical LF data are characterized and weighted by 
variance, the proposed method enables the fidelity of the LF 
data to change throughout the design space, which relaxes the 
fidelity assumption of hierarchical relationships among LF 
models. In addition, the IHK model is adopted to fuse the HF 
data making it possible to provide a more precise estimation.

The performance of the proposed VWS-MFS method is 
demonstrated and explored using nine numerical test examples 
with different properties, where three different MF surrogate 
models (VWS-HK, LR-MFS, and MLMF-CK) are utilized for 
comparison. Several conclusions can be drawn from the above 
comparisons: (1) Given the same number of design points, 
the proposed VWS-MFS method shows the best prediction 
performance for both local accuracy and global accuracy 
verifying the effectiveness. The values of error metrics have 
been reduced by 50% or more in most function problems. (2) 

Table 8  Accuracy comparison of different modeling methods

The best results are marked in bold

VWS-MFS VWS-HK LR-MFS MLMF-CK Kriging

MAE 5.3552 17.0562 12.9310 26.1954 31.7777
RMSE 1.9742 6.0726 5.1719 10.5554 15.1475

Fig. 15  Relative percentages of improvement in local and global 
accuracy

Fig. 16  True and predicted responses at the validation points
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With the total budget and allocation to the HF model fixed, 
the decrease of the cost ratio in a certain range contributes to 
providing more useful LF information, obtaining an ultimate 
improvement in the prediction performance. The accuracy 
of the MF surrogate model achieved the best when the cost 
ratio �0 is approximately equal to 0.013 for the two-dimension 
numerical example above. (3) With the total budget of generat-
ing points and the cost radio fixed, an appropriate combina-
tion of HF and LF design points can strike a balance between 
them, ultimately improve the performance to the maximum 
extent. Finally, the prediction problem of a long cylinder pres-
sure vessel, with the stress responses of the HF model and two 
LF models obtained from finite element models with different 
mesh sizes and dimensions, demonstrated that the accuracy of 
VWS-MFS improved by 80% around compared to the MLMF-
CK method existed, which proved that the proposed VWS-
MFS method is an efficient and feasible approach in support 
of the design of engineering products. It is expected to work 
under more given prediction problems of engineering cases.

It is noted that the proposed method is based on the 
assumption that the LF models are independently neglect-
ing the covariance between LF models. The main reason is 
that compared to the covariance between HF and LF models, 
the effects of covariance among LF models have less effect 
on the prediction performance of the MF surrogate model. 
However, the effect of covariance among LF models is not 
always small enough to be ignored in some cases. Under 
these circumstances, the ignorance of the covariance may 
result in the loss of some important information of LF data, 
leading to the deterioration of the accuracy of the MF surro-
gate model. As part of the future work, the proposed method 
will consider the correlation between LF models.

Appendix A

The expressions of eight examples used in Subsect. 4.2 are listed.
Example 1 

Example 2 

Example 3 
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1
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Example 6 

Example 7 

Example 8 
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