
RESEARCH PAPER

Multiscale design of functionally graded cellular structures
for additive manufacturing using level-set descriptions

Cong Hong Phong Nguyen1
& Young Choi2

Received: 9 July 2020 /Revised: 15 March 2021 /Accepted: 17 May 2021
# The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The emergence of additive manufacturing (AM) has enabled the design of complex structures with high performance, such as
functionally graded cellular structures (FGCSs). Concurrent topology optimization is commonly utilized for designing FGCSs;
however, this approach suffers from an extremely high computational cost due to the complexity of the design problem. Recently,
level-set-based methods, which rely on the implicit-based modeling technique, have gained increased attention and been con-
sidered as an efficient design tool for structures fabricated with AM. In this work, a multiscale structural optimization method for
FGCS design utilizing level-set descriptions is proposed. Contrary to the well-known level-set topology optimization, in this
approach, the shape is represented and parameterized with implicit functions, and the optimization process is performed to find
the optimal parameters. The proposedmethod can replace topology optimization for microscale structural optimization within the
multiscale structural design with reduced computation cost and comparable optimally designed results. Moreover, the unique
behaviors of pre-selected cellular structures could be maintained during the optimization process by proper parametric con-
straints. The proposed design approach was validated through two design examples, both of which demonstrate remarkable
structural performance enhancements in comparison with the single-scale design approach. Furthermore, two three-dimensional
design examples, commonly found in automotive and aerospace industries, further prove the applicability of the proposed
method in practice.
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1 Introduction

Cellular structures, made from a series of connecting struts
and plates, are well known for their multi-functionality and
high strength-to-weight ratios. Recent advances in additive
manufacturing (AM) have improved fabrication capabilities
of such complex shapes including cellular structures.
Multiscale structural optimization is commonly utilized to

design cellular structures as it allows the design space, includ-
ing both macroscale and microscale, to be fully explored.
Recently, the level-set-description-based method has been
considered as a promising candidate for replacing expensive
topology optimization–based methods in multiscale structural
design (Noël and Duysinx 2016). In comparison with conven-
tional topology optimization, the level-set-based method is
well suited with AM as well as posing advantages of being
less complicated and easier for post-processing since it utilizes
implicit functions to represent shapes (Liu et al. 2018b).

In this work, a multiscale, level-set-description-based
method for designing functionally graded cellular structures
(FGCSs), a typical type of cellular structure, is proposed. In
particular, the microscale structural optimization problem is
solved using the level-set-description-based method, which
features a low-cost and effective computation process com-
pared to conventional topology optimization approaches.
Moreover, unique behaviors of cellular structures (such as
negative Poisson’s ratio) could be pre-determined and
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maintained during the optimization with proper constraints.
Due to the customization of each unit cell, the proposed meth-
od could enhance structural performances in comparison with
other single-scale design approaches for FGCSs. In addition,
smooth interconnectivity between adjacent cellular unit cells
is ensured by applying implicit blending in the structure syn-
thesis process. Finally, a robust solution for fabrication of
optimally designed structures is affordable due to the applica-
tion of implicit-based modeling for post-processing.

The rest of the paper is organized as follows. Section 2
provides a summary of related works. Section 3 introduces
the microstructure representation utilizing level-set descrip-
tion and implicit blending. Section 4 presents the level-set-
description-based multiscale structural optimization for
FGCS design. Experimental studies are discussed in
Section 5 to validate the proposed design approach in practice.
Conclusions and future works are given in Section 6.

2 Literature review

FGCS is a specific type of cellular structure whereby the distri-
bution of material is locally designed to serve specific function-
alities. The most straightforward approach for designing FGCSs
is populating the domain with cellular structures, usually truss-
element-based structures, and performing a size optimization.
Some notable works following this approach include relative
density mapping reported by Alzahrani et al. (2015) and the
bi-directional evolutionary structural optimization (BESO)–
based approach reported by Tang et al. (2015). Because truss-
element-based approaches are limited in dealing with complex
microstructure and multi-physics problems, the volume-
element-based approach is adoptedmore often. In this approach,
either single-scale or multiscale structural optimization can be
applied. Single-scale optimization methods often require pre-
analyzed constitutive interpolation models of cellular structures
and it is referred to as the homogenization-based approach (Li
et al. 2018; Li et al. 2020; Cheng et al. 2017; Zhang et al. 2015).
Moreover, applying the volume-element-based approach allows
one to reflect the material properties of AM parts (Nguyen et al.
2019), performmulti-physics design (Tang and Zhao 2018), and
even customize the cellular unit cell for better structural perfor-
mance. The unit cell customization issue is referred to as con-
current structural optimization. In concurrent structural optimi-
zation, the multiscale design problem is separated into macro-
scale and microscale problems, with homogenization typically
utilized to connect the two scales. Within the finite element
analysis (FEA) framework, this approach is known as the finite
element square (FE2) method, and it is used to deal with the
nonlinearity of the multiscale design problem (Xia 2016c).
The structural design at both scales can be performed at different
levels including size, shape, and topology optimization. Among
these, topology optimization is appliedmost often due to its high

level of design freedom and flexibility. Wu et al. (2019) pro-
posed a design method for graded lattice structures by applying
the approximation of reduced substructure with a penalization
model. In contrast to the density-based topology optimization,
Sivapuram et al. (2016) proposed a simultaneous material and
structural design by applying amultiscale topology optimization
using the level-set method. In addition, the level-set method was
applied in the concurrent design of FGCSs for additive
manufacturing (Fu et al. 2019; Wang et al. 2017; Wang et al.
2018). Although significant efforts have been made to reduce
the required computational cost, it is still the main disadvantage
of designing cellular structures relying on coupled multiscale
topology optimization.

Implicit modeling is a shape representation method where
the boundary of a structure is not determined explicitly but
rather via the “zero-set” of a level-set function (Velho et al.
2002). Due to breakthroughs in AM, this kind of volume-
based representation scheme is preferable to surface-based
representation, especially for heterogeneous objects. Several
advantages of the implicit modeling technique such as the
function-based slicing process proposed by Song et al.
(2018) have been demonstrated. Additionally, Steuben et al.
(2016) proposed a method for designing functionally tailored
structures using implicit slicing. The application of implicit
representation in designing cellular structures was then gener-
alized by Fryazinov et al. (2013) as the multiscale space-
variant function representation.

Level-set-based methods play a crucial role in structural
optimization with smooth designs and a high level of satisfac-
tion (Allaire et al. 2004; Wang et al. 2003). Further, the level-
set topology optimization provides post-processing benefits
such as structure synthesis from the optimal design result or
direct structural fabrication, which are discussed in detail in
Liu et al. (2018b). Moreover, the level-set-based method can
be applied for parameterized shape optimization. This ap-
proach is referred to as the application of level-set descriptions
(Noël and Duysinx 2016) and is distinct from the well-known
level-set topology optimization. Due to its compactness and
effectiveness in structural optimization, the design process
utilizing level-set descriptions has been receiving increased
attention and therefore has been used in the present study.

3 Level-set description approach
for micro-cellular structure modeling

3.1 Level-set descriptions

The level-set method is introduced as a method to track the
interface movement in a continuous domain within physics
problems. In shape modeling, the boundary of a structure is
defined as the “zero-set” of an implicit function:
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Φ x; sð Þ ≥ 0 x ∈Ω
Φ x; sð Þ ¼ 0 x ∈ Γ
Φ x; sð Þ < 0 x ∉Ω

8<
: ; ð1Þ

where Φ is the level-set description at x(x1, x2,…xi) which is
the coordinate of the sampling point in n-dimensional space,
s(s1, s2,…, sj) is the parameter set that defines the structural
level-set function, Ω is the domain inside the structure, and Γ
is the structure boundary.

As mentioned earlier, the boundary of the structure will be
determined by extracting the zero-set, which are iso-contours
in two-dimensional (2D) cases and iso-surfaces in three-
dimensional (3D) cases, of the given level-set function. This
work requires evaluation of the level-set function over the
sampling domain, resulting in an extremely cumbersome
computation. However, due to the current development of
the graphics processing unit (GPU), level-set descriptions
can be evaluated faster by parallel computing, which consid-
erably reduces the computational cost and makes this design
approach more practical.

3.2 Joint-based representation approach for micro-
cellular structure

Before further discussion, it is worth noting that in this work,
2D cellular structures are focused for simplification although
this approach is also applicable for 3D cellular structures. In
particular, a 2D wall-based cellular structure (Fig. 1a) is con-
structed by connecting “joints” by “walls” (Fig. 1b); thus, the
most trivial way to represent a cellular structure is implicitly
uniting cellular walls. Therefore, at a given sampling point, the
level-set description of a cellular structure is determined as:

C xð Þ ¼ U wi xð Þð Þ j i ¼ 1…M ; ð2Þ
where C(x) and wi(x) are level-set descriptions of the cellular
structure and cellular walls, respectively, at the sampling point x
and M is the number of walls. The implicit union operation is
simply a Boolean union, where:

U ¼ max f ið Þ: ð3Þ

The level-set description of a given wall wi(x) is cal-
culated as:

wi xð Þ ¼ − d x;wcið Þ−ti
2

h i
; ð4Þ

where d(x, wci) is the distance from sampling point x to
the centerline of the wall wci, and ti is the thickness of
the wall. Unfortunately, modeling cellular structures
using this approach poses several potential issues in-
cluding stress concentration due to sharp corners and
design freedom limitation due to the lack of design
variables. Therefore, an alternative approach utilizing
blending operators is proposed to overcome these issues.

The level-set description of a blended joint between cellu-
lar walls could then be calculated via the Kreisselmeier-
Steinhauser (KS) function:

C w1 xð Þ;w2 xð Þ;…;wM xð Þ; βð Þ ¼ KS wi xð Þ; βð Þ ¼ 1

β
ln ∑

n

i¼1
e−βwi xð Þ

� �
;

ð5Þ
where β is the blending parameter. The variation of β determines
the smoothness of the resulting cellular structure. When β is ex-
tremely large, the KS function is similar to the conventional im-
plicit Boolean operation. Figure 2 shows an example of a hexag-
onal honeycomb structure with various blending parameters.

Utilizing the KS blending function is beneficial with con-
trollable local smoothness; however, applying it as a global
function limits the design freedom in structural optimization.
In this work, a joint-based modeling approach motivated by
the work from Panetta et al. (2017) is applied. Typically, the
level-set description of cellular structures is a KS blending of
cellular joints which is KS blending of cellular walls:

CB ¼ KS N j xð Þ;β� �
; ð6Þ

N j xð Þ ¼ KS wi xð Þ;β j

� �
; ð7Þ

where Nj(x) is joint j, which is formed by the cellular wall
wi(x); β is the global blending parameter; and βj are local
blending parameters that are assigned to joint j. Figure 3 illus-
trates the local smoothness control of the joint. In addition,
one cellular wall wi(x) could be shared by several joints Nj(x),
and the smoothness between those joints is controlled by the
global blending parameter β.

(a) (b) (c)

Fig. 1 (a) Honeycomb structure. (b) Conventional wall-based modeling
approach. (c) Joint-based approach

(a) (b) (c) (d)

Fig. 2 Hexagonal honeycomb structure with varied blending parameters.
(a) β = 24. (b) β = 12. (c) β = 8. (d) β = 4
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3.3 Conversion from geometric models to mechanical
models using density approach

It is required to convert the geometric model to mechanical
model, i.e., finite element model, for structural optimization.
Herein, this is done using the density-based approach.

Using the density-based approach, the elastic modulus of
an element e is determined as:

Ee ¼ Eρe; ð8Þ
where E is the elastic modulus of the full solid element, and ρe
is the element relative density. In 2D case, ρe is calculated as:

ρe ¼
Ae

A
; ð9Þ

where Ae is the element’s actual area, and A is the element’s
area when ρe = 1.

Ae is calculated using the marching square algorithm by
using level-set description corners of the element. Figure 4
illustrates the conversion from the geometric model to the
mechanical model for various cellular structures.

4 Multiscale design of functionally graded
cellular structures

In this work, a decoupled multiscale scheme is employed to
replace the expensive fully coupled scheme to which the FE2

method is applied (Xia 2016b). Figure 5 illustrates the overall
workflow of the proposed multiscale structural optimization

for the FGCS design approach. In the first stage, the
homogenization-based design method is employed to opti-
mize the density distribution of the macroscale design domain
which has been tessellated intomultiple representative volume
elements (RVEs) (Nguyen et al. 2019). In the second stage,
the microstructure of each RVE is optimized with the pro-
posed level-set-description-based method.

4.1 Macroscale structural optimization

Given a tessellated and populated with predefined cellular
structure design domain, the macroscale structural optimiza-
tion problem is formulated as in Eq. 10. The objective of the
macroscale structural optimization is to find the optimal den-
sity distribution of FGCSs; thus, the result of the optimization
is not the extreme “0” and “1” as that of conventional topol-
ogy optimization.

min
ρ

c uð Þ ¼ FTu; ρ ρ1;…; ρNð Þf g
s:t :
Ku¼F;

K ¼ ⋀
N

e¼1
Ke;Ke ¼ Ke Ce

�
ρe

� ��
;

∑
n

e¼1
Veρe≤Vtarget

0 ≤ ρlow ≤ ρe ≤ ρhigh ≤ 1;

ð10Þ

In the problem described in Eq. 10, the design objective is to
find the optimal relative density ρ of N number of RVEs to
minimize the structural total compliance c under a given load-
ing F. Meanwhile, u is the nodal displacement vector, and K is
the global stiffness matrix. K is assembled from element stiff-
ness matrices Ke, which are derived from the pre-analyzed scal-
ing laws Ce(ρe) assigned for each RVE. The volume constraint
is represented by Vtarget. This problem can be solved using a
gradient-based approach. The sensitivity of the objective func-
tion, with respect to the change of a density variable ρe, can be
computed as in Eq. 11 since it is a self-adjoint problem:

∂c
∂ρe

¼ −uTe
∂Ke

∂ρe
ue; ð11Þ

and the derivative of Ke is calculated from the finite ele-
ment integration equation:

∂Ke

∂ρe
¼ ∫

V
BT
e
∂Ce ρeð Þ
∂ρe

BedVe: ð12Þ

4.2 Microscale structural optimization

In the microscale structural optimization problem, a 2D mi-
croscale cellular structure with P joints and Q walls is given.
Blending parameters βi are assigned for each joint, and wall

(a) (b)

Fig. 3 Local control of the joint-based design approach. (a) Joint’s
blending parameter = 24. (b) Joint’s blending parameter = 3

(a) (b) (c) (d)

Fig. 4 Illustration of the conversion from geometric (top) to mechanical
model (bottom) conversion for various structures. (a) Hexagonal
honeycomb. (b) Diagonal. (c) Cube. (d) Diamond

C. H. P. Nguyen, Y. Choi1986



thickness parameters tj are assigned to each wall. The objec-
tive of the microscale structural optimization is to maximize
the microscale material stiffness a prescribed average strain ε0
calculated from the macroscale design result (Xia 2016b). The
microscale structural optimization problem could be formulat-
ed as follows:

max
s

J ¼ vTKmv;s¼ t t1;…; tPð Þ;β β1;…;βQ

� �� 	

s:t :
ε¼ε0
V sð Þ ¼ Vtarget

0 < tmin ≤ ti ≤ tmax; i ¼ 1…P

1 < βmin ≤ β j ≤ βmax; j ¼ 1…Q

ð13Þ

In Eq. 13, J is the microscale material stiffness, determined
by the twice of strain energy which causes the microscale
displacement v under a prescribed macroscale strain ε0.
Also, Km is the global stiffness matrix of the microscale cel-
lular structure. Additionally, the volume constraint is treated
as an equality constraint since the microstructure should main-
tain its predefined volume during the optimization. Further,
the periodic boundary condition (PBC) that requires an iden-
tical mesh grid is naturally satisfied by the level-set-
description-based approach.

The optimization problem is solved using the gradient-
based approach. In this work, a semi-analytical approach is
applied to calculate the sensitivities. From the literature, the
problem as formulated in Eq. 13 is self-adjoint, so the sensi-
tivities of the objective function are:

∂J
∂s

¼ vT
∂Km

∂s
v: ð14Þ

The microscale global stiffness sensitivities are assembled
from element stiffness sensitivities of R number of microscale
material elements:

∂Km

∂s
¼ ⋀

R

me¼1

∂Kme

∂s
: ð15Þ

Here, the microscale element stiffness sensitivities are calcu-
lated as a function of microscale element density (ηem) deriv-
atives:

∂Kem

∂s
¼ E

∂ηem
∂s

km0; ð16Þ

where km0 is the microscale element stiffness matrix when
E = 1.

The derivatives of the microscale element densities can be
derived using the central finite difference scheme:

∂ηme
∂s

¼ ηme sþΔsð Þ−ηme s−Δsð Þ
2Δs

; ð17Þ

where Δs is an extremely small number. Specifically, in this
work, Δs is set as 10−6.

5 Experimental studies

In this section, the proposed design method is validated via
experimental studies with numerical simulation. MATLAB
programming language was utilized for implementation. In
addition, the method ofmoving asymptotes (MMA) algorithm
(Svanberg 1987) was used to solve the aforementioned opti-
mization problems. All simulations were conducted on a

Fig. 5 Overall design workflow of the multiscale structural optimization

Multiscale design of functionally graded cellular structures for additive manufacturing using level-set... 1987



laboratory computer with an AMD®Ryzen Threadripper
CPU @3.50 GHz, 12 cores, 20 threads, and 32.0 GB RAM.

5.1 Single unit cell optimization

In this section, a comparison between the proposed method
and topology optimization in cellular material design is con-
ducted. Six types of cellular unit cell (Fig. 6) with multiple
prescribed strain values as in Table 1 were tested and com-
pared with the topology optimization result. The unit cell res-
olution was selected as 50 × 50 unit length, the wall thickness
constraint is set as 2~20 unit length, and the blending con-
straint is 1.5~24. The benchmarking was conducted under two
criteria: (1) the value of the objective function, which is the
stiffness of the designed unit cell, and (2) time consumption.
Topology optimization was applied in this experiment based
on the guidance of Xia (2016a).

Figure 7 depicts single unit cell optimization results, and
Tables 2 and 3 show the summary of objective function value
and time consumption of the optimization process. Moreover,
the convergence history of the best design configurations
(cube, diamond, cube + diagonal, and cube, respectively)
and topology optimization for four strain cases is shown in
Fig. 8. In terms of optimality achievement, the proposedmeth-
od shows a dependency on pre-selected unit cell geometry.
For the first three types of unit cell, the cube, diagonal, and
diamond, while the cube shape behaves better in cases more
oriented to uniaxial strain (cases 1, 3, and 4), the diagonal and
diamond shapes show better performance in the shear strain–
oriented case which is case 2. The last three types of unit cell,
the cube and diagonal combined, the cube and diamond com-
bined, and the hexagon honeycomb, seem to be more bal-
anced with most strain cases.

In comparison with the topology optimization approach, in
terms of optimality achievement, the proposed approach is
comparable. In all strain cases, the best unit cell designed by
the proposed method could achieve an average of 91.79% of
the optimal values derived by topology optimization. From
the time consumption comparison result in Table 3, the
level-set description approach method shows better computa-
tion efficiency in comparison with topology optimization.
From the comparison results, it was found that the proposed
method could be utilized as a replacement for topology

optimization in microscale structural optimization, especially
within the context of multiscale structural optimization.

5.2 Cellular three-point bending beam design

Three-point bending beam design problems and its varia-
tions are commonly considered for validations in structur-
al optimization. In this design problem, a beam with di-
mensions of 150 × 50 mm under the loading condition, as
described in Fig. 9(a), was designed with the cubic unit
cell, shown in Fig. 9(b).

For the macroscale structural optimization, pre-analyzed
scaling laws of cubic unit cell as shown in Fig. 9(c) were used,
with fit rates of at least 95%. Additionally, the fitting coeffi-
cients are provided in Table 4. Here, C* denotes the effective
elastic constant of the microstructure, whereas C denotes the
elastic constant of the microstructure when its relative density
ρ = 1. The relative density range of RVEs is set to be in the
range of 0.3–0.8, and the volume fraction constraint is 0.55,
with unit cell size of 5 mm. For the microscale structural
optimization, a 50 × 50 uniform grid was used. The wall
thickness and blending parameter ranged from 0.15~2.0
(mm) and 2~12, respectively, based on experimental results.

Figure 10 illustrates the design results. The proposed de-
sign approach was benchmarked with a non-optimized micro-
structure FGCS. Figure 11 shows the benchmarking of two
designs with FEA results. The proposed method derived a
structure designed with superior structural stiffness, with a
compliance reduction of 22.8% (from 26.675 to 20.586), com-
pared to the non-optimized microstructure. This result can be
explained visually as the structure designed by the proposed
approach varies the unit cell shape in a way that follows both
the density and orientation of the stress stream (Fig. 12).

Table 1 Prescribed strain values in the benchmarking of a single unit
cell optimization problem

No. Prescribe strain value Note

1 [1.00;0.00;0.00] Uniaxial strain

2 [0.00;0.00;1.00] Shear strain

3 [0.71;0.71;0.00] Two-directional uniaxial strain

4 [0.83;0.14;0.54] General strain

(a) (b) (c) (d) (e) (f)

Fig. 6 Cellular unit cell considered in the benchmarking of a single unit cell optimization problem. (a) Cube. (b) Diagonal. (c) Diamond. (d) Cube +
diagonal. (e) Cube + diamond. (f) Hexagon honeycomb

C. H. P. Nguyen, Y. Choi1988



5.3 Design of a sandwich panel under distributed load

In this section, another advantage of the proposed method,
which is the ability of maintaining unique unit cell behaviors
during the optimization, is demonstrated. In this design prob-
lem, a panel under a distributed load is designed with the re-
entrant honeycomb structure with negative Poisson’s ratio, an
example of a unique property of cellular structures.
Figure 13(a) depicts the loading condition and the dimensions
of the design problem. The parameterization and pre-analyzed
scaling law are presented in Fig. 13(b) and Fig. 13(c), respec-
tively. In this work, the relative density range in the macro-
scale structural optimization was set to be in the range of
0.2~0.6 to maintain the negative Poisson’s ratio.
Additionally, the total volume fraction of the structure was
set as 0.4. For the microscale structural optimization, an inap-
propriate set of design parameter constraints could also cause
a designed structure to lose its negative Poisson’s ratio behav-
ior. In this design example, the microscale wall thickness
range was set between 0.2 and approximately 0.6 (mm), and
the blending parameter range from 4 to approximately 24. The

global blending parameter was set to 4 to ensure smooth in-
terchanges between unit cells. The input data and design con-
straints are summarized in Table 5.

Figure 14 demonstrates the design result. The total stiffness
of the structure is enhanced by 23.91% with a reduction in
structural compliance from 55,919.2 to 42,550.5, compared
with the non-optimized microstructure FGCS. Moreover,
from Fig. 15, the negative Poisson’s ratio characteristic of
the re-entrant honeycomb structure, illustrated by the C12

component in the effective compliance matrix, is maintained
during the optimization.

5.4 Applications on infill design of engineering parts

To further prove the practicality of the proposed method, two
practical design examples were conducted. The infill design
problem of a piston rod under static load was considered in the
first example, while a curved sandwich panel design was dem-
onstrated in the second example. Both structures are common-
ly used in automotive and aerospace industries. Boundary

Table 2 Unit cell stiffness comparison for the single unit cell
optimization problem

No. Unit cell Unit cell stiffness

1 2 3 4

1 Cube 1138.87 77.58 945.60 825.38

2 Diagonal 533.66 344.36 939.75 596.78

3 Diamond 532.77 345.94 958.76 662.76

4 Cube + diagonal 854.00 264.92 973.13 704.37

5 Cube + diamond 880.56 272.30 971.45 711.78

6 Hexagon honeycomb 978.82 149.73 876.55 757.76

7 Topology optimization 1245.45 351.00 1005.90 1023.90

Table 3 Time consumption comparison for the single unit cell
optimization problem

No. Unit cell Time consumption (s)

1 2 3 4

1 Cube 52.0 54.2 54.1 46.7

2 Diagonal 57.9 173.1 57.6 50.8

3 Diamond 50.3 95.8 86.8 55.00

4 Cube + diagonal 92.8 32.3 129.9 132.9

5 Cube + diamond 130.1 117.6 128.7 110.4

6 Hexagon honeycomb 150.2 27.1 59.6 170.7

7 Topology optimization 155.4 156.2 146.8 237.2

(a) (b) (c) (d) (e) (f) (g)

Fig. 7 Single unit cell
optimization result of four strain
cases arranged from top to
bottom. (a) Cube. (b) Diagonal.
(c) Diamond. (d) Cube +
diagonal. (e) Cube + diamond. (f)
Hexagon honeycomb. (g)
Topology optimization

Multiscale design of functionally graded cellular structures for additive manufacturing using level-set... 1989



(a) (b) (c) (d)

Fig. 8 Convergence history of the (top) best design result by the proposed method and (bottom) topology optimization. (a) Strain case 1. (b) Strain case
2. (c) Strain case 3. (d) Strain case 4

(a)

(b)

(c)

Fig. 9 (a) Three-point bending
beam design problem. (b)
Selected unit cell
parameterization. (c) Pre-
analyzed scaling law

Table 4 Design input parameters
for the conforming three-point
bending beam design problem

Scale Parameters Values

Macroscale Unit cell size (mm) 5

Scaling law

C*
11=C11 0:85ρ2:25r þ 0:075

C*
12=C12 0:94ρ3:88r þ 0:023

C*
33=C33 1:05ρ4:52r þ 0:002

Relative density range 0.3–0.8

Volume fraction 0.55

Microscale Grid resolution 50 × 50

Wall thickness range
(mm)

0.15–2.0

Blending range 2–12

C. H. P. Nguyen, Y. Choi1990



conditions and design domains in two cases are illustrated in
Fig. 16, whereas design input settings are given in Table 6.

Figures 17 and 18 show the results of two cases, including
density maps, synthesized structures, and three-dimensional
visualizations of final designs. Results from both design cases
show enhancements in structural performance, 14.5% for the
piston rod case (from 1758.3 to 1510.9) and 24.1% for the
curvy sandwich plate case (from 86,209.1 to 65,453.5). This
result proved the practicality of the proposed method.

5.5 Discussion

As demonstrated above, the proposed method is capable of
deriving comparable optimal solution for structural designs
with lower computation cost in comparison with topology

optimization. Due to this ability, the proposed method is fit
within the context of multiscale structural optimization. In
fact, the structural optimization with explicit parameters has
gained increased attention due to its practical characteristic
(Guo et al. 2014; Liu et al. 2018a; Zhang et al. 2016; Noël
and Duysinx 2016; Van Miegroet and Duysinx 2007).
However, success of parametric shape optimization usually
depends on the effectiveness of shape modeling. In this work,
with the joint-based modeling, adequate design freedom is
achieved since all the wall thickness and blending parameters
at cellular joints are included. As a result, the design degree of
freedom is still sufficient to achieve a remarkable enhance-
ment in structural performance, even though the design pro-
cess is inherently less flexible than that of topology
optimization.

)b()a(

)d()c(

Fig. 10 Design results. (a)
Density distribution map. (b)
Non-optimized microstructure.
(c) Optimized microstructure. (d)
Fabricated part

)b( )a(

Fig. 11 Nodal displacement
comparison of two designs. (a)
Optimized microstructure. (b)
Non-optimized microstructure

Fig. 12 The designed structure with unit cells having intentional anisotropic elastic properties
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The experimental results also proved the contribution of
the proposed method in FGCS design. As most solutions of
FGCS design stop at mapping the optimal density distribution

results to geometric parameters of cellular unit cells, the pro-
posed method adds more value with unit cell customization
ability, thereby further enhancing the structural performance.

Table 5 Input parameter for
panel under distributed load
design problem

Scale Parameters Values

Macroscale Unit cell size (mm) 5

Scaling law

C*
11=C11 0:73ρ1:81r þ 0:036

C*
22=C22 0:44ρ3:07r þ 0:008

C*
12=C12 0:90ρ3r−0:21ρ2r−0:28ρr−0:002

C*
33=C33 0:75ρ4:54r þ 0:005

Relative density range 0.2–0.6

Volume fraction 0.4

Microscale Grid resolution 50 × 50

Wall thickness range
(mm)

0.2–0.6

Blending range 4–24

 (a) 

 (b) )c(

Fig. 13 (a) Panel under distributed load design problem. (b) Parameterization of re-entrant honeycomb structure. (c) Pre-analyzed scaling law of re-
entrant honeycomb structure

)c()b()a(

Fig. 14 Panel design result. (a) Density map. (b) Non-optimized microstructure. (c) Optimized microstructure

(a) (b)
Fig. 15 Plot of C12 components of the effective elastic tensor for each unit cell. (a) Non-optimized microstructure. (b) Optimized microstructure
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This is valuable in the research for FGCS design which have
been gaining attention due to their better robustness and buck-
ling resistance in comparison with structures designed only by
topology optimization (Wu et al. 2018).

Finally, in addition to effortlessly maintaining the unique
behavior, the proposed method could derive multifunctional
structures without performing multi-objective optimization or
adding additional constraints compared to other methods
(Geoffroy-Donders et al. 2020; Jiang et al. 2021). This char-
acteristic reduced the complexity of the design problem and
made the proposed method more practical. Moreover, one
could extend the proposed method by optimally designing

cellular unit cell for multifunctional requirement instead of
selecting available ones from libraries. Nevertheless, a more
general method to efficiently model cellular structure de-
signed by optimization is required to apply the proposed
method. This issue will be addressed in a future work.

6 Conclusion

In this work, a level-set-description-based method for
multiscale design of FGCSs was proposed. The utilization of
implicit blending and joint-based modeling prompts an

(a) (b)

Fig. 16 Design problem for 3D
applications. (a) Piston rod under
static loading. (b) Curved
sandwich plate under distributed
loading

Table 6 Design input for two
engineering parts design
examples

Parameters Piston rod Curvy sandwich plate

Unit cell size (mm) 5 5

Unit cell geometry Hexagon honeycomb Re-entrant honeycomb

Relative density range 0.3–0.7 0.2–0.6

Volume fraction 0.5 0.4

Wall thickness range (mm) 0.3–1.0 0.2–0.6

Blending range 4–24 4–24

(a) (b)

(c) (d) (e)

Fig. 17 Piston rod design. (a)
Design domain tessellation. (b)
Transferred load applications. (c)
Optimal density map. (d)
Reconstructed cellular structure.
(e) 3D model
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efficient structural optimization with enhanced design free-
dom and relatively low computation cost compared with
topology-optimization-based approaches. In addition, two ex-
amples of design problems, a three-point bending beam and a
sandwich panel under distributed load, were conducted to
demonstrate the application in multiscale structural optimiza-
tion. Moreover, the applicability of the proposed method in
practical design problems was validated with two 3D design
examples commonly found in automotive and aerospace in-
dustries. In all examples, the proposed method remarkably
enhanced the structural performance compared to that of the
single-scale design approach with non-optimized microstruc-
tures. The value of the design process was further increased by
its ability to maintain unique behaviors of the pre-selected unit
cells during optimization. The proposed approach shows
strong promise in the application of concurrent structural op-
timization, which currently has relied primarily on topology
optimization, due to its simplicity and ability to enhance struc-
tural performance. In the future, an extension of the proposed
approach to more practical design problems, including dy-
namic loading conditions, stress constraint inclusion, and en-
ergy absorption, is intended to be conducted.

Funding This research was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2019R1A2C1002010).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results Sufficient information is presented within the
manuscript equipping readers with the tools to replicate the results.
Furthermore, computer codes and numerical data needed to reproduce

design results and figures in the paper can be accessed by contacting
the corresponding author.

References

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys 194(1):
363–393. https://doi.org/10.1016/j.jcp.2003.09.032

Alzahrani M, Choi SK, Rosen DW (2015) Design of truss-like cellular
structures using relative density mapping method. Mater Des 85:
349–360. https://doi.org/10.1016/j.matdes.2015.06.180

Cheng L, Zhang P, Biyikli E, Bai JX, Robbins J, To A (2017) Efficient
design optimization of variable-density cellular structures for addi-
tive manufacturing: theory and experimental validation. Rapid
Prototyp J 23(4):660–677. https://doi.org/10.1108/Rpj-04-2016-
0069

Fryazinov O, Vilbrandt T, Pasko A (2013) Multi-scale space-variant
FRep cellular structures. Comput Aided Des 45(1):26–34. https://
doi.org/10.1016/j.cad.2011.09.007

Fu JJ, Li H, Gao L, Xiao M (2019) Design of shell-infill structures by a
multiscale level set topology optimization method. Comput Struct
212:162–172. https://doi.org/10.1016/j.compstruc.2018.10.006

Geoffroy-Donders P, Allaire G, Michailidis G, Pantz O (2020) Coupled
optimization of macroscopic structures and lattice infill. Int J Numer
Methods Eng. https://doi.org/10.1002/nme.6392

Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization
explicitly and geometrically-a new moving morphable components
based framework. Journal of Applied Mechanics-Transactions of
the Asme 81(8):081009. https://doi.org/10.1115/1.4027609

Jiang L, Gu XD, Chen SK (2021) Generative design of bionic structures
via concurrent multiscale topology optimization and conformal ge-
ometry method. J Mech Des 143(1):1–29. https://doi.org/10.1115/1.
4047345

Li DW, Liao WH, Dai N, Dong GY, Tang YL, Xie YM (2018) Optimal
design and modeling of gyroid-based functionally graded cellular
structures for additive manufacturing. Comput Aided Des 104:87–
99. https://doi.org/10.1016/j.cad.2018.06.003

Li DW, Liao WH, Dai N, Xie YM (2020) Anisotropic design and opti-
mization of conformal gradient lattice structures Computer-Aided
Design:119. https://doi.org/10.1016/j.cad.2019.102787

(a)

(b)

(c)

(d)

Fig. 18 Curvy sandwich plate
design. (a) Design domain
tessellation. (b) Transferred load
applications. (c) Optimal density
map. (d) Reconstructed cellular
structure and 3D model

C. H. P. Nguyen, Y. Choi1994

https://doi.org/10.1016/j.jcp.2003.09.032
https://doi.org/10.1016/j.matdes.2015.06.180
https://doi.org/10.1108/Rpj-04-2016-0069
https://doi.org/10.1108/Rpj-04-2016-0069
https://doi.org/10.1016/j.cad.2011.09.007
https://doi.org/10.1016/j.cad.2011.09.007
https://doi.org/10.1016/j.compstruc.2018.10.006
https://doi.org/10.1002/nme.6392
https://doi.org/10.1115/1.4027609
https://doi.org/10.1115/1.4047345
https://doi.org/10.1115/1.4047345
https://doi.org/10.1016/j.cad.2018.06.003
https://doi.org/10.1016/j.cad.2019.102787


Liu C, Zhu YC, Sun Z, Li DD, Du ZL, Zhang WS et al (2018a) An
efficient moving morphable component (MMC)-based approach
for multi-resolution topology optimization. Struct Multidiscip
Optim 58(6):2455–2479. https://doi.org/10.1007/s00158-018-
2114-0

Liu JK, Gaynor AT, Chen SK, Kang Z, Suresh K, Takezawa A et al
(2018b) Current and future trends in topology optimization for ad-
ditive manufacturing. Struct Multidiscip Optim 57(6):2457–2483.
https://doi.org/10.1007/s00158-018-1994-3

Nguyen CHP, Kim Y, Choi Y (2019) Design for additive manufacturing
of functionally graded lattice structures: a design method with pro-
cess induced anisotropy consideration. International Journal of
Precision Engineering and Manufacturing-Green Technology 8(1):
29–45. https://doi.org/10.1007/s40684-019-00173-7

Noël L, Duysinx P (2016) Shape optimization of microstructural designs
subject to local stress constraints within an XFEM-level set frame-
work. Struct Multidiscip Optim 55(6):2323–2338. https://doi.org/
10.1007/s00158-016-1642-8

Panetta J, Rahimian A, Zorin D (2017) Worst-case stress relief for micro-
structures. ACM Trans Graph 36(4):1–16. https://doi.org/10.1145/
3072959.3073649

Sivapuram R, Dunning PD, Kim HA (2016) Simultaneous material and
structural optimization by multiscale topology optimization. Struct
Multidiscip Optim 54(5):1267–1281. https://doi.org/10.1007/
s00158-016-1519-x

Song YZ, Yang ZW, Liu Y, Deng JS (2018) Function representation
based slicer for 3D printing. Computer Aided Geometric Design
62:276–293. https://doi.org/10.1016/j.cagd.2018.03.012

Steuben JC, Iliopoulos AP, Michopoulos JG (2016) Implicit slicing for
functionally tailored additivemanufacturing. Comput Aided Des 77:
107–119. https://doi.org/10.1016/j.cad.2016.04.003

Svanberg K (1987) The method of moving asymptotes - a new method
for structural optimization. Int J Numer Methods Eng 24(2):359–
373. https://doi.org/10.1002/nme.1620240207

Tang YL, Zhao YF (2018) Multifunctional design of heterogeneous cel-
lular structures. Struct Multidiscip Optim 58(3):1121–1138. https://
doi.org/10.1007/s00158-018-1956-9

Tang YL, Kurtz A, Zhao YF (2015) Bidirectional evolutionary structural
optimization (BESO) based design method for lattice structure to be
fabricated by additive manufacturing. Comput Aided Des 69:91–
101. https://doi.org/10.1016/j.cad.2015.06.001

Van Miegroet L, Duysinx P (2007) Stress concentration minimization of
2D filets using X-FEM and level set description. Struct Multidiscip
Optim 33(4-5):425–438. https://doi.org/10.1007/s00158-006-0091-1

Velho, L., Gomes, J., & Figueiredo, L. H. d. (2002). Implicit objects in
computer graphics. Springer Verlag New York.

Wang MY,Wang XM, Guo DM (2003) A level set method for structural
topology optimization. Comput Methods Appl Mech Eng 192(1-2):
227–246. https://doi.org/10.1016/S0045-7825(02)00559-5

Wang YQ, Chen FF, Wang MY (2017) Concurrent design with connect-
able graded microstructures. Comput Methods Appl Mech Eng 317:
84–101. https://doi.org/10.1016/j.cma.2016.12.007

Wang YQ, Zhang L, Daynes S, Zhang HY, Feih S, Wang MY (2018)
Design of graded lattice structure with optimized mesostructures for
additive manufacturing. Mater Des 142:114–123. https://doi.org/10.
1016/j.matdes.2018.01.011

Wu J, Aage N, Westermann R, Sigmund O (2018) Infill optimization for
additive manufacturing-approaching bone-like porous structures.
IEEE Trans Vis Comput Graph 24(2):1127–1140. https://doi.org/
10.1109/TVCG.2017.2655523

Wu ZJ, Xia L, Wang ST, Shi TL (2019) Topology optimization of hier-
archical lattice structures with substructuring. Comput Methods
Appl Mech Eng 345:602–617. https://doi.org/10.1016/j.cma.2018.
11.003

Xia L (2016a) Appendix - Design of extreme materials in Matlab. In:
Multiscale Structural Topology Optimization. Elsevier, pp 119–143.
https://doi.org/10.1016/B978-1-78548-100-0.50010-0

Xia L (2016b) Simultaneous topology optimization of structure and ma-
terials. In: Xia L (ed) Multiscale Structural Topology Optimization
(pp. 67-88). Elsevier. https://doi.org/10.1016/b978-1-78548-100-0.
50004-5

Xia L (2016c) Topology optimization framework for multiscale nonlinear
structures. In: Xia L (ed) Multiscale Structural Topology
Optimization (pp. 1-19). Elsevier. https://doi.org/10.1016/b978-1-
78548-100-0.50001-x

Zhang P, Toman J, Yu Y, Biyikli E, Kirca M, Chmielus M et al (2015)
Efficient design-optimization of variable-density hexagonal cellular
structure by additive manufacturing: theory and validation. Journal
of Manufacturing Science and Engineering-Transactions of the
Asme 137(2):021004–021004-8. https://doi.org/10.1115/1.
4028724

ZhangWS, Yuan J, Zhang J, Guo X (2016) A new topology optimization
approach based on moving morphable components (MMC) and the
ersatz material model. Struct Multidiscip Optim 53(6):1243–1260.
https://doi.org/10.1007/s00158-015-1372-3

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Multiscale design of functionally graded cellular structures for additive manufacturing using level-set... 1995

https://doi.org/10.1007/s00158-018-2114-0
https://doi.org/10.1007/s00158-018-2114-0
https://doi.org/10.1007/s00158-018-1994-3
https://doi.org/10.1007/s40684-019-00173-7
https://doi.org/10.1007/s00158-016-1642-8
https://doi.org/10.1007/s00158-016-1642-8
https://doi.org/10.1145/3072959.3073649
https://doi.org/10.1145/3072959.3073649
https://doi.org/10.1007/s00158-016-1519-x
https://doi.org/10.1007/s00158-016-1519-x
https://doi.org/10.1016/j.cagd.2018.03.012
https://doi.org/10.1016/j.cad.2016.04.003
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1007/s00158-018-1956-9
https://doi.org/10.1007/s00158-018-1956-9
https://doi.org/10.1016/j.cad.2015.06.001
https://doi.org/10.1007/s00158-006-0091-1
https://doi.org/10.1016/S0045-7825(02)00559-5
https://doi.org/10.1016/j.cma.2016.12.007
https://doi.org/10.1016/j.matdes.2018.01.011
https://doi.org/10.1016/j.matdes.2018.01.011
https://doi.org/10.1109/TVCG.2017.2655523
https://doi.org/10.1109/TVCG.2017.2655523
https://doi.org/10.1016/j.cma.2018.11.003
https://doi.org/10.1016/j.cma.2018.11.003
https://doi.org/10.1016/B978-1-78548-100-0.50010-0
https://doi.org/10.1016/b978-1-78548-100-0.50004-5
https://doi.org/10.1016/b978-1-78548-100-0.50004-5
https://doi.org/10.1016/b978-1-78548-100-0.50001-x
https://doi.org/10.1016/b978-1-78548-100-0.50001-x
https://doi.org/10.1115/1.4028724
https://doi.org/10.1115/1.4028724
https://doi.org/10.1007/s00158-015-1372-3

	Multiscale design of functionally graded cellular structures for additive manufacturing using level-set descriptions
	Abstract
	Introduction
	Literature review
	Level-set description approach for micro-cellular structure modeling
	Level-set descriptions
	Joint-based representation approach for micro-cellular structure
	Conversion from geometric models to mechanical models using density approach

	Multiscale design of functionally graded cellular structures
	Macroscale structural optimization
	Microscale structural optimization

	Experimental studies
	Single unit cell optimization
	Cellular three-point bending beam design
	Design of a sandwich panel under distributed load
	Applications on infill design of engineering parts
	Discussion

	Conclusion
	References


