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Abstract
Design sensitivity analysis (DSA) of transient responses, which are indispensable in gradient-based time domain
optimization, often requires excessive computational resources for viscoelastically damped systems to directly differentiate
and integrate the full-order model (FOM). In this paper, an efficient model-order reduction (MOR)–based DSA framework
is developed for capturing the 1st- and 2nd-order derivatives of the transient responses and response functions for
viscoelastically damped systems. The damping force is represented by a non-viscous damping model, which depends on
the past history of motion via convolution integrals over suitable kernel functions. The direct differentiation method (DDM)
is used to derive the DSA. Three robust modal reduction bases, namely multi-model (MM) method, modal strain energy
modified by displacement residuals (MSER) method and improved approximation method (IAM) are introduced to reduce
the system dimension. Based on a generalized damping model in expression of fraction formula, a reduced state-space
formulation without convolution integral term is derived. The 1st- and 2nd-order derivatives of the transient responses
and response functions are calculated using a modified precise integration method and the DDM on the reduced stage.
The computational efficiency and accuracy of the presented methods are illustrated and compared by two examples. The
results indicate that the computational time is significantly reduced by the proposed MOR methods maintaining fairly good
accuracy. Among these methods, the MM method represents the most compromise between precise and efficiency and would
be the best candidate to be the reduction basis for calculating the time domain DSA of large-scale viscoelastically damped
systems.

Keywords Design sensitivity analysis · Viscoelastic materials · Model-order reduction · Non-viscous damping · Direct
differentiation method · Dynamic response function

1 Introduction

Design sensitivity analysis (DSA) is the study of how the
measurable outputs of a model change with respect to
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changes in its design variables (Martins and Hwang 2013). It
plays a key role in gradient-based optimization (Zhang and
Kang 2014; Xiao et al. 2020), model-updating (Machado
et al. 2018), uncertainty quantification (Wang et al. 2019)
and structural reliability (Chen et al. 2020). However, the
majority of DSA studies remain focused on undamped or
viscously damped systems, with only a few papers deal with
the viscoelastically damped systems. Viscoelastic materials
have been extensively utilized in controlling vibration
and noise of engineering structures because of their
favourable characteristics in energy dissipation. The non-
viscous damping model, which assumes that the dissipative
forces depend on the past history of motion via convolution
integrals over suitable kernel functions (Adhikari 2013),
provides an effective method to represent the viscous and
elastic character of the viscoelastic materials. It has been
considered to be the most general damping model within
the scope of linear system (Woodhouse 1998). Currently,
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the DSA studies of the non-viscously damped systems are
limited mostly to their eigensolution (Adhikari and Friswell
2006; Li et al. 2012; Lin et al. 2020) and frequency response
function (FRF) (de Lima et al. 2010b; Lewandowski
and Łasecka-Plura 2016; Xie et al. 2019) problems,
the corresponding DSA methods for transient responses
are less concerned. But in practice, the viscoelastically
damped systems are often subjected to transient excitations,
which may cause severe undesired vibrations and noises.
Therefore, there is a great desire to develop accurate and
efficient DSA methods that are capable of predicting the
dynamic properties of the non-viscously damped systems
during transient simulations.

In general, approaches for DSA can be divided into
three broad categories (Kang et al. 2006): finite difference
method (FDM), adjoint variable method (AVM) and
direct differentiation method (DDM). The FDM uses
numerical perturbation of design variables and is easy
to be implemented. However, it suffers from subtractive
cancelation and truncation errors at small and large
perturbation values, respectively. Besides, a complete
reanalysis is needed for each design variable, which is
extremely time-consuming. It has been proved in Alberdi
et al. (2018) that, when the number of design variables is
larger than the number of response functions, e.g., topology
optimization, the AVM is a more computationally efficient
way to calculate sensitivity than the DDM. However, for
transient problems, the AVM requires a reverse transient
analysis to obtain the adjoint variables. This may result
in storage problems for large-scale systems since the time
integration has to be performed sequentially (Hooijkamp
and van Keulen 2018). Hence, the DSA for transient
problems is often performed using the DDM (Callejo et al.
2015; Dopico et al. 2018; Callejo and Dopico 2019). For
the DSA of viscoelastically damped systems, Li et al.
(2013) derived both AVM and DDM formulations of the
transient responses for the non-viscously damped systems
based on the discrete Fourier transform and inverse Fourier
transform algorithms. Kai and Waisman (2015) proposed
a time-dependent discretize-then-differentiate AVM in their
viscoelastic topology optimization framework and proved
the importance of accounting for viscoelastic effects in
structural optimization algorithms (Kai and Waisman 2016).
Yun and Youn (2017) developed a DSA method of
transient responses for generalized Maxwell model based
on the discretize-then-differentiate AVM and the implicit
Newmark’s time integration scheme. Ding et al. (2018c)
proposed a differentiate-then-discretize AVM and a DDM
(Ding et al. 2019), successively, for transient DSA of non-
viscously damped systems and conducted a comparative
study by considering computational accuracy, efficiency
and implementation of each method.

However, the introduction of viscoelastic effects
described by the non-viscous damping models significantly
increase the system dimension, since extra dissipation
coordinates or internal variables are included for analyz-
ing, especially for large-scale problems. Particularly, when
considering transient responses, one must utilize direct
integration methods to obtain transient solutions at each
time point. This can leave a massive computational cost
when applying the DSA. Model order reduction (MOR)
techniques, which aims at finding a lower-dimensional
system with relative high-quality approximation, are ideal
choice to improve the computational efficiency and reduce
the storage requirement. The MOR techniques, such as
mode displacement methods, Krylov subspace–based meth-
ods and Ritz vector methods, are widely used in modal
analysis and dynamic response calculations (Besselink
et al. 2013). Similarly, they also can be used to decrease
the computational cost and storage of DSA. Yoon (2010)
applied three MOR schemes, namely mode superposition
method (MSM), Ritz vector method and quasi-static Ritz
vector (QSRV) method in the framework of topology opti-
mization for FRF problem. Kang et al. (2012) developed
an undamped eigenmode-based MOR to reduce the system
dimension of state space formulation when calculating the
harmonic response sensitivities of non-proportional damp-
ing system using the AVM. Recently, Koh et al. (2020)
further developed a multi-substructure multi-frequency
QSRV method to compute the dynamic responses and
sensitivity values. Later, Liu et al. (2015) conducted a
MOR-based topology optimization to harmonic responses
based on mode displacement method (MDM) and mode
acceleration method (MAM), respectively. Zhao and Wang
(2016) extended the MDM and MAM to the time domain
response problems and investigated the effectiveness within
the framework of density-based topology optimization.
Zhao et al. (2020) proposed an adaptive hybrid expansion
method for efficient structural topology optimization by
using the MSM and Neumann expansion.

Most of the abovementioned MOR-DSA studies consider
undamped or viscously damped systems. These MOR
techniques give good results when the structure is lightly
damped, but cannot directly incorporate the frequency-
dependent behavior exhibited by certain highly damped
materials. Trindade (2006) proposed a complex-based
modal reduction method for viscoelastically damped beams
through internal variables projection. de Lima et al.
(2010a) developed a robust enriched Ritz approach for
viscoelastically damped structures and applied it into
the component mode synthesis method. Li et al. (2014)
derived three projection bases for viscoelastically damped
systems by considering higher order modes, which aims
at eliminating the modal truncation problem in FRF
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problem. Xie et al. (2018) presented a MOR technique
based on second-order Arnoldi algorithm for solving the
frequency-dependent damping systems and applied it to the
topology optimization procedure for efficiently calculating
the structural response and sensitivity analyses (Xie et al.
2019). Recently, Rouleau et al. (2017) evaluated a variety of
modal projection-based MOR techniques for structures with
frequency-dependent damping and drawn some instructive
conclusions by comparing their computational accuracy and
efficiency.

Although the MOR techniques have been well estab-
lished for viscoelastically damped systems of harmonic
responses, few attentions have been paid to their counter-
parts of transient responses. Park et al. (1999) proposed an
internal balancing based MOR method for Golla-Hughes-
McTavish (GHM) model without the need to increase the
dimension of original model. Zghal et al. (2015) reviewed
some MOR methods for viscoelastic sandwich structures
represented by the GHM model and calculated the transient
responses using the Newmark’s integration method. Ding
et al. (2018b) developed two robust modal reduction bases,
namely multi-model (MM) method and modal strain energy
by first-order correction (MSEC) method, to solve the tran-
sient responses of structural systems with multiple damping
models. Kuether (2019) presented a two-tier MOR proce-
dure along with Newmark-β method to perform numerical
time integration for viscoelastically damped finite element
models.

The overarching goal of this paper is to develop an
efficient MOR-DSA method for transient responses of
viscoelastically damped systems. Greene and Haftka (1989)
reduced the system dimension using the traditional basis
of vibration modes and performed the DSA using the
forward difference procedure, central difference procedure
and DDM. Han (2013) developed an efficient MOR
method to calculate the approximation of both transient
responses and their sensitivities. The projection matrix
is generated from Krylov basis vectors instead of the
traditional eigenvectors or Ritz vectors. However, both
methods are limited to viscously damped systems and
adopted the Newmark’s integration method to obtain the
transient responses. It has been pointed out in Greene and
Haftka (1989) that any numerical error associated with
the numerical solutions of the transient responses would
have a significant effect on the accuracy of derivatives.
When computing the transient responses of viscoelastically
damped systems, a modified precise integration method
(MPIM) has been proofed much more accurate than the
Newmark’s implicit and explicit methods (Ding et al.
2018a). In this paper, three different modal-projection bases
are presented to improve the efficiency and accuracy of the
approximated solutions of the sensitivity results. It is hoped
that this study will clarify which modal-projection basis

yields the best trade-off between efficiency and accuracy for
computing the sensitivities of transient responses and their
response functions for viscoelastically damped systems. To
this end, the DDM is used to conduct the DSA for its
high numerical stability, mathematically easy to understand
and, most importantly, accessible to obtain second-order
derivatives.

The remainder of this paper is organized as follows:
Section 2 gives theoretical background on viscoelastically
damped systems and problem description on DSA methods,
whereas Section 3 presents three projection-bases for
reducing the system dimension of the viscoelastically
damped systems. Section 4 develops the DSA framework
based on the MOR and MPIM techniques and derives
the detailed expressions of the first- and second-order
sensitivities for the transient responses and response
functions. Section 5 applies the developed methods to
two numerical examples and demonstrates their efficiency
and accuracy under various conditions and parameters on
calculating sensitivity values. Finally, Section 6 finishes
with some important conclusions.

2 Theoretical background and problem
description

2.1 Governing equation of viscoelastically damped
systems

The equations of motion of an N degree-of-freedom (DOF)
linear system with viscoelastic constitutive models, which
assume that the dissipative forces depend on the past history
of motion via convolution integrals over suitable kernel
functions, can be expressed in time domain as (Cook et al.
2007; Kuether 2019)

Mẍ(t) + C0ẋ(t) + KK

∫ t

0
gK(t − τ)ẋ(τ )dτ

+KG

∫ t

0
gG(t − τ)ẋ(τ )dτ + KEx(t) = f(t) (1)

together with the initial conditions

x(t = 0) = x0 ∈ R
N, ẋ(t = 0) = ẋ0 ∈ R

N, (2)

where t denotes time, τ is retardation time, and M, C0

and KE ∈ R
N×N are mass, viscous damping and elastic

stiffness matrix, respectively (real and symmetric in this
paper). KK and KG ∈ R

N×N are viscoelastic bulk and
shear stiffness matrix, respectively. gK(t) and gG(t) are
the corresponding kernel functions for the bulk and shear
moduli. x(t), ẋ(t), ẍ(t) ∈ R

N are displacement, velocity
and acceleration vectors, f(t) ∈ R

N is forcing vector.
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From the mathematical point of view, (1) can be further
transformed into a more general form

Mẍ(t) + C0ẋ(t) +
n∑

k=1

Ck

∫ t

0
gk(t − τ)ẋ(τ )dτ + KEx(t) = f(t), (3)

where Ck ∈ R
N×N is kth frequency-dependent coefficient

damping matrix and gk(t) is the corresponding kernel
function. This coupled integro-differential equation has
been widely used in non-viscous damping systems, which
the dissipative forces depend on any quantity other than the
instantaneous generalized velocities (Adhikari 2013). Besides,
(3) is also able to account for structural systems with
multiple damping models (Cortés et al. 2009; Ding et al. 2018a;

Ding et al. 2018b). For large engineering structure, where the
damping behavior varies due to differing geometric and/or
material properties, each damping material and component
is partially distributed in the whole system. Therefore, the
coefficient matrix Ck is not always of full rank and can be
decomposed into rank-revealing form

Ck = LkRT
k , (4)

where Lk,Rk ∈ R
N×rk are full column rank and rk denotes the

rank of matrix Ck . Some efficient rank-revealing methods
can be found in Li and Zeng (2005). Equation (3) can be
equivalently transformed into Laplace domain with zero
initial conditions as(

s2M + s

(
C0 +

n∑
k=1

Gk(s)Ck

)
+ KE

)
X(s) = F(s), (5)

where X(s) = L [x(t)] , G(s) = L [g(t)] ,F(s) = L [f(t)] and L [•]

denotes Laplace transform. In context of this paper, s is the
Laplace parameter and has the relationship s = iω, where
i = √−1 and ω ∈ R

+ denotes the circle frequency.

2.2 Review of kernel function and eigenvalue
problem

The kernel function G(s) is also known as retardation
function, heredity function, relaxation function or after-
effect function in other subjects. Mathematically, any causal
model that makes the energy dissipation functional non-
negative could be a possible candidate for a non-viscous
damping model (Adhikari 2013). Therefore, a wide range
of choices are possible. These kernel functions can be
obtained either based on a physics-based approach, or by a
mathematical approach (for example, by priori selecting a
model and fitting its parameters from experiments).

The constitutive relationship of the physics-based
approach is derived from a combination of springs and dash-
pots, such as Maxwell model, Voigt model and generalized
Maxwell model. Other kernel functions based on the math-
ematical approach are also promising and had been used
by many authors, such as Biot model, exponential damping

model, GHM model, Anelastic Displacement Field (ADF)
model and fractional derivative model. The detailed expres-
sions and comparisons can be found in Adhikari (2013),
Ding et al. (2019), and Mukhopadhyay et al. (2019) for
further reading.

The generalized eigenvalue problem associated with (5)
gives

(
λ2

jM + λjC0 + λj

n∑
k=1

Gk(λj )Ck + KE

)
ϕj = 0,

∀j = 1, 2, · · ·J, (6)

where λj is the jth complex eigenvalue, ϕj represents the
corresponding jth complex eigenvector and J is the order of
the eigenvalue problem. It is worthy noting that the order
of an N DOF eigenvalue problem for the viscoelastically
damped systems usually results in more than 2N

J = 2N + p, p ≥ 0. (7)

In above equations, the N complex conjugated pairs are

called elastic modes and the rest p =
n∑

k=1
rk eigenvalues are

called viscoelastic modes or auxiliary modes. For a stable
passive system, the p extra modes are negative real number,
which represent over-critically damped modes and have no
oscillatory behavior. Clearly, the order of the eigenvalue is
closely related to the rank of each coefficient matrix (the
distribution of each damping material).

The eigenvalue problem associated with (7) is nonlinear,
and until now, the efficient resolution of nonlinear
eigenvalue problem remains a challenge. There are mainly
two ways to deal with this task. The first one is the
iterative-based method (Singh 2016; Lin and Ng 2019), which
gives satisfactory results but in the meantime, can be
computationally expensive. Therefore, the iterative-based
method may not be suitable for large-scale systems.

The second approach is built on the state-space
formulation (Adhikari and Wagner 2004; Cortés and Elejabarrieta

2006). By introducing a series of internal variables, the
nonlinear eigen-problem can be transformed into a linear
eigen-problem. But the state-space method usually develops
based on specific damping models, such as the exponential
damping model, resulting in a loss of generality. Although
the existing viscoelastic damping models differ in physical
significance, the majority of the kernel functions can be
mathematically represented by a fraction formula. Ding
et al. (2016) proposed a general damping model (GDM)
to uniformly express the frequency-dependent damping
models as

Gk(s) = cpk
spk + cpk−1s

pk−1 + · · · + c0

dqk
sqk + dqk−1s

qk−1 + · · · + d0
= PT

k (Ek − sWk)
−1Qk,

(8)
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where Pk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cqk−1 − dqk−1cqk

cqk−2 − dqk−2cqk

...

c0 − d0cqk

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(∀j > pk, cj = 0
)
,Ek =

⎡
⎢⎢⎢⎢⎣

−dqk−1 · · · −d1 −d0

1 0 0 0

0
. . . 0

...

0 0 1 0

⎤
⎥⎥⎥⎥⎦ ,Wk = Iqk

,Qk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

0
...

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and

Ek,Wk ∈ R
qk×qk , Pk,Qk ∈ R

qk . In the context, I stands for
the identity matrix with its corresponding size. It is assumed
that the numerator and the denominator have no common
factor and the order of the denominator is no less than
the numerator (pk ≤ qk). If pk, qk = 0 , (8) reduces to
the viscous damping model. When pk, qk = 1, by adopting
various relaxation parameters, (8) can be reduced to the
Biot model or the ADF model. Specially, when pk, qk =
2, the GHM damping model can be obtained. Therefore,
based on the GDM model, a general state-space method
for calculating the eigensolutions of structural systems with
various viscoelastic damping models can be derived.

However, this state-space method may significantly
enlarge the size of the system matrices if different
viscoelastic damping components involved. This fact
restricts its application for large-scale systems. In order
to reduce the computational cost, modal projection–based
reduction techniques are often introduced. Hence, the
displacement vector X(s) can be approximated in a reduced
dimension spanned by the columns of a reduction basis
T ∈ R

N×Nm :

X(s) = Tp, (9)

where p ∈ R
Nm is a generalized coordinate representing

the approximate solution and Nm is the number of column
dimension which is usually much smaller than N . A
modal truncation augmentation method (MTAM) has been
proposed by using the normal modes of the undamped
system corresponding to (6)(
KE − ω2

kM
)

φk = 0, (10)

where ωk and φk are respectively the eigenfrequency and
eigenvector for the undamped system. The projection basis
TMT AM of the MTAM is

TMT AM = [
Xcor ,φ1, · · · ,φn

]
, (11)

where Xcor is the static correction and constructed by
the normal modes of eigensolutions, load vector and the
stiffness matrix

Xcor =
⎛
⎝KE

−1 −
N∑

j=1

φjφ
T
j

ω2
j

⎞
⎠F. (12)

Obviously, the computational accuracy of the approxi-
mated results rely on the choice of the modal projection

basis. The normal mode–based projection basis, which
neglects the contributions of the viscoelastic kernel func-
tion terms, may lead to significant errors for highly damped
structures. The appropriate modal-projection bases for vis-
coelastically damped system will be discussed in next
section.

2.3 DSA of transient responses

Design optimization problems are typically formulated as
an integral of general response function H, which depends
on the transient responses and the design parameters of the
system

ψ =
∫ tF

t0

H (x, ẋ, ẍ, p, t)dt, (13)

where ψ,H ∈ R
o are column vectors of o scalar object

functions, and o is the number of target point. t0, tF are
the start and end response time point. The sensitivity of the
integral general response function with respect to the design
variable p is

ψ ′ =
∫ tF

t0

(
∂H
∂p

+ ∂H
∂x

x′ + ∂H
∂ ẋ

ẋ′ + ∂H
∂ ẍ

ẍ′
)

dt, (14)

where prime symbol (•)′ represents total derivatives with
respect to the design variable, that is, d (•) /dp and ∂ (•)

denotes partial derivatives with respect to some implicit
dependencies. As can be seen in (14), the partial derivatives
of the response function H with respect to the design
parameter p and the transient response vectors x are easy
to be determined. The only undetermined terms are the
derivatives of the transient response vectors x′, ẋ′, ẍ′.

The DSA of the transient responses and their response
functions can be calculated by the FDM, the AVM and
the DDM. This paper aims to provide clarity on which
presented modal projection basis yields the best trade-
off between accuracy and efficiency for computing the
1st- and 2nd-order derivatives of transient responses for
viscoelastically damped systems. Therefore, the DDM is
adopted in this paper for its high numerical stability,
mathematically easy to understand and, most importantly,
accessible to obtain second-order derivatives.

Fig. 1 Diagram of the fixed-free axial rod example with two
exponential damping models
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2.4 Cut-off criterion of projection basis

Assuming that the force vector f(t) can be equivalently
expressed by a boolean matrix H ∈ R

N and a dimensionless
scalar force function f (t)

f(t) = Hf (t). (15)

If the column vector of the reduction basis T is denoted by
Ti , the approximated column vector HNm gives

HNm =
Nm∑
i=1

TiHT MTi . (16)

Hence, the error em of the boolean matrix H and its
approximated result HNm is evaluated by

em = H − HNm. (17)

The cut-off criterion εNm associated with the number of
projection bases can be defined as

εNm =
∣∣HT em

∣∣
HT H

. (18)

Therefore, the following inequality relationship of the
required number of projection bases εNm should be satisfied

εNm ≤ εR, (19)

where εR is a pre-given error tolerance by experience to
avoid localized design sensitivities.

3Modal projection bases of viscoelastically
damped systems

Up to now, extensive literatures studied the modal
projection–based reduction technique for structures with
frequency-dependent damping. The simplest one may be the
modal strain energy (MSE) method proposed by Johnson
and Kienholz (1982), which constructs the projection basis
by combination of the normal modes corresponding to the
viscoelastically damped system. The projection basis is
defined as

TMSE = [
Xcor , φ1(0), · · · ,φn(0)

]
, (20)

where φn(0) denotes the pseudo-normal modes, which are
real and solution of
(
K0 − λ2

kM
)

φk = 0. (21)

In above equation, K0 = K∗ (ω = 0) is the static stiffness
matrix. For the viscoelastically damped system reduced by
the real modes, it is assumed that the damping introduced
by the viscoelastic component is generally much more
important than that of the elastic structure, and thus
the structural damping will be ignored for simplicity
(Xie et al. 2018). Under such condition, the frequency-
dependent damping matrix and the elastic stiffness could be
approximated as:

K∗(ω) =
n∑

k=1

Gs
′(ω)Ck + KE, (22)

where Gs
′(ω) is the purely real components of the kernel

function. The detailed expression of the Prony series
model can be found in Kuether (2019). The expression
of Gs

′(ω) for other damping models can be obtained after
some mathematical manipulations. When the structure is
lightly damped, the modal-projection basis TMSE gives good
results. However, for highly damped systems, the projection
basis derived by (21) may not be representative of the
normal modes, and hence leads to significant errors in the
approximations.

Some modified approaches are developed to improve
the accuracy of the approximated results by adding some
corrective terms to the MSE basis. These projection bases
can be classified into real modal–based and complex
modal–based methods. The latter one is generally reaches
higher approximation results than the former one for
viscoelastically damped systems. But the complex modal
based method suffers from heavy computational burden,
since it is still challenging and inefficient to directly solve
the complex eigenvalue problem of (6).

The majority of existing studies focus on their per-
formances in frequency domain problems for viscoelasti-
cally damped systems (Zghal et al. 2015; Rouleau et al. 2017).
There is no sufficient research to provide clarity on which

Table 1 Geometrical and physical parameters of axially vibrating rod

Items Values Items Expressions

Rod length (L) 4 m Rod element length (le) L/N

Young’s modulus (E) 2.1 × 1011 N/m2 1st-order natural frequency (ω1)
√

E
ρ

1
2L

π

Density (ρ) 7.8 × 103 kg/m3 2nd-order natural frequency (ω2)
√

E
ρ

3
2L

π

Cross sectional area (A) 6.25 × 10−4 m2 Highest natural frequency (ωmax)
√

E
ρ

2N−1
2L

π

Damping factor (ξ ) 0.05 Lowest time period (Tmin) 2π
ωmax

γ1 1 Relaxation parameter μ1
1

γ1Tmin

γ2 2 Relaxation parameter μ2
1

γ2Tmin
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modal-projection basis yields the best trade-off between
efficiency and accuracy for transient response problems,
especially for sensitivity analyses. In this paper, three modal
projection–based reduction techniques of viscoelastically
damped systems (MM, MESR, IAM) are adopted to investi-
gate their effectiveness for calculating the transient response
sensitivities.

3.1 MMmethod

The MM method is firstly derived from Takani-Sugeno
fuzzy model that is used to represent nonlinear dynamic sys-
tems (Takagi and Sugeno 1985). Then, Balmès (1996) extended
this approach to built a real-valued based projection basis
formulated from the corresponding viscoelastically damped
system. The projection basis of the MM method TMM is
a combination of static correction Xcor and several modal
bases Tpj

:

TMM = [
Xcor ,Tp1 , · · · ,Tpm

]
. (23)

For each modal basis Tpj
, it is constructed by the pseudo-

normal mode solutions of the eigenvalue problem
(
K∗(ωpj

) − λ∗2
k (ωpj

)M
)

φ∗
k(ωpj

) = 0, (24)

where ωpj
is a priori chosen value related to the frequency

range of interest and λ∗
k , φ∗

k are the kth normal eigensolutions
when the priori imposed frequency is ωpj

. It is verified
that good approximation results of the dynamic responses
of highly damped structures could be obtained when
the projection bases evaluated at the minimum and the
maximum frequency range of interest are included (Balmès

1996; Rouleau et al. 2017). If the computational accuracy
is still unsatisfactory, the projection bases calculated at
other frequency points can be added, such as the average
frequency of the frequency range of interest (Kuether 2019).
The initially obtained projection basis TMM need the use of
a Gram-Schmidt orthonormalisation algorithm to improve
the robustness of the projection basis.

3.2 MSERmethod

The MSER method aims to increase the accuracy of the
approximation by iteratively seeking a better projection
basis. The projection basis TMSER is enriched by adding
displacement residuals R∗

d to the TMSE:

TMSER = [
TMSE,R∗

d

]
. (25)

The displacement residuals are derived from the static
response to load residuals R∗

f :

R∗
f (ω) =

(
K∗(ω) − ω2M

)
X∗

r (ω) − F, (26)

where X∗
r (ω) is the approximation of the dynamic response

calculated by using the projection basis TMSER (the initial
projection basis is TMSE and the robustness of the updated
projection basis increases as the displacement residuals are
added). The displacement residuals are obtained by using
of the static stiffness matrix K0 = K∗ (ω = 0) and the load
residuals R∗

f , which are given by

R∗
d (ω) = K−1

0 R∗
f (ω). (27)

The residuals are calculated at each eigenfrequencies λk

of the undamped eigenvalue problem of (21) and added to
the projection basis TMSER . The iterative procedure will be
stopped until the chosen error criterion εtol is satisfied

εR =
∥∥R∗H

d K0R∗
d

∥∥
2∥∥X∗H

r K0X∗
r

∥∥
2

< εtol , (28)

where εR is the error estimate of the displacement residuals.
The procedure of constructing the projection basis TMSER is
indicated in Algorithm 1 (Rouleau et al. 2017).

3.3 IAM

The projection basis TIAM is enriched by complex
modes, which aims to reduce the error of the modal
truncation problem for viscoelastically damped systems.
The projection matrix TIAM is built on a modified MSE basis
and three perturbation bases (T1, T2 and T3)

TIAM = [TMMSE,T1,T2,T3] , (29)

where the modal projection basis TMMSE is defined as

TMMSE = [
Xcor , φ1(ωpj

), · · · , φn(ωpj
)
]

. (30)

For the modal basis TMMSE , the equivalent stiffness
matrix is K∗(ω = ωpj

). While for the TMSE , the equivalent
stiffness matrix is K∗ (ω = 0). The first perturbation basis T1
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considers the contribution of the lower available modes and
is given by

T1 =
L∑

j=1

ϕT
j F(s)ϕj

(s − λj )θj

, (31)

where θj = ϕT
j

(
2λjM + G(λj ) + λj

∂G(s)

∂s

∣∣∣∣
s=λj

)
ϕj and

G(s) =
n∑

k=1
Gk(s)Ck .

The second perturbation basis T2 represents the first-
order approximate contribution of the higher truncated
modes and is expressed by using the first term of the
Neumann expansion of the contribution of the higher
unavailable modes

T2 =
L∑

j=1

ϕT
j F(s)ϕj

λj θj

+ K−1F(s). (32)

The last perturbation basis T3 stands for the second-order
approximate contribution of the higher truncated modes and
is given by

T3 =
L∑

j=1

ϕT
j F(s)ϕj

λ2
j θj

− K−1G0K−1F(s), (33)

where G0 = lim
s→0

G(s). The projection basis TIAM is complex

value based. And to avoid the strong collinearity between
these modal bases, a Gram-Schmidt orthonormalisation
procedure is also needed.

4Modal projection–based reduction
technique of DSA for transient responses of
viscoelastically damped systems

The performances of the modal projection–based reduction
method of DSA for transient responses mainly depend on
the following issues (Greene and Haftka 1989): (1) numerical
errors of the transient and sensitivity results associated
with the integration method, (2) selection of the step
size, (3) convergence of the modal projection and (4)
computational cost of the sensitivity calculation method. In
order to investigate the influences of different modal bases
on the performance of the DSA, the numerical errors of
the transient responses for viscoelastically damped systems
generated by the integration method should be limited to
the least. Herein, the MPIM method (Ding et al. 2018a)

rather than the Newmark’s integration method is used
to calculate the transient responses and their derivatives,
since the former method is more accurate and has simpler
expressions for viscoelastically damped systems. These
advantages can minimize the impact of issue (1) and (4) on
the performances for sensitivity calculations.

4.1 MOR for transient responses of viscoelastically
damped systems

Substituting (9) into (5) and pre-multiplying from the left
side by TT yields the reduced-order viscoelastically damped
system in Laplace domain:
(

s2M̄ + sC̄0 + s

n∑
k=1

Gk(s)C̄k + K̄

)
p = F̄(s), (34)

where M̄ = TT MT, C̄0 = TT C0T, C̄k = TT CkT, K̄ =
TT KET ∈ R

Nm×Nm, F̄(s) = TT F(s) ∈ R
Nm. The reduced

coefficient matrix of damping C̄k can be decomposed into
rank-revealing form

C̄k = L̄kR̄T
k , (35)

where L̄k, R̄k ∈ Nm×r̄k and r̄k represents the rank of the matrix
C̄k .

Combining (8) and (35) gives the following expression

n∑
k=1

Gk(s)C̄k =
n∑

k=1

L̄k

(
Ir̄k ⊗ Pk

)T · (
Ir̄k ⊗ Ek − sIr̄k ⊗ Wk

)−1

· (Ir̄k ⊗ Qk

)
R̄T

k , (36)

where ⊗ represents the kronecker product. The above
equation can be further simplified as

n∑
k=1

Gk(s)C̄k = L̄
(
Ē − sW̄

)−1
R̄T . (37)

The specific expressions of L̄, Ē, W̄ and R̄ can be seen in
Appendix A. Substituting (37) into (34) gives
(
s2M̄ + sC̄0 + sL̄(Ē − sW̄)

−1
R̄T + K̄

)
p = F̄(s) (38)

Denoting that Y(s) = s(E − sW)−1R̄T p ∈ R
p̄ and using

the inverse Laplace transformation, (38) can be rewritten in
time domain as

M̄p̈(t) + C̄0ṗ(t) + K̄p(t) + L̄y(t) = f̄(t). (39)

Fig. 2 Impact force applied to the axially vibrating rod
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Pre-multiplying both sides of Y(s) = s(E − sW)−1R̄T p by
matrix

(
Ē − sW̄

)
and rearranging the matrices lead to the

expression:

Ēy(t) = W̄ẏ(t) + R̄T ṗ(t). (40)

Here, an identical equation is introduced to built some
state-space vectors:

INmṗ(t) − INmṗ(t) = 0. (41)

Finally, by combining (39)–(41), a state-space formula-
tion expressed by the reduced matrices and vectors can be
obtained as

⎡
⎢⎣

0 −INm 0
K̄ C̄0 L̄
0 R̄T −Ē

⎤
⎥⎦

⎧⎪⎨
⎪⎩

p(t)

ṗ(t)

y(t)

⎫⎪⎬
⎪⎭+

⎡
⎢⎣
INm 0 0
0 M̄ 0
0 0 W̄

⎤
⎥⎦

⎧⎪⎨
⎪⎩

ṗ(t)

p̈(t)

ẏ(t)

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

0
f̄(t)
0

⎫⎪⎬
⎪⎭ .

(42)

Since the matrices M̄ and W̄ are nonsingular, (42) can be
further simplified as:

ż(t) = Az(t) + r(t) (43)

where A =
⎡
⎢⎣

0 INm 0
−M̄−1K̄ −M̄−1C̄0 −M̄−1L̄

0 −W̄−1R̄T W̄−1Ē

⎤
⎥⎦ ∈ R

J̄×J̄ , z(t) =
⎡
⎢⎣
p(t)

ṗ(t)

y(t)

⎤
⎥⎦ ∈ R

J̄ , r(t) =
⎡
⎢⎣

0
M̄−1 f̄(t)

0

⎤
⎥⎦ ∈ R

J̄ .

In above expressions, J̄ = 2Nm + p̄ represents the
dimension of the reduced state-space formulation. The
dynamic responses of (43) can be expressed in a recurrence
formula

zk+1 = T(Δt)zk +
∫ tk+1

tk

exp((tk+1 − τ)A)r(τ )dτ, (44)

where

T(Δt) = exp(ΔtA). (45)

The matrix exponential function of (45) can be approxi-
mated by using the precise integration method (Zhong 2004).
The integral term in (44) can be calculated by using the
Gauss-Legendre quadrature approximation (Wang and Au

2006). Therefore, the final step-by-step integral recurrence
formula of solution vector zk+1 from vector zk is

Fig. 3 1st-order sensitivities and their relative errors of the tip displacement using three different methods (Δt = 1.5 × 10−5 s, Nm = 25): a-b
∂x(t)
∂ρ

and c–d
∂x(t)
∂E
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Fig. 4 a 2nd-order sensitivities with respect to
∂2x(t)
∂ρ∂E

and b their relative errors of three different method (Δt = 1.5 × 10−5 s, Nm = 25)

Fig. 5 Relative errors of different reduction basis dimensions for the 1st-order sensitivities with various methods (Δt = 1.5×10 - 5 s): a–c
∂x(t)
∂ρ

under non-harmonic load and d–f
∂x(t)
∂ρ

under harmonic load
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zk+1 = T(Δt)zk+Δt

2

gm∑
j=1

wjT
(

Δt

2
(1 − ξj )

)
r
(

tk + Δt

2
(1 + ξj )

)
,

(46)

where ωj , ξj are respectively weight coefficients and
locations of each Gauss quadrature points gm. The detailed
derivations for the MPIM can be found in Ding et al.
(2018a). The transient responses of the displacement and
velocity are obtained in the generalized coordinate by
using (46), which could be transformed into the original
coordinate by the expression:

x(tk) = Tp(tk), ẋ(tk) = Tṗ(tk). (47)

If required, the accelerations of the system can also be
calculated according to the relationship in (9) and (39):

ẍ(tk) = T · M−1 [
f̄(tk) − C̄0ṗ(tk) − K̄p(tk) − L̄y(tk)

]
(48)

4.2 First-order sensitivity of transient responses
based on DDM of reduced system

The first-order sensitivities for transient responses of
viscoelastically damped system are derived based on
reduced model using the DDM. Noting the force vector r(t)
is independent from design variable and differentiating (46)
with respect to the design variable pi gives

∂zk + 1

∂pi

= ∂T(Δt)

∂pi

zk + T(Δt)
∂zk

∂pi

+Δt

2

gm∑
i=1

wi

∂T
(

Δt
2 (1 − ξi)

)
∂pi

r
(

tk+ Δt

2
(1 + ξi)

)
.

(49)

In above equation, when calculating the first-order sensitiv-
ity of the dynamic responses at time point (k + 1)Δt , it is
assumed that the transient responses zk and their 1st-order
sensitivity ∂zk

/
∂pi at time point kΔt are already known (the

initial values of z0 and ∂z0
/
∂pi will be given as initial condi-

tions). Therefore, the only unknown term in (49) is the first

Fig. 6 Relative errors of different reduction basis dimensions for the 2nd-order sensitivities
∂2x(t)
∂ρ∂E

with various methods (Δt = 1.5 × 10 - 5 s):

a–c under non-harmonic load and d–f under harmonic load
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derivative of the matrix exponential function ∂T(Δt)
/
∂pi ,

which can be calculated by

∂T(Δt)

∂pi

= ∂eAΔt

∂pi

= eAΔtΔt
∂A
∂pi

. (50)

Differentiating the amplification matrix A with respect to
the design variable pi , one can obtain that

∂A
∂pi

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
∂

(−M̄−1K̄
)

∂pi

∂
(−M̄−1C̄0

)
∂pi

∂
(−M̄−1L̄

)
∂pi

0
∂

(−W̄−1R̄T
)

∂pi

∂
(
W̄−1Ē

)
∂pi

⎤
⎥⎥⎥⎥⎥⎦

. (51)

The first-order sensitivity term ∂
(−M̄−1K̄

) /
∂pi is derived

here (the specific expressions of other terms in (51) are
listed in Appendix B) and can be expressed by

∂
(−M̄−1K̄

)
∂pi

= M̄−1 ∂M̄
∂pi

M̄−1K̄ − M̄−1 ∂K̄
∂pi

. (52)

Fig. 7 Distribution of computational time for evaluation of the
transient response sensitivities using each modal-projection based
reduction technique: a DOF=1500 and b DOF=2000 (Δt = 1.5 ×
10 - 5 s, Nm = 50)

By assuming that the projection basis T in (9) can be
treated as constant with respect to the design variable pi

(Greene and Haftka 1989; Han 2013), i.e., ∂T
/
∂pi = 0 yields

∂M̄
∂pi

= ∂TT

∂pi

MT+TT ∂M
∂pi

T+TT M
∂T
∂pi

→ ∂M̄
∂pi

= TT ∂M
∂pi

T (53)

with similar expressions for the derivatives of K̄ and C̄0.
Substituting (81) into (52), one has

∂
(−M̄−1K̄

)
∂pi

= M̄−1TT ∂M
∂pi

TM̄−1K̄ − M̄−1TT ∂K
∂pi

T. (54)

By substituting the derivatives derived in Appendix B
into (49), one can obtain the first-order sensitivities
of transient responses ∂zk

/
∂pi using the DDM in the

generalized coordinate. The first-order sensitivities of

Fig. 8 Relative errors of the displacement sensitivities as function of
the relative computational time for two response functions: a 1st-order
sensitivities and b 2nd-order sensitivities (Δt = 1.5 × 10 - 5 s, Nm =
25)
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Table 2 Relative error and computational time of the sensitivities calculating the response function ψ1 for various methods (Nm = 25) with
different parameters and time steps

Scheme Δt = 1.5 × 10−4 s Δt = 1.5 × 10−5 s Δt = 1.5 × 10−6 s

ψ1
′ (%) ψ1

′′ (%) t (s) ψ1
′ (%) ψ1

′′ (%) t (s) ψ1
′ (%) ψ1

′′ (%) t (s)

FOM (DOF = 1000) − − 1501.4 − − 14942.9 − − 51967.5

MM, (ωp1 = 0) −3.4067 −1.1608 8.9250 −6.4085 −2.1396 9.9379 −3.6051 −1.7679 22.5238

MM, (ωp1 = 20000) −3.4067 −1.1608 8.5728 −6.4085 −2.1396 9.6311 −3.6051 −1.7679 21.7171

MM, (ωp1 = 0, ωp2 = 20000) −3.6129 −1.1977 8.4445 −6.6208 −2.0656 9.5817 −3.8462 −1.8580 22.5372

MSER, (εtol = 1E-15) 2.9102 0.9336 32.3214 −0.4786 −0.0826 26.3842 2.7001 0.4802 39.6717

MSER, (εtol = 1E-20) 3.4143 1.0988 32.6850 −0.1655 0.0627 33.0107 3.2861 0.6975 56.6861

MSER, (εtol = 1E-25) No convergence No convergence No convergence

IAM, (ωp1 = 0) −0.4010 −0.1386 178.9571 −3.4472 −0.6140 184.5793 0.2633 0.7789 189.0479

IAM, (ωp1 = 10000) −0.4086 −0.1313 188.4360 −3.4436 −0.6111 185.6768 0.3338 1.0805 190.7155

IAM, (ωp1 = 20000) −0.4010 −0.1342 189.3830 −3.4472 −0.6111 183.4224 0.2485 0.6960 190.0960

transient responses in the original coordinate can be
obtained by

∂xk

∂pi

= ∂T
∂pi

pk + T
∂pk

∂pi

→ ∂xk

∂pi

= T
∂pk

∂pi

(55)

with similar expressions for the derivatives ∂ ẋk

/
∂pi and

∂ ẍk

/
∂pi according to (47) and (48).

4.3 Second-order sensitivity of transient responses
based on DDM of reduced system

Further differentiating (49) with respect to the design
variable pj gives

∂2zk + 1

∂pi∂pj

= ∂2T(Δt)

∂pi∂pj

zk + ∂T(Δt)

∂pi

∂zk

∂pj

+ ∂T(Δt)

∂pj

∂zk

∂pi

+ T(Δt)
∂2zk

∂pi∂pj

+Δt

2

gm∑
i=1

wi

∂2T
(

Δt
2 (1 − ξi )

)
∂pi∂pj

r
(

tk + Δt

2
(1 + ξi )

)
. (56)

In (56), the only unknown term is the second-order
derivative of exponential matrix function with respect to
design variables ∂2T(Δt)

/
∂pi∂pj . By further differentiating

(50), one obtains

∂2T(Δt)

∂pi∂pj

= ∂T(Δt)

∂pj

Δt
∂A
∂pi

+ eAΔtΔt
∂2A

∂pi∂pj

, (57)

where

∂2A
∂pi∂pj

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
∂2

(−M̄−1K̄
)

∂pi∂pj

∂2
(−M̄−1C̄0

)
∂pi∂pj

∂2
(−M̄−1L̄

)
∂pi∂pj

0
∂2

(−W̄−1R̄T
)

∂pi∂pj

∂2
(
W̄−1Ē

)
∂pi∂pj

⎤
⎥⎥⎥⎥⎥⎦

. (58)

The specific expressions of the second-order sensitivities
in (58) are derived and shown in Appendix C. The second-
order sensitivities of the transient responses should be also

transformed from the reduced generalized coordinate into
the original coordinate by

∂2xk

∂pi∂pj

= T
∂2pk

∂pi∂pj

,
∂ ẋk

∂pi

= T
∂2ṗk

∂pi∂pj

. (59)

4.4 Summary of the DDM-basedMOR-DSAmethod

To better understand and code up the methods proposed
above, the proposed methods for calculating the first- and
second-order derivatives for transient responses of reduced
viscoelastically damped systems based on the DDM are
summarized as follows:

(1) Calculate the mass matrix M, the stiffness matrix K of
the full system and their first and second derivatives
with respect to all design variables.

Fig. 9 Diagram of the two stage floating-raft system with multiple
damping models
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(2) Choose one of the projection bases proposed in
Section 3 and construct the corresponding reduction
basis T.

(3) Construct the reduced system matrices and vectors
M̄, C̄0, C̄k, K̄, F̄(s), L̄k, R̄k by using (34) and (35),
respectively.

(4) Obtain matrices Ē, W̄, L̄, R̄ according to (66)–(69).
(5) Compute the inverse matrices M̄−1 and W̄−1.
(6) Obtain the state-space amplification matrix A of

the reduced structural system by (43) and its first
and second derivatives with respect to the design
variables by solving (51) and (58), respectively.

(7) Select an appropriate time step Δt , a bisection order
Ne , a truncation order L and a number of Guass points
gm as required computational accuracy.

(8) Calculate the matrix exponential functions T(Δt),
T

(
Δt
2 (1 − ξi)

)
by using the PIM and their first and

second derivatives ∂T(Δt)
/
∂pi , ∂2T(Δt)/∂pi∂pj by

solving (50) and (57), respectively.
(9) For each k = 0,1,2, · · · , solve the dynamic responses

zk+1 from vector zk by (46), the first derivatives of
dynamic responses with respect to the design variable
∂zk + 1

/
∂pi by (49) and the second derivatives of

dynamic responses with respect to the design variable
∂2zk + 1

/
∂pi∂pj by (56) (z0, ∂z0

/
∂pi , ∂2z0/∂pi∂pj are

the given initial conditions).
(10) Transform the calculated sensitivities from the

reduced generalized coordinate to their full original
coordinate by (55) and (59).

5 Numerical examples and discussions

In this section, two numerical examples are investigated
to show and compare the performances of each presented
method. All computations are performed on a laptop
computer with a Windows 10, 64 bit operating system and
a Intel Core i7-8565U CPU (2.00 GHz) with 8.00 GB
random-access memory.

5.1 A fixed-free axially vibrating rod with
exponential dampingmodels

In this case, a fixed-free axially vibrating rod with two
exponential damping models shown in Fig. 1 is considered.
The rod example is derived from (Adhikari and Wagner

2004) and can be discretized into N elements according to
different mesh sizes. The equation of motion of the axially
vibrating rod with two exponential damping models can be
expressed as

Mẍ(t)+
∫ t

0

[
μ1e

−μ1(t−τ)C1+μ2e
−μ2(t−τ)C2

]
ẋ(τ )dτ+Kx(t) = f(t),

(60)

where M and K are global mass and stiffness matrices and
can be easily deduced using the finite element assembly
procedure. Besides, C1, C2 are the damping coefficient
matrices, which are assumed to be proportional to the global
mass and stiffness matrices

C1 = αM, C2 = βK, (61)

where

α = 2ξ
ω1ω2

ω1 + ω2
, β = 2ξ

1

ω1 + ω2
. (62)

The related geometrical and physical data of the rod
example are listed in Table 1.

As can be seen from Fig. 1, the element number of the rod
is changeable. Therefore, the computational performances
against the element number N of various methods can be
investigated in this example. Since the damping coefficient
matrices C1, C2 are of full-rank, an N DOF rod example in
this case results in a 4N×4N system matrix in the state-space
formulation. The dynamic responses, response functions
and their 1st- and 2nd-order sensitivities of the rod will be
approximated by the presented modal-projection bases. The
reference values of the dynamic responses and the response
functions are calculated by using the MPIM (Ding et al.

2018a). For the sensitivity results, the FDM is adopted based

Table 3 Geometrical and physical parameters of floating raft system

Items Values Items Values

Mass (m1) 200 kg Stiffness (k1) 1.0 × 105 N/m

Mass (m2) 250 kg Stiffness (k2) 5.0 × 105 N/m

Raft (length-width-thickness) 1200-800-20 m Biot damping coefficient (a0) 1.4970 × 10−2

Foudation (length-width-thickness) 2000-1600-40 m Biot damping coefficient (a1) 2.0132 × 104

Young’s modulus (E) 2.1 × 1011 N/m2 Biot damping coefficient (b1) 5.5893

Density (ρ) 7.8 × 103 kg/m3 Exponential damping coefficient (c1) 10

Exponential damping coefficient (μ1) 10
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on the reference values of the transient response. The central
difference method of 0.01% perturbation with respect to the
design variable is used.

5.1.1 Computational accuracy

In order to investigate the computational accuracy of
each method, the rod is firstly discretized into 500 elements
(N = 500 and the system dimension is 2000). A forced
vibration problem is considered. As illustrated in Fig. 1,
an impact force shown in Fig. 2 is firstly exerted on
the tip of the free end (Zhang and Kang 2014). An initial
velocity condition is considered, that is x0 = 0, ẋ0 =
{0.0001, 0, . . . , 0}T .

The first-order sensitivities and their relative errors of the
tip displacement with respect to ρ and E are calculated by
the MM (ωp1 = 0), MSER (εtol = 1E − 8) and IAM (ωp1 = 0)
methods with the same time step (Δt = 1.5 × 10−5 s) and
the retained lower-order modes (Nm = 25) for constructing
TMSE . The first 0.012 s is considered and the results are
shown in Fig. 3. The relative errors in this paper are defined
by

ε =
∣∣∣∣ψ

′ (t, p, Δt) − ψ r
′ (t, p, Δt)

ψ r
′ (t, p, Δt)

∣∣∣∣ , (63)

where ψ ′ is the sensitivity calculated by the proposed
method and ψ r

′ is the sensitivity of the reference value.

Fig. 10 1st-order sensitivities and their relative errors of the dynamic responses using three different methods (Nm = 45): a–b
∂x(t)
∂b1

and

c–d
∂ ẋ(t)
∂b1
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As can be seen from Fig. 3a, c, the first-order sensitivities
of the tip displacement responses calculated by the
presented three methods all match well with the reference
value. The relative errors shown in Fig. 3b, d indicate that
the computational accuracy of the MSER and the MM are
almost the same. And the IAM method performs better than
the former two methods on this condition. It can be also
found that, although the retained modes of the TMSE are the
same, the final reduced system dimensions of each method
are different. The final reduced system dimensions of the
MM and the IAM methods can be determined when the
projection bases are adopted. However, the final reduced
system dimension of the MSER is affected by the chosen
error tolerance.

The second-order sensitivities and their relative errors
of the tip displacement with respect to ρE are also
investigated by the presented methods and shown in Fig. 4.
All methods give satisfactory results for the second-order
sensitivity calculations. The relative errors of the 2nd-
order sensitivities for each method show the same tendency
with their 1st-order sensitivity calculations. However, by
considering the amplitudes, the relative errors of the 2nd-
order sensitivity are slightly higher than their corresponding
1st-order sensitivity for all methods.

Since the correction term TMSE is included in all
presented projection bases for viscoelastically damped
system, the dimension Nm of correction basis has a great
influence on the computational accuracy of each method.

Fig. 11 2nd-order sensitivities and their relative errors of the dynamic responses using three different methods (Nm = 45): a–b
∂x(t)
∂b1a1

and

c–d
∂ ẋ(t)
∂b1a1
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The required number of Nm can be determined using the
cut-off criterion in Section 2.4. Besides the non-harmonic
load shown in Fig. 2, a harmonic excitation force f (t) =
500, 000 sin(500πt) is also considered. The relative errors
of the 1st-order tip displacement sensitivity of different
methods under both harmonic and non-harmonic loads,
which differ in dimension number (Nm = 25, 35, 45 and 55),
are shown in Fig. 5.

It can be seen that all methods obtain satisfactory
results on calculating the first-order transient sensitivities
under both harmonic and non-harmonic loadings. With
the increase of the number of the retained mode Nm,
the relative errors of tip displacement sensitivities for all
methods decrease significantly when the loads are exerted
(for example, the first 0.0024 s in Fig. 5a–c and all time
histories in Fig. 5d–f). And for decayed transient responses,
the improved accuracy by taking into account more Nm

is not that obvious than the previous condition. It should
also be mentioned that the final reduced dimensions of
the MSER method for harmonic and non-harmonic loads
are different. This is because the minimum error tolerance
of the MSER method to ensure convergence for different
excitations are different (εtol = 1E−8 for non-harmonic case
and εtol = 1E − 15 for harmonic case).

The relative errors of the 2nd-order tip displacement
sensitivities with different Nm are displayed in Fig. 6 for
each method. With the increase of Nm, the relative errors of
each method generally decrease. Unlike their corresponding
results of the 1st-order sensitivity, the relative errors shown
in Fig. 6e–f of the MSER and the IAM obtained by Nm = 55

are slightly bigger than those obtained by Nm = 45. It
indicates that the number of the retained mode Nm is not
the only factor to affect the computational accuracy of the
sensitivities. Other parameters, such as the time step, the
priori chosen frequency point and error criterion of each
method, should be also investigated.

5.1.2 Computational efficiency

As evidenced in Figs. 5 and 6, increasing the dimension
of the projection basis will generally improve the computa-
tional accuracy. However, in the mean time, the computa-
tional time of the sensitivity computations is also increased.
Figure 7 displays the distribution of computational time
for evaluation of the dynamic response sensitivities using
each modal-projection basis and the FOM. Two cases are
considered (DOF = 1500 and 2000). Other computational
parameters are fixed: Δt = 1.5 × 10 - 5 s for all methods,

Fig. 12 Relative sensitivity errors of the response functions for the floating raft system computed by the MM with different parameters and orders
of retained modes (Δt = 0.01 s)
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Nm = 50 for MOR methods, ωp1 = 0 for TMM , TIAM and
εtol = 1E − 15 for TMSER.

As shown in Fig. 7, the computational time for cal-
culating the sensitivities by using the FOM is very time-
consuming. When DOF =1500 and 2000, it requires almost
14,942 s and 33,833 s, respectively. The computational
efficiency is unacceptable in practical engineering opti-
mization for viscoelastically damped systems. However,
by using the presented modal-projection based reduction
techniques, the computational time can be significantly
reduced. The computational time for the MM method is
only 0.16% (DOF=1500) and 0.24% (DOF=2000) of the
FOM.

The computational time of the reduced-order method can
be divided into projection bases construction part (for both
static correction and other vectors) and dynamic response
sensitivities calculation part. It can be found that most of
the computational time for the reduced-order method is
dedicated to the evaluation of the projection bases. For the
MM and MSER methods, the most time-consuming part is
the construction for static correction terms. While for the
IAM method, the construction for other vectors is the most
time-consuming part. This is because for the IAM method,
the complex eigenvalue problem needs to be solved. Once

the system is reduced, the time required to calculate the
sensitivity is low and is directly related to the size of the
reduction basis.

In an attempt to find the best compromise between
precision and efficiency, the computational time and relative
error of presented methods against the increase of DOF
(N = 500, 1000, 1500 and 2000) with a fixed time step Δt =
1.5 × 10 - 5 s and retained modes (Nm = 25) are investigated.
Two response functions are considered

ψ1 =
∫ T

0
x2

targetdt, ψ2 =
∫ T

0
xT

targetF(t)dt . (64)

Figure 8 confronts the relative errors of sensitivities of
different methods (MM, MSER and IAM) as a function of
their relative computational time for two response functions
ψ1 and ψ2. The reference values of the sensitivities given
in this case are calculated by the DDM using the FOM
instead of the FDM. Both 1st- and 2nd-order sensitivities
are calculated.

As can be seen, the computational time of the MM is
less than the MSER for the 1st- and 2nd-order sensitivity
calculations. And the former two methods are much more
efficient than the IAM. Conversely, the computational errors

Fig. 13 Relative sensitivity errors of the response functions for the floating raft system computed by the MSER with different parameters and
orders of retained modes (Δt = 0.01 s)
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of the IAM is much lower than the MM method and almost
the same with the MSER method for both 1st- and 2nd-order
sensitivity calculations. Therefore, the MSER yields good
trade-off between computational accuracy and efficiency
among the presented methods when only one modal basis
is added to build TMM , TIAM (ωp1 = 0). However, the
computational time of the MSER is influenced by the error
criterion εtol . The results computed by the MSER may
be sometimes not converged if the error criterion is not
appropriately given.

In order to investigate the performances of various
methods with different parameters (ωpi

, εtol) and time
steps Δt , the relative error and computational time of the
sensitivity calculations for the response function ψ1 are
listed in Table 2. The DOF is 1000 and the number of the
retained modes is Nm = 25 for all reduced methods.

With the decrease of the time step, the computational
time of the FOM dramatically improves. When Δt = 1.5 ×
10−6 s, the computational time of the FOM is about 51,967 s

(14.7 h). On the contrary, the computational time can be
largely reduced by the MOR techniques. With the decrease
of the time step, although the computational time of each
method increase, the imcrement can be ignored compared
with the FOM. Particularly, for the MSER method, there

is no obvious relationship between the time step and its
computational time. This is because the computational time
of the MSER is influenced by both time step and chosen
error criteria. When the error criteria is set too small, the
results of the MSER may be not converged. Besides, it
can also be concluded that both the number and value of
the priori chosen frequency will affect the computational
accuracy and has no obvious influence on the computational
time for all methods.

5.2 A two stage floating raft isolation systemwith
multiple dampingmodels

In this case, a simplified two stage floating raft isolation
system with multiple damping models is considered. The
diagram of the example is shown in Fig. 9. The floating
raft system contains a foundation plate, a raft plate and two
machines (m1, m2). All sides of the raft plate and two long
sides of the foundation plate are free. Two short sides of
the foundation plate are clamped. The connections of the
foundation, raft plate and two machines are modelled by
the spring-damp element. In order to better approximate
the actual characteristics of the dynamic performances,
the damping models between these two connections are

Fig. 14 Relative sensitivity errors of the response functions for the floating raft system computed by the IAM with different parameters and orders
of retained modes (Δt = 0.01 s)
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assumed to be different. The viscoelastic spring-damp
elements g1(t) between the raft plate and two machines
are defined by the Biot model, while the connections
g2(t) between the foundation and the raft plate are the
exponential model. Since two viscoelastic damping models
are included in this example, some special difficulties may
be encountered in analyzing the corresponding structural
system. By using the presented formulations with the GDM,
the sensitivity analysis for structural systems with multiple
damping models can be solved. The related geometrical
and physical data of the floating raft example are listed in
Table 3.

The two stage floating raft system is discretized into
7202 DOFs. Unlike the previous axially vibrating rod
example, the dampers of this example are distributed, so
the damping coefficient matrices are not of full-rank. The
actual dimension of the system matrix is 7262. A forced
vibration with non-zero initial conditions is considered.
The initial displacement conditions of m1, m2 are set to
0.02 m and 0.01 m, respectively. The excitation force is
applied on m1 and assumed to be f (t) = 5 sin(0.5πt). Both
geometry and meshed finite element models are generated
from HYPERMESH. The mass and stiffness matrices are
exported from the BDF file. Based on these system matrices,
the sensitivities with respect to damping parameters can
be explicitly derived and computed in MATLAB. If other
geometry and material parameters are studied, the system
matrices should be derived by the finite element procedure,
which would be more complicated than obtained from the
BDF file.

The first-order displacement and velocity sensitivities
and their relative errors of the target point m2 (in Z direction)
with respect to damping coefficient b1 are computed by the

MM (ωp1 = 0), MSER (εtol = 1E − 10) and IAM (ωp1 =
0) methods. The time step Δt = 0.01 s and the retained
lower-order modes Nm = 45 are the same for all methods.
The first 6 s is considered and the results are shown in
Fig. 10.

As can be observed, the 1st-order displacement and
velocity sensitivities are all in good agreement with the
FOM. The results obtained by the MSER method match
well with the reference values, which show obvious
advantageous on accuracy over the MM and IAM methods.
It can be founded that although the initial obtained modes
of each reduced-order method are the same (Nm = 45), the
final dimension of the MSER method is much more than the
other two methods. This is the reason for the MSER method
give better results on this condition.

The second-order displacement and velocity sensitivities
as well as their relative errors are also investigated using
the same parameters. The design variables are b1a1 and
the results are shown in Fig. 11. The performances and
relative errors of the presented methods show the same ten-
dency with their 1st-order sensitivity calculations. However,
the amplitude of the relative error for the 2nd-order sensi-
tivities is much higher than their corresponding 1st-order
results.

In order to investigate the performances of the presented
methods on different parameters and orders of retained
modes (Nm = 20, 40, 60, 80), the relative sensitivity errors of
the response functions ψ2, ψ3 for each presented method are
calculated and shown in Figs. 12, 13, 14. The expression of
the response function ψ3 is

ψ3 =
∫ T

0

(
0.5x2 + 0.5ẋ2

)
dt . (65)

Table 4 The sensitivities and relative errors of different methods with respect to various design variables (Nm = 40, Δt = 0.01 s)

Design variables MM (ωp1 = 0, ωp2 = 2000) MSER (εtol = 1E − 10) IAM (ωp1 = 2000)

ψ3 ψ2 ψ3 ψ2 ψ3 ψ2

u1 −4.0260E-2 −2.0923E-5 −4.0375E-2 −2.0927E-5 −4.0376E-2 −2.0926E-5

(−0.2801%) (−0.0386%) (0.0046%) (−0.0188%) (0.0090%) (−0.0229%)

c1 −2.8984E-2 −3.7480E-5 −2.9099E-2 −3.7487E-5 −2.9101E-2 −3.7486E-5

(−0.3980%) (−0.0347%) (0.0014%) (−0.0160%) (0.0044%) (−0.0198%)

b1 −5.0025E-2 −4.2356E-3 −5.0024E-2 −4.2356E-3 −5.0022E-2 −4.2355E-3

(−0.0315%) (0.0021%) (−0.0323%) (−0.0006%) (−0.0374%) (−0.0030%)

a1 −5.9874E-4 2.3629E-6 5.9914E-4 2.3630E-6 5.9900E-4 2.3630E-6

(0.0536%) (0.0063%) (0.1203%) (0.0080%) (0.0970%) (0.0083%)

u1c1 1.0965E-3 −4.6469E-6 2.2160E-3 −5.2774E-6 5.4379E-3 −1.3530E-6

(−57.1147%) (−12.1561%) (−13.3278%) (−0.2385%) (112.6910%) (−74.4226%)

b1a1 −8.6080E-5 −6.4455E-6 −9.0637E-5 −6.6517E-6 −8.4718E-5 −6.2055E-6

(−2.4432%) (0.0753%) (2.7206%) (2.9670%) (−3.9870%) (−3.6510%)
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Table 6 The computational errors of different methods with various excitations with respect to b1, b1a1 (Nm = 40, Δt = 0.1 s)

Excitations MM (ωp1 = 0, ωp2 = 2000) MSER (εtol = 1E − 10) IAM (ωp1 = 2000)

ψ2
′ (%) ψ2

′′ (%) ψ2
′ (%) ψ2

′′ (%) ψ2
′ (%) ψ2

′′ (%)

5 sin(0.005πt) 0.0036 11.5139 0.0261 −37.3306 −0.0342 99.3656

5 sin(0.05πt) 0.0036 12.6202 0.0274 −38.9151 −0.0352 98.4588

5 sin(0.5πt) 0.0018 −58.2482 −0.0552 688.6021 −0.0146 535.2702

5 sin(5πt) −0.0057 −192.1995 −0.0060 −303.4318 −0.0074 −222.2981

5 sin(50πt) 0.0138 361.9323 −0.0069 21.4494 −0.0078 −128.5701

5 sin(500πt) 0.0063 103.0079 −0.0010 −6.9762 −0.0110 −110.1614

5 sin(1000πt) 0.0073 103.8247 −37.6266 −45.0651 −0.0119 −91.8207

5 sin(1500πt) 0.1679 88.5340 0.0131 4.8862 −0.0335 −344.3242

5 sin(2000πt) −0.0004 92.9590 0.0007 −24.2228 −0.0045 −335.7984

5 sin(10000πt) −0.0203 56.5910 −0.0036 −22.2567 0.0077 −6.1821

In Fig. 12, with the increase of the order of reduced bases,
the relative errors of the 1st-order sensitivities for all cases
generally decreased, while the relative errors of the 2nd-
order sensitivity are not stable for each case. Besides, the
relative error of ωp1 = 2000 is much less than that of ωp1 = 0

for both 1st- and 2nd-order sensitivity calculations. When
multiple priori frequency points are chosen (ωp1 = 0, ωp2 =
2000), it performs better than simple frequency point case.
Therefore, for the MM method, it is better to choose more
than one frequency point to construct the reduced basis. The
number of retained modes for each frequency point can be
equally divided.

For the MSER method shown in Fig. 13, when the time
step is fixed, with the decease of the error criterion, the
accuracy of both 1st- and 2nd-order sensitivity improves.
However, small error criterion may lead to convergence
problem.

As to the IAM method, when the priori chosen frequency
ωpj

�= 0, the sensitivity results obtained is much more
accurate than that of when ωpj

= 0. But the value of the
non-zero ωpj

seems has no influence on the accuracy.
Table 4 lists the sensitivity results of different methods

with respect to various damping coefficients. The retained
modes Nm = 40 and the time step Δt = 0.01 s. The
parameters adopted for each method are their corresponding
best performances in above analyses. For the 1st-order
sensitivity calculations, all methods show good agreement
with the reference value. However, as to the 2nd-order
sensitivity results, the relative errors for each method
increase rapidly.

The relative error and computational time of the
sensitivity calculations for response functions ψ2, ψ3 with
different time steps are listed in Table 5. The number of the
retained modes is Nm = 40 for all reduced methods. With
the decrease of the time step, the computational time for the
FOM improves significantly, while the computational time

for the reduced-order methods has no obvious increment.
Compared with the FOM, the computational time of all
reduced methods is greatly reduced. When the time step
is big (Δt = 0.1 s), the relative errors of the reduced
methods are relatively larger, especially for the 2nd-order
sensitivities. However, when the time step is too small (Δt =
0.005 s), the relative errors of response function ψ2 are even
larger than those with bigger time-steps. This is because ψ2

is associated with the excitation forces. The approximations
of the excitation terms may also affect the relative error of
the sensitivity analyses.

In order to investigate the performances of presented
methods on the excitation frequency, several excitation
forces with various excitation frequencies are exerted on
m1. The force amplitude, tim step and other computa-
tional parameters are fixed. The response function ψ2 is
considered and the target point is m2. Table 6 lists the
computational errors of 1st- and 2nd-order sensitivities of
ψ2 with various excitation frequencies. The results indicate
that the computational accuracy of all reduced methods,
including the MM method, the MSER method and the IAM
method, is influenced by the excitation frequency. Besides,
the accuracy of 1st-order sensitivity calculations is much
more accurate than the 2nd-order sensitivity results.

6 Conclusions

This paper develops an efficient design sensitivity analysis
(DSA) method for transient responses and response func-
tions of viscoelastically damped systems based on model
order reduction (MOR) techniques. The energy dissipation
behaviors of the viscoelastic materials are represented by
non-viscous damping models. However, the introduction
of non-viscous damping models significantly increase the
system dimension, because extra coordinates and internal
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variables are needed for obtaining their dynamic solutions.
This would leave a massive computational burden, partic-
ularly when performing the DSA of transient responses.
Traditional MOR techniques have been well-developed
for undamped or viscously damped systems on frequency
responses, but they cannot be directly applied into the vis-
coelastically damped systems for transient responses, espe-
cially for calculating the sensitivity. The difficulty lies in the
fact that both the projection matrix and system matrices are
frequency-dependent, which is rather challenging. In order
to alleviate these problems, several modal-projection bases
are developed for viscoelastically damped systems to ease
the burden and efficiently calculate the sensitivities of the
transient responses.

By introducing three robust modal-projection bases,
namely multi-model (MM) method, modal strain energy
modified by displacement residuals (MSER) method and
improved approximation method (IAM), the matrices of the
viscoelastically damped systems are dramatically reduced.
Then, a reduced state-space expression without convo-
lution integral term is derived by using a generalized
damping model of fraction formula. Based on this, the
first- and second-order derivatives of the transient responses
and response functions are deduced in the framework of a
modified precise integration method using direct differen-
tiation method (DDM). The computational efficiency and
accuracy of the presented MOR-DDM methods are studied
and compared via two numerical examples under various
parameters. Important conclusions are drawn as follows:

• The assumption that the projection bases are treated
as constant with respect to the design variables is
reasonable and the proposed MOR-DDM can obtain
satisfactory results on calculating the first- and second-
order derivatives of the transient responses and the
response functions for viscoelastically damped systems.
However, it is noted that one needs to choose a relative
small time step size to ensure the accuracy of the
second-order transient response sensitivities.

• The computational time is significantly reduced by
using both real and complex mode based projection
bases and the MOR-DDM gives fairly accurate approx-
imations of DSA compared to those from the FOM. The
results show that the real mode based projection basis
yields better trade-off between accuracy and efficiency,
which is more suitable for large-scale systems.

• Both the MM and the MSER methods represent a good
compromise between accuracy and computational time
compared with the IAM. However, the computational
time and accuracy are highly built on the appropriate
choice of tolerance for the MSER. Therefore, the MM
is more stable than the MSER, which would be the best
choice to be the reduction basis for capturing the time

domain DSA of large-scale viscoelastically damped
systems.

• For the MM method, by considering both computational
accuracy and efficiency, it is recommended that two or
more priori frequency points are chosen to generate the
projection bases. To obtain higher accuracy, the adopted
frequency points can be near the normal modes of the
corresponding undamped system for the viscoelastically
damped system.

In future work, it is valuable to develop a MOR-
DSA method for transient responses using adjoint variable
method. Besides, some robust modal-projection bases and
their proper assumptions of derivatives are needed to
improve the computational accuracy on calculating the
second-order derivatives of the transient responses for
viscoelastically damped systems.

Appendix A: Specific expressions of some
matrices in Section 4.1

The expressions of the relative reduced matrices in (37) are

Ē = diag(Ir̄1 ⊗E1, Ir̄2 ⊗E2, · · · , Ir̄n ⊗En) ∈ R
p̄×p̄, (66)

W̄ = diag(Ir̄1 ⊗ W1, Ir̄2 ⊗ W2, · · · , Ir̄n ⊗ Wn) ∈ R
p̄×p̄,

(67)

L̄ =
[
L̄1(Ir̄1 ⊗ P1)

T , L̄2(Ir̄2 ⊗ P2)
T , · · · , L̄n(Ir̄n ⊗ Pn)

T
]

∈ R
Nm×p̄,

(68)

R̄ =
[
R̄1(Ir̄1 ⊗ Q1)

T , R̄2(Ir̄2 ⊗ Q2)
T , · · · , R̄n(Ir̄n ⊗ Qn)

T
]

∈ R
Nm×p̄,

(69)

p̄ =
n∑

k=1

r̄kqk . (70)

Appendix B: The first-order sensitivity
derivatives in (51)

As defined in (8) and Appendix A, the matrices L̄, W̄, R̄, Ē
are related to the viscoelastic damping model involved,
which are composed of the relaxation parameters, the order
of the damping models and the identity matrix. If the
design variable pi is not related to the damping relaxation
parameters, the first-order derivatives of L̄, W̄, R̄, Ē are all
zero. On the contrary, when the damping model parameters
are chosen to be the design variable, the first-order
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derivatives of L̄, W̄, R̄, Ē should be considered. As defined
in (35), L̄k, R̄k are the full column rank of the reduced
viscoelastic damping coefficient matrix. It describes the
distribution of the damping materials, which is independent
of the parameters of the damping models. Besides, Wk,Qk

are also independent of any design parameters. Therefore,
we have

∂L̄k

∂pi

= 0,
∂R̄k

∂pi

= 0,
∂Wk

∂pi

= 0,
∂Qk

∂pi

= 0,
∂C̄0

∂pi

= 0. (71)

Substituting (71) into (66)–(69), one can derive the first-
order derivatives of the L̄, W̄, R̄, Ē:

∂L̄
∂pi

=
[
L̄1(Ir̄1 ⊗ ∂P1

∂pi

)
T

, L̄2(Ir̄2 ⊗ ∂P2

∂pi

)
T

, · · · , L̄N(Ir̄n ⊗ ∂Pn

∂pi

)
T
]

,

∂Ē
∂pi

=
[
Ir̄1 ⊗ ∂E1

∂pi

, Ir̄2 ⊗ ∂E2

∂pi

, · · · , Ir̄n ⊗ ∂En

∂pi

]
,

∂W̄
∂pi

= 0,
∂R̄
∂pi

= 0,

(72)

where
∂Pk

∂pi

,
∂Ek

∂pi

can be easily obtained from (8). Therefore,

the specific expressions of the terms in (51) are

∂
(−M̄−1C̄0

)
∂pi

= M̄−1 ∂M̄
∂pi

M̄−1C̄0 − M̄−1 ∂C̄0
∂pi

→
∂
(−M̄−1C̄0

)
∂pi

= M̄−1 ∂M̄
∂pi

M̄−1C̄0, (73)

∂
(−M̄ - 1L̄

)
∂pi

= M̄ - 1 ∂M̄
∂pi

M̄ - 1L̄ − M̄ - 1 ∂L̄
∂pi

, (74)

∂
(−W̄−1R̄T

)
∂pi

= W̄−1 ∂W̄
∂pi

W̄−1R̄T − W̄−1 ∂R̄T

∂pi
→

∂
(−W̄−1R̄T

)
∂pi

= 0, (75)

∂
(
W̄−1Ē

)
∂pi

= −W̄−1 ∂W̄
∂pi

W̄−1Ē + W̄−1 ∂Ē
∂pi

→
∂
(
W̄−1Ē

)
∂pi

= W̄−1 ∂Ē
∂pi

. (76)

Appendix C: The second-order sensitivity
derivatives in (58)

The second-order derivatives of (58) are as follows:

∂2
(−M̄−1K̄

)
∂pi∂pj

= ∂M̄−1

∂pj

∂M̄
∂pi

M̄−1K̄ + M̄−1 ∂2M̄
∂pi∂pj

M̄−1K̄

+M̄−1 ∂M̄
∂pi

∂M̄−1

∂pj

K̄ + M̄−1 ∂M̄
∂pi

M̄−1 ∂K̄
∂pj

−∂M̄−1

∂pj

∂K̄
∂pi

− M̄−1 ∂2K̄
∂pi∂pj

, (77)

∂2
(−M̄−1C̄0

)
∂pi∂pj

= ∂M̄−1

∂pj

∂M̄
∂pi

M̄−1C̄0 + M̄−1 ∂2M̄
∂pi∂pj

M̄−1C̄0

+M̄−1 ∂M̄
∂pi

∂M̄−1

∂pj

C̄0, (78)

∂2
(−M̄−1L̄

)
∂pi∂pj

= ∂M̄−1

∂pj

M̄−1 ∂M̄
∂pi

M̄−1L̄ + M̄−1 ∂2M̄
∂pi∂pj

M̄−1L̄

+M̄−1 ∂M̄
∂pi

∂M̄−1

∂pj

L̄ + M̄−1 ∂M̄
∂pi

M̄−1 ∂L̄
∂pj

−∂M̄−1

∂pj

∂L̄
∂pi

− M̄−1 ∂2L̄
∂pi∂pj

, (79)

∂2
(−W̄−1R̄T

)
∂pi∂pj

= 0,
∂2

(−W̄−1Ē
)

∂pi∂pj

= W̄−1 ∂2Ē
∂pi∂pj

, (80)

where

∂M̄−1

∂pi

= −M̄−1 ∂M̄
∂pi

M̄−1, (81)

∂2M̄
∂pi∂pj

= TT ∂2M
∂pi∂pj

T,
∂2K̄

∂pi∂pj

= TT ∂2K
∂pi∂pj

T, (82)

∂2L̄
∂pi∂pj

=
[
L̄1(Ir̄1 ⊗ ∂2P1

∂pi∂pj

)

T

, · · · , L̄N(Ir̄n ⊗ ∂2Pn

∂pi∂pj

)

T
]

,

(83)

∂2Ē
∂pi∂pj

=
[
Ir̄1 ⊗ ∂2E1

∂pi∂pj

, Ir̄2 ⊗ ∂2E2

∂pi∂pj

, · · · , Ir̄n ⊗ ∂2En

∂pi∂pj

]
.

(84)
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Sensitivity-based, multi-objective design of vehicle suspension
systems. J Comput Nonlinear Dyn 10(3):031008

Chen J, Yang J, Jensen H (2020) Structural optimization considering
dynamic reliability constraints via probability density evolution
method and change of probability measure. Struct Multidiscip
Optim. https://doi.org/10.1007/s00158-020-02621-4

Cook RD, Plesha ME, Malkus DS, Witt RJ (2007) Concepts and
applications of finite element analysis. Wiley, Hoboken

Cortés F, Elejabarrieta MJ (2006) Computational methods for complex
eigenproblems in finite element analysis of structural systems with
viscoelastic damping treatments. Comput Methods Appl Mech
Engrg 195(44):6448–6462

Cortés F, Mateos M, Elejabarrieta MJ (2009) A direct integration
formulation for exponentially damped structural systems. Comput
Struct 87(5):391–394

Ding Z, Li L, Hu Y, Li X, Deng W (2016) State-space based
time integration method for structural systems involving multiple
nonviscous damping models. Comput Struct 171:31–45

Ding Z, Li L, Hu Y (2018a) A modified precise integration method
for transient dynamic analysis in structural systems with multiple
damping models. Mech Syst Signal Pr 98:613–633

Ding Z, Li L, Kong J, Qin L (2018b) A modal projection-based
reduction method for transient dynamic responses of viscoelastic
systems with multiple damping models. Comput Struct 194:60–73

Ding Z, Li L, Li X, Kong J (2018c) A comparative study of design
sensitivity analysis based on adjoint variable method for transient
response of non-viscously damped systems. Mech Syst Signal Pr
110:390–411

Ding Z, Li L, Zou G, Kong J (2019) Design sensitivity analysis for
transient response of non-viscously damped systems based on
direct differentiate method. Mech Syst Signal Pr 121:322–342
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