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Abstract
This work presents an efficient methodology for the optimum design of functionally graded structures using a Kriging-
based approach. The method combines an adaptive Kriging framework with a hybrid particle swarm optimization (PSO)
algorithm to improve the computational efficiency of the optimization process. In this approach, the surrogate model is
used to replace the high-fidelity structural responses obtained by a NURBS-based isogeometric analysis. In addition, the
impact of key factors on surrogate modelling, as the correlation function, the infill criterion used to update the surrogate
model, and the constraint handling is assessed for accuracy, efficiency, and robustness. The design variables are related to
the volume fraction distribution and the thickness. Displacement, fundamental frequency, buckling load, mass, and ceramic
volume fraction are used as objective functions or constraints. The effectiveness and accuracy of the proposed algorithm are
illustrated through a set of numerical examples. Results show a significant reduction in the computational effort over the
conventional approach.

Keywords Kriging · Functionally graded materials · Sequential approximate optimization · Isogeometric analysis

1 Introduction

Functionally graded materials (FGM) are composites made
of two or more phases with a continuous and smooth
variation of the proportion of each phase. FGM were
initially proposed as a means of preparing thermal barrier
materials through continuous changes in its composition,
microstructure, and porosity (Koizumi 1997). This feature
allows FGM to eliminate delamination failure and matrix
cracking due to stress concentrations between layers found
in conventional laminated composites.

Thus, in addition to the optimization of geometrical
features (shape, size, and topology optimization), the
design of functionally graded (FG) structures can also
benefit from the material tailorability. In this regard,
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1 Laboratório de Mecânica Computacional e Visualização,
Departamento de Engenharia Estrutural e Construção Civil,
Universidade Federal do Ceará, Fortaleza, CE, Brazil

optimization techniques are often used to obtain the volume
fraction distribution that best explores the properties of the
constituents.

A recent study by Nikbakht et al. (2019) found that
the material distribution pattern is the most common
design variable. The authors also found that the stress
distribution, critical buckling load, natural frequency, and
weight are among the most popular objective functions.
Many researchers take advantage of the simplicity of
implementation and use the Power-law index as the design
variable (Na and Kim 2009; Nguyen and Lee 2017;
Khorsand and Tang 2018; Moita et al. 2017; Franco et al.
2018). On a side note, the Power-law function can also be
used to describe features of the structure other than the
material. For example, Sun et al. (2014) employed it to
describe the thickness of thin-walled structures.

It is also quite frequent the use of B-splines (Taheri et al.
2014; Kim et al. 2018; Lieu et al. 2018; Lieu and Lee
2019a; Lieu and Lee 2019b; Wang et al. 2019; Do et al.
2018; Ribeiro et al. 2020) and piecewise cubic interpolation
(Vel and Pelletier 2006; Ashjari and Khoshravan 2014;
Asgari 2016; Nguyen and Lee 2017) to describe the
volume fraction distribution. Both models allow more
design flexibility than simple closed-form expressions.

Structural and Multidisciplinary Optimization (2021) 64:1887–1908

/ Published online: 19 J une 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-021-02949-5&domain=pdf
http://orcid.org/0000-0003-0219-1376
mailto: evandro@ufc.br


M. A. Maia et al.

Due to the complex behavior of structures made of FGM,
numerical methods such as finite element analysis (FEA)
and isogeometric analysis (IGA) are widely used to evaluate
their structural responses. IGA has been used in association
with various plate theories for composite plates analysis,
such as the first-order shear deformation theory (FSDT)
(Praciano et al. 2019; Auad et al. 2019; Wang et al. 2019)
and higher-order shear deformation theory (HSDT) (Lieu
et al. 2018; Shi et al. 2018; Do et al. 2018).

To tackle the optimization problem, population-based
methods (e.g., genetic algorithms (GA) and particle swarm
optimization (PSO)) are a popular choice due to their
efficiency and stability (Nikbakt et al. 2018), as well as
their ability to solve multimodal problems. However, these
methods can quickly become time-consuming due to the
high number of evaluations involved in the optimum global
search.

One solution is to use parallelization techniques. Several
authors have explored it and reported speed gains, as well
as improved algorithm performance in composite structures
optimization (Omkar and Senthilnath 2011; Rocha et al.
2014; Barroso et al. 2017). However, this approach demands
high-performance computers, which is not always a feasible
option.

Alternatively, the use of surrogate models offers a simple
and efficient way to deal with the high-cost analyses
problem by predicting the structural response at a lower
computational cost if compared to that of running FEA or
IGA. These models are built based on a limited number of
observations of the exact response, called sampling points.
The most popular surrogate models include the radial basis
functions (RBF), artificial neural networks (ANN), and
Kriging (Liu et al. 2017).

The basic approach in surrogate-based optimization is
to work on a fixed surrogate model. In this case, a large
sample is needed to produce reasonable approximations.
When the sample is updated (i.e., adaptive sampling)
along the optimization process, we have the so-called
sequential approximate optimization (SAO) approach. For
the interested reader, Liu et al. (2017) present the state-
of-art of adaptive sampling in support of simulation-based
complex engineering design.

Perhaps the most popular SAO algorithm is the efficient
global optimization (EGO) proposed by Jones et al.
(1998). This algorithm is widely used in single-objective
optimization and is based on the ordinary Kriging and uses
the expected improvement (EI) (Mockus et al. 1978) as the
infill criterion.

Kriging was developed by the mining engineer Daniel
Krige and made its way into engineering design through
the work of Sacks et al. (1989) when the technique was
applied to the approximation of computer experiments. As
for the EI, this criterion considers the contribution of both

exploration and exploitation when sampling new points. A
review of the use of EI-based infill criteria for a wide range
of expensive optimization problems is found in Zhan and
Xing (2020).

Recent efforts have been made to reduce the compu-
tational cost of designing structures made of FGM using
surrogate-based optimization. Do et al. (2018) used a deep
neural network (DNN) to predict the natural frequency and
the buckling load of FG plates. Despite achieving accurate
predictions, the DNN still demands a significant number of
high-fidelity (HF) evaluations (≈ 10,000 sampling points)
for training and validating the model offline. In a correlated
area, a DNN framework was also employed by Wang et al.
(2020) to the design of metamaterial systems. Again, a large
dataset was employed (≈ 250,000 sampling points).

On the other hand, Ribeiro et al. (2020) proposed a RBF-
based algorithm where the initial sample is continuously
improved using the EI and a variation of it known as
weighted expected improvement (WEI) (Sóbester et al.
2005). This way, less than 1/100 of the sample used by
Do et al. (2018) was necessary to achieve the same level
of accuracy or higher. Both works used an IGA framework
with HSDT or FSDT to assess the structural responses, but
only linear eigenvalue problems were discussed.

In that light, Kriging can be a valuable tool for
assisting the optimization of structures made of FGM.
This is because, unlike DNN or RBF, Kriging offers
manifold benefits related to the uncertainty estimation of
its prediction. It also provides a natural tool to better
understanding on the relevance of the design variables
based on its hyperparameters. Furthermore, Kriging is very
flexible in terms of correlation functions and number of
hyperparameters and has great potential for reducing the
computational cost when compared to other optimization
approaches.

In correlated areas, Kriging has been used to assist
topology optimization of metamaterials. Liu et al. (2020),
for example, adopted a multi-phase sampling strategy to
update the surrogate model, while Zhang et al. (2020)
opted for a fixed surrogate model. Although Kriging-
based approaches have been extensively applied to assist
engineering design optimization problems (Cheng et al.
2014; Gan and Gu 2018; Xing et al. 2020; Chunna et al.
2020), including problems regarding laminated composite
structures (Zhu et al. 2012; Passos and Luersen 2017;
Keshtegar et al. 2020), to the best of the authors’ knowledge,
the Kriging potential has not yet been explored for
optimizing plates and shells made of FGM.

Therefore, the present work proposes an accurate and
efficient Kriging-based methodology for optimum design of
structures made of FGM. At each iteration, the surrogate
model is updated with a single point in regions of interest
according to an infill criterion. The proposed method can
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handle exact and approximate constraints and can also
deal with the combination of exact objective function and
approximate constraints. To assess the responses of the
FG structures, an IGA framework was employed as the
high-fidelity model (HFM).

In addition to the eigenvalue problems, the case studies
section also contemplates geometric nonlinearity, an aspect
overlooked in previous works dealing with SAO. The
objective functions and constraints are either displacement,
fundamental frequency, buckling load, mass, or ceramic
volume fraction. The design variables are related to the
volume fraction distribution through the thickness —
ranging from simple expressions such as the Power-law
function to the use of B-splines — and the thickness itself.
Two homogenization schemes are considered, the Voigt and
the Mori-Tanaka models.

The PSO algorithm is used to solve the optimization
problems, be it in the conventional optimization or within
the proposed SAO algorithm. PSO can deal with multi-
modality, which is a feature observed in the functions
optimized by the SAO algorithm, as will be demonstrated
later in the case studies section.

Taking advantage of the Kriging flexibility, two aspects
of the SAO algorithm are explored in the present work:
the choice of the kernel (Gaussian or Matérn 5/2) and the
infill criterion (EI and WEI). The performance of these
combinations is assessed in terms of accuracy, efficiency,
and robustness using a number of optimization problems of
FG structures available in the literature.

The remainder of this paper is organized as follows.
In Section 2, the evaluation of the effective properties
and the definition of the volume fraction distribution are
presented. In Section 3, the structural analysis is presented.
The main aspects of the optimization of FG structures are
discussed in Section 4. In Section 5, the proposed SAO
approach is presented. The analysis verification is presented
in Section 6, while the case studies are shown in Section 7.
Finally, the conclusions are presented in Section 8.

2 Functionally graded structures

In this work, the FG structures are made by the combination
of ceramic/metal. This way, the FGM can benefit from the
ductility and toughness of metals and the high strength
and stiffness and low thermal conductivity properties of
ceramics.

Due to the inhomogeneous nature of FGM, the structural
analysis of these materials depends on two main aspects: the
volume fraction variation through the grading direction and
the homogenization technique used to evaluate the effective
properties.

The volume fraction of a given constituent represents its
volume divided by the volume of all constituents (V). Thus,
the total volume is given by:

Vc(z) + Vm(z) = 1 (1)

where the subscripts m and c refer to the metal and ceramic,
respectively.

In the present work, two models are considered to
describe the volume fraction variation: a Power-law
function and B-splines. The Power-law function (Bao and
Wang 1995) is the most popular choice in optimization
problems due to its simplicity and is given by:

Vc(z) =
(2z + h

2h

)N

(2)

where the volume fraction at the bottom (z = −h/2) is
taken as 0.0 and the top (z = +h/2) as 1.0, N is a non-
homogeneity factor, and h is the total thickness of the shell,
as illustrated in Fig. 1.

The ceramic volume fraction may also be described by a
B-spline curve as:

Vc(ξ) =
l∑

i=1

Bi,p(ξ) Vc,i , ξ ∈ [0, 1] (3)

where l is the number of control points, p is the degree of the
basis functions, ξ is the parametric coordinate, and Vc,i(ξ)

is the ceramic volume fraction of the i-th control point.
This type of curve provides high-order continuity, which
allows a continuous and smooth variation with designs
entirely different than those limited by simple mathematical
functions (Wang et al. 2019).

Based on a knot vector Ξ = [ξ1, ξ2, . . . , ξl+p+1] with
non-decreasing and non-negative parametric values, the

Fig. 1 FG plate model
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B-spline basis functions are defined by the recursive Cox-de
Boor formula as (Piegl and Tiller 1997):

Bi,0(ξ) =
{

1, ξi ≤ ξ < ξi+1

0, otherwise

Bi,p(ξ)= ξ−ξi

ξi+p−ξi

Bi,p−1(ξ)+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1,p−1(ξ)

(4)

where p ≥ 1.

2.1 Effectivematerial properties

To estimate the effective material properties of FGM, a
variety of homogenization schemes have been proposed.
Among the most popular choices are the rule of mixture
(Voigt model) and the Mori-Tanaka model. The Voigt model
consists in a weighted average of the properties of the
constituents, where each of them contributes with its volume
fraction. This way, the effective property (P ) of the material
at a given point can be evaluated as (Shen 2009):

P = PmVm + PcVc (5)

In case of composites with spherical inclusions embed-
ded in a matrix, the Mori-Tanaka model evaluates the
effective bulk modulus (K) and effective shear modulus (G)
as:

K = Km + Vc
1

Kc − Km

+ Vm

Km + 4Gm

3
G = Gm + Vc

1

Gc − Gm

+ Vm

Gm + fm

(6)

where the parameter fm is given by:

fm = Gm(9Km + 8Gm)

6(Km + 2Gm)
(7)

After that, the effective Young’s modulus (E) and Poisson’s
ratio (ν) are computed from:

E = 9KG

3K + G
ν = 3K − 2G

2(3K + G)
(8)

It is important to note that the effective density (ρ) is
estimated by the Voigt model even when the Mori-Tanaka
model is used to estimate other elastic properties.

2.2 Governing equations

The kinematic formulation of this work is based on the
FSDT, in which segments normal to the shell midsurface
remain straight but not necessarily perpendicular to
the midsurface after deformation. This results in the

consideration of an approximate transverse shear strain. The
displacements can be written in matrix form as:

⎡
⎣

u

v

w

⎤
⎦ =

⎡
⎣

1 0 0 0 z

0 1 0 −z 0
0 0 1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎣

u

v

w

θx

θy

⎤
⎥⎥⎥⎥⎦

⇒ u = Zu (9)

where u, v, and w are the midsurface displacements in the
x, y, and z directions; θx and θy are the rotations about x

and y axes, respectively; and z is the distance from a point
to the midsurface.

Based on the displacement field presented in (9) and on
the Marguerre theory, the in-plane strains are given by:

ε =
⎡
⎣

εx

εy

γxy

⎤
⎦ = εm + zκ (10)

where m refers to the membrane strains and κ corresponds
to the shell curvatures. The Marguerre theory extends the
nonlinear plate theory of von Kármán for shallow shells.
Due to the consideration of moderately large displacements
and moderate rotations, it also allows the study on the
stability of plates and shallow shells, including initial
imperfections (Praciano et al. 2019):

[
εm
x

εm
y

γ m
xy

]
=
[

u,x

v,y

u,y + v,x

]
+
[

wz,x z0,x

wz,y z0,y

w,x z0,y + w,y z0,x

]
+
⎡
⎣

1
2 w,x

2

1
2 w,y

2

w,x w,y

⎤
⎦

(11)

where z0(x, y) is the initial midsurface elevation. The
deformations due to the bending are given by:
⎡
⎣

κx

κy

κxy

⎤
⎦ =

⎡
⎣

θy,x

−θx,y

θy,y − θx,x

⎤
⎦ (12)

and the transverse shear strains are given by:

γ =
[
γxz

γyz

]
=
[
w,x + θy

w,y − θx

]
(13)

Assuming an elastic behavior, the in-plane stresses can
be evaluated as:
⎡
⎣

σx

σy

τxy

⎤
⎦ =

⎡
⎣

Q11 Q12 0
Q12 Q22 0

0 0 Q66

⎤
⎦
⎡
⎣

εx

εy

γxy

⎤
⎦ ⇒ σ = Q ε (14)

and the transverse shear stresses as:
[
τxz

τyz

]
=
[
Q44 0

0 Q55

] [
γxz

γyz

]
⇒ τ = Qs γ (15)
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where the components of the constitutive matrix Q and
transverse shear constitutive matrix Qs are given by:

Q11 = Q22 = E

1 − ν2
Q12 = E ν

1 − ν2

Q44 = Q55 = Q66 = E

2 (1 + ν)

(16)

The internal forces and moments can be obtained
integrating the stresses through the thickness. Thus, the
generalized stresses σ̂ can be written in terms of the
generalized strains ε̂ as:
⎡
⎣
N
M
V

⎤
⎦ =

⎡
⎣
A B 0
B D 0
0 0 G

⎤
⎦
⎡
⎣

εm

κ

γ

⎤
⎦ ⇒ σ̂ = C ε̂ (17)

where A, B, D, and G are the extensional, membrane-
bending coupling, bending, and shear stiffness matrices,
respectively, whose elements are given by:

[Aij , Bij , Dij ] =
∫ h/2

−h/2
Qij (z)[1, z, z2] dz

Gij = ks

∫ h/2

−h/2
Qsij (z) dz

(18)

where ks is known as shear correction factor and is taken
as 5/6. It is also interesting noting that symmetric volume
fraction distributions lead to B = 0.

3 Isogeometric analysis

In this work, the structural analyses of FG plates and shells
are carried out using the IGA framework. This approach was
first proposed by Hughes et al. (2005) as a way to match
the exact CAD geometry by non-uniform rational B-splines
(NURBS) surfaces. In this framework, the CAD basis
functions are also used to approximate the solution fields.
This results in the exact representation of the geometry even
for coarse meshes and a much simpler mesh refinement
process.

3.1 NURBS surfaces

A NURBS surface is obtained by the linear combination of
basis function and a matrix of control points (p):

S(ξ, η) =
l∑

i=1

c∑
j=1

Rij (ξ, η) pij (19)

where η and ξ are the parametric coordinates, and Rij are
the bivariate rational basis functions expressed by:

Rij (ξ, η) = Bi,p(ξ) Bj,q(η) wij

W(ξ, η)
(20)

where p and q are the degree order of the B-splines basis
functions in the ξ and η directions, respectively, and W is
the bivariate weight function, given by:

W(ξ, η) =
l∑

î=1

c∑

ĵ=1

B
î,p

(ξ) B
ĵ,q

(η) w
îĵ

(21)

3.2 Strain-displacement relations

In this work, the shell geometry is described by a bivariate
NURBS:

x =
ncp∑
k=1

Rk xk, y =
ncp∑
k=1

Rk yk z0 =
ncp∑
k=1

Rk z0k (22)

where ncp is the number of control points of the surface
(ncp = l × c) and Rk are the rational basis functions.

The in-plane and transverse displacements and rotations
at the midsurface are approximated from the degrees of
freedom at control points as:

u =
ncp∑
k=1

Rk uk, v =
ncp∑
k=1

Rk vk, w =
ncp∑
k=1

Rk wk

θx =
ncp∑
k=1

Rk θxk, θy =
ncp∑
k=1

Rk θyk

(23)

In matrix format, (23) may be written as:

u = Rd (24)

where d is the vector of degrees of freedom, corresponding
to the displacements at control points, and R is the matrix
of shape functions:

R = [
R1 R2 . . . Rncp

]
(25)

where:

Rk = Rk I5×5 (26)

and I is the identity matrix. The generalized strains are
related to the degrees of freedom as:

ε̂ =
⎡
⎣

εm
0 + εm

L

κ

γ

⎤
⎦ =

⎡
⎣
Bm

0
Bb

0
Bs

0

⎤
⎦d + 1

2

⎡
⎣
Bm

L

0
0

⎤
⎦d (27)

or

ε̂ =
(
B0 + 1

2
BL

)
d (28)

Using (11)–(13) and (23)–(26), the sub-matrices are
defined by:

Bm
0 =

⎡
⎣

Rk,x 0 ZxRk,x 0 0
0 Rk,y ZyRk,y 0 0

Rk,y Rk,x ZxRk,y + ZyRk,x 0 0

⎤
⎦ (29)
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Bb
0 =

⎡
⎣

0 0 0 0 Rk,x

0 0 0 −Rk,y 0
0 0 0 −Rk,x Rk,y

⎤
⎦ (30)

Bs
0 =

[
0 0 Rk,x 0 Rk

0 0 Rk,y −Rk 0

]
(31)

Bm
L =

⎡
⎣

0 0 WxRk,x 0 0
0 0 WyRk,y 0 0
0 0 WxRk,y + WyRk,x 0 0

⎤
⎦ (32)

where:

Zx =
ncp∑
k=1

Rk,x z0k, Zy =
ncp∑
k=1

Rk,y z0k,

Wx =
ncp∑
k=1

Rk,x wk, Wy =
ncp∑
k=1

Rk,y wk

(33)

3.3 Equilibrium equations

Using the D’Alembert and virtual work principles, the
dynamic equilibrium equation of the model at a time t may
be written as:

Md̈ + g(d) = f(t) (34)

where:

M =
∫

A

RT MR dA (35)

f =
∫

A

RT q dA +
∫

S

RT fs dS (36)

g =
∫

A

B
T

σ̂ dA (37)

where M is the mass matrix and B = B0 + BL is the matrix
that relates the variation of the generalized strains with the
variation of the control points displacements (δε̂ = B δd).

In this work, M is evaluated using the Gaussian
quadrature to carry out the through-the-thickness integration
and is given by:

M =
∫ h/2

−h/2
ρ(z)ZT Z dz =

⎡
⎢⎢⎢⎢⎣

I0 0 0 0 I1

0 I0 0 −I1 0
0 0 I0 0 0
0 −I1 0 I2 0
I1 0 0 0 I2

⎤
⎥⎥⎥⎥⎦

(38)

where

[I0, I1, I2] =
∫ h/2

−h/2
ρ(z)[1, z, z2] dz (39)

Finally, the tangent stiffness matrix is obtained by
differentiating the internal force vector (g):

KT = ∂g
∂d

= KL + Kσ (40)

where the material stiffness matrix KL and the geometric
stiffness matrix Kσ are given by:

KL =
∫

A

B
T ∂ σ̂

∂d
dA =

∫

A

B
T
CB dA (41)

Kσ =
∫

A

∂B
T

∂d
σ dA =

∫

A

GT SG dA (42)

where C is the constitutive matrix, defined in (17), and G
and S are given by:

G =
[

0 0 Rk,x 0 0
0 0 Rk,y 0 0

]
, S =

[
Nx Nxy

Nxy Ny

]
(43)

It is important to note that the geometric nonlinearity is
addressed by the use of the Marguerre theory for nonlinear
membrane strains, as shown in (10). In this case, the
equilibrium of the system for displacement-independent
loads is given by:

r(u, λ) = g(u) − λq (44)

where r is the residual vector, u is the vector of degrees
of freedom, λ is the load factor which controls the load
application on the structure (f = λq), and q is the vector
of reference loads. This equation may be solved using a
path-following method, such as the load control method,
displacement control method, and the arc-length method.

3.4 Eigenvalue problems

The free vibration analysis is carried out solving the
generalized eigenproblem:

(K − ω2 M)φ = 0 (45)

where K is the stiffness matrix of the unloaded structure, ω

are the natural frequencies, and φ are the vibration modes.
In case of structures with negligible pre-buckling

displacements, the stability analysis can be carried out in the
same form as a vibration problem, but replacing the mass
matrix by the geometric stiffness matrix as:

(K + λKσ )φ = 0 (46)

where λ are the buckling load factors and φ are the buckling
modes.

4 Optimization of FG structures

The general form of a constrained optimization problem can
be written as (Arora 2012):
⎧⎪⎪⎨
⎪⎪⎩

Find x
that minimizes f (x)
subjected to gi(x) ≤ 0 i = 1, 2, . . . , Nic

with xlb ≤ x ≤ xub

(47)
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where xlb and xub are the lower and upper bounds of the
design variables x, respectively, gi is the i-th constraint,
and Nic is the number of inequality constraints. In this
framework, maximization is understood as the minimization
of the negative of the objective function.

In the present work, we deal with continuous optimiza-
tion problems since the design variables are the material
distribution described by the ceramic volume fraction at
control points of B-splines or by the Power-law index, and
the thickness in two of the examples. The objective func-
tions are either the fundamental frequency, the buckling
load, or the mass, while the constraints regard the maxi-
mum ceramic volume, maximum displacement, or a specific
range of fundamental frequency. The structural responses
are evaluated using the methodology presented in Sections 2
and 3.

To solve the optimization problem described in (47),
the PSO algorithm is used. In principle, any standard
optimization technique could be used. However, PSO can
offer improved performance compared to methods based on
classical mathematical programming in the optimal design
of FGM (Kou et al. 2012). Similar remarks were made by
Ashjari and Khoshravan (2014) for the mass optimization
of FG plates. Furthermore, this algorithm is well-suited
for continuous optimization problems and can deal with
multimodal functions with many local minima, which is
often the case of the functions optimized in the SAO
approach.

4.1 Particle swarm optimization

The particle swarm optimization algorithm was first
proposed by Kennedy and Eberhart (1995) and is based on
the behavior of animal packs, such as bird flockings and fish
schoolings searching for food. The core idea is that each
particle roams across the design space based on its position
(xj ) and velocity (vj ) looking for the position (i.e., design)
with the lowest objective function.

At the beginning, the positions and velocities are
randomly generated for all particles. In the following
iterations, they are updated as follows:

xi+1
j = xi

j + vi+1
j (48)

where vi+1
j is defined by:

vi+1
j = w vi

j + c1 r1 (xi
p,j − xi

j ) + c2 r2 (xi
g,j − xi

j ) (49)

where w is the inertia weight, c1 is the cognitive factor, c2 is
the social factor, r1 and r2 are uniformly distributed random
numbers in the range of [0, 1], xi

p,j is the best position the

particle j obtained until present iteration, and xi
g,j is the

best position the particles on the neighborhood of particle j

found so far. Figure 2 illustrates each term in (49).

Fig. 2 PSO particle move

The so-called standard PSO (Bratton and Kennedy 2007)
uses the ring topology to define the neighborhood of a
particle. Although it does provide a robust exploratory
capacity, this topology may also slow down convergence.
To overcome this pitfall and avoid premature convergence,
this work uses the global topology with a mutation operator
(Barroso et al. 2017).

To deal with the side constraints violations, a simple
procedure presented by Clerc (2012) is adopted: the variable
that had its bounds violated is set to the bound and its
velocity is modified by setting it to the opposite direction
with half of its magnitude.

The other constraints are handled using the penalty
approach proposed by Deb (2000), in which a fitness
function is assigned according to the constraints violations
of each design. The penalized objective function (i.e., the
particle “fitness”) is evaluated as:

fp(x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x) if x is feasible.

fmax +
Nic∑
i=1

max(gi(x), 0), otherwise.

(50)

where fmax is the objective function of the worst feasible
solution in the neighborhood and gi is the i-th constraint.
When checking the feasibility of x, a small constraint
tolerance (εtol) is considered.

The flowchart of the PSO used in this work is shown in
Fig. 3. The algorithm is terminated when at least one of the
following stopping criteria is satisfied: maximum number
of iterations (I tmax) or maximum number of successive
iterations without improvement (StallGen).
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Fig. 3 PSO algorithm

4.2 Mutation

Inspired by GAs, the mutation operator was introduced to
maintain the swarm diversity. It is applied to the entire
swarm and works by generating a random number between
0 and 1 for each variable of a given particle. If such number
is less than or equal to the probability of mutation (pmut ),
the velocity component is modified to a random value
between the lower and upper bounds of that variable. After
that, the position of the particle is updated and the side
constraints are enforced.

5 Sequential approximate optimization

The SAO algorithm presented in this work is based on
Kriging. In the following, the creation of the initial sample,
the surrogate model formulation, the infill criteria, and
metrics used to assess its performance are briefly discussed.

5.1 Design of experiments

Design of experiments (DoE) is a group of stochastic
and deterministic methodologies used for formulating the
sampling plan. On this matter, a uniform distribution of
the sampling points is desirable, so that the capability of
generalization of the surrogate model is optimized with
limited resources.

Another relevant aspect is the scaling of the design
variables to [0, 1]m, where m is the number of design
variables. This is a standard procedure to eliminate
the effect of scale discrepancy on the surrogate model
performance (Forrester et al. 2008).

In this work, two methods are considered: the Ham-
mersley sequence sampling (HSS) and the Latin hypercube
sampling (LHS). The size of the initial sample is given by
n = 5 m.

The HSS is a low-discrepancy experimental design
proposed by Kalagnanam and Diwekar (1997). It consists
of a deterministic method that provides better uniformity
properties than LHS in low-dimension spaces. However,
it may be significantly affected as the dimensionality
increases (Amouzgar and Strömberg 2017; Steponavic̃e
et al. 2016), particularly when m > 6 (Cho et al. 2017).

As for the LHS, this work adopts the Morris and Mitchell
(1995) criterion to choose the best LHS. This criterion aims
to maximize a metric known as maximin. In this case, to save
computational effort, Nsp sampling plans are created and
the one with the highest maximin is chosen. This approach
will be referred to as LHSNsp .
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5.2 Kriging

Kriging is a nonparametric interpolating model based
on spatial correlation widely used in engineering to
approximate complex expensive functions/experiments. The
ordinary Kriging prediction is given by (Sacks et al. 1989):

ŷ(x) = μ̂ + ψT Ψ −1(y − 1μ̂) (51)

where the first term concerns the global trend and the second
term refers to the localized deviations from it that depend on
ψ , the correlation vector between x and all sampling points,
and Ψ , the correlation matrix (n×n) of all sampling points.
These deviations are autocorrelated and are assumed to be a
realization of a Gaussian stochastic process with mean zero
and covariance given by (Jones et al. 1998):

cov[Y,Y] = σ 2 Ψ (52)

where σ 2 is the process variance.
To build the correlation matrix, the observed responses

y = {y(1) y(2) . . . y(n)}T from the sampling plan X =
{x(1) x(2) . . . x(n)}T are treated as a set of normally

distributed random variables Y = {Y (1) Y (2) . . . Y (n)}T .
This random vector has a mean of 1 × μ, where 1 is an n x
1 vector of ones. To model the spatial correlation between
two random variables, we use the Gaussian function:

R[Y (x(i)), Y (x(l))] = exp

⎛
⎝−

m∑
j=1

θj dpj

⎞
⎠ (53)

and the Matérn 5/2 function:

R[Y (x(i)), Y (x(l))]=
m∏

j=1

exp

(
−

√
5d

θj

)(
1+

√
5d

θj

+ 5d2

3θ2
j

)

(54)

where d = |x(i)
j − x

(l)
j | and θj and pj are the surrogate

hyperparameters.
Both kernels present good performance in a wide

range of applications (Kianifar and Campean 2019), being
the Gaussian function particularly popular in engineering
design optimization. The Matérn class is still rare in this
field, but it is often used in the machine learning context
(Palar and Shimoyama 2018). As a result of these functions,
the correlation matrix is symmetric with a diagonal of
ones. And more importantly, it is also a function of the
hyperparameters, which are usually estimated using the
maximum likelihood estimation (MLE), discussed in the
following section.

The likelihood function may be described as (Jones et al.
1998):

L = − 1

(2πσ 2)
n/2|Ψ |1/2

exp

(
(y − 1μ)T Ψ −1(y − 1μ)

2σ 2

)

(55)

taking the natural logarithm, differentiating the resulting
expression with respect to μ and σ and solving them for 0,
the optimal estimates for the mean and the variance of the
process are:

μ̂ = 1TΨ −1y
1TΨ 1

σ̂ 2 = 1

n
(y − 1μ̂)

T
Ψ −1(y − 1μ̂) (56)

Another interesting feature of the Gaussian theory is
the ability to provide a measure of the uncertainty of the
prediction ŷ(x). The prediction variance is also known as
mean squared error (MSE):

ŝ2(x) = σ̂ 2

[
1 − ψT Ψ −1ψ + (1 − 1TΨ −1ψ)2

1TΨ −11

]
(57)

which is always non-negative and higher in less sampled
areas and reduces to 0 in sampling points since it was
evaluated using a deterministic computer model (e.g., FEA
or IGA). This metric is widely used to assist adaptive
sampling strategies (Liu et al. 2017).

5.2.1 Estimation of the hyperparameters

After finding the closed-form expressions for the estimates
of μ and σ , the likelihood function can be further simplified
by substituting (56) into (55) and removing constant terms,
which gives us the so-called concentrated ln-likelihood
function:

ln(L) ≈ −n

2
ln (σ̂ 2) − 1

2
ln |Ψ | (58)

By maximizing this function, the values of the hyperpa-
rameters most likely to have generated the training dataset
are found. Unfortunately, this function cannot be differenti-
ated in order to obtain an analytic expression to evaluate the
optimal hyperparameters. The solution of this optimization
problem is not trivial.

Problems in the MLE are often related to the multi-
modality of the ln-likelihood function, as well as the long
ridges of nearly constant and optimal values that may lead to
numerical difficulties for gradient-based problems (Martin
and Simpson 2005). In this work, this is addressed by using
the PSO algorithm described in Section 4.1. The MLE may
also suffer from numerical issues due to ill-conditioned
correlation matrices. Thus, to improve the Ψ conditioning, a
small constant value (τ = 1×10−8) is added to its diagonal
elements, as recommend by Bachoc (2013).

For simplicity, pi = 2.0 is fixed and only θ needs
to be trained, reducing the complexity and increasing
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the efficiency of the estimation process. Therefore, the
estimation of the hyperparameters is described as:
⎧⎨
⎩

Find θ = {θi} for i = 1, 2, . . . , m

that maximizes ln(L)(x)
with θlb ≤ θi ≤ θub

(59)

where θlb and θub refer to the lower and upper bounds of
the hyperparameter θi , respectively. The search bounds are
considered to be in logarithmic scale as there is significant
change between very close values of θi (Forrester et al.
2008; Bachoc 2013).

At last, θi can be interpreted as a measure of how active
the design variable xi is regarding the approximated output
(Forrester et al. 2008). For the Gaussian function, higher
values of θi indicate a more important design variable, while
the opposite works for the Matérn 5/2 function.

5.3 Expected improvement

The expected improvement is given by (Mockus et al.
1978):

E[I (x)] = (ymin − ŷ(x)) Φ
(ymin − ŷ(x)

ŝ(x)

)

+ŝ(x) φ
(ymin − ŷ(x)

ŝ(x)

)
(60)

where ymin is the current best minimum, φ(·) is the
probability density function, and Φ(·) is the normal
cumulative distribution function. The first term corresponds
to the exploitation, while the second term corresponds to the
exploration, which results in larger values in areas where
uncertainties are high (i.e., unsampled areas). In constrained
problems, ymin is the current best feasible solution.

This criterion has been proved to find the global optimum
(Locatelli 1997), but a few shortcomings are associated with
it: (i) the EI equation does not allow the user to control the
balance between exploitation and exploration and (ii) it may
be heavily biased if the target is poorly estimated by the
initial approximation.

To alleviate these shortcomings, this work uses the
weighted expected improvement (Sóbester et al. 2005):

WE[I (x)] = w (ymin − ŷ(x)) Φ
(ymin − ŷ(x)

ŝ(x)

)

+(1 − w) ŝ(x) φ
(ymin − ŷ(x)

ŝ(x)

)
(61)

where w is the weighting factor between [0, 1]. The lower
bound leads to a global extreme of the search scope range,
while the upper bound exploits the current best value.

Values of w exceeding 0.5 should only be used when one
is confident that the function landscape is of low modality
(Sóbester et al. 2005). Thus, the present work uses the
following values w = {0.2, 0.35, 0.50} in a cyclic search.

Care should be taken to avoid division by zero in Eqs. (60)
and (61) when evaluating a design that is already in the
sampling plan (i.e., ŝ = 0). In this case, E[I (x)] =
WE[I (x)] = 0.

The landscape of both acquisition functions (EI and
WEI) is often multimodal (Jones et al. 1998; Sóbester et al.
2005). To deal with this aspect, the PSO algorithm presented
in Section 4 is used to the their maximization.

Finally, when the objective function is a cheap-to-
evaluate function and the constraints are approximated by
Kriging, the EI is directly computed as:

E[I (x)] =
{

ymin − y(x), y(x) < ymin

0, otherwise
(62)

5.4 Constraint handling

The constrained expected improvement (CEI) was proposed
by Schonlau et al. (1998) to deal with problems where
the constraints are also modelled by a surrogate model.
The authors assumed independence between the Gaussian
processes to estimate objective function. They penalized the
EI as:

E[Ic(x)] = E[I (x)]
Nic∏
i=1

Fi(x) (63)

where Fi(x) is the probability that the i-th constraint is met.
This probability is also referred as a feasibility function.

In this work, this approach is further extended to handle
exact constraints and exact objective functions. Of course,
the following considerations are also valid for the WEI
criterion. In cases where the constraint is evaluated exactly
(e.g., maximum ceramic volume fraction and mass), a small
tolerance εtol is considered when testing the feasibility of a
given design. Thus, Fi(x) = 1 for feasible designs and 0 for
unfeasible ones.

Based on the approach proposed by Tutum et al. (2015),
the feasibility function of a constraint approximated by a
surrogate model is given by:

Fi(x) =
{

2 − erf(gi(x)), if gi(x) ≥ 0

0, otherwise
(64)

where:

gi(x) = gi,max − ĝi (x)
ŝi (x)

(65)

and gi,max is the maximum value that the constraint may
assume (in this work, gi,max = 0). This way, if the predicted
constraint is close to the threshold, the 1st condition results
in a value greater than one, emphasizing near-boundary
solutions, as shown in Fig. 4. As the point gets well inside
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Fig. 4 Feasibility of approximate constraint

the feasible region, Fi(x) approaches 1 and E[Ic(x)] =
E[I (x)].

5.5 Algorithm

A variation of the EGO algorithm (Jones et al. 1998) is
employed, as depicted in Fig. 5. Due to the computational
cost involved in the maximization of the MLE, the model
validation of the initial surrogate model applies the leave-
one-out cross-validation (LOOCV) a bit differently than the
usual procedure of re-estimating hyperparameters for each
reduced sample.

According to Jones et al. (1998), dropping a single obser-
vation has a negligible effect on the maximum likelihood
estimates and the hyperparameters found considering all
sampling points may be used. Thus, in practice, the maxi-
mization of the MLE is carried out considering all sampling
points and only the correlation matrix Ψ and the y vec-
tor are re-computed from one sampling point removal to

another. To assess the accuracy of the prediction made with-
out the sampling point x(i), say ŷ(x(i)), a metric named
“standardized cross-validated residual” is calculated:

SDCV error = y(x(i)) − ŷ(x(i))

ŝ(x(i))
(66)

where ŝ(x(i)) is calculated as shown in (57). This procedure
is repeated for all n sampling points. In all times, the
error should be roughly in the interval [-3, 3]. In case
of failure of model validation, Jones et al. (1998) suggest
a transformation of the dependent variable, which is
the approach adopted in this work, typically, the log
transformation (log(y) or ln(y)). If model validation still
fails, one may reconsider the kernel used or increase the
sampling plan size.

The stopping criteria are the maximum number of
iterations, which should be specified for each problem,
and the maximum number of consecutive SAO iterations
without improvement on the best solution (StallGen).

For the performance assessment of the proposed SAO
algorithm, the following aspects are considered:

1. Efficiency: measures the computational cost to solve
the optimization problem;

2. Accuracy: measures how close the surrogate model
optimum is to the true function optimum;

3. Robustness: measures the ability of the model to
consistently present good results in different runs.

To assess the efficiency, two metrics are considered: the
speed-up and the number of HF evaluations needed to reach
at least one stopping criterion. The speed-up is computed as:

Speed-up = 1

nr

nr∑
i=1

THFM

TSAO,i

(67)

where nr is the number of runs, THFM is the average time
spent in the conventional optimization, and TSAO,i is the

Fig. 5 Kriging-based SAO
algorithm

1897



M. A. Maia et al.

time spent using a SAO algorithm on the i-th run, both
measured by the wall-clock time.

In this work, the average normalized root mean squared
error (NRMSE) is used to assess the accuracy of the
surrogate model:

NRMSE = 1

nr

nr∑
i=1

√
(y∗ − ySAO,i)2

(y∗)2
(68)

where y∗ is the HF response at the reference solution (i.e.,
optimal solution) and ySAO,i is the best response obtained
by the SAO on the i-th run. Lower values of NRMSE

indicate better performances.
Finally, to measure the SAO robustness, the standard

deviation of the NRMSE is considered:

SDNRMSE =
√∑nr

i=1 NRMSEi − NRMSE

nr − 1
(69)

Again, smaller values of SDNRMSE suggest a more robust
SAO or to put it another way, the less variable the results
are. Of course, this metric should be read in context with the
accuracy metric.

6 Analysis verification

This section aims to validate the IGA formulation presented
in Section 3 and to assess the accuracy of the meshes
used in the case studies discussed in the following section.
The first verification regards the free vibration analysis.
For the validation of the structural analysis of the FG
plates used for case studies 1 and 2, a mesh of 16 × 16
cubic NURBS elements for the full representation of the
plate was used. Full integration was used in the element
midsurface and 10 Gauss points were used for the through-
thickness integration of the constitutive and mass matrices.
The boundary conditions of the simply supported square
plate are depicted in Fig. 6.

In the first example, the Voigt model and the Power-law
function are considered. Therefore, the IGA responses for
different combinations of Power-law index and thickness
found in Franco et al. (2018) are reproduced. The plate
is made of stainless steel (SUS3O4) and silicon nitride
(Si3N4) and the temperature effect is considered using
Toulokian’s equation (Touloukian 1967) (see Table 1). The
results presented in Table 2 show excellent agreement with
the reference values.

For the second example, the homogenization technique
used was the Mori-Tanaka model. The plate is also made of
SUS304/Si3N4 (with no temperature effect) and a/h = 10.
The material properties are shown in Table 3. The results
for different exponents using the Power-law function are
compared to those found by Do et al. (2018), as shown

Fig. 6 Simply supported square plate

in Table 4. The maximum difference found is below 1%,
showing that the present mesh is sufficiently accurate to
model the structural responses even of thick plates.

Next, for the third example, a clamped square plate with
a circular hole in its center is modelled using a mesh with 8
patches, each of them with an 8 × 8 mesh of cubic NURBS
elements, adding up to a total of 512 elements, as shown in
Fig. 7b. The boundary and loading conditions are depicted
in Fig. 7a. The geometry of the plate is given by a = 0.72
m and r = a/10.

This plate is also made of SUS3O4/Si3N4 (see Table 3)
and the volume fraction is described by a B-spline with 9
control points symmetrically distributed through thickness.
The effective properties are evaluated using the Mori-
Tanaka model. The optimization problem involving this FG
plate is explored by Ribeiro et al. (2020). Therefore, the
optimal designs obtained by the SAO approach proposed by
these authors are used to validate the present work analysis.
All three optimal designs were modelled on ABAQUS
considering the same mesh refinement, but with quadratic
shell elements with reduced integration, known as S8R. In
all cases, the difference between FEA and the present work
analysis is equal to 0.01%.

Table 1 Material properties of SUS3O4/Si3N4 with constant temper-
ature (T = 300 K)

Material E (Pa) ν ρ (kg/m3)

SUS3O4 207.79 ×109 0.32 8166

Si3O4 322.27 ×109 0.24 2370
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Table 2 Fundamental frequency of simply supported SUS3O4/Si3N4
square plate

N 0.20 1.00 4.0 10.0

h (mm) 36.4 35.0 34.3 60.0

a/h 13.74 14.29 14.49 8.33

Franco et al. (2018) 7982.20 5760.81 4718.51 7478.13

Present work 7976.46 5769.91 4726.01 7477.62

Difference (%) 0.07 0.12 0.16 0.01

For the last example, the mesh used to model the hinged
cylindrical shell shown in Fig. 8 is validated based on the
results of the nonlinear analysis carried out by Kim et al.
(2008). The material properties are presented in Table 5.
The volume fraction distribution is described by the sigmoid
function (Kim et al. 2008) and the effective properties are
given by the Voigt model. The load-displacement curves
for two values of N are presented in Fig. 9. Very good
agreement is observed between the present work analysis
and the reference results.

7 Case studies

In this section, four optimization problems are solved.
Two types of homogenization schemes are used (the Mori-
Tanaka and the Voigt schemes) and two types of FG
structures are studied (plates and a cylindrical shell). In the
following case studies, KRG-G and KRG-M refer to the
SAO algorithm discussed in Section 5 using the Gaussian
function and the Matérn 5/2 function, respectively. In the
first example, a brief study on the effect of the mutation
operator shown in Section 4.1 is presented. To distinguish
the results without the mutation operator (i.e., pmut = 0.00)
from the ones with it, a superscript (∗) was added to each
acronym.

If not specified in a particular example, the adopted
values of the optimization parameters are presented in
Table 6. For each problem, 10 independent runs (nr ) are
carried out, each with a new sampling plan generated using
the LHS20 approach and εtol = 1 × 10−5. It is worth
emphasizing that the StallGen values for maximization
of EI, WEI, and MLE are higher because these are cheap

Table 3 Material properties of SUS304/Si3N4

Material E (Pa) ν ρ (kg/m3)

SUS3O4 201.04 ×109 0.30 8166

Si3O4 348.43 ×109 0.30 2370

Table 4 Non-dimensional fundamental of simply supported
SUS3O4/Si3N4 square plate

N 1 2 5 10

Do et al. (2018) 0.0542 0.0485 0.0440 0.0419

Present work 0.0546 0.0488 0.0440 0.0417

Difference (%) 0.71 0.63 0.02 0.57

functions. The SAO algorithm itself stops when the best
solution is not improved for 10 consecutive iterations, which
is the same stopping criterion adopted for the conventional
optimization using the HFM based on IGA.

All simulations are carried out on a computer with an
Intel i9-9820X @3.30 GHz processor with 10 cores and 120
GB RAM. No parallelization procedure is adopted.

Fig. 7 Plate with circular cutout a Loading and boundary conditions b
Isogeometric mesh
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Fig. 8 Cylindrical shell

7.1 Fundamental frequencymaximization of FG
plate with frequency constraint

The first optimization problem deals with the maximization
of the fundamental frequency (ω) of a simply supported
square plate studied by Franco et al. (2018). The design
variables are the plate thickness and the Power-law index.
The problem has two constraints on the fundamental
frequency range. Therefore, an additional stopping criterion
is considered: the algorithm is stopped whenever the best
solution found so far is higher than 7999 rad/s, which is only
0.01% smaller than the maximum fundamental frequency
allowed. This is done because the maximum objective
function is known and further exploration of solutions
within this tolerance may be a waste of computational effort.
This problem may be expressed by:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find x = {h, N}
that maximizes ω(x)
subjected to 3000 ≤ ω ≤ 8000 (rad/s)
with 0.005 ≤ h ≤ 0.060 (m)

0.20 ≤ N ≤ 10.0

(70)

The constituents are silicon nitride (Si3N4) as the
ceramic and stainless steel as metal (SUS3O4) in constant

Table 5 Material properties of the cylindrical shell

Material E (Pa) ν ρ (kg/m3)

Zr 151 ×109 0.30 3000

Al 70 ×109 0.30 2707

Fig. 9 Load-deflection curve of the cylindrical shell

temperature at 300 K (see Table 1 for the material
properties). The geometry of the plate is given by a = 0.5
m and I tmax = 50. Finally, the lower and upper bounds of
the hyperparameters are log θlb = −2.0 and log θub = 1.0.

In this problem, both objective function and constraints
are approximated by surrogate models. Since the constraints
are actually imposed on the response surface of the objective
function, the hyperparameters are calculated only once for
the objective function approximation and repeated to the
constraints. The performance of the SAO algorithms is
described in Table 7, where the bold entries correspond to
the best performance for the metric linked to each column.
This convention is adopted for all case studies. Recall that
the acronyms with the ∗ superscript refer to the runs without
mutation.

In general, the EI criterion led to the best performances.
Despite the significant differences in the computational
cost of the Matérn 5/2 compared to the Gaussian, both
correlation functions provided accurate results regarding
both infill criteria.

As for the effect of the mutation, in 3 out of 4
combinations, higher accuracy was achieved when using the
operator. Although the difference is not very large, which is
good since it means the algorithm is capable of providing
accurate results without relying on the mutation, another

Table 6 Optimization parameters

Parameter IGA EI/WEI MLE

Swarm size (Np) 50 250 100

Max. Iter. (I tmax) 100 100 100

StallGen 10 25 25

pmut 0.02 0.02 0.05

w 0.7 0.7 0.7

c1 1.5 1.5 1.5

c2 1.5 1.5 1.5
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Table 7 Metrics for SUS3O4/Si3N4 FG plate with frequency
constraint

Infill Approach np NRMSE SDNRMSE Speed-up

EI KRG-G 27 0.02% 0.03% 32

KRG-G∗ 27 0.10% 0.24% 31

KRG-M 26 0.15% 0.36% 28

KRG-M∗ 27 0.23% 0.63% 25

WEI KRG-G 25 0.35% 0.65% 37

KRG-G∗ 29 0.27% 0.40% 29

KRG-M 28 0.19% 0.33% 19

KRG-M∗ 28 0.47% 1.43% 25

interesting outcome provided by the exploratory feature
introduced by it consists of more robust results (smaller
SDNRMSE). Of course, due to the PSO stochastic nature, the
mutation effect can be more or less pronounced depending
on the complexity of the landscape being optimized.

The best designs found using both the conventional
optimization and the SAO approach are compared to those
obtained by Franco et al. (2018), as shown in Table 8. It
is understood that the best SAO performance is the one
with the highest accuracy (i.e., lowest NRMSE). In this
particular case, the best results were obtained using the EI
criterion and the Gaussian function (with mutation). If the
approaches had the same accuracy, then we would use the
following sequence to define the best performance: highest
robustness (i.e., lowest SDNRMSE), lowest number of HF
evaluations, and highest speed-up. Figure 10 illustrates the
optimal ceramic volume fraction distribution through the
plate thickness obtained by the SAO algorithm in Table 8.

Note that different combinations of N and h provide
the highest fundamental frequency allowed of 8000 rad/s.
This can be observed when the constraints are plotted on
the response surface, as shown in Fig. 11b and c, where
the design space is normalized [0, 1]m. Any response lying
on the boundary between the approximate surface and the
upper hyperplane is optimal. In addition to that, the initial
ln-likelihood landscape of one of the optimizations using
KRG-G/WEI is shown in Fig. 11a. It is important to note
that the landscape of this function is multimodal and the

Table 8 Optimal designs for SUS3O4/Si3N4 FG plate with frequency
constraint

Franco et al. (2018) HF SAO

N 3.40 3.37 4.01

h (mm) 59.1 58.9 60.0

ω (rad/s) 8000 8000 8000

Nit – 16 17

np – 825 27

Av. time – 1909 s 66 s

Fig. 10 Optimal volume fraction distribution for SUS3O4/Si3N4 FG
plate problem with frequency constraint

optimum hyperparameters indicate that the Power-law index
is more relevant than the plate thickness regarding the
fundamental frequency since θ2 	 θ1.

Figure 12 illustrates the WEI surface for the initial
surrogate model shown in Fig. 11 b. Note that the PF
amplifies the WEI of points near the constraint threshold
and drives it to 0 where there is low likelihood of feasibility.
As more points are added to the sample, the shape of the
intersection between the response surface and the constraint
imposed by the maximum frequency gets closer to the one
observed on the HF surface.

7.2 Fundamental frequencymaximization of FG
plate with volume constraint

This problem consists of the maximization of the normal-
ized fundamental frequency of a FG square plate (ω) sub-
jected to a constraint on the maximum volume of ceramic
material (Do et al. 2018). The volume fraction is described
by 13 control points symmetric about the midplane, result-
ing in 7 design variables. The problem may be expressed by:

⎧⎪⎪⎨
⎪⎪⎩

Find x = {Vci
} for i = 1, 2, . . . , 7

that maximizes ω(x)
subjected to V c(x) ≤ V c,max

with 0.0 ≤ Vci
≤ 1.0

(71)

where Vci
is the volume fraction at the i-th control point,

V c is the percentage of ceramic material, and V c,max is the
maximum ceramic volume fraction. Three values of V c,max

1901



M. A. Maia et al.

Fig. 11 Surrogate model surface for SUS3O4/Si3N4 FG plate problem with frequency constraint a Initial ln-likelihood landscape b Initial
approximate surface c HF response surface

were considered: 35%, 50%, and 65%. The ceramic volume
fraction of a design is given by:

V c(x) = 1

h

∫ h/2

−h/2
Vc dz (72)

This integral is evaluated using Gaussian quadrature with 10
points and is exactly calculated for all designs explored by
the EI (or WEI) maximization. Therefore, only the objective
function is approximated by a surrogate model. The lower
and upper bounds of the hyperparameters are log θlb =

−2.0 and log θub = 0.0 for the Gaussian function and
log θlb = 0.0 and log θub = 2.0 for the Matérn 5/2 function.

The constituents are the SUS3O4 as the metal and Si3N4

as the ceramic (see Table 3). The geometry and the boundary
conditions are the same as shown in Fig. 6 for a/h = 10.
The performance of the SAO algorithms is described in
Table 9.

Finally, the best designs for each V c,max are shown in
Table 10 along with the designs found by Do et al. (2018)
using DNN. The authors considered 10,000 sampling points
for the training and testing of the DNN. This large number

Fig. 12 Iterations of WEI search on FG plate problem with frequency constraint using KRG-G
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Table 9 Metrics for SUS3O4/Si3N4 FG plate with volume constraint

V c,max Infill Approach np NRMSE SDNRMSE Speed-up

35% EI KRG-G 47 0.00% 0.00% 34

KRG-M 47 0.00% 0.00% 23

WEI KRG-G 46 0.00% 0.00% 34

KRG-M 47 0.00% 0.00% 24

50% EI KRG-G 46 0.00% 0.00% 28

KRG-M 47 0.00% 0.00% 18

WEI KRG-G 46 0.00% 0.00% 28

KRG-M 46 0.00% 0.00% 19

65% EI KRG-G 46 0.04% 0.12% 28

KRG-M 48 0.00% 0.00% 18

WEI KRG-G 47 0.00% 0.01% 28

KRG-M 47 0.00% 0.00% 20

of sampling points emphasizes the importance of SAO
techniques in reducing the number of HF evaluations.

The SAO results in Table 10 refer to the KRG-
G/WEI, KRG-G/EI, and KRG-M/WEI approaches for the
V c,max = 35%, 50%, and 65%, respectively. The optimal
volume fraction distributions are depicted in Fig. 13. As
the maximum ceramic volume fraction is reduced, the
distribution goes from a smooth transition to a sandwich-
like composite structure with metal in its core and ceramic
on the outside.

7.3 Buckling loadmaximization of FG plate

This problem was proposed by Ribeiro et al. (2020) and
deals with the maximization of the buckling load factor of
a simply supported square plate. The side length measures
0.720 m and a circular hole of radius r = a/10 is placed
in its center, as shown in Fig. 7. The volume fraction
distribution of the FG plate is described by 9 control
points symmetrically distributed, which results in 5 design
variables. The effective properties are given by the Mori-
Tanaka model. In addition to that, the plate thickness is also
taken as variable, which increases the dimensionality of the
problem. Two constraints are considered regarding the total
mass of the plate and its maximum ceramic volume fraction.
In short, the optimization problem may be described as:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find x = {h, Vci
} for i = 1, 2, . . . , 5

that maximizes λcr(x)
subjected to V c(x) ≤ V c,max

M ≤ Mmax

with 0.0 ≤ Vci
≤ 1.0

0.01 ≤ h ≤ 0.05 (m)

(73)

where λcr and Mmax are the critical buckling load
factor and the maximum mass of the plate, respectively.
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Fig. 13 Optimal volume fraction distributions for SUS3O4/Si3N4 FG plate with volume constraint a V c,max = 35% b V c,max = 50%
c V c,max = 65%

Here, V c,max = 50% and Mmax = 100 kg. Again,
only the objective function is approximated since both
constraints can be exactly evaluated without compromising
the optimization. The lower and upper bounds of the
hyperparameters are the same as the previous example.
Finally, the performance of the SAO algorithms is described
in Table 11.

In this problem, the cost of one structural analysis is
on average 3.3× more expensive (≈ 4.01 s) than the
analyses carried out in previous examples (≈ 1.20 s).
As a consequence, the effect of the reduced number of
HF evaluations needed for convergence caused the SAO
approach to reach even higher speed-ups.

Again, the SAO performance was slightly better when
considering the WEI criterion. Table 12 presents the best
designs found by the conventional optimization and the
KRG-G WEI, as well as the best design obtained by the
SAO algorithm based on RBF proposed by Ribeiro et al.
(2020). The authors built an initial surrogate with the same
size as in this work. However, the SAO-RBF took 20
updates to sample the optimal design and 25 iterations to
reach the convergence criterion, while the present work
found the optimal design after only one iteration. In both
cases, a much lower computational cost is achieved since
each iteration of the SAO only evaluates the HFM once,
while the conventional optimization evaluates the HFM

Table 11 Metrics for square plate with circular hole and V c,max =
50%

Infill Approach np NRMSE SDNRMSE Speed-up

EI KRG-G 42 0.75% 2.17% 43

KRG-M 41 0.33% 0.48% 38

WEI KRG-G 41 0.10% 0.17% 45

KRG-M 41 0.37% 0.73% 39

for each particle. Figure 14 illustrates the optimal ceramic
volume fraction distribution through the plate thickness
obtained by the SAO algorithm in Table 12.

7.4 Mass minimization of FG cylindrical shell

In this subsection, the cylindrical panel shown in Fig. 8
is subjected to a point load that increases in 6 increments
until P0 = 51.0 kN. The thickness and Power-law index
are taken as design variables. This is a modified version
of a problem proposed by Moita et al. (2017), where the
following optimization formulation is considered:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find x = {h, N}
that minimizes M(x)
subjected to wc ≤ wmax (mm)
with 0.008 ≤ h ≤ 0.035 (m)

0.2 ≤ N ≤ 10.0

(74)

Table 12 Optimal designs for FG plate with circular hole and
V c,max = 50%

HF Ribeiro et al. (2020) SAO

Vc,1 0.9983 0.9995 1.0

Vc,2 0.9997 0.9987 0.9999

Vc,3 1.0 0.9978 1.0

Vc,4 0.0 0.0008 0.0

Vc,5 0.0007 0.0023 0.0

h (m) 0.0378 0.0378 0.0378

λcr (×105) 2.469 2.464 2.470

Difference –0.50% 0.05%

Nit 39 11

Np 1970 41

Av. time (s) 9947 230
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Fig. 14 Optimal volume fraction distribution for FG clamped plate
problem

where wc and wmax correspond to the displacement at the
center of the shell and its maximum value, respectively, and
M is the total mass of the shell. The material properties are
found in Table 5 and wmax = 4.0 mm. The lower and upper
bounds of the hyperparameters are log θlb = −1.0 and
log θub = 2.0. Note that, this time, the expensive-to-evaluate
function is the constraint and not the objective function.

In this study, nr = 3 for the conventional optimization
using the HFM. The number of HF runs was reduced due
to the time-consuming optimizations (5 to 6 h on average
each). In addition, Np = 20, Maxit = 50 and pmut = 0.03.
For the SAOs, the number of runs is kept at nr = 10 and
pmut = 0.03. The remaining values of the optimization
parameters are the same as the ones presented in Table 6.

In this particular problem, another information is
reported in Table 13: the average number of iterations (nit ),
which should not be misunderstood with the number of HF
evaluations that reached convergence (although until this
point, nit = np). This occurs because it was observed that
the incremental analysis of a few designs did not reach
convergence.

Hence, to prevent the algorithm to continue exploring
an unfeasible point in the next iteration (recall that the
hyperparameters are not updated and the approximate
surface is the same), a simple function to verify if a
given trial design was already visited by the SAO was
incorporated to the algorithm. Also as a result of that, the
same initial sampling plan is used in all SAO runs. This
way, there is no chance of creating a sampling plan which

Table 13 Metrics for hinged-free shallow shell problem

Approach nit np NRMSE SDNRMSE Speed-up

KRG-G 39 38 0.02% 0.01% 22

KRG-M 43 42 0.01% 0.01% 20

may end up with an analysis with no convergence, affecting
the number of initial points of the surrogate model. In this
particular case, the Hammersley sequence was used.

Finally, the best designs found by the conventional
optimization and by the KRG-M are presented in Table 14.
Despite the differences in the problem formulation between
the present work and Moita et al. (2017), the optimal design
found by the SAO and conventional optimization are very
close to the one found by Moita et al. (2017) after the two-
stage optimization using HSDT. Moita et al. (2017) found
that the thickness should be h = 0.0120 m and N = 0.20,
which is unfeasible considering the present analysis where
FSDT is used, while this work found h = 0.0123 m and
N = 0.20.

It is also interesting noting that, in this case, the
optimization of the Kriging hyperparameters resulted in a
value of θ1 much higher than θ2, which means that the
displacement is more sensitive to the thickness than to the
Power-law index. Figure 15 illustrates the optimal ceramic
volume fraction distribution through the shell thickness
obtained by the SAO algorithm in Table 14.

8 Conclusion

This work presented a Kriging-based framework to assist
the optimization of FG structures using adaptive sampling.
The proposed methodology uses the ordinary Kriging to
approximate the structural responses (e.g., displacements,
buckling loads, and vibration frequencies) obtained by a
NURBS-based isogeometric formulation. Two methods for
the definition of the volume fraction distribution (B-splines

Table 14 Optimal designs for cylindrical shell

HF SAO

N 0.20 0.20

h (m) 0.0123 0.0123

Mass (kg) 9.3843 9.3842

Difference – 0.00%

Nit 41 33

Np 847 42

Average time (s) 18568 944
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Fig. 15 Optimal volume fraction distribution for cylindrical shell
problem

and Power-law function) and two micromechanical models
(Voigt and Mori-Tanaka) were considered.

The proposed methodology is capable of handling con-
strained problems, whether the constraints are approximated
by Kriging or not, and can deal with problems where the
objective function is exact, while the constraints are approx-
imated. The design variables are related to the volume
fraction distribution. The thickness is also considered in two
of the case studies. PSO was successfully used to carry out
the conventional optimization, as well as to solve the maxi-
mization problems of the infill criteria (EI or WEI) and the
MLE, showing the robustness of the algorithm.

Results showed that the WEI criterion leads to a slightly
better performance in terms of efficiency, but no significant
difference was observed with respect to EI in terms of
accuracy and robustness. In addition to that, two correlation
functions (Gaussian and Matérn 5/2) were compared. In this
regard, the use of the Gaussian function is clearly more
efficient than that of the Matérn 5/2 function for the same
number of IGA evaluations, albeit there is no significant
difference in accuracy and robustness. Furthermore, in none
of the cases considered in this work, the transformation
of the dependent variable was needed for both correlation
functions.

It should be noted that the efficiency gap between the
kernels decreases as the cost of structural analyses increases.
This suggests that the maximization of the likelihood
function and of the infill criterion represents a smaller
proportion of the computational cost, especially in the

optimization of complex structures presenting nonlinear
behavior.

The proposed method was up to 45× faster than
the conventional optimization of FG structures. This
reduction is even more expressive in terms of high-
fidelity evaluations. Thousands of isogeometric analyses
were replaced by a few dozen using the Kriging-based
optimization. Overall, the SAO approach presented in
this work can significantly reduce computational cost and
greatly improve the optimization efficiency while providing
an insight on the relevance of the design variables.
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