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Abstract

Engineering design research integrating artificial intelligence (Al) into computer-aided design (CAD) and computer-aided
engineering (CAE) is actively being conducted. This study proposes a deep learning-based CAD/CAE framework in the
conceptual design phase that automatically generates 3D CAD designs and evaluates their engineering performance. The
proposed framework comprises seven stages: (1) 2D generative design, (2) dimensionality reduction, (3) design of experiment
in latent space, (4) CAD automation, (5) CAE automation, (6) transfer learning, and (7) visualization and analysis. The proposed
framework is demonstrated through a road wheel design case study and indicates that Al can be practically incorporated into an
end-use product design project. Engineers and industrial designers can jointly review a large number of generated 3D CAD
models by using this framework along with the engineering performance results estimated by Al and find conceptual design

candidates for the subsequent detailed design stage.

Keywords Artificial intelligence - Deep learning - CAD - CAE - Generative design - Topology optimization

1 Introduction

Deep learning, which is a part of artificial intelligence (Al)
technology and learns meaningful patterns based on deep neu-
ral network structures from large amounts of data, demon-
strates remarkable performances in various areas (LeCun
etal. 2015). In recent years, the expectations for deep learning
research have increased in computer-aided design (CAD) and
computer-aided engineering (CAE), which are the core of new
product development (Guo et al. 2016; Umetani 2017; Zhang
etal. 2018; Cunningham et al. 2019; Khadilkar et al. 2019; Oh
et al. 2019; Williams et al. 2019; Nie et al. 2020). CAD/CAE
methods can be easily combined with deep learning in
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comparison with other engineering fields. This condition is
because many deep learning studies have been conducted
using CAD data for classification and segmentation
(Maturana and Scherer 2015; Qi et al. 2017), and CAE re-
search has long used machine learning to build metamodels
(Wang and Shan 2007).

The conceptual design phase requires a surrogate model (or
metamodel) that can quickly evaluate the engineering perfor-
mance of a large number of design candidates. Deep learning
is considered a powerful method for surrogate modeling in the
field of CAE research due to its ability to approximate high-
dimensional and highly nonlinear physics (Cunningham et al.
2019; Khadilkar et al. 2019; Du et al. 2020a), and
hyperparameter search affects the accuracy and robustness
of surrogate models (Du et al. 2020b). However, the largest
problem is that engineers have to first create a large number of
CAD models and collect CAE results to utilize deep learning.

Generative design can be used as a solution to overcome
the limitation of data shortage. Generative design refers to
computational design methods that can automatically conduct
design exploration under constraints defined by designers
(Shea et al., 2005; Krish 2011; Singh & Gu, 2012; Jang
et al. 2021). Recent generative design research utilizes topol-
ogy optimization and deep learning to enable exploration of
large design spaces effectively and efficiently (Oh et al. 2018;
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Oh et al. 2019; Jang et al. 2021; Kallioras & Lagaros, 2020;
Sun & Ma, 2020).

In a previous study, Oh et al. (2019) proposed a deep
learning-based generative design method for 2D wheel de-
sign. This study aims to extend this generative design method
to 3D wheel design problem for an industrial application to
demonstrate its feasibility in the automotive industry. This
study proposes a deep learning-based CAD/CAE framework
by combining generative design, CAD/CAE automation, and
deep learning technologies. The proposed framework is spe-
cifically design for the conceptual design phase, and its pur-
pose is to automatically generate 3D CAD data and evaluate
them through deep learning to find feasible conceptual de-
signs in the early design phase.

The proposed framework includes (1) 2D generative design,
(2) dimensionality reduction, (3) design of experiment (DOE)
in latent space, (4) 3D CAD automation, (5) CAE automation,
(6) transfer learning, and (7) visualization and analysis. Using
the proposed framework in the conceptual wheel design pro-
cess, engineering designers can automatically generate a large
number of feasible 3D wheel CAD models, and immediately
predict modal analysis result based on a disk-view 2D wheel
design without a 3D CAD/CAE modeling process.

The proposed framework is expected to change the con-
ceptual design phase of the vehicle wheel. The existing design
process is inefficient because the industrial designer creates
only a small portion of the design, whereas the engineer cre-
ates a CAD/CAE model and provides feedback to the indus-
trial designer, thereby repeating the design modification pro-
cess. However, Al first generates a large amount of CAD
models using the proposed framework and evaluates them in
terms of engineering performance metrics. Industrial de-
signers and engineers can then select good conceptual design
candidates and modify them for detailed designs. Industrial
designers can instantly evaluate the engineering performance
of new designs without the need for engineers to review them.
Owing to Al, designers and engineers can collaborate
efficiently.

The remainder of this paper is organized as follows.
Section 2 introduces the related research. Section 3 introduces
the proposed deep CAD/CAE framework. Sections 4 and 5
provide the details of the proposed framework. Section 6 pre-
sents the discussion, conclusion, and future research
directions.

2 Related work
2.1 CAD/CAE research with deep learning
In computer science, deep learning research using 3D CAD

data is being actively conducted. The key to learning 3D CAD
data is a pipeline design that preprocesses high-dimensional
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CAD data to be used as input into deep learning architectures.
The three most widely used types of deep learning models
based on the preprocessing technology are as follows: (1)
voxel-based models (e.g., VoxNet), (2) point cloud-based
models (e.g., PointNet), and (3) view-based model (e.g., mul-
tiview convolutional neural networks (CNNs)). VoxNet
(Maturana and Scherer 2015) uses a 3D CNN architecture that
takes voxels representing 3D CAD as input. In a discontinu-
ous 3D space, voxel data have a value of 1 when the object
occupies the grid; otherwise, they have a value of 0. PointNet
(Qi et al. 2017) learns the features of points directly from 3D
CAD. Point clouds are defined as a number of points (x, y, 7)
on the surface of a 3D object, representing the data as a set of
coordinates. Multiview-based models (e.g., Su et al. 2015;
Kanezaki et al. 2018) use 2D images rather than 3D informa-
tion, where the 2D images of a 3D CAD are captured with a
virtual camera around it. In addition to the three main types, a
method of learning the mesh data of the CAD model exists,
that is, MeshNet (Feng et al. 2019).

On the basis of the 3D deep learning models using 3D
CAD data introduced above, engineering design research
has focused on CAE research predicting engineering perfor-
mance by learning the data obtained through the finite element
method (FEM). Cunningham et al. (2019) conducted a study
to predict the aerodynamic performance by preprocessing a
3D aircraft model into 3D point clouds and applying deep
learning. Khadilkar et al. (2019) automatically generated 3D
CAD models of various shapes and then sliced the models to
obtain cross sections. A CNN model has been proposed to
predict stresses on a cross section that occur during bottom-
up 3D printing using both the cross section and 3D point cloud
of the 3D model. In vehicle system design, researchers have
used an autoencoder to parameterize automotive 3D mesh
models, generate 3D mesh models of various shapes, and
learn the computational fluid dynamics (CFD) results of
models with Gaussian process regression analysis (Umetani
2017; Umetani and Bickel 2018). Computer-aided
manufacturing (CAM) research is also in progress. Williams
et al. (2019) proposed a 3D CNN to estimate manufacturabil-
ity by predicting the part mass, support material mass, and
build time required to three-dimensionally print a CAD mod-
el. Zhang et al. (2018) conducted a study to automatically
generate CAD data according to machining features, learn
data through a 3D CNN, and predict machining features.
Compared with 3D design studies, more studies have been
performed to investigate the engineering performances of 2D
designs. Guo et al. (2016) proposed a CNN model that ap-
proximates a steady flow on a vehicle’s side view 2D geom-
etry, whereas Nie et al. (2020) proposed a generative model
that predicts the 2D stress field of a 2D cantilever bar by
learning the design space and boundary conditions.

The bottleneck of deep learning-based 3D CAD/CAE re-
search is to collect a large amount of 3D CAD data in the
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target product area. Therefore, we need to first discuss how to
generate data efficiently for deep learning research.

2.2 Generative design

Generative design refers to computational design methods that
can automatically conduct design exploration under con-
straints defined by designers (Shea et al., 2005; Krish 2011;
Singh & Gu, 2012; Jang et al. 2021). Generative design can
provide initial designs and new inspiration in the conceptual
design phase (Kallioras & Lagaros, 2020). Conventional gen-
erative design controls feasible shape changes through geo-
metric parameterization of CAD models and uses a variety of
exploration methods, such as genetic algorithms (GAs), to
generate different designs (Krish 2011; Singh & Gu, 2012).
Topology optimization (Bendsoe and Kikuchi 1988),
which optimizes material layout (density) within a given de-
sign space to find the optimal (stiffest) design, can be used for
design exploration. Jang et al. (2021) summarize the idea of
exploring diverse designs through topology optimization as
follows: The first is to find various local optima for the same
problem. Diverse designs can be found through various initial
designs, optimizers, and filtering methods (Andreassen et al.
2011). The second is to find a Pareto set for a multiobjective
(disciplinary) optimization problem. For practical use in the
industry, topology optimization must meet different require-
ments simultaneously (Kunakote & Bureerat, 2011). The third
one is to diversify the definition of topology optimization
problems. New designs can be generated by varying design
conditions, such as load and boundary conditions, material
selection, and manufacturing methods (Matejka et al. 2018).
The industry is rebranding topology optimization as “gen-
erative design,” providing CAD tools that leverage topology
optimization for design exploration, and efforts to apply it to
real-world product development are accelerating (Autodesk
2020a). However, these CAD tools do not use deep learning.
In academia, deep learning research on improving the de-
sign exploration performance of topology optimization-based
generative design is in the early stage (Oh et al. 2018; Oh et al.
2019; Jang et al. 2021; Kallioras & Lagaros, 2020; Sun & Ma,
2020). Kallioras and Lagaros (2020) integrated reduced order
models and convolution filters of deep belief networks to gen-
erate various topology designs. Sun and Ma (2020) proposed
reinforcement learning-based generative design that does not
need preoptimized topology data. Deep generative design (Oh
et al. 2019), which is the basis of this study, generates diverse
designs similar to the actual designs in the market through the
integration of topology optimization and generative model of
deep learning. Traditional topology optimization only
considers the engineering point of view, resulting in a design
that is usually unfamiliar to customers and designers.
However, deep generative design solves the multiobjective
problem of minimizing compliance and maximizing

similarity to market reference designs, allowing a designer to
generate designs that look like real products on sale. Jang et al.
(2021) enhanced the diversity of deep generative design by
applying reinforcement learning.

2.3 Deep learning used in the proposed framework

Three main deep learning techniques, namely, CNN,
autoencoder, and transfer learning, are used in the proposed
framework. As supervised learning, deep neural networks
(DNNs) and CNNs are mainly used to build surrogate models
of engineering problems, as introduced in Section 2.1. In par-
ticular, CNNs are frequently used in fields where computer
vision is applied and show high performance in learning shape
patterns to recognize images and objects (Krizhevsky et al.
2012). CNN architecture consists of a combination of
convolutional and pooling layers, adding fully connected
layers on top of them. We used CNN for building a surrogate
model for modal analysis in the proposed framework.

As unsupervised learning, autoencoders are primarily used
for dimensional reduction (Hinton and Salakhutdinov 2006).
Autoencoders can compress high-dimensional input data into
a low-dimensional latent space. In the autoencoder architec-
ture, the size of the input layer is the same as the size of the
output layer. The network that compresses the input data into
the latent space is called an encoder, and the network that
restores the latent space to the output data is called the decod-
er. We used a convolutional autoencoder for dimensionality
reduction of CAD data; this autoencoder consists of only
convolutional and pooling layers (Masci et al. 2011).

Transfer learning methods are widely used to overcome the
lack of training data in the target domain (Pan and Yang
2009). Transfer learning facilitates learning by applying
pretrained feature extractor models with large datasets (in
the source domain) to problems with small related datasets
(in the target domain) by supplementing insufficient informa-
tion. The pretrained autoencoder’s encoder can be used as a
feature extractor, and we can perform transfer learning by
adding a fully connected layer on top of the encoder and
fine-tuning the model (Cunningham et al. 2019). We used this
approach to improve the predictive performance of our surro-
gate model.

3 Deep CAD/CAE framework

The deep learning-based CAD/CAE framework proposed
herein comprises seven stages, and the framework is presented
in Fig. 1. The goals of the proposed framework are summa-
rized as follows: The first goal is to develop a fully automated
CAD process that generates 3D CAD data based on 2D gen-
erative design (stages 1 to 4). The second goal is to develop a
deep learning model to evaluate the engineering performance
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Fig. 1 Deep CAD/CAE framework

of a 3D CAD model using 2D design as input and 3D CAE
simulation result as output (stages 5 to 7). In the early stages of
product development, we can generate and evaluate the nu-
merous conceptual designs using the proposed framework.

The description of each stage of the proposed framework is
presented as follows:

Stage 1. 2D generative design: To generate various 2D
wheel designs, we adopted our previous deep generative
design process (Oh et al. 2019), which is an effective
method combining topology optimization and deep learn-
ing to create many engineered structure designs. First, we
collected the image data of a commercial wheel as refer-
ence designs; subsequently, based on these reference de-
signs, a number of new topology designs of 2D disk-view
wheels were generated automatically. In this study, we
created 16,689 2D wheel designs, and more details
pertaining to stage 1 are provided in Section 4.1.

Stage 2. Dimensionality reduction: In this stage, the di-
mensions of the 2D wheel design generated in stage 1 are
reduced. Dimensionality reduction helps to overcome the
curse of dimensionality, thereby allows us to extract im-
portant features from 2D wheel designs. In this study, we
used a convolutional autoencoder (Masci et al. 2011),
which performs well in reducing the dimensionality of
images. In our research, 128 x 128 2D images were
mapped into a 128-dimensional latent space.
Subsequently, the trained encoder of the convolutional
autoencoder was used in stages 3 and 6. Details of stage
2 are provided in Section 4.2.

@ Springer

*The value in parentheses is the number of data.

Stage 3. DOE in latent space: This stage pertains to the
DOE process for drawing 2D wheel design samples from
the latent space, which are then used for creating CAD
data. Because this latent space comprises the feature vec-
tors of the wheel design, the data distribution is more
meaningful than the original high-dimensional space. In
this study, Latin hypercube sampling (LHS) (Viana, 2018)
was used, and 1030 2D wheel designs were sampled from
the latent space. A detailed description of stage 3 is pro-
vided in Section 4.3.

Stage 4. 3D CAD automation: In this stage, 3D CAD data
to be used as input to CAE are automatically generated.
First, the 2D wheel design undergoes preprocessing,
which involves four steps: (1) smoothing and sharpening
of edges, (2) edge extraction, (3) conversion of edges into
coordinate data, and (4) grouping of edge coordinates.
Next, the process of generating a 3D CAD based on the
2D wheel image and the cross-sectional image of the giv-
en rim is automated. In our study, Autodesk Fusion 360
(Autodesk 2020b) was used to automate 3D CAD model-
ing. The details of stage 4 are provided in Section 4.4.
Stage 5. CAE automation: In this stage, CAE simulation
data are collected using the 3D CAD data generated in
stage 4. In this study, we conducted modal analysis to
verify the natural frequency of the lateral mode, and the
result was stored as labeled data used for deep learning.
Altair SimLab (Altair 2019) was used for CAE automa-
tion. The details of stage 5 are provided in Section 5.1.
Stage 6. Transfer learning: In this stage, a surrogate model
is built to predict the CAE simulation results by using a
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CNN with transfer learning. Using the 2D wheel design as
input, the deep learning model predicts the natural fre-
quency and mass as the output. In this study, to solve the
problem of insufficient data, data augmentation and trans-
fer learning were conducted by combining a DNN with
the encoder of a convolutional autoencoder, which was
pretrained in stage 2. Furthermore, we used an ensemble
technique to reduce overfitting and improve the prediction
performance. Stage 6 is described in detail in Section 5.2.
o Stage7. Visualization and analysis: In this stage, CAD/
CAE engineers can visualize and explain the deep learn-
ing results to gain new insights into and evaluate the reli-
ability of the results. The latent space created in stage 2
can be visualized in two dimensions to examine the rela-
tionship between the wheel shape and natural frequency.
In addition, the wheel shape that significantly affects the
natural frequency can be identified by Grad-CAM. More
details regarding stage 7 are provided in Section 5.3.

4 Design generation (stages 1 to 4)
4.1 2D generative design (stage 1)

Stage 1 involves creating large amounts of 2D disk-view
wheel designs. A part of the deep generative design frame-
work was used in this study, which combined deep learning
and topology optimization, as suggested by Oh et al. (2019).

Topology optimization is typically used for structural de-
sign, in which a design area is divided into elements and the
optimal material density of the elements is determined to
minimize compliance considering a given load and
boundary condition. Oh et al. (2019) added a term to the
typical topology optimization problem, which minimizes the
distance from a reference design to a new topology design.
Consequently, the problem becomes a multiobjective problem
to obtain a new topology design that is similar to the reference
design and has a low compliance simultaneously. The pro-
posed optimization formulation is as follows:

min  f(x) = U'K(x)U+A||x,~x]||,

V()
KU=F

0<x.<1, e=1,....,N,

where x, is the design variable representing the density of
element e, and x is the density vector. U is the displacement
vector, K is the global stiffness matrix, and UTK(X)U corre-
sponds to the compliance. X, indicates the reference design,
[I4l; indicates the L1 norm, and A is the similarity weight. The

larger the A, the closer the optimal design is to the reference
design. For a small A, the reference design is disregarded, and
it is optimized to minimize the compliance. f'is the volume
fraction, V(x) is the volume of the material, and Vj is the
volume of the design domain.

In topology optimization, length scale control and geo-
metric feature control can be used in applying manufactur-
ing constraints. These methods can be grouped into four
classes, namely, filtering techniques, projection mapping,
parameter space reduction, and direct imposition of con-
straints (Sutradhar et al. 2017). Our study uses density
filtering (Bruns and Tortorelli 2001; Bourdin 2001) with
Heaviside projection (Guest et al. 2004; Sigmund 2007).
Detailed equations and optimization methods are available
in Oh et al. (2019).

In topology optimization, a single optimal design is obtain-
ed when the designer defines the objective function, loads,
and boundary conditions. A generative design involves creat-
ing multiple optimal designs by varying the weights of
multiobjective and design parameters, as explained in
Section 2.2. The generative design process is shown in
Fig. 2. In this study, three design parameters were defined:
(1) similarity weights (\) with five levels (i.e., 0.0005,
0.005, 0.05, 0.5, 5), (2) ratio of normal and shear forces ap-
plied outside the wheel with five levels (i.e., 0, 0.1, 0.2, 0.3,
0.4), and (3) volume fraction ( /) with five levels (i.e., 0.7, 0.8,
0.9, 1, 1.1). We then created 125 optimization problems (5 x
5 x5) per reference design. The rim part (outer ring of the
wheel) is set to the non-design space, the center area is set to
a fixed boundary condition, and the spoke part is set to the
design space. The maximum iteration of optimization was set
to 100 as the termination criterion. Generating one design
takes 17 s on average by using a computer with AMD
3990X 64-Core 2.90 GHz CPU and 128 GB RAM.

For the reference design, 658 real wheel images were ob-
tained by web crawling. These images were then preprocessed
into a 128 x 128 binary matrix represented by x,. in (1). We
solved 125 optimization problems for 658 reference designs
and obtained 82,250 topology optimization designs (658 x
125 =282,250). Some of the generated designs have similar
topologies and shapes. We calculated the pixelwise L1 dis-
tance for all designs and removed the designs that are within
the threshold of 10°. A total of 16,678 designs are obtained
with different topologies and shapes.

4.2 Dimensionality reduction (stage 2)

Stage 2 is the process of reducing the dimensions of the 2D
wheel design created in stage 1 using a convolutional
autoencoder. Data augmentation was performed to improve
the performance, and the latent space was analyzed to verify
the feasibility of the trained model.
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Fig. 2 2D wheel generation by generative design (Oh et al. 2019)

The autoencoder in this study is used for two purposes:
First, it is used for the DOE in latent space. DOE in its original
dimension (128 x 128) fails to sample designs that can repre-
sent the data distribution. Sampling in latent space can sample
a variety of designs that can be representative of the features of
2D geometry. The detailed experimental result is described in
Section 4.3. Second, the autoencoder is used for transfer learn-
ing. We used the encoder of the pretrained autoencoder to
overcome the data shortage of CAE simulations. The effects
of improving predictive performance by transfer learning are
described in Section 5.2.

4.2.1 Data

Because the wheel is a rotating object, the rotated wheel
should not be recognized as a different wheel. Therefore, the
data were augmented by rotating randomly in the 360° range.
The number of 2D wheel design data increases from 16,678 to
166,812 (approximately 10 times larger) through this augmen-
tation. Figure 3 shows an example of rotating the wheel at 10
random angles. This data augmentation resulted in an increase

X,.. Reference design

______________

of the training data size; hence, the deep learning performance
improved. The data augmentation effect is experimented in
Appendix 1.

4.2.2 Training

The convolutional autoencoder adds convolutional layers to
the autoencoder architecture and performs well in the dimen-
sionality reduction of images (Masci et al. 2011). The archi-
tecture used is shown in Fig. 4.

When the 2D wheel image measuring 128 x 128 as in-
put passed through the encoder part, the dimension was
mapped to 128 dimensions in latent space (z); meanwhile,
when the 128 dimensioned values were passed through the
decoder again, the 2D wheel image that was the input was
reconstructed. If the reduced dimension (128) can recon-
struct the original dimensions (128 x 128), it demonstrates
that the 128 dimensions of z well extracted the important
features of the input.

An autoencoder is a model that minimizes the difference
values of pixels between an input image and an output image.

Fig. 3 Examples of augmented 2D wheels
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Fig. 4 Architecture of convolutional autoencoder

The autoencoder loss function can be expressed as the mean
squared error (MSE) as follows:

MSE = %z;;l (xi—?i)z (2)

where x; is the i-th input data, X; is the output from the
autoencoder, and n is the number of input data. In the
convolutional autoencoder architecture, the encoder is com-
posed of five convolutional layers and four maxpooling
layers, and the decoder is composed of five convolutional
layers, four upsampling layers, and a 50% dropout; therefore,
it becomes a 128 x 128 image again. A rectified linear unit
(ReLU) was used for the activation function of each convolu-
tion layer. The Adam optimizer was used with a learning rate
of 0.00008, batch size of 64, and epoch of 100. A total of
133,449 data points (80%) were used as the training set,
whereas 33,363 data points (20%) were used as the validation
set. Figure 5 shows the learning results. The model converged
well in both the training and validation sets.

4.2.3 Testing

To visually verify whether the model has learned the features
well, we reconstructed 96 real wheel images of the manufac-
turer that were not used for the training and validation. As
shown in Fig. 6, it was confirmed that the wheels in the test
set were reconstructed similarly to the input. Therefore, it can
be concluded that the latent space well represented the wheel-
shaped features. In addition, in the training set, holes were

0.020

0.018

0.016

Loss

0.014

0.012

0 20 40 60 80 100
Epoch
(a)

Fig. 5 Reconstruction error of convolutional autoencoder

x128 ,

Decoder

uniformly drilled in the center of the wheel. Therefore, even
if no holes exist in the test data (i.e., the rightmost figure in
Fig. 6), a hole of the same size is created in the reconstructed
wheel. Hence, it can be concluded that the model learned that
the center of the wheel is always drilled.

Interpolation is a method to verify whether the deep learning
generative model has been well trained for the latent space.
When the model only memorizes the input wheel to reconstruct
the input wheel, the interpolated wheel image in the latent space
does not naturally deform, and the shape of the wheel suddenly
changes stepwise. After encoding the two wheels in the training
set to two vectors in the latent space, these vectors were divided
by the same distance, and 10 vectors were extracted from the
latent space. The results of decoding the 10 vectors are shown in
Fig. 7. Two wheels located on the leftmost and rightmost sides
appeared completely different, but the wheels reconstructed from
the 10 vectors in latent space changed gradually while maintain-
ing the features of both sides. Therefore, it can be concluded that
the convolutional autoencoder has learned the latent space
continuously.

4.3 DOE in latent space (stage 3)

LHS from a normal distribution was used to conduct the DOE
in the latent space, and the LHSnorm function in MATLAB
(Mathworks 2020) was used. When training data were
encoded in the latent space, the data were not distributed uni-
formly but exhibited a normal distribution. We discovered that
a good wheel-shaped image can be sampled when we used the

0.017
0.016
0.015
0.014
0.013
0.012
0.011
0.010
0.009

Loss

0 20 40 60 80 100
Epoch

(b)

@ Springer



S. Yoo et al.

Fig. 6 a Original image. b Reconstructed wheel image in test set

LHSnorm and not the LHS. After sampling 3000 vectors from
a 128-dimensional multivariate normal distribution with the
mean and covariance of the training data in the latent space,
the training wheels that were closest to the sampled vectors
were selected. The reason for using the nearest training wheel
design without using the decoded image was that the main
purpose of the convolutional autoencoder was to reduce di-
mensions, not to generate new images. Finally, we selected
1300 designs after filtering to verify the similarity. Figure 8
shows examples of the sampled wheel design.

We compared the DOE in the original space (128 x 128) to
that in the latent space (our method). We recalculated the L1
distance between samples in latent space for the designs sam-
pled in the two methods. The sampling is performed well
because the samples are widely distributed in the latent space.
In this case, the L1 distance value increases. The designs sam-
pled in the original space have an average distance value of
0.0225, and the designs sampled in the latent space have
0.5693. This finding shows that the DOE in the original space
cannot represent the 2D wheel design space well.

4.4 3D CAD automation (stage 4)

The process of stage 4, i.e., creating a 3D CAD model from a
2D image, was performed in three steps, as shown in Fig. 9.
The first step was image processing, which uses antialiasing to
create smooth and sharp edges of the 2D wheel design sam-
ples. The second step was data processing by grouping neigh-
boring points to create splines and centering them. The third
step was automatic 3D CAD generation using the Python API
of Autodesk Fusion 360 (Autodesk 2020b).

4.4.1 Image processing

The original image created in stage 3 contained a margin at the
edge. Because the position of the wheel must be the same in all

images, the margin must first be removed. Therefore, we detect-
ed the edge, obtained the maximum and minimum values of x
and y from the detected data, and cropped the image in the range
Of [X,uin™Xmas Vimin~mae) OF the original image. Subsequently, we
obtained the image with no margin, as shown in Fig. 10.

A low-pixel image appeared as a stepped line owing to the
large size of the square pixel; this phenomenon is known as
aliasing. In our study, the original image comprised 128 x 128
pixels; therefore, we applied antialiasing (AA) (Catmull 1978) to
all the images, which reduced the antialiasing by smoothing. AA
converts a pixel graphic file to a vector graphic file; therefore, we
converted the PNG file into the scalable vector graphics format
and then converted it back to a PNG file to obtain an antialiased
image. In the AA process, a higher pixel image was attainable
because more pixels were added to smooth the aliasing portion.
Figure 10 shows an example of obtaining a 512 x 512 high pixel
image by applying AA to a 128 x 128 wheel image.

Edge detection involves obtaining the boundaries of ob-
jects in an image, where the boundary is an area with a large
change rate in brightness (Fig. 11). The change rate in bright-
ness is called the gradient; after calculating the gradient in the
image, the edge can be determined according to the threshold
value. The first derivative, which is an approximation of the
difference between adjacent pixels, was performed in the hor-
izontal and vertical directions. The gradient magnitude VG is
calculated as follows:

VG = /G +G; (3)

where G, =f{x+1,y) — fix, )
G, =f(x,y+1)~f(x,y)

The horizontal difference is G,, the vertical difference is
G,, and the brightness function is f.

RRRDDDDDDDR

Fig. 7 Interpolation result in z latent space
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Fig. 8 Sampled 2D wheel designs from latent space

A representative method of edge extraction using the first
derivative is the Sobel operator (Kanopoulos et al. 1988). The
Sobel operator can extract diagonal edges well; therefore, it is
well suited for edge detection in 2D wheel designs. After

1282 Sampling

extracting the entire edge of the image, the edges of the rim
and hub were removed to use only the edges of the spoke
areas. Subsequently, the coordinates of the final edges were
saved in a .csv file.
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Fig. 9 Three steps of stage 4
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Fig. 10 Antialiasing filtering

128

y max

128

512

y min

X min

(1) Original image

4.4.2 Data processing

Data processing was performed to connect the spoke edges
with splines for CAD modeling automation. The data are the
coordinates of the 2D pixels, which we call coordinate points.

In this study, we first organized the points based on dis-
tance and group adjacent points. Figure 12 shows the sorting
and grouping process. We calculated the Euclidean distance
between one fixed point and another to obtain the shortest
distance. This allows the points to be organized by the shortest
distance. If the point closest to the fixed point is greater than or
equal to the threshold value, it is regarded as a different group.
The detailed process is described in Appendix 2.

If all the points in each group are used for generating
the spline curve, the curve will be tortuous and not
smooth. This can misrepresent the original shape and
cause errors in the CAD modeling. Therefore, the spline
curve of the spoke should be designed using the correct
number of points after filtering unnecessary points. This
process is shown in Fig. 13.

In this study, we determined the deletion rate according to
the number of points in each group. The group comprising
more than 20 points and less than 100 points was reduced to
1/6, whereas that comprising 100 points or more was reduced
to 1/12. We did not reduce points in a group comprising less
than 20 points. However, if the number of points is 3 or less, it
is considered noise and the group is deleted. Finally, all coor-
dinates were moved to the center of the origin (i.e., mean
centering). Subsequently, to design a spoke that fit an 18-in.
wheel, each point group was multiplied by a scalar, 0.97.

/

Rim/edge

AN
hub edge

(1) Anti-aliasing filtered
image

(2) Edge detection
(sobel)

Fig. 11 Edge detection
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(2) Cropped image

(3) Anti-aliasing
filtered image

4.4.3 3D CAD modeling

3D modeling requires not only the disk-view shape, but
also the cross-sectional shape of the spokes and rim. The
aim of this study is to create wheels with the same cross
section and diverse spoke shapes. Typically, in the devel-
opment of road wheels, the rim cross section has a limited
degree of freedom owing to the packaging constraints of
the parts inside the rim. Therefore, we selected the 18-in.
representative wheel model with a rim width of 7.5j,
which is a flagship vehicle. j represents the size of the
rim and is indicated in inches. From the selected CAD
model, the cross sections of the spoke and rim were ex-
tracted, and the coordinates of each point were stored in a
.csv file. The stored points were used to automatically
design cross-sectional shapes through lines and spline
curves in 3D modeling, as shown in Fig. 14.

Figure 15 shows the overall process of 3D CAD modeling
using the 2D information of disk-view spoke shape and the
cross section obtained in previous steps. This process was
fully automated using the Python API of Autodesk’s Fusion
360. The 2D information was obtained from the .csv file and
loaded sequentially in the order specified.

The detailed processes are as follows:

First, the cross section of the spoke was sketched by load-
ing the coordinates and connecting the points by lines and
splines. When the cross section was revolved, a spoke body
was created.

Second, the disk view was sketched by loading the coordi-
nates of the spoke edges and connecting the points of each

(4) Saving edge
coordinates

(3) Removing
rim and herb edges
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Fig. 12 Algorithm for sorting and grouping points

group by a spline. The bodies of the spoke shape were created
when sections of the spoke shape were extruded. These spoke-
shaped bodies were designated as tool bodies, whereas the
spoke body was designated as the target body.
Subsequently, a combine cut was performed to remove the
intersection of the two bodies. Consequently, the tool bodies
disappeared, and the target body without a cross section
remained.

Third, after defining the reference lug hole center co-
ordinates and radius, the circular cross section was
sketched and extruded to create a cylindrical body.
Subsequently, the same circular column bodies were gen-
erated at 72° intervals using the reference body. The five
cylindrical bodies created were designated as tool bodies,
whereas the spoke body was designated as the target
body. A combine cut was performed to remove the inter-
section between the bodies, thereby creating lug holes in
the spoke body.

Fourth, the cross section of the rim was sketched by load-
ing the coordinates and connecting the points by the lines and
splines. The sketch was then revolved to create a rim body. A
combine join was performed to combine the rim body and
spoke body, and then a final wheel body was created. The
wheel body was saved in .stp format, which is a universal
3D CAD file format.

Figure 16 shows examples of automatically generated 3D
CAD models.

o/

o —
o :
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00
Jd o

VO

(1) Sorting and
grouping points

(2) Reducing points

Fig. 13 Data processing

(2) Finding nearest point

(3) Sorting and grouping points

5 Design evaluation (stages 5 to 7)
5.1 CAE automation (stage 5)

In this study, modal analysis with free-free mode was conduct-
ed to analyze the engineering performance of the wheel. We
obtained the natural frequencies and mode shapes through
CAE simulation. In particular, the natural frequency is propor-
tional to the stiffness of the structure and inversely proportion-
al to mass as follows:

L )

where f'is the natural frequency, & the stiffness, and m the
mass. Therefore, when designing a wheel, manufacturers con-
sider a lower bound of stiffness for each mode as a design
constraint, based on the correlation between the stiffness for
each mode and road noise.

We conducted a free-free modal analysis. The uncon-
strained 3D model contained six rigid body modes with zero
frequency, three translation modes in the x-axis and y-axis
directions and three rotation modes for the three axes.
Beginning from the seventh mode, a nonzero frequency ap-
peared. Figure 17 shows the mode shapes of the wheel. Each
mode has the following meanings. Modes 7 and 8 indicate the
rim mode 1. Modes 9 and 10 indicate the rim mode 2. Mode
11 indicates the spoke lateral mode. Modes 12 and 13 indicate

é? o @& 0
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Fig. 14 3D modeling using
selected cross sections of rim and
spokes

(1) Creating rim body
by rim cross section

the rim mode 3. Modes 14 and 15 indicate the spoke bending
mode.

The frequency for the lateral mode (mode 11) was selected in
this study because we intended to evaluate the engineering perfor-
mance according to the shape of the spoke. In addition, after the
mass has been obtained from the 3D modeling, the stiffhess can be
calculated through the natural frequency and mass using (4).

For CAE automation, the macro function in Altair’s Simlab
(Altair 2019) was used. The modal analysis process is shown
in Fig. 17. First, the 3D CAD model was imported; next, an
FEM mesh (second-order tetrahedral mesh) was automatically
generated. The size of the mesh should not be larger than
6 mm. We used the material properties of the reference alu-
minum wheel of Hyundai: Young’s modulus is 73,500,
Poisson’s ratio is 0.33, density is 2.692e—09, and shear mod-
ulus is 0.001. The CAE automation yielded 1006 output files.
The input 2D wheel image, frequency (mode 11), and mass

(2) Creating spoke body
by spoke cross section

through the automatic parsing program were stored in pairs as
training data for deep learning.

5.2 Transfer learning (stage 6)

In stage 6, deep learning was developed, in which the results
of modal analysis and the mass of the 3D CAD model were
predicted using only 2D design. Data augmentation and data
scaling were performed as data preprocessing; furthermore,
transfer learning and ensemble techniques, in which the
pretrained convolutional autoencoder and DNN were com-
bined, were applied to solve the problem of insufficient data.

5.2.1 Data

Data augmentation was performed to avoid overfitting. We
augmented the 1006 wheel designs that we sampled in stage

[ —
(1) Spoke body -
a) load spoke b) Sketch c) Revolve

cross section

—
(2) Spoke pattern a,

d) load spoke
edges

e) Sketch

f) Extrude
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(3) Rug hole [0,57,0]
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Fig. 15 Process of the automatic generation of 3D wheel CAD using given 2D information
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Fig. 16 Auto-generated 3D
wheel CAD models

DDV

3 10 times, rotating each of them by 72° and flipping them left
and right. Consequently, 10,060 samples were used for train-
ing. The output values, mode frequency, and mass were
equivalent because imposing the left and right flips did not
affect the modal analysis and mass result. The 10 augmented
designs are used as different input data for deep learning, but
the output values (labels) are the same.

Furthermore, 80% of the 10,060 data were used as the
training set, and the other 20% were used for validation.
Although a new design that does not exist in the market be-
cause it was created with a generative design was used for
training and validation, 96 wheel images were used for the
test set, which were sold by the manufacturer. This was to
confirm whether the trained model can predict the actual data
of'the manufacturer. The frequency and mass values of the test

Fig. 177 Example of modal
analysis and results

%@a

set were obtained through stages 4 and 5, respectively, iden-
tical to the training data.

We used min—max scaling, also known as normalization
(Al Shalabi and Shaaban 2006). This method was adjusted to
a fixed range (regularly O to 1) for the output labels. The
formula for ;... is as follows:

YV Vmin
Yscale = (5)
: Ymax™Ymin
5.2.2 Training

In this study, to obtain the optimal architecture and assess the
degree to which transfer learning and ensemble affect perfor-
mance, we trained four models that corresponded to Table 1.

(3) Defining
Material
(1) Converting (2) Generating
Step to Parasolid Mesh
Mode 8 Mode 9 Mode 10 Mode 11
| <
(4) Modal
Analysis
Mode 13 Mode 15 Lateral mode
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Table 1 Four deep learning architectures

Models Description

CNN A model that uses only a CNN regressor and not
transfer learning (added seven fully connected floors,
four max pooling layers, and five convolution layers,
i.e., the same structure as the encoder part of the
convolutional autoencoder)

TL VGGIl6 A model that uses transfer learning through a pretrained
VGG16 (using ImageNet dataset)

TL CAE A model that uses transfer learning through the
pretrained convolutional autoencoder model (see
Fig. 18)

TL_CAE_ A model that applies ensemble in TL_CAE and trains

Ensemble using the averaging technique for nine frequency

models and five mass models (see Fig. 19)

First, the CNN was used as a baseline model.

Second, TL._ VGG16 is a model that uses a trained VGG16
(Simonyan and Zisserman 2014) as transfer learning. Transfer
learning transfers the pretrained deep learning model from the
domain where data are abundant, which is a method to train a
domain that lacks data; moreover, it is one of the most used
methodologies in deep learning because it can accomplish a high
accuracy despite insufficient data (Rawat and Wang 2017).

Third, TL CAE is a representative model used in this
study, which transfers the weight and architecture of the en-
coder of the convolutional autoencoder model pretrained
using 166,812 data in stage 2, adds fully connected layers as
a regressor, and performs fine-tuning using 10,060 data from
the modal analysis result. Figure 18 shows a visualization of

@ Dimensionality

Reduction
(Pre-training)

Encoder

166,812 Wheel Design

the deep learning architecture used in this study. Although we
performed an augmentation (as mentioned in Section 5.2.1),
the number of modal analysis results (label) was 1006, which
was small but expected to improve the performance using the
encoder pretrained using 166,812 data (a large amount).

The newly added regressor part comprised seven fully con-
nected layers. In the fully connected layers, all nodes of a layer
are connected to all other nodes of subsequent layers to make
decisions for regression and help extract the global relationship
between the features. The number of fully connected layers was
chosen through random search (trial and error). TL_ CAE with
seven FC layers improved the RMSE and MAPE by around
12% and 10% compared with TL._ CAE with one FC layer.

It was trained using the Adam optimizer, in which the
learning rate was 0.002, decay rate was 0.001, and batch size
was 256. Early stopping, which is a method used to avoid
overfitting when training a model, was applied. Early stopping
rules stop training when the error on the validation set is
higher than the last time it was checked, that is, when the
model performance did not improve for the validation dataset.

Fourth, the final model TL CAE Ensemble was built
using the ensemble technique, as shown in Fig. 19. The en-
semble technique offers the advantage of avoiding overfitting
in regression problems and reducing bias deviation (Geurts
et al. 2006). It is a method of standardizing the prediction
results by assembling multiple models into a single model.
Our ensemble model uses the mean values of nine frequency
prediction results and five mass prediction results. For the
frequency prediction model, the training required 15 min on
four GPUs (GTX 1080) in parallel.
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Fig. 18 Transfer learning using convolutional autoencoder (TL_CAE)
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Fig. 19 Ensemble model for TL_CAE (TL_CAE _Ensemble)

5.2.3 Testing

To evaluate the performance of the prediction model, two
metrics, the root mean square error (RMSE) and the mean
absolute percent error (MAPE), were used. They are
expressed as follows:

1 R P

RMSE = ;Z;’lzl (yi_yi) (6)
100 Py,

MAPE = — 3y (Y2 (7)
n Vi

y is the predictive value, y the ground truth value, and 7 the
number of data points. The performance results of the four
trained models are shown in Table 2. TL CAE indicated

improved RMSE and MAPE compared with TL_ VGG16.
This result confirmed that the proposed convolutional
autoencoder-based transfer learning performed effectively.
In addition, the final model, TL_CAE Ensemble, demonstrat-
ed the highest predictive performance in terms of RMSE and
MAPE.

The errors for the validation and test sets of the three
models are represented as histograms, as shown in Fig. 20.
The closer the error is to 0, the higher is the accuracy of the
model. These results confirmed the effects of transfer learning
and the ensembles.

We can evaluate a large amount of generated wheel con-
cepts or new conceptual designs by calculating the stiffness in
terms of the predicted frequency and mass through the pro-
posed deep learning model. Evaluating a wheel concept using
a computer with NVIDIA TITAN Xp 4.8 GB GPU takes
0.66 s on average. This model can have many advantages
when we use multiple GPUs for parallel computing.
Figure 21 shows an example of selecting the wheels in the
order of highest stiffness in the validation set. An automaker
has its own stiffness standard, and unsatisfactory designs can
be eliminated on the basis of this value. Various engineering
performance criteria should be evaluated beyond modal anal-
ysis, and trade-offs can be found between performance (Oh
etal. 2019). On the basis of the evaluation results, the engineer
can choose a conceptual design candidate to use in the detailed
design phase.
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Fig. 20 Comparison of errors
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Table2 Comparison of frequency and mass prediction results
Method Training set Validation set Test set

Frequency Mass Frequency Mass Frequency Mass

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE
CNN 13.0 1.06 0.10 0.48 16.71 1.24 0.09 0.44 20.97 3.51 0.33 1.89
TL VGGl6 4.58 0.36 0.26 1.46 6.57 0.50 0.27 1.49 20.56 1.74 0.19 0.91
TL CAE 8.89 0.69 0.09 0.44 10.44 0.82 0.09 0.45 18.89 1.38 0.13 0.67
TL CAE_ 7.35 0.56 0.06 0.28 8.72 0.66 0.06 0.29 12.78 0.90 0.12 0.54

Ensemble

*Units: frequency (Hz), mass (kg)

5.3 Visualization and analysis (stage 7)

This section describes the visualization and deep learning re-
sults from using the proposed framework, and the approach to
ensure the reliability of the results.

5.3.1 Feature visualization

We visualized the latent space of the convolutional
autoencoder in stage 2 to analyze the explainable features of
the generated wheel shape. We embedded 16,678 wheel data
into the 128 dimensions of the latent space, and then grouped
the data by K-means clustering. In the K-means method, the
sum of squared errors (SSE) was plotted over the number of
clusters. Additionally, the value corresponding to the elbow,
which is the part where the SSE reduction rate decreased rap-
idly, was determined as the number of clusters. Because the
shape of the wheel varied significantly, a large number of
groups was required. However, we arbitrarily set the number
of clusters to 20 because an excessive number would compli-
cate intuitive analyses by CAD/CAE engineers. In Fig. 22, for
the visualization, the latent space of 128 dimensions was re-
duced to two dimensions again through T-SNE (Maaten and
Hinton 2008) to display the data, and the colors of the 20
groups are displayed. In addition, the example wheels of each
group were selected and shown.

Commercially available road wheels can be classified into
the dish, spoke, mesh, fin, and spiral types according to the
shape (Napac 2020); furthermore, these types can be
compounded on one wheel. In this study, the spiral type is
the most typically generated. This is because shear force was

applied to generative design. In addition, in terms of spoke
thickness, groups 4, 7, 12, 16, 17, and 19 were relatively thin,
whereas groups 6, 11, 13, and 15 were relatively thick. This
visualization of latent space facilitates the understanding of
the geometric meaning of positions in a latent space.

5.3.2 Relationship between features and engineering
performance

As shown in Fig. 23, visualization was performed to deter-
mine if the modal analysis result, which is the engineering
performance, can be explained by the features of the wheel
shape. We embedded 1006 wheels that were used in the modal
analysis in stage 5 into the latent space and visualized them in
a 2D plane using T-SNE. In addition, the magnitude of the
natural frequency value of each wheel is displayed in color.
The frequency value was categorized into 10 groups using K-
means. Higher frequencies are represented in red, whereas
lower ones, in blue.

Figure 23 shows that wheels with similar natural frequen-
cies accumulated in the latent space, which represents the
wheel shape. It was confirmed that the disk-view shape of
the wheel was highly correlated with the lateral mode frequen-
cy. As shown in Fig. 24, we sampled example wheels from
each frequency group; the results show that the thicker the
spoke, the more the frequency increases.

This visualization enables clusters of high-performance de-
signs to be selected and important design features to be ana-
lyzed intuitively. Furthermore, it provides a method to visual-
ly verify the reliability of CAD/CAE results and gain insights
into better performance designs.

Fig. 21 Wheel design candidates in the order of highest stiffness (from left to right)
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Fig. 22 Visualization of latent
space using T-SNE
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5.3.3 Grad-CAM

The high predictive performance afforded by Al are difficult to
explain. A trained CNN model includes the number of weights
and biases. The magnitude of these weights and biases them-
selves cannot explain which areas of the wheel design affect
natural frequencies. Hence, the importance of eXplainable Al
(XAI) research is increasing. A representative XAl technology,
Grad-CAM (Selvaraju et al. 2017), was applied to the proposed
framework, allowing CAD/CAE engineers to make reliable
decisions based on deep learning results.

A class activation map (CAM) can be used to visualize
important areas of input data (images) that significantly affect
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¥ v v v Color :
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the classification output in the CNN model (Zhou et al. 2016).
A CAM is obtained by adding global average pooling (GAP),
an FC layer, and softmax to the feature map, which is the
output of the last convolutional layer. The weight of the FC
layer indicates the importance of each feature map to the target
class label. After multiplying each feature map by weights and
adding them together, we can obtain a CAM that can be visu-
alized using a heat map. The disadvantage of the CAM is that
GAP must be added to the CNN architecture and then the
model must be trained again. However, Grad-CAM does not
require the CNN architecture to be modified. This is because
Grad-CAM uses gradients obtained through backpropagation
instead of using the weights of the FC layer.
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Fig. 23 Visualization of latent space with lateral mode frequency
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Fig. 24 Wheel design of each lateral mode frequency group

Originally, Grad-CAM was proposed for the classification
problem; however, we modified it in our study to adapt to the
regression problem. The equation of the regression score
LGraa— canm 1 as follows:

Leraa-can = ReLU (¥ arAY) (8)

where a; = IZZI BT

Ag. indicates the value corresponding to 7 rows and j col-
umns of the k-th feature map, and a; is the GAP result of the
partial derivative of y by Af; After linearly combining a; with
the feature map A*, the ReL U activation function was applied
to obtain Grad-CAM, which can highlight important areas in
the image.

Figure 25 shows the visualization result by applying
Grad-CAM to the TL_CAE model. Ten example wheels
were selected from the 10 frequency groups shown in
Fig. 24, and the Grad-CAM for each wheel is displayed
as a heatmap in the third row of Fig. 25. In the second
row of Fig. 25, the superimposed image shows the com-
mon area of the 2D wheel and the Grad-CAM. The results
indicate that an important area (highlighted in red) that
affected the frequency value was the central part of the
wheel. It appeared that the frequency increased as the
center was filled. This is because the largest displacement
occurred in the center of the wheel in the lateral mode
shape (see Fig. 17). Therefore, Grad-CAM confirmed that
deep learning results can explain the physics of the lateral
mode shape and ensure high reliability predictions.
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Fig. 25 Result of Grad-CAM for frequency of lateral mode
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6 Discussion and conclusion
6.1 Discussion
6.1.1 Generation versus evaluation

The proposed framework can be divided into a genera-
tion phase and an evaluation phase, and the engineering
design criteria used in each phase have different pur-
poses. In the generation phase, we solve a multiobjective
optimization problem by minimizing compliance and
maximizing similarity with a reference design. This for-
mulation with reference design data results in creating a
large amount of stiff 2D designs that have a real wheel-
like shape. The reason for using stiffness optimization
for 2D design rather than natural frequency optimization
is that this approach has been proven in previous work to
be suitable for generating a variety of wheel designs (Oh,
et al., 2016). The modal analysis for 3D design was
chosen because of the automotive company’s require-
ments. In future work, we plan to test the natural fre-
quency optimization in 2D for consistency using 3D
modal analysis. However, the design diversity in this
case can be reduced because the force conditions (e.g.,
ratio of normal and shear forces applied outside of the
wheel), such as the compliance minimization problem,
cannot be varied.

Solving multiobjective design optimization consider-
ing compliance and natural frequency can be an alter-
native (Ahmed et al. 2016). However, the design quality
and design diversity in generative design have trade-offs
(Chen and Ahmed 2021). Thus, designers have to sac-
rifice design diversity and lose the possibility of explor-
ing novel designs if they consider many design require-
ments. Therefore, we suggest that only important con-
straints must be considered in the generation phase.

In the evaluation phase, all different engineering per-
formance can be evaluated. The modal analysis used in
this study is only one example of engineering perfor-
mance. Various evaluations, such as stiffness analysis
(i.e., rim stiffness and disk stiffness), strength analysis
for impact tests, and aerodynamics, are required to de-
velop a new wheel. This evaluation allows us to filter
the wheels created during the generation phase.

A reason for generating designs first and then evaluating
the various engineering performance is to make the proposed
process easy to use in the industry. The evaluation standards
for engineering performance and the importance of each per-
formance are always different in accordance with product
concepts. Thus, we can choose the design depending on our

development purpose if we create a large number of designs
first.

6.1.2 3D generative design through 2D design

The ultimate goal of our future research is performing
3D generative design that do not go through 2D.
However, many problems are needed to be solved in
creating various real product-like 3D designs directly
through 3D topology optimization. Collecting 3D refer-
ence design data is inapplicable, and performing topolo-
gy optimization that resembles 3D reference design is
difficult to be converged due to high dimensionality. In
other words, directly implementing the 2D generative
design formulation, (1), into the 3D problem is unsuit-
able. The higher computational cost for 3D topology
optimization compared to that of 2D optimization is also
a bottleneck for generating large number of conceptual
design data sets.

Conventional topology optimization without maximiz-
ing similarity to a reference design generates unfamiliar
designs that are far from product designs in the market.
Figure 26 shows the conventional 3D topology optimi-
zation results with compliance minimization. 3D topolo-
gy optimization results do not have a familiar shape
compared with the wheels generated by the proposed
method (Fig. 16).

6.1.3 Comparison with previous design approach

This work modified conventional design methods to fit
the deep learning framework. Compared with the existing
methodology, the advantages of the proposed framework
are as follows. First, the proposed framework generates a
variety of topology designs using topology optimization-
based generative design and deep learning methods.
Design methods, such as topology optimization and para-
metric design, are similar. However, the goal of conven-
tional topology optimization is to find the single optimal
design rather than exploring diverse designs, similar to
the proposed method. Parametric design by changing cer-
tain geometry is useless for exploring new topology de-
signs. Second, the proposed framework performs DOE
with the design features in the latent space.
Section 4.2.3 shows that in the original space, DOE does
not effectively represent the 2D wheel design space.
Finally, the proposed framework creates a 3D CAD mod-
el through a 2D topology design. It can efficiently create
a larger number of 3D designs than 3D topology optimi-
zation. This framework has the advantage of creating
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Fig. 26 3D topology
optimization examples without
using a reference design

new designs that are similar to existing product designs
on the market, whereas traditional 3D topology optimi-
zation creates unfamiliar designs that are far from the
products on the market, as shown in Fig. 26.

However, the proposed method has some limitations. This
study has the same drawback as the surrogate modeling study.
In particular, building a deep learning model requires
collecting a large amount of data, thereby inevitably resulting
in a large number of CAE simulations (e.g., 1006 simulations
for this study). However, for companies aiming to quickly
evaluate a large number of conceptual designs, such front
loading can improve the efficiency of many subsequent prod-
uct design projects. Performing CAE simulations for each
design is extremely inefficient when Al can automatically
generate a large amount of conceptual designs. The proposed
framework cannot address the sufficient manufacturing con-
straints, which are important criteria for the design. In the
current work, we used density filtering with Heaviside projec-
tion to prevent checkerboard patterns and achieved symmetry
by resembling a reference design.

7 Conclusion

This study proposes a deep learning-based CAD/CAE frame-
work for the conceptual design phase. This framework can
automatically generate numerous feasible 3D CAD data and
immediately evaluate their engineering performance. In the
conceptual design stage, industrial designers and engineers
can obtain a large number of 3D CAD models by using the
proposed framework along with the engineering performance
result estimated by Al and discuss suitable conceptual design
candidates for the detailed design stage. The proposed deep
learning model can predict the CAE results in terms of on 2D
disk-view design. Industrial designers can obtain instant

Appendix 1.
Data augmentation effect on autoencoder

The effect of data augmentation was confirmed. We
compared the learning curve without data augmentation
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feedback regarding the engineering performance of 2D con-
cept sketches.

The framework is proposed for practical use in real product
development by integrating various deep learning techniques
and the existing CAD/CAE processes. The proposed frame-
work comprised seven stages: (1) 2D generated design, (2)
dimensionality reduction, (3) DOE in latent space, (4) CAD
automation, (5) CAE automation, (6) transfer learning, and (7)
visualization and analysis. The proposed framework was dem-
onstrated through a case study pertaining to road wheel
design.

This study contributes to the generation and evaluation of
conceptual designs, and its summary is as follows. First, for
the generation of designs (stages 1 to 4), the proposed frame-
work provides a solution to the difficulty in obtaining 3D
CAD training data for deep learning. 3D wheel CAD data
are automatically generated in large quantities by integrating
2D generative design and 3D automation techniques. Second,
for the evaluation of designs (stages 5 to 7), the proposed
framework provides a deep learning-based surrogate model
to evaluate conceptual wheel designs and explain the relation-
ship between geometry and engineering performance, thereby
enabling industrial designers and engineers to make reliable
decisions.

The future research plan is as follows. First, deep learning
will be applied using 3D data as input through the preprocess-
ing of voxels and point clouds. Second, deep learning will be
applied to various CAE simulations to predict nonlinear and
dynamic analysis results for the design evaluation phase.
Third, we will study a generative design method that considers
esthetics on the basis of customer’s choice data (Kang et al.
2019). Fourth, manufacturing constraints will be considered.
Fifth, the out-of-plane stiffness should be considered in 2D
design. Finally, we plan to develop a 3D generative design
method without using 2D images.

and the case with data augmentation, as shown in
Fig. 27. The loss value for data augmentation is rela-
tively small. We checked the example of reconstruction
without data augmentation, as shown in Fig. 28. These
images are the same in Fig. 6 but with relatively poor
quality.
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Fig. 27 Comparison of loss value between data augmentation and without data augmentation
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Fig. 28 Reconstructed wheel image without data augmentation

Appendix 2. coordinates (x0, y0) used as the initial value (x _init,
y_init) are deleted from array A. An array is created to
store the points to be grouped. The initial value (x _init,

Detailed algorithm for sorting and grouping points y _init) is stored in the i-th array of the group array. At

this time, i is zero. At the end of the initial operation, the
We introduce a detailed algorithm to select and group for loop is executed as follows.

each point. The following initial preparations are required:
The first coordinate (x0, y0) of array A, where the whole 1) The initial value is declared as a fixed point, and the

point was stored, is declared as the initial value. The nearest fixed point is obtained in array A.
Distance threshold = 10 20 30 40 50
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Fig. 29 Tests for determining the distance threshold
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2) The closest point is declared as a new initial value and
deleted from array A.

3) The distance between the fixed point and the initial value
(the closest point to the fixed point) is calculated. If the
distance between the fixed point and the initial value does
not exceed the threshold, the initial value is stored in the i-
th group array. Otherwise, a new (i + 1)-th group array is
created, and the initial value is stored in the (i + 1)-th
group array. The for loop process is repeated until array
A is empty. Any point cannot belong to another group at
the same time because it is declared as the initial value
and deleted from array A.

For determining the distance threshold, an initial test was
conducted at equal intervals of 10 steps from 10 to 100. Thus,
all points were completely separated into each spoke-shaped
group when the threshold reached 10. A second test was con-
ducted at equal intervals of five steps from 1 to 10 to confirm
the precise distance threshold. In the second test, all points
were completely separated from the threshold of three.
Therefore, the final threshold was chosen as five, which is
the next value of the lowest threshold. Figure 29 shows the
group’s separation results for each threshold.

At the end of the above grouping process, all points are
sorted in order. We can then take one point of the group array
along the same interval and save it as a new array to store
fewer points than the existing array. The spline curve becomes
a closed curve when the first coordinates of the stored new
array are inserted at the end. Closed curves are recognized as
surfaces in CAD software, enabling “body” generation.
Figure 30 shows examples of spline, reduced point spline,
and closed curves.
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