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Abstract
When using the robust topology optimization formulation in the density framework, the minimum size of the solid and
void phases must be imposed implicitly through the parameters that define the density filter and the smoothed Heaviside
projection. Finding these parameters can be time consuming and cumbersome, hindering a general code implementation of
the robust formulation. Motivated by this issue, in this article, we provide analytical expressions that explicitly relate the
minimum length scale and the parameters that define it. The expressions are validated on a density-based framework. To
facilitate the reproduction of results, MATLAB codes are provided.
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1 Introduction

Since the seminal work of Bendsøe and Kikuchi (1988),
topology optimization has experienced huge advances and
nowadays is being massively adopted in the industry
(Pedersen and Allinger 2006; Zhou et al. 2011; Zhu
et al. 2016). Among the successful advancements, one
can mention the famous density method under the SIMP
interpolation scheme (Bendsøe 1989). The well-known
shortcomings of SIMP led to a succession of improvements
seeking to avoid the mesh dependency, the checkerboard
patterns, and the presence of intermediate densities. To date,
one of the most effective approaches to dealing with the ill-
effects of SIMP is the robust design approach that brings
the eroded and dilated versions of the design (Sigmund
2009). This method considers manufacturing errors that
may incur in a uniformly thinner or uniformly thicker
component compared to the blueprint layout. Sigmund
(2009) proposed a robust formulation that maximizes the
performance of the worst performing design among the
eroded, dilated, and reference (intermediate) designs. This
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means, the formulation guarantees a design with good
performance even if it is eventually eroded or dilated
during the manufacturing process. Interestingly, the robust
formulation yields a reference (intermediate) design that
features minimum member size and minimum cavity size
(Wang et al. 2011).

In addition to imposing minimum length scale in
topology optimization, it has been seen that the robust
formulation provides a more stable convergence than other
projection or filtering strategies known so far, which allows
to reach almost discrete solutions in the density method
(Wang et al. 2011). The formulation has been recently
applied in combination with existing methods that allow to
impose stress limits (da Silva et al. 2019; Silva et al. 2020),
overhang angle constraints (Pellens et al. 2018), maximum
size restrictions (Fernández et al. 2020), and geometric non-
linearities (Lazarov and Sigmund 2011; Silva et al. 2020),
not only in the density method but also in the level set
method (Chen and Chen 2011; Andreasen et al. 2020).

Despite proving its effectiveness in several fields of
application (Wang et al. 2011b; Christiansen et al. 2015),
the robust design approach presents some drawbacks
with regard to its implementation. For example, the
method requires boundary treatments with respect to the
density filter, since the filtering region can be split at
the edges of the design domain affecting the imposed
minimum size (Clausen and Andreassen 2017). In addition,
due to the erosion and dilation distances with respect
to the intermediate design, boundary conditions can be
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disconnected from the designs involved in the formulation
(Clausen and Andreassen 2017). Another difficulty posed
by the method is that the minimum length scale must
be implicitly imposed through the parameters defining the
density filter and the Heaviside projection. This drawback
has been addressed in the literature using numerical (Wang
et al. 2011) and analytical (Qian and Sigmund 2013)
approaches. The numerical approach consists of applying
the density filter and the Heaviside projection to a 1D
design, measuring the resulting length scale, and repeating
the process several times with different filter and projection
parameters to subsequently construct a graph that relates
the involved parameters. The analytical method consists of
applying the density filter as a convolution integral in a
continuous 1D design. The solution of the integration yields
explicit relationships of the projection/filtering parameters
with the obtained length scale (Qian and Sigmund 2013).
As the three field scheme is a scalar function, the
relationships obtained from a 1D design show to be suitable
approximations for 2D and 3D designs (Wang et al. 2011).

The numerical and analytical relationships reported by
Wang et al. (2011) and Qian and Sigmund (2013) are
intended for a particular case where the minimum size
of the void phase is set equal to that of the solid phase.
This simplifies the procedures to explicitly relate the
desired minimum length scales to the filter and projection
parameters, but it reduces design freedom. In addition,
recent progress in minimum and maximum size control
has raised the need to obtain the erosion and dilatation
distances (Fernández et al. 2021), which are not provided in
the literature and must be derived by topology optimization
users.

The aim of this work is to provide a method to obtain
the filter and projection parameters that impose user-defined
minimum length scales, where the size of the solid phase
can be defined differently from that of the void phase. In
addition, for the desired minimum length scales, the erosion
and dilation distances are provided. To this end, we extend
the applicability of the analytical method proposed by Qian
and Sigmund (2013) and the resulting relationships are
validated using the numerical method proposed by Wang
et al. (2011) and a set of 2D topology-optimized designs.
To facilitate the replication of results and the application of
the methods discussed in this paper, MATLAB codes are
provided.

The remainder of the document is developed as follows.
Section 2 introduces the robust topology optimization
formulation and the case studies used to asses the analytical
expressions that relate the minimum length scale to the
parameters that impose it. Section 3 presents the analytical
method proposed by Qian and Sigmund (2013) and
describes the main contribution of our work, which is the
extension of these equations to allow choosing independent

minimum sizes for the solid and void phases. Section 4
validates the analytical expressions using the numerical
method proposed by Wang et al. (2011). Section 5 discusses
the sources of error that are inherent to the analytical
method. Section 6 assesses the analytical expressions on
2D topology-optimized designs. Section 7 gathers the final
conclusions of this work. Authors provide MATLAB codes
that allow for replication of results through GitHub link.

2 Problem definition

The analytical expressions that relate the minimum length
scale to the parameters that define it are developed
for the robust topology optimization formulation based
on the eroded, intermediate, and dilated designs. This
work considers the density approach based on the SIMP
interpolation scheme (Bendsøe 1989), even though the
proposed methodology can be applied to other topology
optimization approaches with little efforts.

Like most works in the literature, the eroded, intermedi-
ate, and dilated designs are built using a three-field scheme
(Sigmund and Maute 2013). The first field, denoted by
ρ, corresponds to the design variables. The second field,
denoted by ρ̃, is obtained by a weighted average of the
design variables within a circle of radius rfil. The third field,
denoted by ρ̄, is obtained by projecting the components of
the filtered field towards 0 or 1. The filter and projection
functions are identical to those provided by Wang et al.
(2011); however, these are reminded herein for the sake of
clarity.

The filter of design variables (Bruns and Tortorelli 2001;
Bourdin 2001) is defined as follows:

ρ̃i =

N∑

j=1

ρjvjw(xi − xj )

N∑

j=1

vjw(xi − xj )

, (1)

where N is the total number of design variables, which is
equal to the number of finite elements, ρj is the design
variable associated to the element j , and ρ̃i is the filtered
variable associated to the element i. vj is the volume of
the element j and w(xi − xj ) is the weight of ρj in the
definition of ρ̃i . As it is a common practice in the literature,
the weighting function w(xi − xj ) is defined as a linear and
decreasing function with respect to the distance between the
elements i and j , as follows:

w(xi − xj ) = max

(
0, 1 − ‖xi − xj‖

rfil

)
, (2)

where xi and xj represent the centroid of the elements i and
j , respectively, and rfil is the radius of the density filter.
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To reduce the amount of intermediate densities present in
the filtered field and to build the designs that constitute the
robust formulation, the projected field is obtained with the
following smoothed Heaviside function (Wang et al. 2011):

ρ̄i = tanh (βη) + tanh (β(ρ̃i − η))

tanh (βη) + tanh (β(1 − η))
(3)

where β and η control the steepness and the threshold
of the projection, respectively. The eroded, intermediate,
and dilated designs, denoted by ρ̄ero, ρ̄int, and ρ̄dil, are
obtained from the smoothed Heaviside function of (3) by
using the same β but with different thresholds ηero, ηint,
and ηdil, thus leading to ρ̄ero(ρ̃, β, ηero), ρ̄int(ρ̃, β, ηint), and
ρ̄dil(ρ̃, β, ηdil).

To assess the scope of the equations that provide
the necessary parameters to impose the minimum length
scale, different topology optimization problems are sol-
ved with variations in the desired minimum length scale.
The minimum size of the optimized designs is measured
and compared against the intended values. In this work,
the chosen problems are the heat conduction and the non-
linear compliant mechanism design. The former aims at
minimizing the thermal compliance subject to a volume
restriction (Wang et al. 2011), while in the latter, the
formulation of a force inverter is considered where an output
displacement is maximized for a given input force (Sigmund
1997). The design domains are shown in Fig. 1. According

Fig. 1 (a) Heat sink and (b) force inverter design domains considered
in this study

to the robust design approach, the topology optimization
problems can be written as follows:

min max
(
c(ρ̄ero), c(ρ̄int) , c(ρ̄dil)

)

s.t.: vᵀ ρ̄dil ≤ V ∗
dil(V

∗
int)

0 ≤ ρi ≤ 1 , i = 1, ..., N ,

(4)

where c represents the thermal compliance of the heat sink
or the output displacement of the force inverter, and V ∗

dil
is the upper bound of the volume restriction applied on
the dilated field. As the design intended for manufacturing
is the intermediate design, the upper bound of the volume
constraint is scaled according to the user-defined volume
limit (V ∗

int) as follows:

V ∗
dil(V

∗
int) = vᵀ ρ̄dil

vᵀ ρ̄int
V ∗
int (5)

The scaling operation in (5) is performed every 10 iterations
of the topology optimization problem.

For the heat conduction problem, the implementation of
the topology optimization problem is the same as described
by Wang et al. (2011). For the nonlinear force inverter,
the method to deal with mesh distorsion appearing in
low-density elements is the same as explained by Wang
et al. (2014). To avoid overextending the contents of the
manuscript, the interested reader is referred to the cited
articles.

3 Analytical minimum length scale

Comprehensive numerical tests have shown that the robust
formulation in (4) yields intermediate designs featuring
minimum length scales (Wang et al. 2011). Considering
a two-dimensional design domain, the minimum size of
the solid (void) phase is defined by the radius rmin.Solid

(rmin.Void) of the largest circle that can be circumscribed into
the smallest solid member (cavity) of the topology. It has
been shown that the minimum length scale, rmin.Solid, and
rmin.Void are defined by the filter radius rfil and the projection
thresholds ηero, ηint, and ηdil. Therefore, if specific values
are to be imposed for the minimum length scale, these must
be implicitly imposed through the 4 parameters that define
the density filter and the Heaviside projection.

To obtain an explicit relation between the minimum
length scale and the parameters that define it, Qian and
Sigmund (2013) proposed to apply the three-field scheme
over a uni-dimensional and continuous design domain1. For
instance, to obtain the minimum size of the solid phase,
a design domain ρ(x) centered at the coordinate xm and
containing solid elements on a stretch of size h is assumed,

1For the sake of clarity, this manuscript changes two notations with
respect to Qian and Sigmund (2013). Here, 2r intmin.Solid and rmin
respectively represent b and R in the cited article.
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as shown in Fig. 2a. The continuous form of the density
filter reads as follows:

ρ̃(xi) =

∫ xi+rfil

xi−rfil

ρ(x)

(
1 − |xi − x|

rfil

)
dx

∫ xi+rfil

xi−rfil

(
1 − |xi − x|

rfil

)
dx

=
∫ xi+rfil

xi−rfil

ρ(x)

rfil

(
1 − |xi − x|

rfil

)
dx (6)

where xi is any coordinate of x. For example, by choosing
a filter radius greater than h/2, the one-dimensional filtered
field in Fig. 2b is obtained. The filtered field can be
projected using the smoothed Heaviside function of (3). To
simplify the analysis, an infinite steepness parameter (β →
∞) is assumed. For example, for a Heaviside threshold
η = 0.2, the design of Fig. 2c is obtained. The size of
the solid phase in the projected design is defined by the
length Li , which can be obtained by finding xi from the
equation ρ̃(xi) = η, where η is a threshold that meets
0 ≤ η ≤ 1. To this extent, the size of the solid phase is a
function Li(rfil, η, h) that depends on the assumed h value.
To determine the value of h and to discover the explicit
relation between the size L of the projected field and the
filter and projection parameters, it is necessary to refer to
the foundation of the robust formulation.

An erosion projection removes solid material from the
surface of the reference design. This operation enlarges

the cavities and thins the structural members present in
the intermediate reference design (Sigmund 2009). When
robustness with respect to erosion is desired, the structural
members must be present in both the eroded and the
reference designs. It has been shown that a sufficient
condition to preserve robustness is that the solid member
in the eroded design has to be projected by at least an
infinitesimal size, i.e. L(ηero) ≈ 0, as shown in Fig 2d. This
condition allows determining the assumed size h by solving
the following equation:

ρ̃(xero) =
∫ h/2

−h/2

1

rfil

(
1 − |x|

rfil

)
dx = ηero (7)

where the reference system is placed at xero for integration.
By solving the expression in (7), the size h is obtained as:

h = 2rfil(1 − √
1 − ηero) (8)

Knowing the distance h that produces an eroded
projection of infinitesimal size, it is possible to relate the
minimum size to the filter radius for any projection whose
threshold meets η < ηero. A particular case is to choose η =
0.5, which is the value chosen by Qian and Sigmund (2013)
to define the intermediate design. However, to extend the
analytical method we use an arbitrary η such that η < ηero.
It means that we can compute the size if another value of the
intermediate threshold is used but also that we can provide
the sizes in the other phases of the robust formulation.

Fig. 2 The three field scheme
applied to a one-dimensional
design domain in order to obtain
the analytical minimum length
scale
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As mentioned above, the size of the solid phase L in the
projected field can be obtained by equating ρ̃(xi) to η. Since
the condition of robustness is imposed on h (8), the length
corresponds to the minimum size, i.e. L = 2rmin.Solid. The
expression that allows to relate the minimum size to the
filter radius is as follows:

ρ̃(xi) =
∫ xi+rfil

xi−rfil

ρ(x)

rfil

(
1 − |xi − x|

rfil

)
dx = η (9)

For the integration, the origin of the reference system is
placed at xi . To solve (9), four situations must be considered
when defining the integration limits, which are summarized
in Fig. 3. For example, taking into account Fig. 3a, (9)
becomes:

ρ̃(xi) =
∫ L− L−h

2

L−h
2

1

rfil

(
1 − |x|

rfil

)
dx = η (10)

Solving the integral of (10) leads to the following
expression:

ρ̃(xi) = h

rfil
(1 − L

2rfil
) = η (11)

Finally, replacing (8) in (11):

2rmin.Solid

rfil
= 2 − η

1 − √
1 − ηero

(12)

Equation (12) explicitly relates the minimum size of the
solid phase of a projected field defined by η, with the filter
radius and the erosion threshold. However, (12) is only valid
for L > h and rfil ≥ (L + h)/2. For implementation
purposes, it is more convenient to express the range of
application in terms of the projection thresholds. To this end,
h can be replaced from (8) and L from (12), which leads to
conditions depending only on ηi and ηero, as follows:

L > h =⇒ η < 2ηero − 2 + 2
√
1 − ηero

rfil ≥ (L + h)/2 =⇒ η ≥ 4 − 4
√
1 − ηero − 2ηero (13)

By repeating the procedure from (10) to (13) for the 4
integration conditions shown in Fig. 3, a set of equations
is obtained which relate the filter and projection parameters
with the minimum size for any projection threshold η <

ηero. The set of equations is summarized in the four first
rows of Table 1.

To obtain the relationships that define the minimum size
of the void phase, the same procedure must be used as
for the solid phase, however, now starting from a one-
dimensional design domain containing a cavity of size
h. To avoid overextending the document with redundant
information, this section is limited to presenting the final
equations that define the minimum size of the void phase.
The expressions are summarized in the last 4 rows of Table 1.

Fig. 3 Situations to be
considered when defining the
limits of integration. Here,
integration is performed around
xi . Each graph displays 3
curves. The one in black
represents the field to be filtered
(ρ). The blue curve represents
the filtered field (ρ̃). The orange
dashed curve represents the filter
weights (w). The shaded area
highlights the integration limits
of (9), and the red arrows show
the size of the projected field
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Table 1 The explicit relationship between the minimum length scale and the filter and projection parameters

Having delivered the set of equations that expand the
scope of the method proposed by Qian and Sigmund (2013),
the following section presents a methodology to use these
equations.

4 Imposing the desiredminimum length
scale

In structural design, the minimum length scale control
is usually desired because of design requirements or
manufacturing limitations; hence, in most cases, the
minimum sizes of the solid and void phases are known
values established for the intermediate design. Therefore,
for the set of equations presented in Table 1, the radii
r intmin.Solid and r intmin.Void are assumed user-defined input
values. In this case, the projection threshold η corresponds
to the projection threshold ηint; hence, the desired length
scale for the intermediate design is a function of the
projection thresholds and of the size of the filter, namely,
r intmin.Solid(ηint, ηero, rfil) and r intmin.Void(ηint, ηdil, rfil). Given
the number of unknowns (rfil, ηero, ηint, ηdil), the system of
equations in Table 1 becomes indeterminate and the desired
minimum length scale can be imposed through multiple
combinations of parameters. Nevertheless, such freedom
of parameters selection can be reduced by considering the
following three recommendations.

Firstly, a number of advantages have been observed when
defining the intermediate design with a threshold ηint =
0.5. For instance, the projection features lower amounts
of intermediate densities compared to those projections
that use a threshold other than 0.5 (Xu et al. 2010;
Wang et al. 2011; da Silva et al. 2019). In addition, a

threshold ηint set to 0.5 provides symmetric ranges (0.5) for
the erosion and dilatation thresholds, which is convenient
for reducing rounding errors, since small differences in
projection thresholds could be insensitive to the minimum
size when using a coarse discretization of the design domain
(Qian and Sigmund 2013). Symmetric ranges are also useful
to simplify the development of the analytical equations,
since it is sufficient to develop the equations for one phase
and to consider the symmetric projection with respect to ηint

Fig. 4 Graphical relationship between minimum length scales and
projection thresholds. Graph built at ηint = 0.5
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Fig. 5 Graphical relationship between the minimum size of the void
phase, the filter radius and the dilation projection

to obtain the expressions for the other phase. This symmetry
relationship can be seen in Fig. 4. There, the diagonal line
represents the same length scale for the solid and void

phases, as in the set of equations provided by Qian and
Sigmund (2013). The other curves in the figure illustrate
the contribution of this work, where r intmin.Void �= r intmin.Solid.
Similar curves have been plotted for the offset distances and
are available in the Appendix.

Secondly, for a particular combination of thresholds,
the filter size (rfil) can become considerably larger
than the desired minimum length scale, which could
significantly increase computational requirements (Lazarov
and Sigmund 2011). This can be seen in Figs. 5 and 6b.
Maybe we can reduce a little here These figures show
graphs that relate the filter size (rfil) to the minimum size of
solid or void phases and the erosion or dilation threshold.
These graphs show that the closer ηero and ηdil are to
ηint, the larger the filter radius, which inevitably increases
computational requirements. On the contrary, the closer ηero
and ηdil are to 1 and 0, the smaller the filter radius. Extreme
values achieve the smallest filter size rfil = rmin. Under
these observations, we recommend choosing ηero ≥ 0.75

Fig. 6 Graphical relationships between the minimum length scale and
ηero, ηint, ηdil, and rfil. The minimum length scale is defined for the
intermediate design. The graphs are built using both, the analytical
and the numerical method. Graphs (a) and (b) are designed to obtain

the projection thresholds and the filter radius, respectively. Graphs
(c) and (d) are designed to obtain the dilation and erosion distances,
respectively
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and ηdil ≤ 0.25, thus it is ensured that rfil ≤ 2r intmin.Solid and
rfil ≤ 2r intmin.Void. Thirdly, erosion and dilation thresholds too
distant or too close to the intermediate threshold increase
oscillations of design variables during the optimization
process. In general, a good compromise is to choose 0.10 ≤
ηdil ≤ 0.4 and 0.60 ≤ ηero ≤ 0.9.

Given the advantages of using ηint = 0.5 and the fact that
most of the related works in the literature use that value, it is
convenient and meaningful to set the intermediate threshold
at 0.5. Thus, an unknown is removed from the system of
equations. The second and third observations limit the range
of the erosion and dilation thresholds. Then, for a user-
defined minimum length scale, it is possible to develop an
algorithm that solves the system of equations considering
the three observations. Here, we propose an algorithm based
on graphic relationships, so that the reader can easily find
the desired parameters without the need to resort to a
computational algorithm. Nonetheless, we also provide as
supplementary material a code written in MATLAB named
SizeSolution.m that performs the procedure described
below.

It is important to note that the above observations are
based on numerical tests considered for specific optimiza-
tion problems formulated in the density approach. There-
fore, it is possible that under other topology optimization
approaches or formulations the above observations are no
longer valid. However, the proposed procedure can be
applied for any other value of ηint, or any other combination
of parameters that the user may consider convenient.

The first graph proposed in this work is shown in
Fig. 6a and gathers 4 parameters, the minimum length scale
(r intmin.Solid and r intmin.Void) and the projection thresholds (ηero
and ηdil), provided that ηint = 0.5. In this graph, the user can
easily find the set of erosion and dilation threshold that leads
to the desired length scale. Then, the user can access the
graph in Fig. 6b to obtain the filter radius. For example, for
the following minimum length scale, r intmin.Solid = r intmin.Void =
3 elements, the graph in Fig. 6a is accessed with a value
of 1.0 for the ordinate. According to the aforementioned
observations, the combination of thresholds [ηero, ηdil] that
can be chosen among others are:

[ηero, ηdil] = [0.75, 0.25] , (14a)

[ηero, ηdil] = [0.80, 0.20] , (14b)

[ηero, ηdil] = [0.85, 0.15] , (14c)

[ηero, ηdil] = [0.90, 0.10] . (14d)

Arbitrarily, [0.75, 0.25] is selected, and using Fig. 6b, it
is obtained that rfil = 2r intmin.Solid = 6 elements.

It should be noted that graphs in Fig. 6 are constructed
considering a step size of 0.05 in the dilation threshold.
This is due to the fact that discretization of the filter
radius in topology optimization is generally coarse, and

decimal numbers smaller than 0.05 in the threshold value
have usually a negligible effect on the minimum length
scale. However, a smaller step size is used for the erosion
threshold in case the user decides to interpolate threshold
values. In addition, if higher accuracy is desired for
interpolation, the user can resort to the attached MATLAB
code SizeSolution.m.

As previously mentioned, the erosion and dilation dis-
tances could be required, for instance, when implementing
maximum size restrictions (Fernández et al. 2020). These
distances can be easily obtained from the equations of
Table 1. As shown in Fig. 2d, the dilation and erosion
distances, denoted by tdil and tero, can be computed as
follows:

tdil = rdilmin.Solid(ηdil, ηero, rfil) − r intmin.Solid(ηint, ηero, rfil)

tero = reromin.Void(ηero, ηdil, rfil) − r intmin.Void(ηint, ηdil, rfil) (15)

where the minimum size of the solid phase in the dilated
design (rdilmin.Solid) is obtained by choosing η = ηdil in the
equations of Table 1. Anagously, reromin.Void is obtained by
using η = ηero.

It is noted from (15) that the erosion and dilation
depend on the 3 projection thresholds and on the filter
size. Therefore, if the user needs to impose the minimum
length scale, and the erosion and dilation distances, then the
following system of equations must be solved:

r intmin.Solid = r intmin.Solid(rfil, ηint, ηero)

r intmin.Void = r intmin.Void(rfil, ηint, ηdil)

tero = tero(rfil, ηero, ηint, ηdil)

2tdil = tdil(rfil, ηero, ηint, ηdil)

(16)

The system in (16) is determined and there is only one
combination of parameters [rfil, ηero, ηint, ηdil] that leads
to the desired length scale [r intmin.Solid, r intmin.Void, tero, tdil].
This can be illustrated with the following example. For
each combination of thresholds [ηero, ηdil] given in (14), the
erosion and dilation distances [tero , tdil ] are provided, as
follows:

[ηero, ηdil] = [0.75, 0.25] , [tero, tdil] = [1.76, 1.76] (17a)

[ηero, ηdil] = [0.80, 0.20] , [tero, tdil] = [1.99, 1.99] (17b)

[ηero, ηdil] = [0.85, 0.15] , [tero, tdil] = [2.21, 2.21] (17c)

[ηero, ηdil] = [0.90, 0.10] , [tero, tdil] = [2.43, 2.43] (17d)

It is recalled that all combinations of thresholds [ηero,
ηdil] in (17) lead to the minimum length scale r intmin.Solid =
r intmin.Void = 3 elements. However, they all use different filter
radii (6.0, 5.4, 4.9, and 4.4 elements, respectively), and they
all result in different erosion and dilation distances.

To the authors’ knowledge, the need to impose specific
values for the erosion and dilation distances has not yet
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been claimed in topology optimization, so this manuscript
is limited to providing these values for a given combination
of parameters. The proposed graphs are shown in Fig. 6c
and d, which depend on the erosion and dilation thresholds
and on the corresponding minimum size.

5 Sources of error

The analytical procedure developed in this article allows to
quickly obtain the set of filtering and projection parameters
that imposes the desired minimum length scale. However,
in practice, the length scale of the optimized design often
differs from the desired values (Qian and Sigmund 2013).
This is mainly due to the fact that the analytical method
assumes (i) a continuous domain, (ii) a perfect Heaviside
projection (β → ∞), (iii) that the eroded and dilated
fields project an infinitesimal minimum size in the solid
and void phases, and (iv) a 1-dimensional design domain.
To assess the error introduced by these assumptions, in
the following, we compare the analytical method with the
numerical method proposed by Wang et al. (2011), which
considers a discrete domain and a smoothed Heaviside
function.

The procedure for obtaining the minimum size using the
numerical method is analogous to the analytical method
but now using a one-dimensional domain discretized into
N elements. For example, to obtain the minimum size of
the solid phase the three-field scheme is applied to a one-
dimensional design domain ρ containing solid elements in
a length h. Then, the sizes of the eroded, intermediate, and
dilated fields are measured, and the length h is adjusted so
that the resulting eroded field has an infinitesimal size (1
solid element). This process is repeated several times for
different values of ηero, and the resulting minimum size is
normalized with respect to the size of the chosen filter. For
implementation details regarding the numerical method, the
reader is referred to the works of Wang et al. (2011) and
Fernández et al. (2020), and to the attached MATLAB code
named NumericalSolution.m.

To validate the analytical and numerical methods, the
latter is implemented using a Heaviside function at β =
500, a filter radius of 1000 elements and a design domain
discretized into 10 thousand elements, so the numerical
method can be considered continuous and under similar
assumptions than the analytical one. The relationships
obtained with the numerical method can be seen in the
graphs of Fig. 6. The agreement of results from both
methods allows us to validate the set of equations provided
in Table 1.

The three sources of error that affect the analytical
method are discussed below.

5.1 Continuous design domain

When the design domain is discretized using finite
elements, the radii that define the minimum sizes (rfil,
r intmin.Solid, r

dil
min.Solid, r

int
min.Void, and reromin.Void) are described by

a discrete number of elements. In this case, the rounding
error is ± 1 finite element in the radius. Therefore, to reduce
this error, it is sufficient to reduce the size of the elements
by mesh refinement. To illustrate this remark graphically,
we consider the following two discretizations of a one-
dimensional domain, one containing 100 elements and
the other containing 200 elements. In our implementation,
the size of the filter is chosen equal to 10% of the
domain size. Therefore, for the discretizations containing
100 and 200 elements, the filter radius contains 10 and
20 elements, respectively. For each discretization, the
relationship between the minimum size of the solid phase,
the size of the filter and the erosion threshold is plotted in
Fig. 7, using both the analytical and the numerical method.

Fig. 7 Relationship between the minimum size of the solid phase, the
eroded threshold, and the filter radius. The dotted line represents the
analytical relationship including the rounding error
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As the analytical method does not depend on the
discretization, it provides identical relationships on both
discretizations. However, the rounding error associated to
the analytical method does depend on the discretization and
can be plotted as an offset of the analytical curve, as shown
by the dashed curves in Fig. 7. The rounding error, denoted
as δr , corresponds to 1 element in the radius, i.e. 2 elements
in the diameter. That is, the vertical offset of the analytical
curve due to the rounding error is equal to 2δr = 2/10 and
to 2δr = 2/20 in Figs. 7a and b, respectively.

The error curves agree with the results obtained from
the numerical method, which shows that the error of
the analytical method coming from the assumption of a
continuous domain can be easily estimated. This estimation
allows to know either the margin of error of the minimum
size (δr) for a given analytical threshold (ηero or ηdil), or the
margin of error of the analytical threshold (δη) for a given
minimum size, as shown in Fig. 7a.

If the estimated rounding error is not tolerable, higher
precision in the minimum size control can be achieved using
the numerical method proposed by Wang et al. (2011),
as this uses a design discretized into finite elements. For
the sake of completeness, this work provides the reader
with a MATLAB implementation of the numerical method,
which is called NumericalSolution.m. This code
generates the graphs of Fig. 6 taking into account a design
domain discretized into finite elements. The discretization is
provided by the user by means of an approximate number of
finite elements defining the filter radius. From the generated
graphs, threshold values and the corresponding filter radius
can be determined as described in Section 4.

5.2 Perfect Heaviside projection

The analytical method developed in this work assumes a
perfect Heaviside function, which results in a projected
field ρ̄ containing discrete densities (0 and 1). However, in
topology optimization, the Heaviside function is smoothed
resulting in regions of intermediate densities that lie on
the surface of the optimized structure. For this reason, in
practice, once the optimized solution ρ̄int is obtained, a cut-
off value ε is applied on the projected densities to get the
optimized structure. Therefore, the final design intended for
manufacturing is obtained by projecting the design ρ̄int as
follows:

ρ̄ε
i =

{
1, if ρ̄int(i) ≥ ε

0, otherwise
(18)

Since the post-processed design ρ̄ε is the one intended
for manufacturing, the analytical expressions relating the
minimum length scale and the parameters that define it
must be elaborated for the field ρ̄ε. As explained hereafter,

Fig. 8 Illustration of a transition region where projected densities
reach intermediate values

equations provided in Table 1 can be easily adapted to
consider the cut-off value ε.

Consider Fig. 8 illustrating a transition zone between a
solid structure and a void region. The filtered field ρ̃ is
shown in blue and the projected field ρ̄ in red. The latter is
obtained with β = 32. In this illustration, the density cut-
off is defined as ε = 0.95. A perfect Heaviside projection
(β → ∞) would define the size of the solid zone at the
coordinate xi . However, the smoothed Heaviside projection
defines the solid/void transition in the coordinate xε. The
idea then is to find the projection threshold ηε for which a
perfect Heaviside projection produces the same solid/void
transition coordinate than the one that is obtained with a
smoothed Heaviside projection with a threshold η. To do so,
the value of the filtered density at the coordinate xε must be
found. To this end, from Fig. 8 it is observed that:

ε = tanh (βη) + tanh (β(ρ̃ε − η))

tanh (βη) + tanh (β(1 − η))
(19)

Assuming β > 10 at the end of the optimization process,
which is a common practice when dealing with Heaviside
projection, (19) can be simplified to:

tanh (β(ρ̃ε − η)) = 2ε − 1 (20)

From (20), the filtered density ρ̃ε can be obtained:

ρ̃ε = η + 1

β
atanh(2ε − 1) (21)

It is recalled that for a perfect Heaviside projection, the
threshold parameter represents the density value defining
the void to solid transition. In this case, the transition is
imposed at ρ̃ε = ηε = η + 1

β
atanh(2ε − 1). Therefore,

to take into account the intermediate densities resulting
from a smoothed Heaviside function, the shifting term
atanh(2ε−1)/β must be added to the thresholds involved in
the analytical equations. Note that if β → ∞ or ε = 0.50,
then the shifting term is zero and ηε = η.
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To assess the error introduced by a smoothed Heaviside
projection, the minimum length scale obtained with the
analytical and numerical methods are compared. The
analytical method is applied with β → ∞, so it does
not consider the shifting term on the thresholds. For the
numerical method we use β = 32, a filter radius equal to
200 and a one-dimensional domain discretized into 2000
elements in order to avoid rounding errors and isolate the
effect of using a smoothed Heaviside projection. In the
numerical method, three cut-off values are used, ε = 0.01,
ε = 0.50 and ε = 0.99. The results are shown in Fig. 9a.

The results show that the influence of using a smoothed
Heaviside function is observed when ε �= 0.5 and when
ηero > 0.75. For this reason, we recommend to use a density
cut-off value equal to 0.5, as this avoids the need to add the
shifting term to the projection thresholds. Nevertheless, the
user can easily adjust the analytical curves for ε �= 0.5, since
it is only required to add atanh(2ε − 1)/β to the projection
thresholds, as shown in the corrected curves in Fig. 9b.

Fig. 9 (a) Minimum length scale obtained with the analytical method
assuming a perfect Heaviside projection (β → ∞), and with the
numerical method using a smoothed Heaviside projection (β = 32)
and three different cut-off values ε. (b) The analytical curves obtained
by adding the shifting term atanh(2ε − 1)/β to the thresholds

It is worth mentioning that probably the effect of using
a smoothed Heaviside function is only seen for ηero ≥ 0.75
because the projected field becomes more discrete as the
projection threshold is closer to 0.5 (Wang et al. 2011).

5.3 Infinitesimal size

To obtain the minimum size, the analytical method
assumes that the size of the structural members/cavities
is infinitesimal (≈ 0) in the eroded/dilated design, but in
practice this does not occur. In topology optimization, it
is observed that the smallest structural members/cavities in
the eroded/dilated design are composed of one or a few
elements, generally described with intermediate densities.
Thus, in practice, the minimum size of the solid phase in
the eroded design (reromin.Solid) results in a discrete number
of elements. This can be seen in Fig. 10, which is build
using the numerical method. There, a filtered field and its
eroded projection under the robust condition are shown. It
can be seen that the minimum size of the eroded design
is not infinitesimal, and therefore the minimum size of the
solid phase in the intermediate and dilated design would be
larger than the value predicted by the analytical method.

The minimum size of the solid and void phases in
the eroded and dilated designs (reromin.Solid and rdilmin.Void) is
defined by the size of the elements that discretize the
design space. In addition, the amount of elements with
intermediate densities defining the minimum size depends
on the steepness of the smoothed Heaviside function (β);
therefore, the error introduced by assuming an infinitesimal
size in the robust condition is related to the two sources
of error mentioned previously. To isolate the effect of
the infinitesimal size in the robust condition and illustrate
the error introduced by the assumption of infinitesimal

Fig. 10 Illustration in which an infinitesimal size is not reached for the
eroded projection
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size, we make use of the numerical method. The attached
MATLAB code is called using a one-dimensional domain
discretized into a large number of elements (104 elements),
and using a large filter radius (103 elements) to simulate
a continuous domain. The steepness parameter of the
smoothed Heaviside projection is set as β = 512. Thus,
the size and density of the elements are excluded from
the analysis. The effect of not achieving an infinitesimal
size in the condition of robustness is intentionally imposed
in the numerical code. For this, the robustness condition
is considered satisfied if reromin.Solid = α rfil. Considering
that reromin.Solid represents one finite element in topology
optimization, and that representative values for rfil are
between 2 and 10 elements, it is reasonable to consider
values for α ranging from 0.1 to 0.5. Taking into
consideration the above, we build the graphical solutions
that relate the minimum size in the solid phase (r intmin.Solid),
the filter radius, and the erosion threshold. The graph is
shown in Fig. 11.

The graph shows that the error of not achieving an
infinitesimal size in the eroded design produces a minimum
size of the solid phase bigger than the value predicted by
the analytical method. The error related to the infinitesimal
size is low in comparison to the rounding error, so the
latter would be the most relevant source of error from the
analytical method that assumes a continuous design domain.

5.4 Dimensional difference

The analytical equations were developed for a 1D design. In
2D and 3D cases, the analytical method results in numerous
equations that are arduous to obtain. In turn, they depend on
the desired geometry with minimum size, which in 2D could
be a circle or the thickness of a bar for example. To illustrate
the error resulting from assuming a 1D design, we use the
numerical method in 1D, 2D, and 3D design fields. In all

Fig. 11 Effect of not reaching an infinitesimal size in the condition
of robustness reromin.Solid = 0. This condition is assessed by imposing
reromin.Solid = α rfil

Fig. 12 Comparison of filtered fields for different dimensions. (a)
Initial design fields. (b) Filtered fields. In each case, h = 40 elements
and rfil = 30

three cases, we filter a design discretized in N elements
with a solid part of size h. The geometries to be filtered are
shown in Fig. 12a, and the filtered fields along the symmetry
axis in Fig. 12b. One can appreciate significant differences
between the 1D field and the 2D circular and 3D spherical
ones. The latter are smaller in size than the 1D design,
probably due to the curvature of such designs. However,
the 1D case and 2D bar are quite similar, since the cross-
section of the bar resembles the 1D case. This observation
was also noted when considering 3D plates, which proves
that the 1D case provides a good approximation for bar and
plates members. For other design features, such as bar tips
or circular cavities, the error introduced by the dimensional
difference could be significant and even greater than the
rounding error. Therefore, in such cases, it is advisable to
resort to the numerical method using 2D or 3D designs, or
to work out the system of equations for 2D and 3D.

In summary, this section discussed the scope of the
analytical method (Qian and Sigmund 2013) by comparing
it with the numerical one (Wang et al. 2011), both developed
for a one-dimensional design domain. To this end, different
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sources of error were examined. In general, the errors can
be controlled by mesh refinement or by correcting the
projection thresholds according to the cut-off ε value. In the
following section, the analytical method is assessed using
2D-topology optimization problems.

6 Numerical examples and discussion

This section examines the reliability of the analytical
expressions provided in Table 1. To this end, a set of 2D
topology optimization problems are solved, from which
the length scale is measured graphically and compared
with the imposed values. Then, some designs obtained
with maximum size constraints are provided to illustrate
the use of the erosion and dilation distances. Finally, this
section provides a remark regarding the simplified robust
formulation, where the intermediate and dilated designs are
removed from the objective function.

6.1 Minimum length scale

The minimum length scale is assessed using the heat
exchanger design problem described in Section 2. A set
of results is generated from this problem, which differ in
the desired minimum length scale and in the discretization
used. Specifically, three sets of solutions are obtained by
discretizing the design domain into 100 × 100, 200 × 200,
and 400 × 400 quadrilateral elements. In addition, three
different length scales are prescribed for each discretization,
which are reported as the ratio between the minimum size
of the solid phase and the minimum size of the void phase,
i.e. r intmin.Solid/r intmin.Volid. The chosen ratios are 1/2, 1/1, and
2/1. The minimum size in the solid phase is the same in all
scenarios and is defined as a physical dimension. In number
of finite elements, the radius that defines the minimum size
of the solid phase (r intmin.Solid) is equal to 1, 2, and 4, for
the discretizations that use 1002, 2002, and 4002 elements,
respectively. It is well known that the initial values of design
variables have a huge influence on the resulting topology
when it comes to thermal compliance minimization (Yan
et al. 2018); hence, in order to facilitate the comparison
of results, we impose a base structure as a starting point,
which is shown in Fig. 13. Before presenting the results,
the procedure to obtain the minimum length scale from the
optimized designs is detailed.

The minimum size of the solid phase is measured
manually by counting the number of finite elements that
define the size of the thinnest structural branch. Similarly,
the minimum size of the void phase is measured by counting
the elements in the radius of the largest circumference that
can be inscribed at the re-entrant corners of the design.
For example, consider the design of Fig. 14c where the
minimum length scales r intmin.Solid = r intmin.Void = 2 elements

Fig. 13 Initial distribution of design variables considered for the
thermal compliance minimization problem

are imposed. To determine the real minimum size of the
void phase, the largest circle in Fig. 14a that falls into the
re-entrant corners of the design is identified. The corners
analyzed are those that form a sharp angle between two
structural branches. Figure 14b shows three representative
re-entrant corners of the design depicted in Fig. 14c. From
there it is observed that the minimum size is given by a circle
of radius 2 elements (zone C). Similarly, the largest region
that fits into the thinnest structural members is determined,
as shown in Fig. 14d. There, the minimum size of the solid
phase is given by a circle of radius 1.5 elements (zone D).

After describing the test case, the obtained results are
presented. Table 2 contains the nine results generated in this
example (3 length scales × 3 discretizations). The imposed

Fig. 14 Illustration of the minimum length scale measurement. (a) the
test regions and their radius sizes given in number of finite elements.
(b) the minimum size of the void phase, (c) the optimized heat
exchanger, and (d) the minimum size of the solid phase. The imposed
length scales are graphically shown in (c), at the upper left corner of
the design
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minimum length scales are reported graphically next to each
solution. The minimum size of the void phase is indicated in
blue, while the minimum size of the solid phase in magenta.
The table also reports the 3 parameters required to impose
the desired minimum length scales, i.e. ηero, ηdil, and rfil,
which have been obtained using the analytical method
implemented in the MATLAB code SizeSolution.m. It
is recalled that all the examples assume ηint = 0.5.

The measured minimum size of the solid and void
phases are reported on Fig. 15a and b, respectively. To
construct these graphs, the measured minimum sizes are
normalized with respect to the desired minimum sizes, and
the values are placed in the ordinate coordinate. This is done
for each discretization (which determines the abscissa) and

for each length scale. This procedure is also carried out
with results obtained from the numerical method, which is
executed using representative discretizations for each case.
The values obtained from the numerical method are labeled
as 1D in the graphs of Fig. 15, while the values measured
from the optimized designs are labeled as 2D. The error
bars in Fig. 15 illustrate the rounding error present in the
analytical method (see Section 5.1 for definition).

As a general observation, we can point out from Fig. 15
that mesh refinement reduces the error between the measured
minimum size and the desiredminimum size. This is consistent
with the observations made in the previous section, where
a 1D-continuous design domain was used. In addition, the
predicted error for the analytical method (the error bars) are

Table 2 Optimized designs for the heat exchanger problem. The imposed volume constraint is V ∗
min = 20%
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Fig. 15 The graphs summarize the measured minimum size of (a) the
solid phase and (b) the void phase from the designs in Table 2. For each
discretization, two sets of results are provided, labeled as 2D and 1D.
2D represents the graphical measurement normalized with respect to
the imposed value. 1D represents the minimum size obtained from the
numerical method normalized with respect to the imposed value

also consistent with the measured sizes, which validates the
scope and limitations of the analytical equations discussed
in Section 5.

Regarding the graph in Fig. 15a, the error between
the measured and desired minimum sizes is half a finite
element in all nine cases. This error is relatively large
in the coarse discretization (50% error), and small in the
fine discretization (12.5% error). However, despite the fact
that the analytical method is not exact, it seems to be
accurate enough in the examples examined, since in all
cases the error is the same, half a finite element. It is
interesting to note that the numerical method that assumes
a discrete 1D domain estimates a minimum size that differs
by half a finite element with respect to the imposed value,
which matches the measured error. However, the numerical
method provides a minimum size of the solid phase larger
than the measured one. This is probably due to the fact that

the condition of robustness refers to one finite element and
not to an infinitesimal size, as discussed in Section 5.3 as
well as the fact that the 2Dminimum size tends to be smaller
than the 1D one as showed in Section 5.4.

On the other hand, the graph built for the void
phase (Fig. 15b) shows a different pattern. The measured
minimum size of the void phase is often equal to the
desired one and even bigger for some designs. This could be
explained by the simple fact that the chosen test case does
not present a geometric singularity over the minimum size
of the void phase; therefore, it is not possible to guarantee
that the smallest re-entrant corner of the design will indeed
correspond to the minimum size imposed by the robust
formulation. The representative case might be that where
r intmin.Void is chosen twice the size r intmin.Solid (ratio 1/2). In
such a case, the measured error corresponds to half a finite
element smaller than the desired value, that is, the same
result as for the solid phase. Finally, in both phases, this
example shows that the rounding error is the biggest one and
that the 2D error seems to be under this limit.

6.2 Erosion and dilation distances

In the following example, we illustrate the use of the
erosion and dilation distances that are provided for a desired
minimum length scale. To this end, we use maximum size
constraints, where the erosion and dilation distances are
essential information to impose a consistent length scale
in the robust formulation (Fernández et al. 2020). For the
sake of completeness of the manuscript, the non-linear
force inverter is considered in this illustrative example.
The topology optimization problem of the non-linear
force inverter including maximum size constraint reads as
follow:
min max

(
c(ρ̄ero), c(ρ̄int) , c(ρ̄dil)

)

s.t.: vᵀ ρ̄dil ≤ V ∗
dil(V

∗
int)

Gms(ρ̄dil) ≤ 0
0 ≤ ρi ≤ 1 , i = 1, ..., N ,

(22)

where Gms is the maximum size constraint defined exactly
as in Fernández et al. (2020). Therefore, Gms represents a
p-mean aggregation function that gathers local maximum
size restrictions. As in the cited work, the p aggregation
exponent is set at 100.

Regarding the optimization parameters, these represent
the implementation of Wang et al. (2014), i.e. the Heaviside
parameter β is initialized at 1 and is increased by 1 every
20 iterations until a value β = 16 is reached. Then, 20
more iterations are carried out with a β = 32. The SIMP
penalty parameter is set at 3. We have found that this setting
of parameters works well for introducing maximum size
restrictions into the non-linear force inverter formulated
under the robust design approach.

To impose minimum and maximum length scales, the
maximum size constraint Gms is applied on the dilated
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design (Fernández et al. 2020). To do so, the regions where
the local maximum size constraints are applied must be
scaled according to the dilation distance. For instance, if the
desired maximum size in the intermediate design is defined
by a circle of radius r intmax.Solid, the maximum size constraint
should be formulated for the dilated design using a circle of
radius:

rdilmax.Solid = r intmax.Solid + tdil (23)

Equation (23) explains the need of knowing the dilation
distance which is derived from the size in the dilated
projection when imposing maximum size restrictions in
the robust formulation. As mentioned previously, this
information can be easily obtained from the graphs
generated by the analytical equations. For example, in the
following, the half force inverter depicted in Fig. 1 is
solved. The design domain is discretized into 200 × 100
quadrilateral finite elements. The minimum size of the
solid phase is set as r intmin.Solid = 2 elements, while the
maximum size is set as r intmax.Solid = 3 elements. Two
different values for the minimum size of the void phase
are chosen, r intmin.Void = 2 and r intmin.Void = 3 elements. The
filter and projection parameters used to impose the desired
length scale are reported in Table 3. In all cases, the volume
constraint is set to 25%.

To obtain the dilation distance tdil, the projection
thresholds that define the minimum length scale must
be defined. These values can be graphically obtained
from Fig. 6, or from the attached MATLAB code
(SizeSolution.m). For example, using this code, the
sets of parameters in Table 3 are obtained. The dilation
distance is also reported there. For the minimum sizes
r intmin.Void = 2 and r intmin.Void = 3 elements, the dilation
distances are tdil = 1 and tdil = 2 elements,
respectively (the numbers have been rounded to the nearest
integer).

The results are shown in Figs. 16 and 17. Each figure
reports 2 optimized designs, which are obtained with and
without maximum size restrictions. To facilitate the visual
comparison between results, the designs are placed with
respect to the symmetry axis and are reported in their
deformed configuration. The imposed length scale is also
reported graphically next to each design. As in the previous
examples, the blue and magenta circles represent the
minimum size of the void and solid phase, respectively. The
black circle represents the maximum size desired for the

Table 3 Parameters used in Figs. 16 and 17

r intmin.Void rfil ηero ηdil tdil tero

2 4.47 0.70 0.30 1.03 1.03

3 4.47 0.70 0.11 2.41 1.03

Fig. 16 Nonlinear force inverter without (upper half) and with (lower
half) maximum size constraints. The minimum length scales are
r intmin.Solid = r intmin.Void = 2 elements. The maximum size is r intmax.Solid = 3
elements

intermediate design (which is imposed through the dilated
design)2.

The results are consistent with the imposed length scales.
In the 4 designs reported in Figs. 16 and 17, the minimum
size of the solid and void phases are met with a half-
finite element of error (which agrees with the analytical
rounding error). Regarding the maximum size, this also
matches the imposed value. However, due to the inherent
drawbacks of the aggregation function and the strong non-
linearity of the force inverter design problem, there are
local regions where the imposed maximum size restriction
is not met, such as the horizontal bar in the design
of Fig. 17.

This force inverter test case shows the usefulness of the
proposed equations and provided codes, since they allow
to quickly obtain the filter and projection parameters, and
the dilation distance that allow to impose the desired length
scales.

6.3 Remark on the simplified robust formulation

Before concluding this manuscript we devote a discussion
concerning the robust formulation. It is widely known that
the robust formulation of the optimization problem can be
simplified when the objective function is monotonically
dependent on the volume fraction. The most widespread
case in the literature is the compliance minimization

2The maximum size is actually imposed using an annular region
(Fernández et al. 2020), but for illustrative purposes, a circular region
is drawn.
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Fig. 17 Nonlinear force inverter without (upper half) and with (lower
half) maximum size constraints. The minimum length scales are
r intmin.Solid = 2 elements and r intmin.Void = 3 elements. The maximum size
is r intmax.Solid = 3 elements

problem, where the intermediate and dilated fields have less
compliance than the eroded design and therefore can be
removed from the objective function without compromising
the robustness of the formulation. In this case, the objective
function is evaluated only for the eroded design, with
the intermediate and dilated fields remaining solely for
formulating design constraints. When the volume restriction
is the only constraint included in the optimization problem,
the constraint can be formulated using the intermediate
design, assuming that this design field is the one intended
for manufacturing. However, it has been mentioned in
the literature that evaluating the volume restriction in the
dilated design promotes convergence to better optimums
since numerical instabilities are prevented. In this section
we add another reason that has not been mentioned
so far (to the best of the authors’ knowledge). If the
dilated design is not included in the volume restriction,
then it is not possible to ensure the control over the
minimum size of the void phase. To explain this statement,
consider the following two robust topology optimization
formulations for the thermal compliance minimization
problem:

P.I P.II
︷ ︸︸ ︷
min

ρ
c(ρ̄ero)

s.t. : vᵀρ̄int ≤ V ∗
int,

0 ≤ ρi ≤ 1

︷ ︸︸ ︷
min

ρ
c(ρ̄ero)

s.t. : vᵀρ̄dil ≤ V ∗
dil(V

∗
int)

0 ≤ ρi ≤ 1

(24)

The two optimization problems, P.I and P.II in (24),
are formulated under the robust design approach, but P.I
evaluates the volume constraint directly in the intermediate
design while P.II does it through the dilated design, whose
upper bound V ∗

dil is scaled according to V ∗
int. From (24) it is

clear that P.I(ρ̄ero, ρ̄int) and P.II(ρ̄ero, ρ̄int, ρ̄dil). Therefore,
P.I is not influenced by the dilated design nor the dilation
threshold.

We recall that the condition of robustness imposed for
the void phase involves the dilated design, which has to
project a cavity with at least one void element to be present
in the 3 fields that constitute the robust formulation. The
influence of the dilated design on the minimum size of the
void phase can be seen graphically in Fig. 6a by considering
a fixed erosion threshold and different dilation thresholds.
For example, for [ηdil, ηero] consider the points [0.14 , 0.60]
and [0.40 , 0.60]. The first point corresponds to a length
scale where the minimum size of the void phase is equal
to that of the solid phase, while the second point imposes
the size of the void phase twice that of the solid phase.
In the following, problems P.I and P.II are solved using
the two sets of thresholds indicated previously, which are
summarized in Table 4. Results are shown in Fig. 18. As
in previous examples, blue and magenta circles next to
each solution represent the minimum size of void and solid
phases, respectively.

Clearly, results obtained using P.II show a length scale
consistent with the expected one, as the design in Fig. 18a
features bigger reentrant corners than the design in Fig. 18b.
However, for any value of ηdil, the result from P.I is always
the same and corresponds to that shown in Fig. 18d. The
interpretation that can be made of the P.I problem is that
it uses a dilation threshold equal to the intermediate one,
i.e. ηdil = ηint = 0.5. This can be corroborated by solving
P.II with the set [ηdil , ηero] equal to [0.50, 0.60], whose
result is shown in Fig. 18c.

7 Conclusion

The robust topology optimization formulation based on uni-
formmanufacturing errors has gained increasing acceptance
in the topology optimization community. This is mainly
due to its ability to control the minimum size of both the

Table 4 Parameters used in Fig. 18

r intmin.Solid r intmin.Void rfil ηe ηd

4 4 12.65 0.60 0.40

4 8 12.65 0.60 0.14

4 0 12.65 0.60 0.50
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Fig. 18 Heat exchanger design
problem using two different
variations of the robust
formulation. P.I evaluates the
volume constraint directly in the
intermediate design, while P.II
does it through the dilated
design. Here, ηero = 0.60 and
r intmin.Solid = 4 elements

solid and void phases, and its potential to be combined
with other topology optimization approaches. Despite the
increasing popularity of the formulation, no method was yet
available to easily obtain the filter and projection parame-
ters that produce the desired minimum length scales. This
need encouraged us to further develop the analytical method
proposed by Qian and Sigmund (2013). The scope and
limitations of this method were assessed using the numer-
ical method of Wang et al. (2011) and a set of 2D design
results from two topology optimization problems, the ther-
mal compliance minimization problem and the non-linear
force inverter.

In addition to providing a fast and effective way to
obtain the parameters that impose the desired minimum
length scale, this work presents an additional justification
for applying the volume constraint on the dilated design in
the compliance minimization problem subject to a volume
constraint. The reason is that all 3 designs must be involved
in the optimization problem in order to impose simultaneous
control over the minimum size of the solid and void
phases.

Appendix

As we show the contour plot of the minimum sizes ratio,
it is possible to produce the same kind of figure for the
offset distances. These are plotted in Fig. 19 and illustrate
again the symmetric behavior of the sizes with the threshold
values for a case where ηint = 0.5.
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Replication of results This manuscript contains two MATLAB codes
as supplementary material that can be found on GitHubs3. The first is
called SizeSolution.m and provides a list of filter and projection
parameters that impose user defined minimum length scales. The

3https://github.com/DenisTri/Analytical Min Size
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Fig. 19 Contour plot of the offset distances in the domain (ηero, ηdil)

second is called NumericalSolution.m and builds the graphs in
Fig. 6 using the numerical method proposed by Wang et al. (2011).
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