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Abstract
Time-variant reliability-based design optimization (tRBDO) can rationally consider the time-variant uncertainties in engineering
structures and find the optimal design that can keep reliable throughout its whole life cycle. However, solving the tRBDO
involves a nested double-loop procedure and requires excessive computational cost. In this paper, a novel decoupled method
called sequential approximate time-variant reliability analysis and optimization (SATO) is proposed to improve the efficiency of
tRBDO. First, a two-step method is proposed to transform the original tRBDO problem into an equivalent deterministic
optimization problem according to the results of time-variant reliability analysis (TRA). Second, a novel approximate TRA
(ATRA) method based the least-square method is proposed to reduce the computational cost of TRA. Finally, the proposed
SATO method decouples the original double-loop procedure in tRBDO into a sequential process of ATRA and deterministic
optimization. Test results of a complicated welded beam problem verify that the proposed method can achieve similar accuracy
and much higher efficiency than the compared methods. A rocket inter-stage structure problem demonstrates the capability of the
proposed method in practical engineering applications.

Keywords Time-variant uncertainty . Time-variant reliability-based design optimization . Decoupled method . Stochastic
process . Most probable point

1 Introduction

Uncertainties, such as material properties, geometrical sizes,
and external loads, are ubiquitous in practical engineering
structures. Reliability-based design optimization (RBDO)
can rationally account for the uncertainties in the optimization
process and find the optimal solution satisfying reliability re-
quirements. However, directly solving the RBDO involves a
nested double-loop procedure (Tu et al. 1999; Schuëller and
Jensen 2008), in which the outer loop updates the design
point, and the inner loop analyzes whether the reliability

constraints are satisfied. This nested procedure needs exces-
sive computational cost, especially when computationally ex-
pensive simulation models are involved. In recent decades,
many RBDO methods, including the decoupled methods
and single-loop methods, have been proposed to improve
the efficiency. The decoupled methods (Du and Chen 2004;
Yi et al. 2016; Huang et al. 2016; Li et al. 2019) separate the
inner reliability-analysis loop from the outer optimization loop
to avoid the nested procedure. The sequential optimization
and reliability assessment (SORA) (Du and Chen 2004) is
one of the most representative decoupled RBDO methods.
The single-loop methods (Liang et al. 2004; Agarwal et al.
2007; Lim and Lee 2016; Ren et al. 2021) directly remove the
inner reliability-analysis loop by transforming reliability con-
straints into equivalent deterministic constraints, which are
suitable for linear or weakly nonlinear problems (Yi et al.
2016).

In addition to the time-independent uncertainties, practical
engineering structures are also affected by various dynamic or
time-variant uncertainties (Li and Wang 2017; Yu et al. 2019;
Zafar andWang 2020), such as material deterioration and load
fluctuation. However, these time-variant uncertainties cannot
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be considered in conventional static RBDO methods. Under
these time-variant uncertainties, the reliability of the structure
is no longer a constant, but varies with time. To ensure the
safety of the structure throughout its whole life cycle, time-
variant reliability requirements need to be included in the
RBDO formulation as constraints, which leads to the time-
variant RBDO (tRBDO) (Wang and Wang 2012; Wang
et al. 2014). Similar to RBDO, directly solving tRBDO also
involves a nested double-loop procedure, i.e., the inner loop
for time-variant reliability analysis (TRA) (Jiang et al. 2020;
Yu et al. 2020) and the outer loop for updating the design
point. However, the solution process of tRBDO is far more
complicated and time-consuming than that of the conventional
static RBDO.

In recent years, tRBDO has become a frontier research
direction and attracted increasing attention in the field of struc-
ture reliability (Jiang et al. 2017). Inspired by the success of
decoupled static RBDO methods, some decoupled tRBDO
methods have also been developed. Hu and Du (Hu and Du
2016) extended the classical SORA to solve tRBDO problems
with stationary stochastic loads, but it cannot deal with more
general tRBDO problems with non-stationary stochastic pro-
cesses. Huang et al. (Huang et al. 2017) proposed a single-
loop approach, which discretizes the time-variant reliability
constraints into many time-independent ones, and transforms
the nested tRBDO into an iterative process of TRA, constraint
discretization, and conventional RBDO. Jiang et al. (Jiang
et al. 2017) developed a general framework called time-
invariant equivalent method (TIEM) to decouple the tRBDO
into a sequence of cycles of TRA and conventional RBDO at
the initial time instant. Fang et al. (Fang et al. 2019) intro-
duced the concept of equivalent most probable point
(EMPP), with which the tRBDO is transformed into an equiv-
alent time-independent RBDO. Shi et al. (Shi et al. 2020)
developed a two-step method to improve the efficiency of
tRBDO, in which the first step aims to make the minimum
instantaneous reliability index of the constraint satisfy the re-
liability index target, and the second step performs TRA and
deterministic optimization. Some other tRBDO methods can
be found in Refs. (Hawchar et al. 2018; Li and Wang 2018;
Zafar et al. 2020).

Although some decoupled methods have been developed,
solving the tRBDO efficiently is still a major challenge. The
reasons are at least twofold. First, most of the existing decoupled
tRBDO methods try to transform the tRBDO problem into an
equivalent static RBDOproblem.However, asmentioned above,
solving the static RBDO itself is still extremely time-consuming,
let alone further embedding it into a sequential optimization pro-
cess. Second, the TRA process, as an essential sub-procedure of
tRBDO, is computationally expensive and must be frequently
invoked. Jiang et al. (Jiang et al. 2017) pointed out that most
of the computational costs for solving the tRBDO are actually
spent on the repeated TRA invocations.

This paper aims to address the above two problems and
improve the efficiency of tRBDO. A novel decoupled method
called Sequential Approximate TRA and Optimization
(SATO) is proposed. First, according to the TRA results, the
original tRBDOproblem is directly transformed into an equiv-
alent deterministic optimization problem, instead of a static
RBDO problem, hence avoiding repeatedly solving the static
RBDO problems. Second, a novel approximate TRA (ATRA)
method based on least-square method is proposed, which can
efficiently calculate the time-variant reliability. Finally, the
double-loop nested procedure in the original tRBDO is
decoupled into a sequential process of ATRA and determin-
istic optimization. The proposed SATO method can simplify
the solution process and significantly improve the efficiency
of tRBDO.

The rest of this paper is organized as follows. Section 2
presents the formulation of the tRBDO problem. Section 3
describes the proposed SATO method in detail. Afterwards,
the validation and application of the proposed method are
presented in Section 4, and conclusions of this paper are final-
ly given in Section 5.

2 Formulation of the tRBDO problem

Under various time-variant uncertainties, the general time-
variant performance function of a structure can be expressed
as g(X,Y(t),t), where X is a nx-dimensional vector of random
variables, Y(t) is a nY-dimensional vector of stochastic pro-
cesses, and t is the time parameter within the time interval of
interest [0,T]. g(X,Y(t),t) < 0 indicates the safe state of the
structure. Accordingly, the safety region SR can be defined
as the set of the input vectors [X,Y(t)] satisfying g(X,Y(t),t)
<0 for t ϵ[0,T], which can be expressed as

SR ¼ X;Y tð Þ½ � g X;Y tð Þ; tð Þ < 0;∇t∈ 0; T½ �jf g ð1Þ

Then, we can define an indicator function Isr (X,Y(t)) based
on whether the point [X,Y(t)] is in the safety region (Wei et al.
2017):

ISR X;Y tð Þð Þ ¼ 1 X;Y tð Þ½ � ∈ SR
0 X;Y tð Þ½ � ∉ SR

�
ð2Þ

The aim of TRA is to calculate the probability that the
structure remains in safe state over the time interval [0, T] ,
which can be formulated as

P Tð Þ ¼ Pr g X;Y tð Þ; tð Þ < 0;∀t∈ 0; T½ �f g
¼ E ISR X;Y tð Þð Þ½ � ð3Þ

where Pr{□} denotes the probability operator, and it can be
defined as the mathematical expectation of the indicator func-
tion ISR(X, Y(t)) (Wang et al. 2017).
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In practice, the time-variant reliability index β is often used
to measure the time-variant reliability, which is calculated by

β ¼ Φ−1 P Tð Þð Þ ð4Þ

where Φ(□) is the standard normal cumulative distribution
function.

The tRBDO treats the time-variant reliability as constraint
in the optimization formulation, which is expressed as

find
min
s:t:

d;μZ
f d;μZ;μPð Þ

P ts; teð Þ ¼ Pr g d;X;Y tð Þ; tð Þ < 0;∀t∈ 0; T½ �f g > Φ βtarð Þ
X ¼ Z;P½ �;dL≤d≤U ;μL

Z ≤μz≤μU
Z

ð5Þ

where f is the objective function;βtar is the target time-
variant reliability index of the performance function g(d, X,
Y (t),t), d denotes a nd-dimensional deterministic design vector
with the lower bound dL and upper bound dU; Z denotes a nz-
dimensional random design vector; μZ denotes the mean vec-
tor of Z with the lower bound μL

Z and upper bound μU
Z ; and P

represents a nP-dimensional random parameter vector with the
mean vector μP.

It can be noticed from (5) that the tRBDO originally in-
volves a double-loop nested procedure, as depicted in Fig. 1.
The inner TRA loop is repeatedly invoked by the outer opti-
mization loop. Due to the low efficiency of the TRA itself and
the large number of required TRA invocations, it is a huge
challenge to efficiently solve the tRBDO problem.

3 The proposed SATO method

The proposed SATO method decouples the nested procedure
in tRBDO into two main sub-procedures: deterministic opti-
mization and approximate TRA. The detailed process is pre-
sented as follows.

3.1 Construction of the equivalent deterministic
optimization

First, a novel TRA method based on approximating the MPP
trajectory (AMPPT) (Zhang et al. 2021) is performed at the

initial design point [d(1),μ 1ð Þ
Z ]. The AMPPT method can not

only calculate the time-variant reliability index βcur, but
also identify the critical time instants within [0, T] and the
corresponding MPPs {(ti, uMPP(ti))|i = 1, 2,…, nt} through
an adaptive sampling process. The AMPPT method is brief-
ly described in the Appendix.

Then, according to the TRA results of the AMPPTmethod,
this subsection proposes a two-step method to transform the
original time-variant reliability constraint into a deterministic
one, and correspondingly constructs an equivalent determin-
istic optimization problem for the original tRBDO problem.

3.1.1 First transformation of the time-variant reliability
constraint

For an arbitrary critical time instant ti from the time-MPP pairs
{(ti, uMPP(ti))|i = 1, 2,…, nt}obtained by AMPPT, we can cal-
culate the instantaneous reliability index β(ti) at ti as

Φ−1 Pr g d;X;Y tið Þ; tið Þ < 0f gð Þ ¼ β tið Þ ¼ uMPP tið Þk k ð6Þ

If the original time-variant reliability constraint P(T) =
Pr {g(d,X,Y(t), t) < 0,∀t ∈ [0, T]} >Φ(βtar) in (5) is satisfied,
the following inequality must hold:

0 > βtar−βcur ð7Þ

Then, add Φ−1(Pr{g(d,X,Y(ti), ti) < 0})and β(ti) to the left
and right side of (7), respectively, and we can obtain

Pr g d;X;Y tð Þ; tð Þ < 0f g > Φ βtar−βcur þ β tið Þð Þ ð8Þ

For clarity, (8) can be further rewritten as

Pr gti Mð Þ < 0
� �

> Φ βtar tið Þð Þ
βtar tið Þ ¼ βtar−βcur þ β tið Þ ð9Þ

where gti Mð Þ represents the instantaneous performance func-

tion g(d, X, Y(ti), ti); M = [X,Y(ti)] = [Z, P,Y(ti)] denotes all
the random variables; and βtar(ti) is the target instantaneous
reliability index at ti. Therefore, it can be noticed that the

Fig. 1 Double-loop nested procedure in tRBDO
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original time-variant reliability constraint is transformed
into a single conventional time-independent reliability
constraint in (9).

3.1.2 Second transformation of the time-independent
reliability constraint

After the first transformation, the performance measure ap-
proach (PMA) (Tu et al. 1999; Du and Chen 2004) can be
used to further transform (9) into an equivalent deterministic
constraint. To this end, the following optimization must be
solved to search the inverse MPP (IMPP) uIMPP(ti) corre-
sponding to the target reliability index βtar(ti)

max Gti uð Þ
s:t: uk k ¼ βtar tið Þ ð10Þ

whereGti uð Þ represents the transformed performance function
of Gti Mð Þ in u-space.

The advanced mean value (AMV) (Wu et al. 1990) method
can be used to solve (10), and its iterative formula is expressed
as

u ið Þ ¼ βtar tið Þ ∇Gti u j−1ð Þð Þ

∇Gti u j−1ð Þð Þ
��� ��� ð11Þ

However, it is clear from (11) that AMV is a gradient-based
algorithm, and in each iteration, it needs to calculate the gra-
dients of Gti uð Þ, which is computationally expensive. To re-
duce the computational cost, this paper directly substitutes the

MPP uMPP(ti) into (11) to estimate uMPP(ti) as

uIMPP tið Þ≈βtar tið Þ ∇Gti uMPP tið Þð Þ
∇Gti uMPP tið Þð Þ
�� �� ð12Þ

According to the property that the gradient of the instanta-
neous performance function at the MPP ∇Gti uMPP tið Þð Þ is
parallel to the MPP uMPP(ti) (Rackwitz and Flessler 1978),
we know that

∇Gti uMPP tið Þð Þ ¼ kuMPP tið Þ ð13Þ
where k is a constant, and k > 0.

Then, (12) can be further written as

uMPP tið Þ≈βtar tið Þ kuMPP tið Þ
kuMPP tið Þk k ¼ βtar tið Þ

β tið Þ uMPP tið Þ ð14Þ

This method to estimate uIMPP(ti) is depicted in Fig. 2. This
method avoids calculating the gradients ΔGti uMPP tið Þð Þ, and
does not require any performance function evaluations.

After uIMPP(ti) is obtained, a shifting vector S(j + 1) can be
constructed by

S jþ1ð Þ ¼ μ jð Þ
M −Tr−1 uIMPP tið Þð Þ

¼ μ jð Þ
Z ;μP;μY tið Þ

h i
−Tr−1

βtar tið Þ
β tið Þ uMPP tið Þ

� � ð15Þ

where Tr−1(•) denotes the mapping transformation from u-
space to the original space, and j represents the iteration
counter.

Then, as in SORA (Du and Chen 2004), the time-
independent reliability constraint in (9) can be further trans-
formed into an equivalent deterministic constraint as

gti μM−S jþ1ð Þ
� 	

< 0 ð16Þ

After the above two-step transformation, the original time-
variant reliability constraint is converted into a deterministic
one. Accordingly, the original tRBDO problem in (5) can be
transformed into an equivalent deterministic optimization
problem as

find d;μZ

min f d;μZ;μp


 �
s:t: gti μM−S

jþ1ð Þ
� 	

< 0

μM ¼ μZ;μp;μY tið Þ
h i

dL≤d≤dU ;μL
Z ≤μZ ≤μU

Z

ð17Þ

Then, (17) can be solved to obtain a new design point

d jþ1ð Þ;μ jþ1ð Þ
Z

h i
for the next iteration.

Fig. 2 Schematic diagram of estimating uIMPP(ti)
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3.2 Approximate TRA method based on least-square
method

This subsection proposes an efficient ATRA method to calcu-
late the time-variant reliability at the new design point

d jþ1ð Þ;μ jþ1ð Þ
Z

h i
, instead of using the AMPPT method.

3.2.1 The proposed ATRA method

The proposed ATRA method is based on first-order Taylor
expansion of the time-variant performance function g(d, X,
Y(t), t) and the least-square method. First-order Taylor expan-
sion model has been widely used in static RBDO method,
such as the Sequential Approximate Programming (SAP)
(Cheng et al. 2006; Yi and Cheng 2008), the Approximate
SORA (ASORA) (Yi et al. 2016), and the direct decoupling
method (Zou andMahadevan 2006). However, in tRBDO, the
performance function g(d, X, Y(t), t) is a function of time, and
it is extremely difficult to directly build the Taylor expansion
models of g(d, X, Y(t), t) throughout the whole time interval
[0, T]. Fortunately, as described in the Appendix, the AMPPT
method can identify the critical time instants ti(i = 1, 2,…nt),
within [0, T]. Therefore, it is unnecessary to approximate g(d,
X, Y(t), t) over [0, T]. Instead, we can only approximate g(d,
X, Y(t), t) at these critical time instants, which can significantly
alleviate the computational burden in building the Taylor ex-
pansion models.

To the describe the dependence of the instantaneous per-
formance function Gti(u) in u-space on the design point
[d,μz], we rewrite Gti(u) as Gti(u, d,μz). Then, Gti(u, d,μz)
can be approximated by first-order Taylor expansion at the

point u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

z

h i
, as:

Gti u;d;μZð Þ≈Gti u jð Þ
MPP tið Þ;d jð Þ;μ jð Þ

Z

� 	
þ

∂Gti u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

Z

� 	
∂u

24 35T

u−u jð Þ
MPP tið Þ

� 	

þ
∂Gti u jð Þ

MPP tið Þ; d jð Þ;μ jð Þ
Z

� 	
∂d

24 35T

d−d jð Þ
� 	

þ
∂Gti u jð Þ

MPP tið Þ; d jð Þ;μ jð Þ
Z

� 	
∂μZ

24 35T

μZ−μ
jð Þ

Z

� 	
ð18Þ

where

1) for the first term on the right side of (18), since u jð Þ
MPP tið Þ is

an MPP, we know that

Gti u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

Z

� 	
¼ 0 ð19Þ

2) for the second term, ∂Gti u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

z

� 	
=∂u is the

partial derivative of Gti u; d;μZð Þ with respect to u at the

point u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

Z

h i
, and

∂Gti u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

Z

� 	
=∂u ¼ ku jð Þ

MPP tið Þ ð20Þ

3 ) f o r t h e t h i r d a n d t h e f o u r t h t e r m , ∂Gti

u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

Z

� 	
=∂d and ∂Gti u jð Þ

MPP tið Þ; d jð Þ;μ jð Þ
z

� 	
=∂μz are the partial derivative of Gti u; d;μzð Þ with re-

spect to d and μz respectively at u jð Þ
MPP tið Þ; d jð Þ;μ jð Þ

z

h i
,

which can be calculated by numerical method as

A ¼
∂Gti u jð Þ

MPP tið Þ; d jð Þ;μ jð Þ
Z

� 	
∂d

¼
Gti u jð Þ

MPP tið Þ; d jð Þ þΔd;μ jð Þ
Z

� 	
Δd

B ¼
∂Gti u jð Þ

MPP tið Þ;d jð Þ;μ jð Þ
Z

� 	
∂μZ

¼
Gti u jð Þ

MPP tið Þ; d jð Þ;μ jð Þ
Z þΔμZ

� 	
ΔμZ

ð21Þ

Then, substitute (19)~(21) and the new design point

d jþ1ð Þ;μ jþ1ð Þ
z

h i
into (18), we can obtain the approximated

instantaneous performance function at ti:

bGti u; d jþ1ð Þ;μ jþ1ð Þ
z

� 	
¼ k u jð Þ

MPP tið Þ
h iT

u−u jð Þ
MPP tið Þ

� 	
þ ATΔd jþ1ð ÞþBTΔμ jþ1ð Þ

z

¼k u jð Þ
MPP tið Þ

h iT
u−kβ2þATΔd jþ1ð ÞþBTΔμ jþ1ð Þ

Z

ð22Þ

where

Δd jþ1ð Þ ¼ d jþ1ð Þ−d 1ð Þ

Δμ jþ1ð Þ
z ¼ μ jþ1ð Þ

Z −d jð Þ
Z

ð23Þ

By now, with bGti u; d jþ1ð Þ;μ jþ1ð Þ
Z

� 	
, we can perform the

conventional MPP-search methods (Rackwitz and Flessler
1978; Schittkowski 1986) to solve the following optimization

to obtain the new MPP u jþ1ð Þ
MPP tið Þ in the (j + 1) − th iteration:

min uk k
s: t: bGti u; d jþ1ð Þ;μ jþ1ð Þ

Z

� 	
¼ 0

ð24Þ

However, it can be noticed that optimum u jþ1ð Þ
MPP tið Þ of (24)

is actually the least-norm solution of the undetermined
equation:

k u jð Þ
MPP tið Þ

h iT
u ¼ kβ2− ATBT� 

• Δd jþ1ð Þ

Δμ jþ1ð Þ
Z

� �
ð25Þ

Therefore, there is no need to perform the MPP-search
process, we can directly derive the analytic expression of

u jþ1ð Þ
MPP tið Þ with the least-square method as

An efficient decoupled method for time-variant reliability-based design optimization 2453



u jþ1ð Þ
MPP tið Þ≈C � β2−

1

k
ATBT�  � Δd jþ1ð Þ

Δμ jþ1ð Þ
Z

� �� �
C ¼ u jð Þ

MPP tið Þ u j
MPP tið Þ� T� 	−1

u jð Þ
MPP tið Þ

ð26Þ

Similarly, for each time instant ti(i = 1, 2, .., nt), we can de-

rive u jþ1ð Þ
MPP tið Þ with (26), and obtain a new group of “time-

MPP” pairs ti; u
jþ1ð Þ

MPP tið Þ
� 	

ji ¼ 1; 21; ::nt
n o

. Then, with

these samples, a Kriging model bu jþ1ð Þ
MPP tð Þ for the MPP trajec-

tory can be constructed. Finally, the time-variant reliability

index β jþ1ð Þ
cur at the new design point d jþ1ð Þ;μ jþ1ð Þ

Z

h i
can be

calculated with the MPP trajectory bu jþ1ð Þ
MPP tð Þ (see the

Appendix).

3.2.2 Some remarks

First, compare computational complexities of the proposed
ATRA method with the AMPPT method.

For the proposed ATRA method, the computational cost
mainly comes from calculating the partial derivativesA and B
in (21) with the numerical method. Therefore, the number of
function evaluations (FEs) required by the proposed ATRA
can be calculated by

FEATRA ¼ nd þ nzð Þnt ð27Þ

For the AMPPT method, the computational cost mainly
comes from performing nt MPP-searches at ti(i = 1, 2,…, nt).
In practice, efficient gradient-based algorithms are commonly
used to perform the MPP-searches, such as Sequential
Quadratic Programming (SQP) and Hasofer-Lind Rackwitz-

Fig. 3 Flowchart of the proposed SATO method
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Fissler (HL-RF) algorithm (Rackwitz and Flessler 1978). Let
the average number of iterations required by eachMPP-search
be nAVG . Then, the number of FEs required by the AMPPT
can be calculated by

FEAMPPT ¼ nz þ np þ nY þ 1

 �

nAVGnt ð28Þ

The ratio of the computational complexities of ATRA to
AMPPT can be calculated by

FEATRA

FEAMPPT
¼ nd þ nz

nz þ np þ nY þ 1

 �

nAVG
ð29Þ

In practice, each MPP-search generally requires dozens of
iterations on average for convergence. Therefore, the
ratioFEATRA/FEAMPPT is generally far less than 1, and the pro-
posed ATRA method can significantly reduce the computa-
tional cost of TRA.

Second, similar to other first-order Taylor expansion-
based methods (Cheng et al. 2006; Zou and Mahadevan
2006; Yi et al. 2016), the proposed ATRA method may
inevitably introduce some error relative to AMPPT in the
first few iterations. However, as the design point series

d jþ1ð Þ;μ jþ1ð Þ
z

� j j ¼ 1; 2; ::
� �

converge, the vector

Δd jþ1ð Þ

Δμ jþ1ð Þ
Z

� �
in (26) tend to zero, and the error introduced

by the ATRA method can also be reduced to zero.
Generally, the proposed ATRA method takes only a few
iterations to achieve an acceptable accuracy in practice,
which is also demonstrated in the validation and applica-
tion section of this paper.

3.3 Complete procedure

The flowchart of the proposed SATOmethod is shown in Fig. 3.
First, the AMPPT method is performed to identify the critical
time instants and the corresponding MPPs. Then, the two-step

transformation is employed to convert the original tRBDOprob-
lem into a deterministic optimization problem to update the
design point. Afterwards, the proposed ATRA method is per-
formed to calculate the time-variant reliability at the new design
point. Then, the two sub-procedures, deterministic optimization
and ATRA, are performed sequentially until the convergence
criterion is satisfied.

The proposed SATO method decouples the double-loop
nested procedure in the original tRBDO into a sequential pro-
cess of the two easy-to-solve sub-procedures, which can sig-
nificantly improve the efficiency of tRBDO.

4 Validation and application

This section presents the validation and application of the
proposed SATO method. First, a complicated welded beam
problem is employed to verify the accuracy and efficiency of
the proposed method, in comparison with the double-loop
method (DLM) and the EMPP method proposed by Fang
et al. (Fang et al. 2019). Then, the proposed SATO method
is applied in a rocket inter-stage structure problem to show its
capability in solving practical engineering problems.

4.1 Validation of the proposed method

4.1.1 Problem description

The welded beam problem is a complicated highly nonlinear
tRBDO problem with 11 random variables/stochastic process
and 3 types of reliability constraints, i.e., static reliability constraint,
stationary time-variant reliability constraints, and nonstationary
time-variant reliability constraints, and is commonly used to verify
the effectiveness of tRBDO methods (Fang et al. 2019).

The welded beam is depicted in Fig. 4. The left end is fixed
by welding, and the right end is subjected to a stochastic load
F(t). The depth Z1 and length Z2 of the welding point, and the

Table 1 Probabilistic
characteristics of the variables in
the welded beam

Variable Distribution Mean Standard

deviation

Autocorrelation

coefficient function

Z1 Normal μZ1 0.2 mm NA

Z2 Normal μZ2 2 mm NA

Z3 Normal μZ3 2 mm NA

Z4 Normal μZ4 0.2 mm NA

σ Normal 206.85 MPa 20.685 MPa NA

L Normal 355.6 mm 35.56 mm NA

E Normal 206850 MPa 20685 MPa NA

G Normal 82740 MPa 8274 MPa NA

d0 Normal 6.35 mm 0.635 mm NA

τ Normal 93.77 MPa 9.377 MPa NA

F(t) Gaussian process 26688 N 2668.8 N exp(−Δt2)
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height Z3 and thickness Z4 of the beam are considered as
random design variables. The random parameters include the
Young’s Modulus E, the shear modulus G, the length of the
beam L, the allowable displacement d0 of the free end, the
maximum shear stress τ, and maximum normal stress σ. The

probabilistic characteristics of all involved variables are listed
in Table 1.

The objective of this problem is to minimize the cost of
welding, and the tRBDO problem is formulated as

min f μZ;μp


 � ¼ c1μ2
Z1
μZ2

þ c2μZ3
μZ4

μL þ μZ2


 �
s: t:

Pr gi X; Y tð Þ; tð Þ < 0;∀t∈ 0; T½ �f g > Φ βtarget
i


 �
; i ¼ 1; 2; 3; 4; 5

Pr g3 Xð Þ < 0f g > Φ βtarget
3


 �
g1 X;Y tð Þ; tð Þ ¼ τ X; Y tð Þð Þ

τ*
−1

g3 Xð Þ ¼ Z1

Z4
−1

g5 X; Y tð Þð Þ ¼ 1−
Pc Xð Þ
F tð Þ

Z ¼ Z1; Z2; Z3; Z4½ � P ¼ σ; L;E;G; d0; τ½ �
3:175mm < μz1 < 50:8 mm
0 mm < μz3 < 254 mm

T ¼ 10 years

g2 X; Y tð Þ; tð Þ ¼ σ X; Y tð Þð Þ
σ* −1

g4 X; Y tð Þtð Þ ¼ δ X; Y tð Þð Þ
d0

−1

βtarget
i ¼ 2:0; i ¼ 1; 2;…; 5
X¼ Z;P½ � Y tð Þ ¼ F tð Þ
0mm < μZ2

< 254 mm
0 mm < μz4 < 50:8mm

ð30Þ

where

τ X ; Y tð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L X; Y tð Þð Þ2 þ L X ; Y tð Þð ÞS X ; Y tð Þð Þ2

R Xð Þ þ S X ; Y tð Þð Þ2
s

σ X; Y tð Þð Þ ¼ 6F tð ÞL
Z2
3Z4

δ X; Y tð Þð Þ ¼ 4F tð ÞL3
EZ3

3Z4

L X; Y tð Þð Þ ¼ F tð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z1Z2

p

J Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Z1Z2

Z2
2

12
þ Z1 þ Z3ð Þ2

4

" #vuut
τ* ¼ τe−0:012t

C1 ¼ 6:74135� 10−5

S X ; Y tð Þð Þ ¼ M X ; Y tð Þð ÞR Xð Þ
J Xð Þ

Pc Xð Þ ¼ 4:013Z3Z3
4

ffiffiffiffiffiffiffi
EG

p

6L2
1−

Z3

4L

ffiffiffiffi
E
G

r !
σ* ¼ σe−0:01t

C2 ¼ 2:93585� 10−6

ð31Þ

4.1.2 Results and discussions

The deterministic optimization counterpart of the original
tRBDO problem is firstly solved, and its optimum [6.2068,
157.9224, 210.5967, 6.2068] is used as the initial design point
of the tRBDO methods. The DLM, EMPP, and SATO take
48, 5, and 5 iterations for convergence, respectively. The op-
timal solutions obtained by the three methods are listed in
Table 2. The computational costs of the three methods are
listed in Table 3, where FEtotal denotes the total number of
FEs, and FETRA denotes the number of FEs used for TRA,
including both AMPPT and ATRA.

First, consider the accuracy of different tRBDOmethods. It
can be seen from Table 2 that the three methods almost findFig. 4 The welded beam
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the same optimal solution, which demonstrates that all the
three methods can effectively solve this problem.

Second, further analyze the accuracy of the proposed
ATRA method in each iteration of SATO. Figure 5 presents

the maximum mean square error (MSE)
max

t∈ 0; T½ �∑
nþm
j¼1

σ2j tð Þ
n n

þm of buMPP tð Þ (see (46) in Appendix B) in each iteration of

SATO. It can be seen that the maximum MSE of the Kriging
models buMPP tð Þ are always far less than 10−5, which indicates

that the Kriging models are accurate enough. Moreover, we
also performed the AMPPT method after each ATRA invoca-
tion to calculate the accurate time-variant reliability index

(TRI). The TRI error of the proposed ATRA relative to
AMPPT is plotted in Fig. 6. Figure 6 only shows the TRI
errors of g1, g2, and g5, and this is because g3 is a static
reliability constraint and the TRI of g4 is infinite. It is clear
that in the second iteration, the TRI error of ATRA is relative-
ly large. But only after two iterations, the TRI error is reduced
to almost zero, which verifies the accuracy and robustness of
the proposed ATRA method.

Third, compare the efficiency of the three tRBDOmethods.
It is clear from Table 3 that, due to the high nonlinearity of this
problem, DLM takes 246 iterations and 482,969 FEs for con-
vergence, and about 97% of the computational costs are used
in the TRA. For more time-consuming simulation model is
practical engineering, this computational burden is unafford-
able. The convergence curves of EMPP and SATO are given
in Fig. 7. From Table 3 and Fig. 7, it can be found that both
EMPP and SATO need 5 iterations for convergence, but the
FEtotal of SATO is only 42.30% of that of EMPP, which

Fig. 6 TRI error of the proposed ATRA method in the welded beam

Fig. 7 Convergence curves of EMPP and SATO in the welded beam
Fig. 5 Mean square error of the Kriging model in the proposed ATRA
method

Table 3 Computational costs of different tRBDO methods in the
welded beam

Methods Iterations AMPPT
invocations

ATRA
invocations

FEtotal FETRA

DLM 48 984 0 482,969 470,069

EMPP 5 20 0 11,516 6236

SATO 5 4 16 4782 1084

Table 2 Optimal solutions of different tRBDO methods in the welded
beam

Methods Optimum Objective Reliability index

DLM [6.6811, 227.4071,
254.0000, 7.2468]

3.8348 [2.0011, 2.0102,
2.0005, Inf, 2.1573]

EMPP [6.6835, 227.2151,
254.0000, 7.2492]

3.8348 [1.9961, 2.0074,
2.0013, Inf, 2.1653]

SATO [6.6873, 227.3335,
254.0000, 7.2530]

3.8382 [2.0027, 2.0109,
2.0019, Inf, 2.1722]
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verifies that the proposed SATO method is much more effi-
cient than EMPP.

Fourth, further study the reason for the high efficiency of
the proposed SATO. It can be seen from Table 3 that SATO
significantly reduces the number of AMPPT invocations com-
pared with EMPP (4 vs. 20). Figure 8 presents the number of
FEs used for TRA (both AMPPT and ATRA) in each iteration
of EMPP and SATO. This example includes four random
design variables, two stationary time-variant reliability con-
straints, (g1andg2) and two nonstationary time-variant reliabil-
ity constraints (g4andg5) The identified number of critical time
instants for both g1andg2 are five. g4andg5 contains one criti-
cal time instant. Therefore, according to (27), the number of
FFs used for TRA in each iteration is 12 × 4 = 48 It can be
observed that each ATRA invocation takes less than 1/25 of
the FEs required by each AMPPT invocation on average,
which dramatically reduces the total computational cost of
the proposed SATO method.

The above results and discussions verify that the proposed
SATO method can significantly improve the efficiency of
tRBDO while maintaining similar accuracy in comparison
with DLM and EMPP.

4.2 Application in a rocket inter-stage structure

4.2.1 Problem description

In this subsection, the proposed SATO method is applied in
the tRBDO problem of an inter-stage structure.

The stiffened cylindrical shell structure is a common struc-
ture form in the inter-stage structure of large launch vehicles.
Figure 9 shows the finite element model of an inter-stage

structure. The height of the inter-stage structure is 720 mm,
and the diameter is 2300 mm. The inter-stage structure con-
tains 72 axial frames and 10 ring frames. All the frames have a
rectangular cross-section, as shown in Fig. 10a. There are 4
elliptical holes with the same shape on the wall of the struc-
ture, and the schematic diagram of the elliptical hole is shown
in Fig. 10b. The upper end of the structure is subjected to a
dynamic axial load (t), and the lower end is under fixed-
supported constraints. The material properties of the structure
are listed in Table 4.

This problem contains 5 random design variables, i.e.,
thickness of the wall T, thickness of the ring frames C1, thick-
ness of the axial frames C2, and the lengths of the semi-major
and semi-minor axes of the 4 elliptical holes A and B. The
height of the ring and axial frames H is considered a random
parameter. The probabilistic characteristics of all involved
variables are given in Table 5.

During the flight time, the engine thrust of the rocket can be
roughly considered as a constant. With the fuel consumption,
the mass of the launch vehicle gradually decreases. Therefore,
the axial load on the inter-stage structure gradually increases
with time. In this paper, we model the dynamic axial load F(t)
as a non-stationary stochastic process, and its mean, standard
deviation, and autocorrelation coefficient functions are
expressed as

μF tð Þ ¼ 1000 t=160ð Þ1:5 þ 1600kN
σF tð Þ ¼ 30kN

ρF t1; t2ð Þ ¼ exp − t1−t2ð Þð Þ2=100
ð32Þ

The objective of this problem is to minimize the mass of the
structure. The inter-stage structure fails if the maximum von
Mises stress exceeds the yield strength σy = 213.8 MPa or
axial displacement of the upper end of the structure exceeds
Slimit = 0.6 mm during the flight time of 120 s. Therefore, the
tRBDO problem can be expressed as:

min f μz;μHð Þ ¼ m μT ;μC ;μC2
;μA;μB;μH


 �
s: t: Pr g1 Z ;H ; F tð Þð Þ < 0;∀t∈ 0; T½ �f g > Φ 3:0ð Þ; i ¼ 1; 2

gi Z ;H ; F tð Þð Þ ¼ σv T ;C1;C2;A;B;H ; F tð Þð Þ−σy
g2 Z ;H ; F tð Þð Þ ¼ s T ;C1;C2;A;B;H ; F tð Þð Þ−slimit

Z ¼ T ;C1;C2;A;B½ � 4mm < μT < 10mm
4mm < μc1 ;μc2 < 15mm 150 mm < μA;μB < 220mm

T ¼ 120 s

ð33Þ

Fig. 8 The number of FFs used for TRA in each iteration of EMPP and
SATO

Table 4 Material properties of the inter-stage structure

Modulus of elasticity Density Yield strength Poisson’s ratio

68,646 MPa 2700 kg/m3 313.8 MPa 0.3
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where m(•), σv(•), and s(•) are the mass, the maximum von
Mises stress, and the maximum axial displacement of the
structure, respectively.

In this paper, the CATIA software is used to build the
parametric model of the inter-stage structure. Then,
HyperMesh is employed to automatically generate the finite
element mesh. Finally, Nastran is used for finite element anal-
ysis to calculate m(•), σv(•), and s(•).

4.2.2 Results and discussions

First, solve the deterministic optimization counterpart of the
original tRBDO problem in (33) without considering the un-
certainties. The resulting optimum is listed in Table 6. It can
be seen that the optimal mass is 137.67 kg, and both the stress
and displacement constraints are satisfied. However, when the
static and time-variant uncertainties are taken into account, the
TRIs of g1 and g2 are only 0.7534 and 0.0013, respectively, far
frommeeting the TRI requirement of 3.0. This result indicates

that it may lead to huge risk if the inter-stage structure is
designed according to the deterministic optimum.

Second, use the deterministic optimum in Table 6 as initial
design point, and perform EMPP and SATO to solve the orig-
inal tRBDO problem. The resulting optima are listed in
Table 7. It is found that the optimum of the proposed SATO
method is very close to that of EMPP, which verifies the
effectiveness and accuracy of the proposed method.

Third, compare the deterministic and tRBDO optima.
Figure 11 shows the von Mises stress contours and axial dis-
placement contours of the two optima. It is obvious that the
tRBDO optimum considerably reduces the maximum von
Mises stress and axial displacement. Compare Tables 6 and
7, it can be seen that although the tRBDO optimum increases
the mass of the inter-stage (from 137.67 to 162.80 kg), the
TRIs of g1 and g2 are also significantly increased and meet the
TRI requirement. This result demonstrates that, in practical
applications, the tRBDO optimum are much more reliable
than the deterministic optimum.

Fourth, compare the efficiency of EMPP and SATO.
Table 8 lists the detailed computational costs of EMPP and
SATO. It should be noted that in this example, a single finite
element analysis (FEA) can simultaneously calculate the
weight, the maximum von Mises stress, and the maximum
axial displacement of the structure. Therefore, the last two
columns of Table 8 (FEAtotal and FEATRA) are the number
of FEAs, instead of the number of FEs. Figure 12 shows the

Fig. 9 Finite element model of the inter-stage structure

Fig. 10 Schematic diagrams of the rectangular frame and the elliptical
holes

Table 5 Probabilistic characteristics of the variables of the inter-stage
structure

Variable Distribution Mean Standard
deviation

Autocorrelation
coefficient function

T Normal μT 0.6 mm NA

C1 Normal μC1 0.6 mm NA

C2 Normal μC2 0.6 mm NA

A Normal μA 0.6 mm NA

B Normal μB 0.6 mm NA

H Normal 15 mm 0.6 mm NA

F(t) Gaussian process μF(t) σF(t) ρF(t1,t2)

Table 6 Deterministic optimum of the inter-stage structure

Parameters Value

Deterministic optimum [6.02, 14.98, 4.09, 150.04, 219.98] mm

Mass 137.67 kg

Max von Mises stress 195.81 MPa

Max axial displacement 0.60 mm

TRI of g1 0.7534

TRI of g2 0.0013
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convergence curves of EMPP and SATO. It can be seen that
although SATO takes twomore iteration for convergence than
EMPP, the FEtotal of SATO is only 47.31% of that of EMPP.

Additionally, further study the reason for the high effi-
ciency of SATO. It can be observed from Table 8 that, in
comparison with EMPP, the computation cost reduction
(980 FEs) of SATO mainly comes from the computation
cost reduction in TRA (672 FEs). Figure 13 shows the
number of FFs used for TRA in each iteration of EMPP
and SATO. This example includes five random design var-
iables and two time-variant reliability constraints. The
number of critical time instants identified by AMPPT for
both time-variant reliability constraints are five. Therefore,
according to (27), the number of FFs used for TRA in each

iteration is 10 × 5 = 50 . It is clear that the number of FFs of
each ATRA invocation is only about 1/9 of that of each
AMPPT invocation. Therefore, the total computational cost
of the proposed SATO method is significantly reduced in
comparison with EMPP.

These results and discussions demonstrate the effectiveness
and efficiency of the proposed SATO in solving the practical
engineering problem.

5 Conclusions

This paper proposes a novel decoupled SATO method to im-
prove the efficiency of tRBDO. First, a two-step method is

Table 7 tRBDO optima of the
inter-stage structure Methods Optimum Mass (kg) TRI

EMPP [7.84, 15.00, 4.00, 150.00, 192.81] 162.76 [3.4895, 2.9983]

SATO [7.85, 15.00, 4.00, 150.00, 192.76] 162.80 [3.5426, 3.0091]

(a) Von Mises stress contour of

deterministic optimum

(b) Axial displacement contour of

deterministic optimum

(c) Von Mises stress contour of

tRBDO optimum

(d) Axial displacement contour of

tRBDO optimum

Fig. 11 Comparison of deterministic optimum and tRBDO optimum of
the inter-stage structure. a Von Mises stress contour of deterministic
optimum. b Axial displacement contour of deterministic optimum. c

Von Mises stress contour of tRBDO optimum. d Axial displacement
contour of tRBDO optimum
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proposed to directly transform the original tRBDO problem
into an equivalent deterministic optimization problem.
Second, a novel ATRA method is proposed, which employs
the least-square method to calculate the MPPs and therefore
can notably reduce the computational cost for the TRA. As a
result, the proposed SATO method decouples the nested
double-loop procedure in tRBDO into a sequential process
of the two sub-procedures: ATRA and deterministic
optimization.

Test results of the welded beam problem verify that
the proposed SATO method can achieve similar accu-
racy to the compared methods, while considerably re-
ducing the computational cost. The rocket inter-stage
problem shows that the proposed method can be ap-
plied into practical engineering problems to improve
the reliability of engineering structures under time-
variant uncertainties.

Like other first-order Taylor expansion-based methods,
the proposed method may produce large error if the time-
variant performance function of the tRBDO problem is
highly nonlinear. To address this problem, the second-
order reliability method (SORM) can be performed at the
critical time instants to achieve higher accuracy in future
studies.

Appendix 1

AMPPT method for TRA and identifying critical time
instants

The AMPPT method is based on the concept of MPP trajec-
tory (Zhang et al. 2021). It can not only accurately calculate
the time-variant reliability, but also identify the critical time
instants within the time interval [0, T] via an adaptive sam-
pling process.

For an arbitrary time instant ta ∈ [0, T] , denote the MPP of
the instantaneous performance function g(d,X,Y(ta), ta) as
uMPP(ta). When ta varies from 0 to T, the MPP uMPP(ta) will
move from uMPP(0) to uMPP(T). If we connect all these MPPs,
a curve uMPP(t)(t ∈ [0, T]) in u-space can be obtained, which is
defined as the MPP trajectory. Figure 14 shows a schematic
diagram of the MPP trajectory, where the solid curves repre-
sent the limit-state boundaries at the critical time instants.

For a given TRA problem, the AMPPT method first ap-
proximates its MPP trajectory with the adaptive Kriging mod-
el buMPP tð Þ, and then calculates the time-variant reliability

Fig. 14 Schematic diagram of the MPP trajectory and critical time
instants

Fig. 13 The number of FFs used for TRA in each iteration of EMPP and
SATO

Table 8 Computational costs of EMPP and SATO in the inter-stage
structure

Methods Iterations AMPPT
invocations

ATRA
invocations

FEAtotal FEATRA

EMPP 3 6 0 1860 1308

SATO 5 2 8 880 636

Fig. 12 Convergence curves of EMPP and SATO in the inter-stage
structure
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based on buMPP tð Þ, The solution process of AMPPT consists of
three steps, which are briefly described as follows.

First, discretize [0, T] into Ninit equidistant time instants,
and perform MPP searches at these time instants to obtain
the initial time-MPP samples. {(ti, uMPP(ti))| i = 1, 2, ..,Ninit}
Then, build a rough Kriging model buMPP tð Þ with these sam-
ples. Afterwards, perform an adaptive sampling process to
iteratively identify the critical time instants t∗, at which the
Kriging model buMPP tð Þ has the largest prediction variance,

t* ¼ arg
max

t∈ ts; te½ �
∑nþm

j¼1 σ
2
j tð Þ

nþ m
ð34Þ

where σ2
j tð Þ j ¼ 1; 2;⋯nþ mð Þ is the prediction variance of

the j-th component of buMPP tð Þ. Then, perform MPP-search at
t∗ to obtain a new sample (t∗, uMPP(t

∗)) , and update buMPP tð Þ
accordingly. Repeat this process until the Kriging model buMPP

tð Þ is accurate enough.
Second, according to buMPP tð Þ, transform the response of the

time-variant performance function g(d,X,Y, (t), t) into an equiva-
lent Gaussian process H(t) . The mean, standard deviation, and
autocorrelation coefficient functions of H(t) are derived as:

μ tð Þ ¼ −β tð Þ ¼ − buMPP tð Þ
��� ���

σ tð Þ ¼ 1

ρ t1; t2ð Þ ¼ Cov H t1ð Þ;H t2ð Þð Þ
σ t1ð Þσ t2ð Þ

¼ Cov −β t2ð Þ þ av t1ð Þð ÞTVþ aw t1ð Þð ÞTW1;−β t2ð Þ þ av t2ð Þ
	
TVþ aw t1ð Þ

	
TW2

� 	
¼ Cov

�
av t1ð Þ

� 	T
Vþ aw t1ð Þð ÞTW1; av t2ð Þð ÞTVþ aw t2ð Þð ÞTW2

	
¼ Cov

�
av t1ð ÞTV; av

�
t2

� 	T
V

� �
þ Cov aw t1ð Þð ÞTW1; aw t2ð Þð ÞTW2

� 	
¼ av t1ð Þð ÞTav t2ð Þ þ aw t1ð Þð ÞTC t1;t2


 �
aw t2ð Þ

ð35Þ
where C(t1, t2) is a nY × nY correlation coefficient matrix. V
and W are independent standard normal random variables
transformed from X and Y(t), respectively. av(t) and aW(t)
are calculated by

αV tð Þ ¼ buMPP;V tð Þ=β tð Þ
αW tð Þ ¼ buMPP;W tð Þ=β tð ÞbuMPP tð Þ ¼ buMPP;V tð Þ; buMPP;W tð Þ

h i ð36Þ

Finally, calculate the time-variant reliability based on spec-
tral decomposition (Sudret and Der Kiureghian 2002) and
Monte Carlo Simulation (MCS). Discretize the time interval
[0, T] into s equidistant time instants ti(i = 1, 2,…, s), and con-
struct a covariance matrix ∑ as

Σ ¼
Cov t1; t1ð Þ Cov t2; t1ð Þ ⋯ Cov ts; t1ð Þ
Cov t1; t2ð Þ Cov t2; t2ð Þ ⋯ Cov ts; t2ð Þ

⋮ ⋮ ⋱ ⋮
Cov t1; tsð Þ Cov t2; tsð Þ ⋯ Cov ts; tsð Þ

2664
3775
s�s

ð37Þ

where, Cov(ti, tj) = σ(ti)σ(tj)ρ(ti, tj), for i, j = 1, 2, ⋯, s.
Then, H(t) can be decomposed as (Sudret and Der
Kiureghian 2002)

H tð Þ≈μ tð Þ þ σ tð Þ ∑
p

k¼1

ξkffiffiffiffiffi
λk

p QT
k ρ tð Þ ð38Þ

where ξk(k = 1, 2,…, p) are independent standard normal
random variables;λk andQk are the eigenvalues and eigenvec-
tors of ∑, respectively; ρ(t) = [Cov(t1, t), Cov(t2, t), .., Cov(tp,
t)]T is a covariance vector.

U s e ( 3 8 ) t o g e n e r a t e NMC S s amp l e s H jð Þ ¼
h jð Þ
1 ; h jð Þ

2 ;⋯; h jð Þ
s

h i
, (j = 1, 2,⋯,NMCS) of H(t), and the time-

variant reliability index βcur can be estimated by

βcur ¼ Φ−1 P Tð Þð Þ ¼ Φ−1
∑
j¼1

NMCS

I H ið Þ
 �
NMCS

0BBB@
1CCCA ð39Þ

where I(H(j)) is an indicator function. If maxsi¼l h jð Þ
i

� 	
< 0 ,

I(H(j)) = 1; otherwise, I(H(j)) = 0.

Appendix 2

Kriging model

In both the AMPPT method described above and the ATRA
method proposed in Section 3.2, the Kriging model
(Lophaven et al. 2002; Gano et al. 2006) is selected to approx-
imate the MPP trajectory due to its advantage in providing the
prediction variance and its successful applications in field of
reliability analysis (Hawchar et al. 2018; Zhang et al. 2019; Li
et al. 2020).

The Kriging model approximates the jth(j = 1, 2,…, n +
m) component μMPP, j(t) of the MPP trajectory uMPP(t) (see
Fig. 14) as

buMPP; j tð Þ ¼ f tð Þ þ s tð Þ ð40Þ

where f(t) is a polynomial term of t and s(t) is a Gaussian
process with zero mean and covariance Cov[s(tp), s(tq)] In
this paper,f(t) is treated as a constant μ. The covariance
Cov[s(tp), s(tq)] of s(t) is calculated by

Cov s tp

 �

; s tq

 ��  ¼ σ2R tp; tq


 � ¼ σ2exp −θ tp−tq

 �� 2 ð41Þ

where σ2 is the variance of s(t), R(tp, tq) is the correlation
coefficient, and θ is a parameter that can be determined by
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the maximum likelihood estimation (Giunta and Watson
1998).

Assume the number of “time-MPP” pairs {(ti, uMPP(ti))⌊i =
1, 2,⋯n} is n. Denote y = {uMPP, j(ti)}. The natural logarithm
of the likelihood function is defined as

L θjyð Þ ¼ −
1

2
nln 2πð Þ þ nlnσ2 þ ln Rj j þ y−Aμð ÞTR−1 y−Aμð Þ

2σ2

" #
ð42Þ

whereR = [R(tp, tq)]n × n is a n × n correlation matrix andA is a
n × 1 unit vector. By setting the derivatives of (42) with re-
spect to μ and σ2 to zero, μ and σ2can be estimated as

bμ ¼ ATR−1y

ATR−1y
bσ2

¼ y−Aμð ÞTR−1 y−Aμð Þ
n

ð43Þ

Substituting (43) into (42),θ can be determined by maxi-
mizing the likelihood function

θ ¼ argmax
θ

−
nlnbσ2

þ lnjRj
2

0@ 1A ð44Þ

Once all hyper parameters are obtained, the Kriging modelbuMPP; j tð Þ can be used to predict the jth (j = 1, 2,…, n +m)
component of the MPP at an arbitrary time instant t:

buMPP; j tð Þ ¼ bμþ rTR−1 y−Abμ� 	
ð45Þ

where r i s a cor re la t ion vec tor def ined by r ¼
R t; t1ð Þ;R t; t2ð Þ;…;R t; tnð Þ½ � T . The variance of the prediction
in (45) is given by

σ2
j tð Þ ¼ σ2 1−rTR−1rþ 1−ATR−1r


 �2
ATR−1A

" #
ð46Þ
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