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Abstract
In numerical simulations, a high-fidelity (HF) simulation is generally more accurate than a low-fidelity (LF) simulation, while 
the latter is generally more computationally efficient than the former. To take advantages of both HF and LF simulations, 
a multi-fidelity surrogate (MFS) model based on moving least squares (MLS), termed as adaptive MFS-MLS, is proposed. 
The MFS-MLS calculates the LF scaling factors and the unknown coefficients of the discrepancy function simultaneously 
using an extended MLS model. In the proposed method, HF samples are not regarded as equally important in the process 
of constructing MFS-MLS models, and adaptive weightings are given to different HF samples. Moreover, both the size of 
the influence domain and the scaling factors can be determined adaptively according to the training samples. The MFS-
MLS model is compared with three state-of-the-art MFS models and three single-fidelity surrogate models in terms of the 
prediction accuracy through multiple benchmark numerical cases and an engineering problem. In addition, the effects of 
key factors on the performance of the MFS-MLS model, such as the correlation between HF and LF models, the cost ratio 
of HF to LF samples, and the combination of HF and LF samples, are also investigated. The results show that MFS-MLS is 
able to provide competitive performance with high computational efficiency.
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1  Introduction

Numerical simulations have been widely used in the engi-
neering design and optimization to facilitate quick explora-
tion of design alternatives and obtain the optimal design. 
However, it is still challenging to deal with complex sys-
tems relying exclusively on numerical simulations due to 
the fact that the computational cost of high-fidelity (HF) 
simulations can be tremendous in spite of advances in com-
puter capacity and speed nowadays (Viana et al. 2014). For 
example, it can take weeks to obtain the desired rollover 
crashworthiness and lightweight bus structure by applying 
an optimization algorithm directly to the simulations (Bai 

et al. 2019). In fact, due to the lengthy running times of 
HF simulations, almost any optimization algorithm applied 
directly to the simulations will be slow (Forrester et al. 
2008). An efficient way to speed up the design optimiza-
tion process is to employ inexpensive surrogate models to 
replace the time-consuming HF simulations. Surrogate mod-
els are built, using data drawn from a small number of simu-
lations, to provide fast approximations of the relationship 
between system inputs and outputs. There are many popular 
surrogate modeling techniques, which can be divided into 
two categories according to whether the surrogate model 
passes through the sample points. If the surrogate models 
pass through all of the sample points, these techniques fall 
into the category of interpolation, such as radial basis func-
tion (RBF) (Fang and Horstemeyer 2006; Majdisova and 
Skala 2017) and kriging (KRG) (Hao et al. 2018; Sacks 
et al. 1989). Otherwise, they will be regression, for exam-
ple, polynomial response surface (PRS) (Kleijnen 2008; 
Myers et al. 2016), moving least squares (MLS) (Lancaster 
and Salkauskas 1981; Wang 2015), support vector regres-
sion (SVR) (Smola and Schölkopf 2004; Clarke et al. 2005) 
and artificial neural networks (ANN) (Basheer and Hajmeer 
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2000; Napier et al. 2020). Each of these surrogate techniques 
has its own advantages and disadvantages, and it has been 
shown that there is no single surrogate technique that was 
found to be the most effective for all problems (Goel et al. 
2007). More details and comparison of these techniques can 
be found in the literature (Jin et al. 2001; Wang and Shan 
2007; Krishnamurthy 2005). Among the above-mentioned 
surrogate techniques, MLS is reported to be a very success-
ful approximation scheme with advantages of high accuracy 
and low computational cost (Krishnamurthy 2005; Li et al. 
2012), on the basis of which, it has been widely used in the 
engineering fields, such as structure reliability analysis (Lee 
et al. 2011; Lü et al. 2017), optimization for metal forming 
process (Breitkopf et al. 2005), and solar radiation estima-
tion (Kaplan et al. 2020). Although a surrogate model saves 
an amount of computational resources, it still necessitates 
sufficient HF simulations to build the surrogate and ensure 
its accuracy, which tends to be unaffordable especially with 
increasing problem size. To address this challenge, multi-
fidelity surrogate (MFS) models were proposed and have 
drawn much attention in the last two decades as they hold 
the promise of achieving the desired accuracy at a lower cost 
(Fernández-Godino et al. 2019).

Multi-fidelity surrogate is constructed by fusing many 
low-fidelity (LF) samples and a few HF samples. It is 
assumed that HF samples are more accurate than LF sam-
ples, but at a higher computational cost so that multiple 
evaluations of HF samples often cannot be afforded. LF 
samples, on the contrary, are cheaper than HF samples, but 
not as accurate as HF samples, though they could reflect the 
primary characteristics of the physical system. Moreover, it 
is worth noting that there is no clear boundary between the 
HF and LF samples. Whether a sample is HF or LF depends 
on the problem, and it can be determined based on the accu-
racy and cost against other fidelities (Fernández-Godino 
et al. 2019). For instance, the results obtained from experi-
ments can be considered as HF samples, while the results 
from simulations as LF samples; on the other hand, results 
from simulations could also be regarded as HF as long as LF 
samples have even lower accuracy and cost. There are sev-
eral ways to obtain LF samples, such as employing a simpler 
physical model, adopting a finite element model with coarse 
meshes, and reducing the dimensionality of the problem, etc.

The most popular approaches used for MFS are called 
correction-based approaches (Han and Görtz 2012; 
Fernández-Godino et al. 2016) or scaling function-based 
approaches (Zhou et al. 2017; Hao et al. 2020) which can be 
divided into three types: multiplicative, additive, and com-
prehensive approaches. MFS based on the multiplicative 
approach is constructed via multiplying the LF surrogate 
by a correction function, which denotes the ratio between 
HF and LF samples at the same locations. Multiplicative 
approach was first proposed by Haftka (1991) to develop 

the global–local approximations (GLA) method with the 
aim of combining the advantages of both global and local 
approximations. Later, this approach was termed the variable 
complexity modeling technique and adopted by Hutchison 
et al. (1994), suggesting the use of a constant correction 
function for an approximation, and the constant correction 
function was calculated using a Taylor series expansion. 
Alexandov et al. (2001) constructed an MFS model using 
multiplicative corrections to solve aerodynamic optimization 
problems. Furthermore, Liu et al. (2014) adopted a kriging 
model, instead of a constant, as the correction function to 
calibrate the LF model. It should be noted, however, that the 
multiplicative approach might be ineffective if the values 
of the LF model are close to zero at some locations. This 
property, to some extent, has limited its application to design 
optimization, especially for constrained problems where a 
solution often locates at the constraint boundary, that is, the 
value of the constraint function (or surrogate) will be zero. 
Then, the additive approach was proposed to avoid the prob-
lem of division by zero occurred in multiplicative approach.

Multi-fidelity surrogate based on the additive approach 
is constructed by combining an LF surrogate with a dis-
crepancy function, which models the difference between 
LF and HF samples. Eldred et al. (2004a, b) compared the 
performance of additive and multiplicative corrections in 
multi-fidelity surrogate-based optimization and showed that 
additive corrections were preferable to multiplicative correc-
tions. Sun et al. (2011) employed an MFS using the additive 
approach, in which an MLS surrogate was built for the LF 
model and a PRS surrogate for the discrepancy function, to 
optimize sheet metal forming process. Zhou et al. (2015) 
used two SVR surrogates, representing the LF model and the 
discrepancy function, respectively, to build an MFS model. 
Since the additive approach has a simple form and is more 
robust than the multiplicative approach, it has been widely 
used in engineering optimization (Berci et al. 2014; Absi 
et al. 2019; Batra et al. 2019). A significant improvement in 
accuracy was achieved by combining the additive and multi-
plicative approaches, which leads to one of the most popular 
frameworks for MFS, namely the comprehensive approach. 
It is this approach that constitutes one pillar for the construc-
tion of co-kriging (Forrester et al. 2007). The other pillar 
of the co-kriging, an effective MFS method, is the corre-
lated Gaussian process-based approximation which contains 
the information of LF and HF samples. Han et al. (2013) 
introduced the gradient information to co-kriging. Apart 
from kriging-based MFS, other MFS techniques under the 
comprehensive framework have been attracting interest as 
well. Mainini and Maggiore (2012) constructed multiple LF 
and HF models, and selected the best ones to build an MFS 
model. Zhang et al. (2018) proposed an MFS model based 
on linear regression (LR), named LR-MFS, by considering 
the LF model as an additional monomial in the MFS with the 
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scaling factor as a regression coefficient. Tao et al. (2019) 
introduced a deep learning-based MFS to robust aerody-
namic design optimization. Durantin et al. (2017) proposed 
an MFS model based on RBF, which optimized the param-
eters by minimizing leave-one-out (LOO) cross-validation 
(CV) error. Song et al. (2019) combined the scaled LF model 
with a discrepancy function using two RBF surrogates in 
an MFS model and obtained a closed-form solution for the 
coefficients. Although efforts have been made to develop the 
MFS models, there is still space for investigating other MFS 
models to expand the arsenal of MFS models.

In this work, we proposed a simple and yet powerful MFS 
based on moving least squares, which is called adaptive 
MFS-MLS. The proposed MFS-MLS model is constructed 
using the comprehensive approach, which includes an LF 
scaling factor and a discrepancy function. In MFS-MLS, 
the scaling factor is a function of location and is multiplied 
with the LF model. The discrepancy function, modeling the 
difference between HF responses and the scaled LF model, 
is represented by an MLS model which consists of a linear 
combination of monomial basis functions. To compute the 
scaling factor and the coefficients of the basis functions, 
the predictions of the LF model and the basis functions are 
integrated into a matrix. Then, the scaling factor and the 
coefficients are correspondingly integrated into a coefficient 
vector and calculated by weighted least squares minimizing 
the error between the HF response and the prediction of 
the MFS-MLS. In addition, a new strategy was proposed to 
determine the size of the influence domain automatically. 
The MFS-MLS model allocates different weightings to HF 
samples within the influence domain, which distinguishes 
itself from global MFS models.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the details of the proposed MFS-MLS model. 
Comparisons between the proposed model and three MFS 
and three single-fidelity models on some benchmark numeri-
cal examples are given in Sect. 3. In Sect. 4, the MFS-MLS 
is applied to an engineering problem to further verify its 
effectiveness and applicability in dealing with practical 
problems. Conclusions and future work are drawn in Sect. 5.

2 � The adaptive MFS‑MLS methodology

The proposed MFS-MLS model is constructed using the 
comprehensive approach. The MFS-MLS model is adap-
tive because it can not only determine the size of influence 
domain automatically according to sample points, but also 
can determine the varying scaling factors at the prediction 
sites.

2.1 � Adaptive MFS‑MLS model

The comprehensive approach, possessing the advantages of 
additive and multiplicative approaches, has more flexibility 
and higher accuracy. Therefore, the comprehensive approach 
is employed in this paper and can be expressed as follows:

where x represents design variables in the design space, and 
yH(x) and yL(x) denote the responses of HF and LF models, 
respectively. � is a scaling factor and plays an important 
role in approximating multi-fidelity data, d(x) represents 
the difference between the scaled LF responses and the HF 
responses, called discrepancy function. The discrepancy 
function could be smoothed by selecting an appropriate scal-
ing factor. The details about how a scaling factor improves 
multi-fidelity prediction can be found in the literature (Park 
et al. 2018).

The proposed MFS-MLS model is based on the MLS, 
thus, we give a brief introduction about MLS, more details 
about MLS, such as the derivation of equations, can be 
found in the literature (Lee et al. 2011; Lü et al. 2017; Bre-
itkopf et al. 2005).

Moving least squares is a successful approximation 
scheme with advantages of both high accuracy and low 
computational cost (Krishnamurthy 2005; Li et al. 2012). In 
essence, MLS is an extension of the polynomial regression; 
however, there exist two significant differences from the tra-
ditional polynomial regression: (1) MLS recognizes that all 
sample points may not be equally important in estimating 
the regression coefficients. Therefore, each squared residuals 
are given a weighting when constructing the loss function. 
In addition, the weightings are varied depending upon the 
distance between the point to be predicted and each observed 
data point. (2) Unlike the traditional polynomial regression, 
the coefficients of an MLS model are not constant anymore, 
they are functions of input x . At each prediction point xnew , 
the coefficients are calculated using sample points within 
the neighborhood of the point xnew . This neighborhood is 
referred to as the influence domain of the point xnew , and 
the samples outside the influence domain are not consid-
ered. This method is termed moving least squares because 
the influence domain is “moving” as the prediction point 
changes.

Inspired by MLS, the MFS-MLS model based on the 
comprehensive correction can be built by the following 
equation:

(1)yH(x) = �yL(x) + d(x)

(2)
ŷH(x) = a0(x)yL(x) +

m∑
i=1

ai(x)pi(x)

= a(x)Tp(x)
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where a0(x) is the scaling function for the LF model yL(x) , 
note that a0(x) is not a constant, but rather a function of 
design variables x , which provides more flexibility to the 
MFS-MLS model. pi(x) is the monomial basis function, ai(x) 
the coefficient of the basis function, and m is the number of 
terms in the basis.

In the MFS-MLS model, the conventional basis function 
vector of an MLS model is augmented as an integrated vec-
tor p(x) = [yL(x)p1(x)… pm(x)]

T . a(x) is an augmented coef-
ficient vector constituted by a0(x) and ai(x), i = 1,2,… ,m . 
Note that a0(x) is the counterpart of � in Eq. (1) and the term ∑m

i=1
ai(x)pi(x) of the MFS-MLS model is equivalent to the 

discrepancy function d(x) of Eq. (1).
In the absence of specific knowledge about the character-

istics of the real function, linear and quadratic monomials 
are often employed as the basis functions, e.g., a full quad-
ratic basis in a two-dimensional (2D) space is of the form: 
∼
p (x) = [1x1x2x

2

1
x1x2x

2

2
]
T . Therefore, the integrated vector 

p(x) can be represented by p(x) = [yL(x)
∼
p (x)]

T

.
To compute coefficient vector a(x) , a cost function J(a) 

that is a sum of weighted discrete L2 norms should be 
minimized:

where xj(j = 1,2,… , nH) are the nH HF sample points in 
the neighborhood of the evaluation point x , w(x − xj) is the 
weight function of the HF samples. The commonly used 
weight functions are Gaussian function, the cubic spline, 
the exponential function, and the quartic spline. The details 
about weight functions and identification of the size of the 
influence domain will be discussed in Sect. 2.2.

Essentially, Eq. (3) is a quadratic form so that it can be 
rewritten in the matrix form as follows:

where

and

(3)

J(a) =

nH∑
j=1

w
(
x − xj

)[
ŷH

(
xj
)
− yH

(
xj
)]2

=

nH∑
j=1

w
(
x − xj

)[
a(x)Tp(x) − yH

(
xj
)]2

(4)J(a) =
(
�a − yH

)T
W(x)

(
�a − yH

)

(5)yH =
[
yH

(
x1
)
yH

(
x2
)
… yH

(
xnH

)]T

(6)P =

⎡
⎢⎢⎢⎣

yL
�
x1
�

p1
�
x1
�

… pm
�
x1
�

yL
�
x2
�

p1
�
x2
�

… pm
�
x2
�

⋮ ⋮ ⋱ ⋮

yL
�
xnH

�
p1
�
xnH

�
… pm

�
xnH

�

⎤⎥⎥⎥⎦

Taking the derivatives of Eq. (4) w.r.t a(x) and setting to 
zero, we have

where matrices �(x) and �(x) are

Hence, we obtain

Substituting a(x) into Eq. (2), the MFS-MLS approxima-
tion ŷH(x) , can be obtained as

2.2 � Weight function and the size of influence 
domain

Both the weight function and the size of influence domain 
have crucial impacts on the performance of the MLS (Lü 
et al. 2017), since the MFS-MLS is based on the MLS, it 
is reasonable to choose the weight function and the size of 
influence domain carefully in the process of constructing 
an MFS-MLS model. In this study, we selected the popular 
exponential function as the weight function and proposed a 
straightforward strategy to identify the size of the influence 
domain automatically.

The exponential function is adopted as the weight func-
tion and can be expressed by:

The size of the influence domain is determined by Euclid-
ean distance s which depends on the number of terms in the 
basis function. Let s = ‖‖‖x − xj

‖‖‖ , which denotes the Euclid-
ean distance between the evaluation point x and jth HF sam-
ple point xj ⋅ s = s∕sk , let s1, s2,… , sk,… , snH be the list of 
Euclidean distances between the evaluation point x and all 
the HF sample points, sorted in ascending order. In this way, 
sk represents the kth largest Euclidean distance. The sub-
script k, representing the number of terms in the basis func-
tion, is given in Table 1. Therefore, the size of influence 
domain is determined by Euclidean distance s and s depends 

(7)W(x) =

⎡
⎢⎢⎢⎣

w
�
x − x1

�
0 … 0

0 w
�
x − x2

�
… 0

⋮ ⋮ ⋱ ⋮

0 0 … w
�
x − xnH

�

⎤
⎥⎥⎥⎦

(8)A(x)a(x) = B(x)yH

(9)A(x) = PTW(x)P

(10)B(x) = PTW(x)

(11)a(x) = A−1(x)B(x)yH

(12)ŷH(x) = pT(x)A−1(x)B(x)yH

(13)w
(
s
)
=

{
e−(2s)

2

, s ≤ 1

0, s > 1
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on k. Taking a 2D problem as an example, from Fig. 1, it can 
be observed that the influence domain is centered at the 
evaluation point, and the radius of the influence domain is 
the kth largest Euclidean distancesk.

The basis functions in an MFS-MLS model consists of 
n + 1 linear monomials or (n + 1)(n + 2)/2 quadratic monomi-
als. The number of unknown coefficients of an MFS-MLS 
model are n + 2 or (n + 1)(n + 2)/2 if the linear or quadratic 
monomials are employed as basis functions, respectively. 
Therefore, n + 2 or 1 + (n + 1)(n + 2)/2 HF samples are suffi-
cient to identify the coefficients of an MFS-MLS model, the 
radius of the influence domain can be set as the kth largest 
Euclidean distance between the evaluation point x and all 
the HF sample points. The HF samples outside the influ-
ence domain are not involved in the calculation. However, 
if the number of HF samples is so scarce that nH < k , then 
all the HF samples are included in the influence domain. 
This implies that it needs more and more samples for high-
dimensional problems, otherwise the proposed strategy will 
turn the MFS-MLS model from local to global, which will 
incur a decline in the performance.

3 � Numerical examples

To evaluate the performance of the MFS-MLS model, the 
MFS-MLS model is compared with three state-of-the-art 
benchmark MFS models (i.e., CoRBF proposed by Durantin 

et al. (2017), LR-MFS proposed by Zhang et al. (2018), and 
MFS-RBF proposed by Song et al. (2019)) and three single-
fidelity surrogate models (i.e., PRS, RBF, and MLS) on a 
number of widely used numerical test functions and one 
engineering problem.

Among the three benchmark MFS models, however, it 
should be noted that since the source code of CoRBF is not 
available, some specific parameters may be different from 
those in the original one. For the LR-MFS model, a first-
order PRS is used to approximate the discrepancy function. 
For the three single-fidelity models, the SURROGATES 
Toolbox (Viana 2010) is employed to conduct the compara-
tive experiments.

3.1 � Design of experiments

Design of experiments (DOE) is the sampling plan in design 
space, which is generally the first step in the process of 
building a surrogate model. Among many available DOE 
techniques, Latin hypercube sampling (LHS) is chosen in 
this paper to generate samples due to its great capability of 
generating near-random samples uniformly. More specifi-
cally, for all surrogate models in this paper, the lhsdesign 
function, a Matlab built-in sampling function, is adopted to 
generate samples.

In this paper, it is assumed that the number of HF sam-
ples, used for building a single-fidelity surrogate model, is 
m × n, where n is the dimension of the problem and m is a 
user-defined value. To compare the performance of MFS 
models and single-fidelity surrogate models fairly, the total 
computational budget of samples for building these two 
kinds of surrogate models is supposed to be equal. There-
fore, to build an MFS model, the number of HF samples is 
set to k × n (k < m), and the remaining (m–k) × n HF budget 
is replaced by more LF samples via cost ratio θ. The cost 
ratio of HF samples to LF samples means that the cost of 
evaluating θ LF samples is tantamount to that of evaluating 
one HF sample. Taking a 2D problem as an example, if m 
is set to 5 and cost ratio θ set to 20, then the total budget to 
build a surrogate model is 10 HF samples. Thus, we can use 
either 10 HF samples, 200 LF samples, or any combinations 
as shown in Table 2.

Table 1   Basis functions and the 
number of HF samples within 
the influence domain

n is the number of design vari-
ables

Basis function k

linear 2 + n
quadratic 1 + (n + 1)

(n + 2)/2

Fig. 1   Illustration for weight function and influence domain

Table 2   Combination of HF and LF samples (for a 2D problem)

Total budget Cost ratio Combination

10 HF 20 4HF/120LF, 6HF/80HF, 8HF/40LF,
10 4HF/60LF, 6HF/40HF, 8HF/20LF
5 4HF/30LF, 6HF/20HF, 8HF/10LF
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3.2 � Performance criteria

To measure the performance of surrogate models, the coef-
ficient of determination R2, a global performance metric, is 
selected, and the formula of R2 is given in Eq. (14):

where n is the number of testing samples; yi and ŷi represent 
true responses and predictions, respectively, at the testing 
points; y is the mean of the true responses. The surrogate 
model is more accurate if R2 is closer to 1.

The Pearson correlation coefficient (PCC), also referred 
to as Pearson’s r, is a measure of the correlation between two 
random variables. In this paper, we adopt the squared Pear-
son’s r, denoted as r2, to represent the correlation between 
HF and LF functions, which is inspired by Toal (2015), as 
shown in Eq. (15):

where yh and yl are a set of n observations, respectively, of 
the HF and LF functions for identical inputs; yh and yl rep-
resent the mean of yh and yl , respectively. The correlation is 
in proportion to the value of r2, which ranges from 0 to 1.

3.3 � Test function 1

The HF function (Eq. (16)) is a 2D test function derived 
from Cai et  al. (2017). Rather than having a single LF 
response, we consider a range of different LF responses 
given by Eq. (17).

HF function:

LF function:

where x1, x2 ∈ [−2,2] , the parameter A varies from 0 to 1 and 
effectively controls the correlation of HF and LF responses.

A total computational budget of 5n (n = 2) HF samples 
are used to construct single-fidelity and MFS models. Here, 
80% of the total budget is used to generate the HF samples 
and the remaining 20% budget to generate the LF samples, 
and the cost ratio is set to 10 so that the number of HF and 
LF samples are 8 and 20, respectively. For the three single-
fidelity models, the total budget of the training samples is 
the same as that for constructing MFS models. Therefore, 

(14)R2 = 1 −

∑n

i=1

�
yi − ŷi

�2
∑n

i=1

�
yi − y

�2

(15)r2 =

⎛⎜⎜⎜⎝

∑n

i=1

�
yhi − yh

��
yli − yl

�
�∑n

i=1

�
yhi − yh

�2�∑n

i=1

�
yli − yl

�2

⎞⎟⎟⎟⎠

2

(16)yh(x) = 4x2
1
− 2.1x4

1
+

1

3
x6
1
+ x1x2 − 4x2

2
+ 4x4

2

(17)yl(x) = Ayh(0.85x) + x1x2 − 65

10 HF samples are used to construct the three single-fidelity 
models. In addition, another 1000n testing samples from the 
HF function are used for the validation of the single-fidelity 
and MFS models. All the samples are generated by LHS. 
To eliminate the effect of random sampling plan on the per-
formance of surrogate models, all the results are averaged 
over 30 random DOEs. To alleviate the outliers in 30 DOEs 
affecting the results, in this work, R2 was set to 0 if R2 ≤ 0 . 
Setting R2 = 0 if R2 ≤ 0 has two merits. Firstly, R2 < 0 and 
R2 = 0 all represent that the surrogate model cannot cap-
ture the relationship between design variables and responses. 
Secondly, setting R2 = 0 if R2 ≤ 0 will avoid the large nega-
tive value deteriorating the averaged results.

The reason why 5n HF samples are selected as the total 
budget is stated as follows: A rule of thumb for choosing 
the number of training samples to construct a single-fidelity 
model is 10n (Jones et al. 1998; Forrester and Keane 2009). 
The purpose of constructing MFS models is to achieve 
the desired accuracy at a lower cost. Thus, it is reasonable 
that the total budget of building an MFS model is no more 
than 10n HF samples. In addition, it holds little promise of 
improving the performance of MFS models using too few 
samples. Thus, 5n HF samples are chosen to build surrogate 
models.

The effect of the correlation between HF and LF func-
tion on the performance of the MFS-MLS model is studied 
by Figs. 2 and 3. Figure 2 compares the performance of the 
MFS-MLS model with that of three single-fidelity models 
(i.e., MLS, PRS, and RBF). The three single-fidelity and 
the MFS-MLS model are constructed by 10 HF samples 
and validated by the 1000n (n = 2) HF testing samples. In 
Fig. 2, the upper and lower subplot show the mean and 
standard deviation of R2 over 30 DOE. In the upper subplot, 

Fig. 2   Comparison between MFS-MLS and single-fidelity surrogate 
models for test function 1
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the left-hand y-axis represents the prediction accuracy by 
the coefficient of determination R2, the right-hand y-axis 
represents the correlation r2 between HF and LF functions. 
The x-axis represents the parameter A which controls the 
correlation r2. As it can be seen from Eqs. (16–17), the LF 
function is a variant of the HF function and the correlation 
between the HF and LF function will be changed by vary-
ing the parameter A. To investigate the effect of the cor-
relation between HF and LF function on the performance 
of the MFS-MLS model, parameter A is chosen from 0 to 
1 spaced with 0.1, which means that total 11 LF functions 
and one HF function are used to form 11 pairs of HF and LF 
functions with diverse correlations. The red dashed line in 
Fig. 2 shows the relationship between the correlation r2 and 
the parameter A for test function 1. It is observed that the 
correlation r2 is monotonically increased from 0.02 to 0.92 
as A increases, and the tendency of the prediction accuracy 
of the MFS-MLS, in general, matches the tendency of the 
correlation r2. The performance of the MFS-MLS is much 
better than that of the three single-fidelity surrogate models 
when the correlation r2 is greater than 0.2.

Figure 3 compares the performance of the MFS-MLS 
model with those of the LR-MFS, CoRBF, and MFS-RBF 
models in terms of R2 for test function 1. The four MFS 
models, MFS-MLS, LR-MFS, CoRBF, and MFS-RBF, 
are trained on the same training samples (i.e., 8 HF and 
20LF samples) and validated on the same 1000n HF testing 
samples. It is shown that the MFS-MLS model performs 
much better than other MFS models when r2, the correla-
tion between HF and LF functions, is less than 0.9. When 
r2 ≥ 0.9, the performance of MFS-MLS is slightly worse than 
that of CoRBF, but still better than those of MFS-RBF and 
LR-MFS. It is worth noting that the tendency of the perfor-
mance of all of the four MFS models is consistent with the 

tendency of correlation r2, while the MFS-MLS is less sensi-
tive to the correlation. This is caused by the fact that, for the 
MFS-MLS model, only the HF samples within the influence 
domain were used to compute the loss, the HF samples far 
away from the evaluation point have less or even no influ-
ence on the prediction. An MFS model is more robust if its 
performance is less sensitive to the correlation between HF 
and LF models. This would be useful when dealing with 
practical engineering problems because the correlation of 
HF and LF models in the practical engineering problems 
may be inaccurate or unknown due to the scarce HF samples.

The effect of the cost ratio of HF to LF samples on the 
performance of MFS-MLS models is studied in Fig.  4. 
Assuming the total budget is the cost of 5n HF samples, 
80% of the total budget is used to generate the HF samples, 
the remaining 20% budget is used to generate the LF samples 
for building MFS-MLS models. The cost ratios are set to 5, 
10, 20, and 40, respectively. The total budget and the number 
of the HF samples are fixed, the number of the LF samples 
is determined by the cost ratio. Then the number of training 
samples for the MFS-MLS model is shown in Table 3.

Figure 4 illustrates the effect of cost ratios on the per-
formance of the MFS-MLS model under different correla-
tions between HF and LF function. The correlation can be 
adjusted by parameter A of the LF function. Parameter A 
is chosen from 0 to 1 spaced with 0.1, hence, the correla-
tion has 11 different values. It can be observed from Fig. 4a, 
when parameter A is fixed, that the correlation r2 will be 
constant, the performance of the MFS-MLS model gets 
improved as the cost ratio increases. For example, if A = 0.4, 
then the correlation r2 is 0.75, the R2 of the MFS-MLS mod-
els are 0.55, 0.80, 0.91, and 0.96, respectively, when cost 
ratios are 5, 10, 20, and 40. When the cost ratio increases, 
more LF samples are used to construct the LF model so that 
the LF model becomes more accurate, see Fig. 4b, which 
leads to a better performance of the MFS-MLS model. When 
r2>0.5, with correlation increases, the performance of the 
MFS-MLS model reaches a plateau due to the decreasing 
performance of LF surrogate models. This also implies that 
the discrepancy function becomes easier to fit as the correla-
tion increases. From Fig. 4a and b, we can also see that the 
performance of the MFS-MLS will be enhanced as that of 
the LF surrogate model gets improved if the correlation is 
not at extreme low values. Overall, both the cost ratio of HF 
and LF models and the performance of LF surrogate models 
have an important impact on the performance of MFS-MLS.

Assuming the cost ratio θ is 10, three different combina-
tions, under the total budget of 5n HF samples, are used to 
investigate the effect of combinations of HF and LF sam-
ples on the performance of the MFS-MLS model. These 
three combinations are “4n–10n”, “3n–20n”, “2n–30n”, 
which means that 80%, 60%, and 40% of the total budget 
are used to generate the HF samples, respectively; 20%, 40%, 

Fig. 3   Comparison of the MFS models for test function 1



3644	 S. Wang et al.

1 3

and 60% of the total budget are used, correspondingly, to 
generate the LF samples. Taking “4n–10n” as an example, 
“4n–10n” means 4n HF samples, and 10n LF samples are 
used to build an MFS-MLS model. From Fig. 5, it can be 
observed that for these three combinations, the MFS-MLS 
model in the case of “4n–10n” performs better than the other 
two cases. In addition, only the case of “4n–10n” performs 
better than the single-fidelity PRS model, which exhibits 
the best performance among the above-mentioned three sin-
gle-fidelity models, in terms of both the mean and standard 
deviation of R2 . Therefore, it is suggested that approximately 
80% of the total budget should be allocated to generate the 
HF samples when using MFS-MLS models.

3.4 � Test function 2

The test function 2 is directly derived from Toal (2015), 
in which the HF function (Eq. (18)) is the “Trid function” 
of ten variables. It is often used to test the performance of 
surrogate models on high-dimensional problems. It is worth 
noting that the allocations of HF and LF samples for test 

function 2 are identical to that of test function 1 throughout 
the follow-up numerical experiments.

HF function:

LF function:

(18)yh =

10∑
i=1

(
xi − 1

)2
−

10∑
i=2

xixi−1

(19)yl =

10∑
i=1

(
xi − A

)2
− (A − 0.65)

10∑
i=2

ixixi−1

Fig. 4   Effect of the cost ratio on the performance of a the MFS-MLS model and b the LF model

Table 3   The number of training samples for the MFS-MLS model

Total budget Cost ratio No. HF No. LF

10 HF 5 8 10
10 8 20
20 8 40
40 8 80

Fig. 5   Effect of the combination of HF and LF samples on the perfor-
mance of MFS-MLS for test function 1
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where xi ∈ [−100,100], i = 1,2,… , 10 . The parameter A var-
ies from 0 to 1.

Figure 6 compares the performance of the MFS-MLS 
model with that of three single-fidelity models (i.e., MLS, 
PRS, and RBF). For the three single-fidelity models, 5 n (i.e., 
50) HF samples are used to construct the three single-fidelity 
models. In addition, another 1000n testing samples from the 
HF function are used for the validation of the single-fidelity 
and the MFS-MLS models. All the samples are generated 
by LHS. It is observed that the performance of MFS-MLS 
is not very sensitive to the correlation of HF and LF func-
tions in this case. The performance of MFS-MLS is much 

better than that of the three single-fidelity surrogate models 
in terms of both the mean and standard deviation of R2 when 
the correlation parameter A is no more than 0.8.

Figure 7 compares the performance of MFS-MLS with 
those of LR-MFS, CoRBF, and MFS-RBF for test function 
2. It is shown that the prediction accuracy of both CoRBF 
and LR-MFS are quite low, which means that the CoRBF 
and LR-MFS models cannot fit the test function 2 at all. 
The reason why the LR-MFS model cannot fit the test func-
tion 2 is probably caused by the fact that the discrepancy 
of the HF and LF function in test function 2 is a quadratic 
function; however, it is fitted by a first-order polynomial in 
the LR-MFS model. As for the CoRBF model, the model 
parameter obtained by optimizing leave-one-out error is 
probably not very stable for high-dimensional problems. 
The CoRBF model tends not to be good at dealing with 
high-dimensional problems with small samples available 
(Durantin et  al. 2017). The MFS-MLS model performs 
much better than the other MFS models in terms of both 
the mean and standard deviation of R2 . The tendency of the 
performance of the MFS-RBF is highly consistent with the 
tendency of the correlation r2. Therefore, the performance 
of the MFS-RBF is very sensitive to the correlation r2. On 
the contrary, the performance of the MFS-MLS is not sensi-
tive to the correlation for this case, and it is also better than 
that of the other three MFS models. As a matter of fact, the 
performance of the MFS-MLS model is still related to the 
correlation to some extent, which is not evident in Fig. 7, but 
it can be observed later on in Figs. 8 and 9.

The effect of the cost ratio of HF to LF samples on the 
performance of MFS-MLS models is studied by Fig. 8. it is 
assumed that the total budget is the cost of 5 n ( n=10) HF 

Fig. 6   Comparison between MFS-MLS and single-fidelity surrogate 
models for the test function 2

Fig. 7   Comparison of MFS 
models for test function 2
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samples, 80% of the total budget is used to generate the HF 
samples, the remaining 20% budget is used to generate the 
LF samples for building MFS-MLS models. The cost ratios 
are set to 5, 10, 20, 40, respectively. The total budget and 
the number of the HF samples are fixed, the number of the 
LF samples is determined by the cost ratio. Then the num-
ber of training samples for the MFS-MLS model is shown 
in Table 4. The cost ratio determines the number of the LF 
samples and the LF model are constructed by the LF samples 
so that the cost ratio will affect the performance of the LF 
model.

Figure 8 illustrates the effect of different cost ratios on 
the performance of the MFS-MLS model. From Fig. 8a, 
it can be observed that the performance of the MFS-MLS 
model is getting better as the cost ratio gets increased when 

r2 ≥ 0.1 . It is understandable because the LF model becomes 
more accurate with more LF samples are added, as shown 
in Fig. 8(b), which will provide a more accurate prediction 
trend for the MFS-MLS model. However, when the cor-
relation r2 remains constant at extremely low values, for 
instance, r2 ≤ 0.1, the performance of the MFS-MLS model 
does not improve as the cost ratio increases. This is because 
when the correlation is extremely small, the similarity of 
the landscape of HF and LF function is weak, the LF model 
cannot provide a useful trend for the MFS-MLS model even 
if the LF model is accurate enough. It can be observed from 
Fig. 8b that when A = 0.4 or 0.5, i.e., r2 = 0.05 or 0, the R2 
of the MFS-MLS models are 0.827, 0.814, 0.854, 0.853 or 
0.825, 0.804, 0.811, 0.830 when cost ratios are 5, 10, 20, 
and 40. when the correlation r2 takes the extremely small 
values, the performance of the MFS-MLS model does not 
improve as the cost ratio increases. Moreover, it can be 
seen that the performance of the MFS-MLS becomes more 
consistent with the tendency of the correlation as the cost 
ratio increases. When the cost ratio is relatively low, the low 
prediction accuracy of the LF model disturbs the effect of 
correlation on the performance of the MFS-MLS. Therefore, 

Fig. 8   Effect of the cost ratio on the performance of a the MFS-MLS 
model and b the LF model

Fig. 9   Effect of the combination of HF and LF samples on the perfor-
mance of MFS-MLS for test function 2

Table 4   The number of training samples for the MFS-MLS model

Total budget Cost ratio No. HF No. LF

50 HF 5 40 50
10 40 100
20 40 200
40 40 400
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both the cost ratio and correlation have an impact on the 
performance of MFS-MLS.

The effect of different combinations of HF and LF sam-
ples on the performance of the MFS-MLS model is inves-
tigated. From Fig. 9, it can be observed that when the cor-
relation r2 < 0.8, the case of “4n–10n”, i.e., 4n HF samples 
and 10n LF samples, performs best among the three cases 
(“4n–10n”, “3n–20n”, and “2n–30n”); the case of “3n–20n” 
performs better than the combination of “2n–30n”. However, 
when the correlation r2 ≥ 0.8, the combination of “2n–30n” 
performs best. The order of the performance of these three 
combinations reverses. This phenomenon can be explained 
by follows: Although the test function 2 is high-dimensional, 
the landscape of the HF function is not very bumpy, and the 
nonlinearity of the HF function is also lower than that of the 
LF function, as we can see from Eqs. (18) and (19). There-
fore, when the correlation is large enough (here, r2 ≥ 0.8), 
only a few HF samples are enough to calibrate or enhance 
the prediction accuracy of the MFS-MLS model as long as 
the LF model is accurate enough to reflect the real trend of 
HF function. When r2 < 0.8, the performance of the case 
“2n–30n” is unpromising because when the correlation is 
low, in other words, the similarity of the landscape of HF 
and LF function is weak, 2n HF samples are not sufficient to 
fit the discrepancy between the HF and the scaled LF func-
tion even though the LF surrogate model is accurate enough.

In Fig. 9, only the MLS model of the three single-fidelity 
models is shown, because the MLS model performs best 
among the three single-fidelity models. The three single-
fidelity models are the same as the ones in Fig. 6. Overall, 
the combination of “4n–10n” and “3n–20n” would be rea-
sonable choices for constructing an MFS-MLS model for 
this test function, because, for most correlations, they both 
achieve better performance than the single-fidelity models.

3.5 � Other benchmark functions

In this section, extra 16 test functions were employed to 
validate the performance of the MFS-MLS model further. 
The 16 test functions, comprising different dimensions and 
various degrees of nonlinearity, are selected from the web-
site https://​www.​sfu.​ca/​~ssurj​ano/​index.​html and listed in 
“Appendix 1”. For each function, 5n HF samples generated 
by LHS are employed to construct single-fidelity surrogate 
models. For MFS models, the number of HF and LF samples 
are 4n and 10n, respectively, and the cost ratio of HF sam-
ples to LF samples is set to 10, therefore, the total budget of 
constructing an MFS model is the cost of 5n HF samples. To 
eliminate the effect of random sampling plan on the perfor-
mance of surrogate models, all the results are averaged over 
30 random DOEs. “Appendix 2” lists the comparison results 
of the MFS models and the three single-fidelity models in 
terms of the R2 of the 16 test functions. The best results of 

each function are in bold italics. It is shown that the MFS-
MLS model performs best among the four MFS and the 
three single-fidelity models except for the 3rd, 6th and 9th 
functions. It should be noted that, for the 3rd, 6th and 9th 
functions, the performance of the MFS-MLS model is just 
slightly weaker than those of the best.

Figure 10 compares the MFS-MLS model with the other 
three MFS models and the three single-fidelity models in 
terms of the prediction accuracy. The red columns represent 
the mean of prediction accuracy R2, the mean is obtained 
by averaging the values of R2 over the 30 random DOE and 
then averaged the 16 test functions. The light blue columns 
represent the standard deviation (Std) of R2. It can be found 
that all of the four MFS models outperform the three sin-
gle-fidelity models appreciably in terms of the mean of the 
prediction accuracy except that the CoRBF model beats the 
single-fidelity RBF model by a narrow margin. The MFS-
MLS has the largest mean R2 of 0.923, which is better than 
the other MFS and single-fidelity models with the same cost 
of 5n HF samples. Moreover, the standard deviation of R2 
of MFS-MLS is also smaller than the rest models except the 
MFS-RBF, which shows the strong robustness of the MFS-
MLS model on these 16 test functions.

4 � Engineering problem

In this section, a static analysis of the boom of a bucket 
wheel reclaimer (BWR) was used to validate the perfor-
mance of the proposed model. BWRs, as shown in Fig. 11, 
are used for moving large amounts of bulk materials, such as 
coal and ores, in ports, power plants, and stockyards. This is 
how BWRs work: a heavy load is attached to the short end of 
the boom served as the balance weights. The bulk materials 
can then be reclaimed by the rotation of bucket wheel which 

Fig. 10   Comparison of the mean and Std of the R2 for the 16 test 
functions

https://www.sfu.ca/~ssurjano/index.html
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Fig. 11   Bucket wheel reclaimer

Fig. 12   The deformation cloud map of the boom

Fig. 13   The cross-section of an I-beam

Fig. 14   Comparison of different MFS and single-fidelity models for 
the engineering problem

is mounted on the long end of the boom on the opposite side. 
Generally, the boom of a BWR consists of I-beams, and 
overload can cause deformation, vibration or even failure 
of the boom. Therefore, the relationship between the maxi-
mum deformation (see Fig. 12) and the cross-sectional area 
of I-beam under different balance weights was investigated. 
As shown in Fig. 13, the Flange width (W1), beam height 
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(W2), the web thickness (t), and the balance weight (P) 
are selected as design variables with ranges of 60–70 mm, 
100–120  mm, 4–5  mm, and 300–350  kN, respectively. 
The maximum deformation of the boom is the quantity of 
interest. The static analysis was conducted on a personal 
computer with an Intel Core i7 6700 CPU and 32G RAM, 
using the commercial software ANSYS 17.0. It is assumed 
that the cutting resistance is constant and the gravity load 
is considered. The model of the boom built by Timoshenko 
beam, consisting of 374,000 elements, was used as the HF 
simulation model, while the model of the boom built by 
Euler–Bernoulli beam, consisting of 46,750 elements, was 
used as the LF simulation model. It was found that running 
one HF simulation takes approximately 71 s, while running 
one LF simulation takes approximately 13 s; thus, the cost 
ratio of the HF model to the LF model is approximately 5. 
The MFS models are constructed by 12 HF samples and 20 
LF samples. Three single-fidelity models are constructed 
by 16 HF samples. In addition, another 20 HF samples were 
used as testing data to validate the performance of the MFS 
and single-fidelity models. The comparison of MFS-MLS 
with the other three MFS models and the three single-fidelity 
surrogates is shown in Fig. 14. It is observed that the MFS-
MLS model exhibits the best results among all the surrogates 
for this engineering problem.

5 � Conclusions

A multi-fidelity surrogate model based on moving least 
squares, called MFS-MLS, was developed in this paper. 
In the proposed method, the MLS is used to combine the 
LF model and the discrepancy function to represent the 
HF responses. Unlike global MFS models, the coefficients 
of the MFS-MLS model at each prediction site are calcu-
lated using the weighted HF samples within the influence 
domain. Moreover, the size of the influence domain is 
determined adaptively by a new strategy. The MFS-MLS 
model was compared with three benchmark MFS models 
(i.e., MFS-RBF, CoRBF, and LR-MFS) and three popular 

single-fidelity surrogate models (RBF, PRS, and MLS) in 
terms of the prediction accuracy through multiple numeri-
cal test functions and an engineering problem. The results 
show that the MFS-MLS model exhibited competitive per-
formance in both the numerical cases and the practical case. 
In addition, the effects of key factors (i.e., the correlation 
of HF and LF samples, the cost ratio of HF to LF samples, 
and the combination of HF and LF samples) on the perfor-
mance of the MFS-MLS were investigated using two test 
functions. The results show that the prediction accuracy of 
the MFS-MLS model is less sensitive to the correlation of 
HF and LF samples compared with the other MFS models, 
which is caused by the fact that, for the MFS-MLS model, 
the HF samples far away from the evaluation point have less 
or even no influence on the prediction. The performance of 
the MFS-MLS model, however, is still getting better as the 
correlation increases as long as the LF model is accurate. It 
is also found that under the same total computational budget, 
the performance of the MFS-MLS model will become better 
with the increase of the cost ratio. Moreover, it is suggested 
that 60–80% of the total budget should be allocated to HF 
samples and this percentage can be increased if the cost ratio 
is large.

It is worth noting that the MFS-MLS, like other MFS 
models, cannot be mathematically proved to be a universal 
approximator. Therefore, the prior information of the engi-
neering problems, such as the dimensionality of the prob-
lem and the total computational budget, is encouraged to 
be considered before applying the MFS-MLS model. When 
the MFS-MLS model solves high-dimensional problems, the 
influence domain tends to be so large that all the HF sam-
ples are included in it if the quadratic monomials with cross 
terms are employed. This implies that it needs more and 
more samples for high-dimensional problems, otherwise the 
proposed strategy will turn the MFS-MLS model from local 
to global, which will incur a decline in the performance. In 
the future, we will focus on strategies to identify the influ-
ence domain to locally correct the surrogate with further less 
HF samples for high-dimensional problems.



3650	 S. Wang et al.

1 3

Appendix 1: 16 Test Functions

No. HF/LF Test functions D S r2

1 HF yh = (6x − 2)2sin(12x − 4) 1 (0,1]D 0.58
LF yl = 0.56yh + 10(x − 0.5) − 5

2 HF yh = sin(2�(x − 0.1)) + x2 1 [0,1]D 0.86
LF yl = sin(2�(x − 0.1))

3 HF yh = xsin(x)∕10 1 [0,10]D 0.73
LF yl = xsin(x)∕10 + x∕10

4 HF yh = cos(3.5�x)exp(−1.4x) 1 [0,1]D 0.75
LF yl = cos(3.5�x)exp(−1.4x) + 0.75x2

5 HF yh = 4x1
2 − 2.1x4

1
+

1

3
x
6

1
+ x

1
x2 − 4x2

2
+ 4x4

2

2 [− 2,2]D 0.77

LF yl = 2x1
2 − 2.1x4

1
+

1

3
x
6

1
+ 0.5x

1
x2 − 4x2

2
+ 2x4

2

6 HF
yh =

[
x2 − 1.275

(
x1

�

)2

+ 5
x1

�
− 6

]2
+ 10

(
1 −

1

8�

)
cos

(
x1
) 2 x1 ∈ [−5,10]

x2 ∈ [0,15]

0.98

LF
yl =

1

2
[x2 − 1.275

(
x1

�

)2

+ 5
x1

�
− 6]

2

+ 10(1 −
1

8�
)cos(x1)

7 HF yh = [1 − 2x1 + 0.05sin(4�x2 − x1)]
2 + [x2 − 0.5sin(2�x1)]

2 2 [0,1]D 0.85
LF yl = [1 − 2x1 + 0.05sin(4�x2 − x1)]

2 + 4[x2 − 0.5sin(2�x1)]
2

8 HF yh =
∑2

i=1
x4
i
− 16x2

i
+ 5xi 2 [− 3,4]D 0.83

LF yl =
∑2

i=1
x4
i
− 16x2

i
 

9 HF yh =
1

6
[
(
30 + 5x1sin

(
5x1

))(
4 + exp

(
−5x2

))
− 100] 2 [0,1]D 0.88

LF yl =
1

6
[
(
30 + 5x1sin

(
5x1

))(
4 +

2

5
exp

(
−5x2

))
− 100]

10 HF yh = cos(x1 + x2)exp(x1x2) 2 [0,1]D 0.86
LF yl = cos[0.6

(
x1 + x2

)
]exp(0.6x1x2)

11 HF
yh =

∑3

i=1
0.3 sin

�
16

15
xi − 1

�
+
�
sin

�
16

15
xi − 1

��2
 

3 [− 1,1]D 0.40

LF
yl =

∑3

i=1
0.3 sin

�
16

15
xi − 1

�
+ 0.2

�
sin

�
16

15
xi − 1

��2
 

12 HF yh = (x1 − 1)2 + (x1 − x2)
2 + x2x3 + 0.5 3 [0,1]D 0.69

LF yl = 0.2yh − 0.5x1 − 0.2x1x2 − 0.1

13 HF yh =
∑5

i=1

�
100

�
x2
i
− xi+1

�2
+
�
xi − 1

�2�
 

6 [0,1]D 0.54

LF yl =
∑5

i=1

�
100

�
x2
i
− 4xi+1

�2
+
�
xi − 1

�2�
 

14 HF yh =
∑8

i=1
x4
i
− 16x2

i
+ 5xi

8 [− 3,3]D 0.74

LF yl =
∑8

i=1
0.3x4

i
− 16x2

i
+ 5xi 

15 HF yh =
∑2

i=1

��
x4i−3 + 10x4i−2

�2
+ 5

�
x4i−1 − x4i

�2
+
�
x4i−2 − 2x4i−1

�4
+ 10

�
x4i−3 − x4i

�4�
 

8 [0,1]D 0.66

LF yl =
∑2

i=1

��
x4i−3 + 10x4i−2

�2
+ 125

�
x4i−1 − x4i

�2
+
�
x4i−2 − 2x4i−1

�4
+ 10

�
x4i−3 − x4i

�4�
 

16 HF yh =
∑10

i=1
exp

�
xi
��
A(i) + xi − ln

�∑10

k=1
exp

�
xk
���

 
A = [− 6.089, − 17.164, − 34.054, − 5.914, − 24.721, − 14.986, − 24.100, − 10.708, − 

26.662, − 22.662, − 22.179]

10 [− 2,3]D 0.94

LF yl =
∑10

i=1
exp

�
xi
��
B(i) + xi − ln

�∑10

k=1
exp

�
xk
���

 
B = [− 10, − 10, − 20, − 10, − 20, − 20, − 20, − 10, − 20, − 20]

Notes: D stands for the dimension of functions, S is the design space, and r2 represents the correlation of HF and LF functions
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Appendix 2: Results of 16 test functions

Function MFS-MLS MFS-RBF CoRBF LR-MFS RBF MLS PRS

1 0.996 ± 0.000 0.969 ± 0.052 0.987 ± 0.070 0.996 ± 0.000 0.756 ± 0.192 0.812 ± 0.157 0.250 ± 0.084
2 0.999 ± 0.010 0.999 ± 0.000 0.981 ± 0.012 0.975 ± 0.010 0.933 ± 0.048 0.956 ± 0.028 0.334 ± 0.093
3 0.994 ± 0.000 0.845 ± 0.372 0.999 ± 0.000 0.994 ± 0.000 0.572 ± 0.251 0.734 ± 0.230 0.064 ± 0.047
4 0.999 ± 0.000 0.982 ± 0.044 0.973 ± 0.024 0.966 ± 0.022 0.863 ± 0.168 0.784 ± 0.135 0.023 ± 0.015
5 0.834 ± 0.057 0.810 ± 0.045 0.677 ± 0.149 0.513 ± 0.079 0.515 ± 0.096 0.383 ± 0.206 0.666 ± 0.135
6 0.874 ± 0.047 0.883 ± 0.046 0.441 ± 0.406 0.876 ± 0.048 0.625 ± 0.152 0.523 ± 0.245 0.515 ± 0.165
7 0.960 ± 0.015 0.931 ± 0.038 0.942 ± 0.102 0.752 ± 0.065 0.815 ± 0.100 0.502 ± 0.253 0.574 ± 0.161
8 0.817 ± 0.051 0.811 ± 0.053 0.738 ± 0.332 0.817 ± 0.051 0.529 ± 0.109 0.259 ± 0.210 0.254 ± 0.120
9 0.963 ± 0.026 0.968 ± 0.012 0.974 ± 0.031 0.930 ± 0.017 0.899 ± 0.061 0.693 ± 0.270 0.916 ± 0.046
10 0.990 ± 0.010 0.970 ± 0.028 0.965 ± 0.055 0.892 ± 0.034 0.941 ± 0.058 0.935 ± 0.098 0.954 ± 0.148
11 0.928 ± 0.018 0.848 ± 0.063 0.771 ± 0.082 0.774 ± 0.063 0.911 ± 0.030 0.457 ± 0.070 0.759 ± 0.111
12 0.985 ± 0.005 0.962 ± 0.014 0.949 ± 0.070 0.858 ± 0.267 0.898 ± 0.045 0.984 ± 0.014 0.975 ± 0.046
13 0.720 ± 0.098 0.708 ± 0.050 0.427 ± 0.196 0.582 ± 0.064 0.505 ± 0.089 0.254 ± 0.197 0.483 ± 0.242
14 0.835 ± 0.019 0.820 ± 0.031 0.025 ± 0.018 0.824 ± 0.029 0.688 ± 0.069 0.452 ± 0.117 0.042 ± 0.000
15 0.975 ± 0.005 0.945 ± 0.011 0.920 ± 0.015 0.919 ± 0.013 0.932 ± 0.015 0.975 ± 0.006 0.958 ± 0.096
16 0.896 ± 0.014 0.893 ± 0.012 0.711 ± 0.013 0.892 ± 0.012 0.831 ± 0.021 0.832 ± 0.026 0.147 ± 0.071

The figure before “ ± ” represents the mean of R2; the figure after “ ± ” represents the standard deviation of R2
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tary material available at https://​doi.​org/​10.​1007/​s00158-​021-​03044-5.
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