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Abstract
Sampling-based uncertainty quantification demands large data. Hence, when the available sample is scarce, it is customary
to assume a distribution and estimate its moments from scarce data, to characterize the uncertainties. Nonetheless, inaccurate
assumption about the distribution leads to flawed decisions. In addition, extremes, if present in the scarce data, are prone to
be classified as outliers and neglected which leads to wrong estimation of the moments. Therefore, it is desirable to develop
a method that is (i) distribution independent or allows distribution identification with scarce samples and (ii) accounts for
the extremes in data and yet be insensitive or less sensitive to moments estimation. We propose using L-moments to develop
a distribution-independent, robust moment estimation approach to characterize the uncertainty and propagate it through the
system model. L-moment ratio diagram that uses higher order L-moments is adopted to choose the appropriate distribution,
for uncertainty quantification. This allows for better characterization of the output distribution and the probabilistic estimates
obtained using L-moments are found to be less sensitive to the extremes in the data, compared to the results obtained from
the conventional moments approach. The efficacy of the proposed approach is demonstrated on conventional distributions
covering all types of tails and several engineering examples. Engineering examples include a sheet metal manufacturing
process, 7 variable speed reducer, and probabilistic fatigue life estimation.
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1 Introduction

In structural design, uncertainties in the system inputs are
considered the root cause of poor product performance
and this leads to variation in the system output responses.
These uncertainties typically occur in material properties,
manufacturing parameters, externally applied forces, etc.
(Jin et al. 2003; Lee et al. 2009; Ramu and Arul 2016;
Voinov et al. 2016; Lee et al. 2019). Irrespective of the
variability in the input, a designer wishes to achieve a sys-
tem response that satisfies the design objectives, preferably
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with less variability (Ramu et al. 2017). It is a common
statistical practice to quantify uncertainties by conven-
tional moments (C-moments), mean (μ), and variance (σ 2)

(Hosking 1990). Higher order C-moments such as skewness
(γ1) and kurtosis (α4) are also used to describe the system
outputs more precisely (Mekid and Vaja 2008; Anderson
andMattson 2012). In order to design under uncertainty, it is
important to quantify uncertainties of system output which
is the result of uncertain inputs propagated through the sys-
tem. This is referred to as uncertainty propagation (Mekid
and Vaja 2008; Lee and Chen 2009; Anderson and Mattson
2012; Jayaraman et al. 2018; Liu et al. 2019). Sometimes,
input distributions are known and moments are computed to
be propagated through the system model to obtain statistics
of output response. When moments of distributions are used
for propagation, it is imperative to compute higher order
moments accurately (Lee and Chen 2009).

Most engineering applications have scarce data and
description of the uncertainties associated with the input
variables is usually not available readily (Ramu and Arul
2016). One way of quantifying this uncertainty is to use
nonparametric methods such as histogram, kernel density
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estimation (KDE) techniques, and interval analysis (Lee
et al. 2019). Though histogram is a nonparametric density
estimation approach, it is less robust and the challenge lies
in choosing the bin size. Changing the bin size leads to
different inference from the data (Rudemo 1982; Silverman
1986; Lee et al. 2019). In KDE, the smoothing of the density
curve is controlled by bandwidth and selecting the right
bandwidth is a major challenge (Hall et al. 1991; Kang et al.
2018). Often, higher bandwidth leads to over-smoothing and
lower bandwidth leads to under-smoothing of the density
curve (Lee et al. 2019). Bandwidth selection for heavy
tailed distributions is relatively difficult (Buch-Larsen et al.
2005). Integrated squared error, mean integrated squared
error, and least squares cross validation error are used to
choose the optimal bandwidth (Silverman 1986; Hall et al.
1991; Shirahata and Is 1992; Turlach 1993). These error
metrics are more sensitive to the extremes present in the
small data and suffer from sampling variability (Silverman
1986; Park and Marron 1990; Hall et al. 1991). Sometimes
KDE can represent a very irregular shape of distribution
for small data (Kang et al. 2018). Interval analysis is also
used to represent the uncertainty as an interval or variable
that has lower and upper bound. Fuzzy set theory and
evidence theory are generally used to estimate the interval.
Major drawback of this approach is that it requires interval
arithmetic for statistical model comparison and validation
(Rokne 2001; Gao et al. 2010; Lee et al. 2019). Though
nonparametric methods are robust, they require sufficient
data for accurate modelling (Lee et al. 2019). When the
interest is in extreme probabilities, tail modeling techniques
are also used to quantify the uncertainties. These techniques
approximate the tail portion of the cumulative density
function (CDF) using limited samples. However, the tail
itself is highly volatile and very sensitive to number of
data points (Ramu P 2013; Acar and Ramu 2014). These
techniques are usually suitable for low probabilities and not
to model the entire probability space, which is the general
interest in uncertainty quantification.

A widely used parametric approach is the Pearson system
which is based on the hypothesis that higher order moments
provide a good representation of PDF. However, researchers
(Hosking 1990) observe that there is lack of clarity on
what information does the higher order moments impart,
on the shape of the distribution. Also, moments computed
from scarce data can be markedly different from those
of the probability distribution from which the sample was
drawn. The choice of underlying probabilistic distribution
plays a very crucial role. When the choice is influenced
by scarce samples, it is likely to have errors, which when
propagated through the model result in amplified errors in
the system output. In addition, the scarce samples might

also include extremes, which will only worsen the errors. In
scarce data, extremes have large influence on the moments
estimation (Moon et al. 2020). C-moments are sensitive
to extremes present in the data leading to large variation
in the computed moments. Extremes can sometimes be
classified as outliers and excluded from the statistical study
(Jayaraman et al. 2018; Jayaraman and Ramu 2019). This
again will lead to large error between computed moments
and actual moments. Since the available data itself is scarce,
excluding one or a few data points leads to significant
information loss. Therefore, it is desirable to develop an
approach that can:

(i) Identify appropriate probabilistic distribution with
scarce data.

(ii) Estimate moments accurately from scarce data
with possible extremes. This translates to the estimation
technique being less or insensitive to the extremes.

To overcome the hurdle of computing robust moments
while accounting for extreme realizations, researchers rec-
ommend using linear moments (L-moments) which uses lin-
ear combinations of order statistics. L-moments are known
to be robust and less sensitive to extremes or outliers in the
scarce samples. In addition, L-moments are less subject to
bias in estimation and their approximations on the asymp-
totic normal distribution are better, when the samples are
finite (Sillitto 1969; David 1981; Hosking 1989, 1990,
1992; Gubareva and Gartsman 2010). L-moments are
widely used in various applications in hydrology, water
resource applications, and regional frequency analysis
(Hosking and Wallis 1997; Sankarasubramanian and Srini-
vasan 1999; Adamowski 2000; Kumar and Chatterjee 2005;
Atiem and Harmancioǧlu 2006). L-moment approach is
preferable for insufficient or lesser data in flood or rain-
fall analysis (Smithers and Schulze 2001; Haddad et al.
2011). L-moments are used to identify the probability dis-
tribution of the censored data in the fields of environmental
quality and quantity monitoring (Zafirakou-Koulouris et al.
1998; Sankarasubramanian and Srinivasan 1999; Elamir and
Seheult 2004). In reliability analysis, L-moments are used
to analyze and characterize the life time data (Nair and
Vineshkumar 2010). Based on the discussions presented
above, the use of L-moments in the context of design with
scarce samples that might include extremes is not available.
Hence, the authors propose a framework using L-moments
to quantify and propagate uncertainties in an optimization
framework, when the available data is scarce and could
include potential extremes.

To this end, the purpose of this study is to identify
the PDF of response, with scarce samples and in the
presence of extremes. We propose using L-moment ratio
to identify the PDF. The identified PDF is compared to
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the exact PDF using the Jensen-Shannon divergence. This
comparison is only to validate the proposed approach,
because in reality, one will not have the information about
the exact PDF. Higher order L-moments are used to compute
the L-moment ratios such as L-skewness (τ3) and L-kurtosis
(τ4). We compare L-moment estimates against C-moment
estimates and their effects on identifying the underlying
distribution using L-moment ratio and the Pearson system,
respectively. The novelty lies in aspects such as the
following: (i) comprehensive understanding of performance
of L-moments on different types of tails when the data
is scarce and with potential extremes; (ii) combining
scarce data, extremes, and L-moments in a design context;
(iii) using L-moments to quantify the uncertainty and
propagate it in a design framework, while implementing on
real-life engineering examples. The proposed approach is
demonstrated on a suite of distributions that cover all type
of tails and several engineering examples.

The rest of the paper is organized as follows: In Section 2,
it is explained how the PDFs are identified using the
Pearson system and L-moment ratio diagram. Investigation
strategy of the proposed approach and the comparison
of obtained PDFs with the exact PDF using the Jensen-
Shannon divergence and how extremes are generated
and incorporated in the data is discussed in Section 3.
Demonstration of the proposed approach on a suite of
statistical distributions and engineering examples is carried
out in Section 4 followed by conclusions in Section 5.

2 C-moments and L-moments

In this study, we focus on scarce data that might include
extremes. The goal is to identify the underlying PDF and
use its moments for characterising uncertainties. The two
approaches that we compare here (C- and L- moment
approaches) compute the moments and identify the respec-
tive PDFs using the Pearson system and L-moment ratio
diagram, respectively. The specific objective is to com-
pare the performance of the approaches in the presence of
extremes. The process of investigation is presented in Fig. 1
and the elements of Fig. 1 are discussed below.

2.1 Identification of distribution using C-moments
and Pearson system

The Pearson system (Pearson 1916) is a method of choosing
appropriate distribution from a set of distributions called the
Pearson distribution, based on first four C-moments of the
system response. The Pearson distribution contains several
distributions such as beta, normal, and gamma. Each PDF in

the Pearson distribution satisfies the generalized differential
equation, in (1) (Kenney and Keeping 1947; Craig 1991;
Weisstein and et al. 2004).

dy

dx
= y(m − x)

a0 + a1x + a2x2
(1)

where y is the PDF, a0, a1, a2, and m are the parameters
expressed in terms of C-moments of the system, in (2).

a0 = 2+δ
2(1+2δ)

a1 = −m = γ1
2(1+2δ)

a2 = δ
2(1+2δ)

(2)

where δ = 2α4−3γ 2
1 −6

γ1+3 , γ1 is the skewness, and α4 is the
kurtosis of the data.

The roots c1, c2 and the coefficients of a0 + a1x +
a2x

2 provide information that can be used to classify the
distributions. Few possible types of distribution are (i) a1 =
a2 = 0, a0 > 0: normal distribution, (ii) a1

2/4a0a2 <

0, c1 ≤ x ≤ c2: beta distribution (iii) a1
2/4a0a2 = 0, a2 >

0, −∞ < x < ∞: Student’s t-distribution, etc. The solution
of (1) needs to satisfy the following conditions:

i. the distribution curve should vanish at the ends of the
range, i.e., as y → 0, dy/dx → 0

ii. when x = m, dy/dx → 0
In this study, the Pearson system is adopted to identify

the distribution using C-moments computed from the scarce
samples.

2.2 L-moments

L-moments (Hosking 1989; 1990; 1992; Hosking and
Wallis 1997; Hosking 2006) are expectations of certain
linear combinations of order statistics. These combinations
provide information about location, scale, and shape of the
distribution from which the samples are drawn. Since L-
moments are linear functions of the data, they suffer less
from the effects of sampling variability and are reported to
be robust in the presence of extremes. L-moments which are
modifications of probability weighted moments (PWM) can
be used to define the shape of the probability distribution
(Greenwood et al. 1979). PWM (βr ) (Hosking and Wallis
1997) for a probability distribution with cumulative density
function, F and quantile function, x(F ) is given by βr =∫ 1
0 x(F )F rdF . The population L-moment is

λr+1 = ∑r
k=0 p∗

r,kβk, r = 0, 1, . . . , n − 1; (3)

where λ is the population L-moment, p∗
r,k is

(−1)r−k
(
r
k

)(
r+k
k

)
, n is the sample size.
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Fig. 1 Generalized distribution identification procedure

Equation (3) can be rewritten in terms of the expectations
of order statistics of a random variable, X, as

λr = 1

r

r−1∑

k=0

(−1)k
(

r − 1

k

)

E(Xr−k:r ),

r = 1, 2, . . . , n;
(4)

where E(.) is the expectation value. The first four L-
moments are given in terms of PWMs derived from (3), and
presented in (5)

λ1r=0 = β0,

λ2r=1 = 2β1 − β0,

λ3r=2 = 6β2 − 6β1 + β0,

λ4r=3 = 20β3 − 30β2 + 12β1 − β0

(5)

In practice, L-moments are estimated from the ordered
sample, x1:n ≤ x2:n ≤ · · · ≤ xn:n. The sample PWM, br is
presented in (6).

br = 1

n

n∑

j=r+1

(j − 1)(j − 2) . . . (j − r)

(n − 1)(n − 2) . . . (n − r)
xj :n,

r = 0, 1, 2, . . . , n − 1;
(6)

The general form of sample L-moment (l) in terms of
sample PWM is

lr+1 =
r∑

k=0

p∗
r,kbk, r = 0, 1, 2, . . . , n − 1; (7)

The first sample L-moment (l1) is the sample mean, a
measure of location. The dispersion measure of the sample
is provided by the second L-moment (l2), a scalar multiple
of Gini’s mean difference statistic (Hosking 1990; Ceriani
and Verme 2012). Sample L-moment ratios (tr ) are obtained

by dividing the higher order sample L-moments by the
dispersion measure (l2), tr = lr/ l2. These are dimensionless
quantities, independent of the units of measurement data.
The L-moment analogue of the coefficient of variation
(σ/μ), is L-coefficient of variance, τ

L−CV
= λ2/λ1 and it

varies as 0 ≤ τ
L−CV

< 1 (Hosking 1990; Hosking and
Wallis 1997).

2.3 Identification of distribution using L–moment
ratio

Similar to conventional moments, L-moments are used to
summarize the characteristics of the sample data. Many
researchers (Hosking 1990; Hosking and Wallis 1997;
Zafirakou-Koulouris et al. 1998; Adamowski 2000; Kumar
and Chatterjee 2005) have used L-moment ratio diagram
to describe the PDF. L-moment ratio diagram shown in
Fig. 2, is a plot of L-skewness vs L-kurtosis of standard
distributions such as uniform, normal, exponential, log-
normal, logistic, gumbel, generalized extreme value (GEV),
generalized pareto (GP) and gamma. It is useful to provide
simple explicit expressions for τ4 (L-kurtosis) in terms
of τ3 (L-skewness) for some widely used three-parameter
distributions of probability such as lognormal, gamma, GEV
and GP (Hosking and Wallis 1997). The L-moment ratio
of two-parameter distributions is shown in Fig. 2 as single
dots and mentioned in Table 1. Polynomial approximations
of the form τ4 = A0 + A1τ3 + A2τ

2
3 + · · · + A8τ

8
3 ,

have also been obtained and the coefficients are provided
in Hosking and Wallis (1997). Overall bound is the lower
bound on L-moment ratios of the all distributions obtained
while satisfying the constraints, λ2 ≥ 0, −1 < τ3 < 1 and
1
4 (5τ

2
3 − 1) ≤ τ4 < 1.
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Fig. 2 L-moment ratio diagram (Hosking 1990)

The approximations yield values of τ4 for a given τ3,
are accurate within 0.0005 provided that the range of τ3 is
−0.9 to 0.9. For GEV distribution, an accuracy of 0.0005 is
achieved only if the range of τ3 is −0.6 to 0.9 (Hosking and
Wallis 1997).

L-moment ratio diagram permits a visual indication of
which distribution maybe a good fit to the data. L-moment
ratios t3 and t4, computed from sample can be plotted in
the L-moment ratio diagram to see which distribution is the
closest. It is to be noted that our interest in the current work
lies in computing the probabilities correctly rather than
identifying the true parent distribution. Hence, we select
distribution that is closest to the sample L-moment ratio
plotted in Fig. 2. To understand the performance of the
proposed approach, we compare the distribution identified
through t3 and t4, to the actual distribution. In order to
select a suitable distribution from L-moment ratio diagram,
euclidean norm in (8) is used for the distributions that are
represented as points.

‖Edi‖2 =
√

(τ i
4 − t4)2 + (τ i

3 − t3)2 (8)

Table 1 L-moment ratio of distributions

Distribution L-moment ratio

L-skewness (τ3) L-kurtosis (τ4)

Uniform 0 0

Normal 0 0.1226

Exponential 0.3333 0.1667

Gumbel 0.1699 0.1504

Logistic 0 0.1667

where ‖Edi‖2 is the euclidean norm, i is the ith distribution
in the L-moment ratio diagram, (.)4 is the L-kurtosis, (.)3
is the L-skewness, τr is the population L-moment ratio, and
tr is the sample L-moment ratio. t3 and t4 are computed
from available scarce data. For the distributions that are
represented as curves in L-ratio diagram, the distance of the
(t3, t4) from the respective curve is computed as the value
of the curve evaluated at (t3, t4). The distribution with the
least distance is chosen as the best possible distribution. The
algorithm for the best distribution selection is provided in
Appendix 1. Once the PDF is chosen from the L-moment
ratio diagram, the Jensen-Shannon divergence is used to
compare the predicted PDF to the actual PDF.

3 Investigation strategy

The hypothesis in the current work is that L-moments are
robust compared to C-moments, from an estimation per-
spective and L-moments provide a better characterization
of the response PDF. We are interested in investigating
this for scarce samples (small sample size), especially in
the presence of extremes. We thus proceed as follows, for
scarce samples, PDFs are obtained using C- and L-moment
approaches and compared with the actual population PDF.
Extremes are then introduced in the scarce samples and the
PDFs are recomputed to be compared with the actual pop-
ulation PDF. Sample sizes considered in this study are 10,
25, 50, and 100. The Jensen-Shannon divergence is used as
a comparison metric. The process is repeated 100 times to
account for sampling variability.

3.1 Jensen-Shannon divergence

The Jensen-Shannon divergence (DJS) is a widely used
distance measure, to study the similarity between finite
number of probability distributions (Melville et al. 2005).
DJS can be understood as symmetrized extension of
Kullback-Leibler divergence (DKL) with finite bounds.
Sometimes, DJS is also called as the smooth version
of DKL. DKL is also a similarity measure between two
probability distributions but unbounded. DJS is presented
in (9)

DJS(P ||Q) = 1

2
DKL(P ||M) + 1

2
DKL(Q||M) (9)

where M = 1
2 (P + Q),

DKL(P ||M) = ∑
xεX P (x) log2

(
P (x)
M(x)

)
, P is probabil-

ity of actual distribution and Q is probability of distribution
to be compared with P . DJS is bounded between 0 and 1,
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given that DJS uses base 2 logarithm. DJS = 0 represents
identical distributions.

3.2 Incorporation of extremes

Extreme event or extremes are rare events which have very
less probability to occur but cannot be ignored as an outlier
(Abarbanel et al. 1992; Moustapha and Sudret 2019). The
impact of extremes is crucial in many areas of application,
such as environmental disasters (flood, climate change,
forest fire, etc.), finance (risk analysis, insurance losses),
engineering (structural, traffic analysis), and biomedical
(side effects of drugs) (Abarbanel et al. 1992; Alvarado et al.
1998; Davison and Huser 2015). In real-life scenarios or in
any engineering application, often only small samples are
available to perform the analysis. These samples need not
necessarily come as a result of design of experiment (DoE).
Sometimes, the small sample might include extremes and
are prone to be classified as outliers (erroneous data). But
extremes (belonging to the parent distribution) cannot be
excluded from the data set. In small sample, omitting data
will lead to significant information loss. Hence, data points,
which are significantly different from other samples or has
less probability, need to be accounted in data analysis. To
understand the effect of extremes and the performance of
proposed approach, we deliberately introduce extremes in
the scarce data, for the examples discussed. 106 samples
from the parent distribution are generated and the maximum
value is considered as extreme. This extreme is then
incorporated into the scarce samples.

4 Results and discussion

In this section, we demonstrate the proposed approach on
(i) a suite of distributions that covers all type of tails, (ii)
uncertainty quantification of sheet metal manufacturing pro-
cess, (iii) design of speed reducer, and (iv) probabilistic
fatigue life assessment. The study on the performance of
proposed approach on different types of tail provides a com-
prehensive perspective on the superiority of the approach
on data from any type of distribution. Section 4.2.1 dis-
cusses the proposed approach on a single variable problem
where uncertainty quantification and propagation are also
discussed. Section 4.2.2 discusses the proposed approach
on large dimension example. Section 4.2.3 contains real-life
data on which the proposed approach is demonstrated, to
arrive at critical decisions.

4.1 Statistical distributions

The tails of any probabilistic distribution can be approxi-
mated by a generalized pareto distribution (GPD). ψ , the

scale and ξ , the shape parameters characterize the GPD
(Ramu et al. 2010). ξ plays a significant role in quantifying
the weight of the tail or tail heaviness. Probability distribu-
tions can be classified as light (ξ < 0), medium (ξ = 0),
and heavy tail (ξ > 0) distributions based on the tail heav-
iness. Detailed description of ξ and the relation with tail
heaviness of the probability distributions is discussed in the
Appendix. Since it is impractical to test the approach on all
possible distributions, we classify the distributions based on
tail heaviness and demonstrate the superiority of the method
on all possible types of tails. The distributions, their shape
(ξ ), and size parameters are mentioned in Table 2. The PDF
and CDF of the distributions listed in Table 2 are presented
in Fig. 3a and b respectively. Here, we study the effect
of extremes in scarce data on identifying the PDFs using
samples of sizes 10, 25, 50, and 100.

Samples for all the distributions listed in Table 2 are
generated and the corresponding C- and L-moments are
computed. With the help of the Pearson system and L-
moment ratio diagram, PDFs are predicted. The predicted
PDFs are compared to the parent PDF using DJS . In the
sample data, an extreme is inserted to study its effect and
the PDFs are repredicted with the extreme and compared.
This process is repeated 100 times. Figure 4 presents the
performance of the proposed approach compared to C-
moment approach for light tail. The figure is separated into
four columns, representing different sample sizes. In each
column, first two boxes are the results for sample with
extremes (ex: sample size 11) and the rest of the two boxes
are the results of sample with extremes removed (ex: sample
size 10). From Fig. 4, it can be observed that the L-moment
approach while considering the extreme has minimum DJS

compared to its C-moment counterpart. This implies that L-
moment approach is robust to extremes. When the sample
size increased, the variability in DJS decreased as expected.
However, with samples as scarce as 10 or 25, L-moments
certainly works far better while including extremes. The
values corresponding to median and quartiles are listed
in the Appendix, for the interested reader. For a sample
size of 10, the median values of DJS based on L-moment
approach is lesser than the C-moment approach. This clearly
shows that PDF identification using L-moment approach
works better. The interquartile range is lesser for L-moment
approach, implying they perform better under the sampling
variability. For larger sample size, the interquartile range
is less for L-moment approach compared to C-moment
approach. This indicates that L-moment approach works
well when sample size are increased. The results for
medium tail are presented in Fig. 5. The performance of
L-moment approach is similar to that of in the light tail
distribution. However, the effect of extreme in C-moment
is large, even in a sample of size 100. The results of
heavy tail I and heavy tail II are presented in Figs. 6
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Table 2 Details of distributions
Distribution Type of tail Shape parameter (ξ ) Distribution parameters

Mean Standard deviation

Normal Light (ξ < 0) −0.14 2 2

Exponential Medium (ξ = 0) 0 2 -

Lognormal Heavy I (ξ > 0) 0.11 2
√
2

Lognormal Heavy II (ξ > 0) 0.65 0.25
√
2

Fig. 3 PDF, CDF, and GPD of distributions. (a) PDF of distributions (b) CDF of distributions (c) GP t for selected distributions

Fig. 4 JS divergence for light
tail

Fig. 5 JS divergence for
medium tail
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Fig. 6 JS divergence for heavy
tail I

and 7 respectively. In heavy tail II case, there is large
difference in the performance of C-moment and L-moment
approach, even for samples as large as 100. The L-moment
approach performance is similar to the other distribution
types establishing the fact that L-moments perform better
in terms of identifying the distribution in scarce data that
includes extreme. Though L-moment approach works better
compared to its C-counterpart, the difference is marginal
between L-moment with and without the extremes. For
heavy tail II, it can be seen that L-moment with extremes
performs the best, in terms of variability. Hence using
L-moment instead of C-moment approach is necessarily
a better choice but within L-moments, whether to leave
out the extreme or not might depend on tail heaviness.
Nevertheless, it is important to note that one does not
possess the information on tail heaviness with scarce data
and one does not loose much by considering the extremes
while using the L-moments. Information about quartile
values for all distributions are presented in Appendix.
Effects of two extremes (instead of 1 discussed above) in
the scarce samples are also studied and the corresponding
PDF comparison results are presented in the Appendix. The
results indicate that PDF identified using L-moment ratio

diagram has less DJS , strengthening our earlier conclusion
on the performance of L-moment approach.

4.2 Engineering examples

In this section, we discuss three engineering examples to
demonstrate the proposed approach.

4.2.1 A flat rolling process: sheet metal manufacturing

Flat rolling process is used to manufacture metal sheets
or plates. In this process, the metal is fed between the
working rolls or rollers and the distance between the rolls
is used to obtain the desired thickness of the metal sheet.
The material is pulled by the rollers and eventually results
in elongation with reduced thickness. The uncertainty in
friction between rollers and the material affects the outcome
of the manufacturing process. The process illustrated in
Fig. 8 can be performed either below (cold rolling) or above
(hot rolling) the material temperature.

The aim of this process is to minimize the number of
passes required to achieve final plate thickness (Anderson
and Mattson 2012). The total deformation possible in a

Fig. 7 JS divergence for heavy
tail II
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Fig. 8 Flat rolling metal sheet manufacturing process

single pass depends on the friction between the rollers and
the material at the interface. Factors such as rolling speed
(V ), material properties, surface finish of the rollers cause
friction, and lubricants are used to control friction during the
process. Maximum change in thickness that can be achieved
in a single pass, ΔH is presented in (10)

ΔH = μ2
f R (10)

where μf is the friction coefficient between the working
rollers and the sheet metal, and R is the radius of rollers. In
this example, we treat μf as random variable that follows
a generalized pareto distribution (GPD). The GPD of μf

is depicted in Fig. 9 and the parameters are location, μ =
0.282, scale, σ = 0.103, and shape, ξ = −0.325. We
consider R = 40.6 cm.

We intend to study the effect of extremes in uncertainty
quantification and propagation in this example. For
uncertainty quantification, we pretend that the distribution
of μf is not known and only scarce samples are available.
Using scarce samples of μf , we compute ΔH and its
distribution is predicted using the C- and L-moment
approach. This process is repeated 100 times to account
for sampling variability. One out of the 100 repetition is
presented in Fig. 10 for illustration purpose. The PDFs
obtained for various sample sizes in the presence of
extremes based on L-moment ratio diagram and Pearson
system approaches are presented in Fig. 10. The plots
clearly indicate the superiority of the L-moment approach

Fig. 9 Distribution of coefficient of friction

and in obtaining approximations closest to the exact PDF.
DJS results are presented in Fig. 11. As observed in earlier
examples, L-moment approach is superior in identifying
the distributions compared to C-moment approach. For
uncertainty propagation, we predict the distribution of
μf using limited samples and draw 106 samples from
the predicted distribution, propagate it through (10), and
compute the corresponding ΔH . In this example, we know
the explicit expression of the system to propagate the
uncertainties. When the expression is not known, implicit
metamodels or response surfaces can be constructed and
uncertainties can be propagated through them.

Finally, the PDF ofΔH is obtained from this 106 samples
and compared against the original PDF. DJS of L-moment
approach shows a trend similar to previous examples and
is presented in Fig. 12. Similarly, effects of two extremes
present in the scarce data are studied. The results presented
in the Appendix indicate the superiority of the L-moment
approach.

4.2.2 Design of speed reducer with 7 variables

Speed reducers are used in industrial and domestic machin-
ery to safely and efficiently reduce speed of the electric
motors. It is also an integral part of gearbox of a mechani-
cal system. Speed reducer adjusts the motor speed to ensure
that a machine operates correctly (Lin et al. 2013; Shi et al.
2013; Chatterjee et al. 2017). Figure 13 presents the vari-
ables of the speed reducer which are face width (x1), module
of teeth (x2), number of teeth on pinion (x3), length of first
shaft between bearings (x4), length of second shaft between
bearings (x5), diameter of first shaft (x6), and diameter of
second shaft (x7). The aim is to minimize the total weight of
the speed reducer which is computed as presented in (11).
In the speed reducer design, all the design variables are con-
sidered to follow a normal distribution. The description of
all variables are mentioned in Table 3 and coefficient of
variation (CoV) is 10%.

W = 0.7854x1x
2
2 × (3.3333x2

3

+ 14.9334x3 − 43.0934)

− 1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7)

+ 0.7854(x4x
2
6 + x5x

2
7)

(11)

In this example, different number of extremes are incor-
porated at a time. The variables in which the extreme is
generated is randomly picked. That is, when only 1 extreme
is added, it is randomly added to one of the 7 variables.
Similarly, extremes are added to 3 variables at a time, 5
variables at a time, and all the random variables at a time.
Figure 14 presents the results of distribution obtained using
C- and L-moments for extremes added to one random vari-
able. It indicates that results obtained using L-moments are
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Fig. 10 PDFs of maximum change in thickness, ΔH . (a) 10 samples (b) 25 samples (c) 50 samples (d) 100 samples (e) 10,000 samples

better compared to C-moments for all sample sizes. Within
L-moments, the median and variability ofDJS are less when
the extremes are considered. For the other cases presented
in Figs. 15, 16, and 17, similar observations are made. In
all cases, L-moment approach is robust to the presence of
outliers. The median and variability of DJS in L-moment

approach is less than the median and variability ofDJS in C-
moment counterpart, for all the cases. Within, the L-moment
approach, sometimes the sample with extremes perform
better than the sample without extremes. In particular, the
difference between the L- and C-moment approaches are
large when extremes are considered and included in more

Fig. 11 JS divergence -
uncertainty quantification of
ΔH of flat rolling sheet metal
manufacturing process
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Fig. 12 JS divergence -
uncertainty propagation of ΔH

of flat rolling sheet metal
manufacturing process

variables. The results of two extremes in the scarce data are
presented in the Appendix and it is clear that L-moment
approach works better than C-moment for all the cases.

In the examples discussed above, we have the prior
knowledge of the exact PDF to evaluate the performance of
the two approaches. However, in reality, one cannot estimate
the DJS . Nevertheless, it is established that the L-moment
approach does better or as good as the C-moment approach
because of the linear combination of order statistics as
against the moment computation in classical approach.
The variability in the estimate could be computed using
approaches such as bootstrap.

4.2.3 Probabilistic fatigue life assessment

The stress-life (S-N) curve is used to describe fatigue life
and it is experimentally measured but usually dispersed
in the life axis. Hence, it is preferable to probabilistically
measure the fatigue life. Often probabilistic stress-life (P-S-
N) curve is used to characterize the uncertainty in the fatigue
life. P-S-N curve can be interpreted as a family of S-N
curves in which each curve reflect a different % of survival
of specimens. Researchers usually model the dispersion by

Fig. 13 Speed reducer design

a log-normal distribution (Hu et al. 2014; Ramu and Arul
2016).

In the current work, P-S-N for ultra-high cycle fatigue
(UHCF) vibration tests are derived from scarce samples
(fewer experiment data) of screws of strength class 8.8.
The experimental data for different load cases 2.5 kN,
4 kN, and 7 kN are provided in Schäfer (2008) and the
experimental data size of the three load cases are 101, 500,
and 103 respectively. In Schäfer (2008), experimental data
is assumed to follow normal distribution but as per the
Bayesian inference criterion (BIC) and Akaike information
criterion (AIC), the experimental data does follow a
lognormal distribution. Hence, assuming a distribution a
priori might lead to erroneous results. Here, we pretend
that only scarce samples are available and are interested in
finding the different percentiles.

Sample sizes used in this study are 10, 15, 20, and 25.
Samples are randomly drawn from the experimental data
and the detailed sample selection process is mentioned in
the Appendix. The maximum value in the experimental data
is considered as extreme for each load case. Probabilis-
tic distributions are identified from C- and L-moment
approaches and the survival percentiles of 90 and 95 of sam-
ple S-N are computed. Survival % obtained from scarce

Table 3 Description of random variables

Design variables Distribution parameter Lower bound Upper bound

Mean (μ)

x1(cm) 3.1 2.6 3.6

x2(cm) 0.75 0.7 0.8

x3 23 17 28

x4(cm) 7.8 7.3 8.3

x5(cm) 7.8 7.3 8.3

x6(cm) 3.4 2.9 3.9

x7(cm) 5.25 5 5.5
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Fig. 14 JS divergence - extreme
at 1 variable at a time

Fig. 15 JS divergence - extreme
at 3 variables at a time

Fig. 16 JS divergence - extreme
at 5 variables at a time
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Fig. 17 JS divergence - extreme
at 7 variables at a time

samples with extremes are compared with the ones obtained
from the population. Error metric used in this study is ratio
of sample percentile (PS) to the population percentile (PP ),
which is RP = PS/PP . This process is repeated for 100
times to account for sampling variability.

Figure 18 presents the ratio of the 90th percentile
obtained from the sample distribution to the parent dis-
tribution for different sample sizes. L-moment approach
works well when the extremes are present in the scarce
samples and gives the number of cycles value closer to
the population for all the percentiles. While designing with
fatigue life as a design criteria, one needs to account for
the variability in the life estimates and usually require
percentiles of life that depends on how critical is the
application. Similar observations are obtained in 95th per-
centile case and the results are presented in the Appendix.
Median and the confidence bounds of the all cases are pro-
vided in Appendix (25th and 75th percentile of % survival)
for 90th and 95th percentiles. Predicted fatigue life from
the L-moment approach is closer to the population estimate
compared to the C-moment approach.

5 Conclusion

L-moments based approach is proposed to identify PDF and
estimate probabilistic quantities, for uncertainty quantifica-
tion, with scarce data and in the presence of extremes. It
is found through numerical examples that L-moments are
very robust to extremes, compared to C-moments, in esti-
mating probabilistic quantities. L-moment ratio diagram is
adopted to identify closest possible distribution. The iden-
tified distributions are compared to the original distribution
using JS divergence. The proposed approach is demon-
strated on a suite of statistical distribution covering all type
of tails and three engineering examples. In all examples,
L-moment approach performs better than the C-moment
approach. Though the variability of the estimates cannot be
obtained in real-life problems, approaches such as bootstrap
can be used to obtain confidence bounds, which is scope
of future work. The scope of application of the proposed
approach was discussed on several engineering examples
covering quantile estimation and large variable uncertainty
propagation.

Fig. 18 Comparison of 90th
survival % of sample
distribution to parent distribution
with different sample sizes
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Appendix 1: Distribution selection based
on L-moment

Based on generalized distribution identification procedure
mentioned in Fig. 1, the step-by-step distribution selection
process based on L-moment ratio diagram is provided in
Algorithm 1.

‘x’ ‘y’

Appendix 2: Statistical distributions

2.1 Shape parameter and tail heaviness

Generalized pareto distribution (GPD) is used to approxi-
mate the tails of any parent distribution. ψ , the scale, and ξ ,
the shape, parameters characterize the GPD fit (Ramu et al.
2010). ξ plays a significant role in quantifying the weight
of the tail or tail heaviness. Probability distributions can be
classified as light (ξ < 0), medium (ξ = 0), and heavy tail
(ξ > 0) distributions based on the tail heaviness. Let G be
the performance measure which is random and u is thresh-
old of G. The observations of G that surpass u are called,
exceedance, Z in the following (12).

Z = G − u (12)

The conditional CDF of exceedance is modeled by GPD
and denoted by F̂ ξ,ψ(Z). The distribution function of (G −
u) is mentioned in (13).

F̂ ξ,ψ(Z) =

⎧
⎪⎨

⎪⎩

1 −
(
1 + ξ

ψ
Z

)− 1
ξ

ifξ 	= 0

1 − exp
(
−Z

ψ

)
ifξ = 0

(13)

ξ for exponential distribution is approximately 0. Similarly,
ξ is lesser than 0 for light tail and greater than 0 for heavy
tail. Figure 19 shows different CDF of tails approximated
by GPD of the selected distributions.

2.2 Results—One extreme

In Tables 4, 5, 6, and 7, the quartile (Q) values of the DJS

are presented which are obtained for different sample sizes
based on the Pearson system and L-moment ratio diagram.
In all cases, it can be observed that L-moment approach
works better.

Fig. 19 CDF and shape parameter values of selected distribution
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2.3 Results—Two extremes

Two extremes are incorporated in the samples in this study.
106 samples from the parent distribution are generated and
the maximum value and the value at 9.9× 105 is considered
as extremes in the ordered data. In Tables 8, 9, 10, and 11,
and Figs. 20, 21, 22, and 23, the results are presented for two
extremes case. For all the sample sizes, L-moment approach
work better than the C-moment approach.

Appendix 3: Flat rollingmetal sheet
manufacturing process

3.1 Distribution selection process based on
L-moment

As mentioned in Algorithm 1, the step by step distribution
selection process is demonstrated for this example. In this
example, coefficient of friction (μf ) is considered as ran-
dom variable and follows the distribution mentioned in
Fig. 9. Sample size considered to demonstrate the distribu-
tion selection process is 100.

1. Samples are generated and the response, maximum
change in thickness (ΔH) is computed using (10).

2. L-moment ratios L-skewness (t3) and L-kurtosis (t3) are
estimated and the values are 0.3, 0.19. Estimated sample
L-moment ratios are plotted in L-moment ratio diagram
and shown in Fig. 24.

3. Shortest distance is computed for all possible distribu-
tions in the L-moment ratio diagram and presented in
Table 12.

4. Generalized pareto distribution is considered as the best
possible distribution which has less distance compared
to all other distributions.

5. Parameters of generalized pareto distribution obtained
from the sample and corresponding PDF is plotted with
the actual PDF (sample size for population is 10000),
presented in Fig. 25.

6. Distributions obtained from sample is compared with the
population distribution usingDJS. TheDJS value is 0.002.

In Tables 13 and 14, the quartile (Q) values of the DJS are
presented, which are obtained for different sample sizes. L-
moment approach works well in all cases compared to the
C-moment approach.

3.2 Results—Two extremes

In this section, results of the two extremes in the scarce data
are presented. The DJS obtained for various sample size are
presented in Figs. 26 and 27 and the correspondingQ values
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Fig. 20 JS divergence for light
tail

Fig. 21 JS divergence for
medium tail

Fig. 22 JS divergence for heavy
tail I

524



L-moments based uncertainty quantification...

Fig. 23 JS divergence for heavy
tail II

are provided in the Tables 15 and 16. Similar observations
are obtained as mentioned in one extreme case.

Appendix 4: Design of speed reducer

4.1 Results—One extreme

In this section, the quartile (Q) values of the DJS are
presented for different sample sizes. The Q values clearly
indicate that L-moment approach are less affected by
the sampling variability and works better than C-moment
approach.

Fig. 24 L-moment ratio diagram with sample L-moment ratio

4.2 Results—Two extremes

DJS results are presented in Figs. 28, 29, 30, and 31 and the
corresponding Q values are presented in Tables 21, 22, 23,
and 24. The results clearly show that the superiority of the
L-moment approach over C-moment approach.

Appendix 5: Probabilistic fatigue life
assessment

In this section, probabilistic fatigue life assessment for
different sample sizes are presented. μ + 0.5σ of fatigue
life is considered the upper bound and the minimum value
of ordered experimental data is considered as the lower
bound for scarce sample selection. Samples are randomly
drawn between the upper and lower bound of the ordered
experimental data for all load cases. The survival %
comparison results are presented in Fig. 32. The confidence
bounds of 90th and 95th survival % are provided in
Tables 25, 26, 27, and 28. In all cases, L-moments approach
predicts the probability of fatigue life closer to the actual for
different loading conditions.

Fig. 25 PDF obtained with sample size 100
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Fig. 26 JS divergence -
uncertainty quantification

Fig. 27 JS divergence -
uncertainty propagation
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Fig. 28 JS divergence - extreme
at 1 variable at a time

Fig. 29 JS divergence - extreme
at 3 variables at a time

529



D. Jayaraman and P. Ramu

Fig. 30 JS divergence - extreme
at 5 variables at a time

Fig. 31 JS divergence - extreme
at 7 variables at a time
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Fig. 32 Comparison of 95th
survival % of sample
distribution to parent distribution
with different sample sizes
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