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Abstract
When designing a sport utility vehicle (SUV), designers strive to improve the vehicle’s rollover crashworthiness while avoiding a
significant increase in its weight. To aid in optimizing such a trade-off, this paper proposes a multi-disciplinary and multi-
objective hybrid optimization algorithm that combines particle swarm optimization and the artificial immune method. First, the
SUV structure’s influence on body mass and rollover crashworthiness is studied using contribution analysis, and structural
improvements are discussed according to Federal Motor Vehicle Safety Standard 216. Building on the analysis results, the
SUV’s rollover crashworthiness and weight optimization model are proposed. Radial basis function neural network and a genetic
algorithm are used to build and optimize surrogate models of total weight, maximum contact force, and torsion frequency. The
proposed algorithm then utilizes particle swarm and artificial immune to seek Pareto solutions that optimize SUV structure.
Finally, the technique for order preference by similarity to ideal solution method determines a final solution from Pareto-optimal
solutions. Compared to previous studies, the results show that the proposed hybrid optimization algorithm improves the Pareto
solution sets’ diversity and distribution uniformity, enhances SUV rollover crashworthiness, and reduces SUV structure com-
ponents’ weight.

Keywords SUV rollover crashworthiness . Weight reduction . Material structure integrated design . Multi-disciplinary and
multi-objective optimization . Hybrid optimization algorithm

1 Introduction

In automotive design, safety is essential. Although vehicle
rollovers are relatively rare, their casualty rate is very high
compared with other collision accidents (George et al.
1996). According to the National Highway Traffic Safety
Administration (NHTSA) statistics for Administration 2018,
there were more than 6 million vehicle crashes in the USA,
including more than 48 thousand vehicle rollovers. In total,
vehicle rollovers caused 17.9% of all crash fatalities (NHTSA
2018). Large vehicles and sport utility vehicles (SUVs) are
especially prone to rollover due to centroid height. The
SUV’s rollover rate is more than nine times that of cars, and

the chance of casualties is much higher (Mohammad et al.
2019). Consequently, the SUV’s passive safety improvement
has become an important research topic (Bai et al. 2019;
Trajkovski et al. 2018). In addition, the severity of environ-
mental pollution prompted studies on vehicle emission reduc-
tion through a decrease in vehicles’ weight (Zhu et al. 2009;
Gunddolf et al. 2012). Thus, SUVs’ rollover crashworthiness
improvement and weight minimization emerged as a critical
trade-off.

Numerous studies are aimed at simultaneous crashworthi-
ness improvement and weight reduction. Cui et al. (2011)
optimized the material combinations for 20 body structures,
improving the front collision crashworthiness and reducing
the body mass by 30.9 kg. Xiong et al. (2018) employed a
contribution analysis to detect impactful body parts in head-on
collisions. The authors used particle swarm optimization to
improve crashworthiness and reduce body weight and
production costs. Kiani et al. (2014) selected 22 vehicle parts
as design variables and formulated a mass minimization
problem under crash and vibration constraints. The problem
was then solved using sequential quadratic programming. Lee
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et al. (2018) studied the relationship between side-impact
crashworthiness and B-pillar topology in a vehicle rollover.
As a result, the authors proposed an optimized B-pillar that
does not significantly diminish the crashworthiness but re-
duces the pillar’s weight. Choi et al. (2018) analyzed the
SUV’s top and side structures’ crashworthiness and found that
it deviates from the Federal Motor Vehicle Safety Standard
(FMVSS) 216. The conducted optimization considered sever-
al structures’ dimensions as variables, maximum contact force
as a constraint, and weight as the objective.

Vehicle collision is a typical nonlinear problem. Since tra-
ditional optimization algorithms perform poorly on such non-
linear, complex problems, researchers often rely on intelligent
optimization algorithms to tackle vehicle collision optimiza-
tion problems (Perez and Behdinan 2007; Gu et al. 2013;
Khalkhali et al. 2014). One of the most popular global opti-
mization methods is particle swarm optimization (PSO)
(Kennedy and Eberhart 1995). However, PSO is prone to
falling in local optima and may result in a non-uniform solu-
tion distribution. Another popular optimization algorithm is
the non-dominated sorting genetic algorithm (NSGA) – II
(Deb et al. 2000). Due to its speed and good convergence
properties, NSGA-II became a benchmark multi-objective op-
timization algorithm. (Hou et al. 2014) utilized NSGA-II for
multi-objective optimization of vehicle body’s side parts.
Wang et al. (2016a) considered the subframe’s weight, first-
order natural frequency, and maximum stress as three conflict-
ing objective functions. The improved NSGA-II algorithm
was used to obtain the Pareto solution set. The technique for
order preference by similarity to ideal solution (TOPSIS) was
employed to select the appropriate optimal solution from the
Pareto solution set. Chen et al. (2017) utilized the multi-index
comprehensive balance analysis method to identify the parts
with significant influence on crash outcomes. The body struc-
tures’ thickness and material were optimized using a genetic
algorithm, improving the vehicle body’s energy absorption by
8.3% and reducing the weight by 33.32%. Jin et al. (2017)
proposed a hybrid NSGA-II algorithm that obtains a more
promising Pareto front than the original NSGA-II algorithm.
The authors applied the hybrid algorithm to the process plan-
ning problem. Wang et al. (2016b) employed a multi-
objective collaborative optimization method to minimize the
vehicle body weight while maintaining crashworthiness.

Many studies combine several optimization algorithms to
increase the optimization efficiency. For example,
Afshinmanesh et al. (2005) proposed a new binary PSOmeth-
od based on biological immune theory. Yildiz and Solanki
(2012) combined the immune algorithm with PSO to filter
and update PSO every 30 iterations, maintaining PSO’s diver-
sity. Comparison with existing algorithms proved the algo-
rithm’s suitability for complex engineering problems. In
(Yildiz 2009), a hill-climbing local search was combined with
the immune algorithm to improve the calculation efficiency

and avoid falling into a local optimum. Tan et al. (2014) inte-
grated PSO and a new chaotic search method to solve the
nonlinear integer and mixed-integer programming problems.
Azzouz et al. (2017) tackled machine assignment and opera-
tion sequencing problems by proposing a hybrid algorithm
that combines a genetic algorithm and an iterated local search.

Every optimization algorithm has not only its shortcomings
(e.g., PSO’s proneness to falling in a local optimum), but also
unique advantages. Therefore, hybrid optimization algorithms
emerged as a research trend in recent years. In a similar vein,
this work develops a hybrid algorithm for SUV structure op-
timization. The main contributions of this paper are the
following:

1. Building on the SUV rollover crashworthiness analysis, a
multi-objective and multi-disciplinary SUV rollover
crashworthiness and weight optimization is performed
using the material structure integrated design method.

2. Radial basis function (RBF) neural network and a genetic
algorithm are utilized to improve the overall accuracy of
surrogate models describing the total weight, maximum
contact force, and SUV structure’s torsion frequency.

3. A hybrid optimization algorithm that combines particle
swarm with artificial immune is proposed to enhance
SUV rollover crashworthiness and minimize the weight.
The algorithm mitigates PSO’s limitations regarding the
local optima susceptibility and reduces the artificial im-
mune’s computational cost.

The paper is organized as follows. In Section 2, the finite
element (FE) SUV model is established and verified. The
SUV’s side and top body structures’ contribution analysis
highlights the parts critical for crashworthiness and weight.
In Section 3, a multi-objective and multi-disciplinary SUV
optimization problem is formulated. Section 4 establishes a
surrogate model using the optimal Latin hypercube design
(OLHD) method and RBF neural network. The surrogate
model’s accuracy is improved by utilizing a genetic algorithm
to optimize the RBF neural network’s hyperparameters.
Section 5 introduces a hybrid particle swarm with the artificial
immune optimization algorithm. The algorithm increases the
solutions’ distribution uniformity, diversity, and precision.
Finally, Section 6 concludes the paper.

2 SUV rollover crashworthiness analysis
and improvement

While SUV structure is complex, most components have little
influence on rollover crashworthiness. This section analyzes
the SUV components’ contributions to rollover crashworthi-
ness and weight and selects components essential for efficien-
cy improvement and calculation cost reduction.

Z. Jin et al.1162



2.1 Finite element SUV model

In rollover accidents, the SUV’s top structure plays a signifi-
cant role in reducing passenger injury, especially to the head
and neck of the human body. Therefore, NHTSA introduced
FMVSS 216 to evaluate the vehicle roof structure’s collapse
resistance. The experimental method prescribed by FMVSS
216 is shown in Fig. 1.

Previous research utilized the FE method for roof crash
simulation and determined the rigid plate speed could be set
to 2235.2 mm/s. The maximum contact force between the
rigid plate and vehicle roof could was as an important indica-
tor of SUV rollover crashworthiness when the rigid plate
moved forward within 127 mm (Walczak et al. 1999).

Figure 2a shows the NHTSA’s FE SUV model. The US
national collision analysis center carried out numerous
crash simulations and proved the model’s reliability in col-
lision simulations (Jeong et al. 2008). The NHTSA’s FE
SUV model cons is t s of 923 par t s and inc ludes
714,205 units and 724,628 nodes. However, many parts
have little impact on SUV’s rollover crashworthiness per-
formance (e.g., chassis, wheels, engine, and SUV’s interi-
or). Therefore, the FE SUV model is simplified to reduce
the calculation cost (Fig. 2b). The simplified model has
350,486 elements and 354,531 nodes, i.e., 50.93% and
51.07% reduction, respectively.

The SUV roof crash was simulated using the simplified
model. The change in the contact force between the rigid plate
and vehicle roof is shown in Fig. 3. Compared to the experi-
ment results, the simulated contact force is only slightly re-
duced. The maximum simulated contact force is 46.7 kN,
which is 1.68% less than NHTSA’s results. Thus, the exper-
iment verified the simplified model’s validity in SUV rollover
crashworthiness studies.

2.2 Contribution analysis of SUV structure
components

Contribution analysis relies on statistics to determine the mag-
nitude of each variable’s influence on the performance, con-
sequently enabling detection of components critical for the
SUV rollover crashworthiness and weight.

Fig. 1 FMVSS 216 experimental
method

a) 

b) 

Fig. 2 FE SUV model. a NHTSA’s SUV model. b Simplified SUV
model
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Linear contribution analysis determines correlations be-
tween component variables and rollover crashworthiness.
The collected samples for each variable serve to establish a
mathematical relation between input and output. Then, the
approximate polynomial can be defined as:

f x1; x2;…; xNð Þ ¼ aþ ∑
N

i¼1
δixi þ ∑

N

i¼2
∑
i−1

j¼0
hij xi; xið Þ þ ε ð1Þ

where f (x1, x2, ..., xN) is the objective function, N is the num-
ber of variables, a represents the total average value, hij is the
interaction coefficient, and ε denotes the error. δi is the deter-
mined effect coefficient and represents the ith variable’s linear
contribution. The variable’s contribution to SUV performance
(denoted CPi) can be expressed as a percentage:

CPi ¼ δi

∑
N

i¼1
δij j

� 100% ð2Þ

Due to the vehicle structure’s symmetry (Fig. 4), thirteen
components were selected for the contribution analysis. These
components are significantly deformed during the rollover.
Multivariate influence is analyzed using the orthogonal exper-
iment method. The components’ thickness is varied starting
from the initial thicknesses given in Table 1. The variables
range from 0.7 to 1.3 times the initial thickness. In this man-
ner, three levels are obtained: the maximum, minimum, and
initial thickness. Finally, an orthogonal table L27 (313) is
generated.

Based on the L27 (313) table, 27 simulation experiment
groups are conducted utilizing the simplified FE SUV model.
The maximum contact force between the rigid plate and vehi-
cle roof (Fmax) and the total SUV components’ weight (Ws)
are collected from each experiment. Furthermore, each com-
ponent’s contributions are obtained using (1) and (2) and
shown in Fig. 5.

As seen in Fig. 5a, components C1 and C2 contribute over
20% to maximum contact force. Components C3, C6, C7, C8,

and C9 contribute over 4.5% each, whereas the remaining
components’ contributions are less than 3%. Thus, an increase
in C1 and C2 thickness can greatly improve SUV rollover
crashworthiness, but varying C4, C5, and C10–C13 have a neg-
ligible impact.

Similarly, Fig. 5b shows that C1, C2, and C9 each contrib-
ute over 7.8% to the total SUV components’ weight.

2.3 SUV rollover crashworthiness improvement

The results in Section 2.2 show that modifying the A-pillar
(i.e., component C3) and B-pillar (composed of components
C7 and C8) may improve SUV rollover crashworthiness.
During SUV rollover, the severe bending deforms A- and B-
pillars, but only a local yielding occurs. Therefore, reinforcing
plates are added to the local yielding failure position to im-
prove the component’s bending resistance (Fig. 6). The rein-
forcing plates are made from high-strength steel with a yield
limit of 480 MPa.

Next, SUV rollover simulations are repeated using the lo-
cally improved A- and B-pillars. The maximum contact force
between the rigid plate and vehicle roof increased by 16.7%
(i.e., to 54.5 kN), while the total SUV components’ weight
increased by 1.05 kg. These results show that the reinforcing
plates improved SUV rollover crashworthiness to a limited
extent but at the expense of an increase in the SUV’s weight.

Since SUV components significantly influence the vehi-
cle’s dynamic performance, the excessive body mode change
should be prevented. The body mode affects the ride comfort,
especially the first-order torsion mode. Therefore, the vehicle
body’s torsion frequency (fq) is selected to evaluate the SUV
components’ influence on ride comfort.

The original first torsion modal shape is shown in Fig. 7a.
The torsion frequency is 33.45 Hz. The local A- and B-pillars’
improvement has a small effect on the first torsion modal
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shape (Fig. 7b), where the obtained the first torsion frequency
is 33.56 Hz. Thus, adding stiffeners to A- and B-pillars does
not significantly hamper the ride comfort.

3 SUV rollover crashworthiness and weight
optimization

The obtained improvements to SUV rollover crashworthiness
are limited because C3, C7, and C8 contribute to the maximum
contact force far less than C1, C12, and C9. The contribution
analysis shows that, while increasing C1–C3 and C6–C9

thickness significantly improves crashworthiness, it also dra-
matically increases the total SUV weight. Thus, there is a
trade-off between SUV rollover crashworthiness and weight.
This section proposes a multi-objective optimization model
that tackles this problem.

Following the conducted analysis, C1–C3 and C6–C9 com-
ponents’ thicknesses are selected as variables. In addition,
since local improvements to A- and B-pillars increase the
SUV rollover crashworthiness, the thickness of reinforcing
plates added to A- and B-pillars may replace the C3, C7, and
C9 thickness. Thus, six design variables (denoted T1–T6) are
selected for the parameters’ optimization (Fig. 8).

Aluminum and magnesium alloys have been widely used
in the automotive industry. Their use can greatly decrease
SUV weight, improve static and dynamic performance, and
promote crash safety. Table 2 shows the magnesium and alu-
minum alloys’mechanical properties. Following the conduct-
ed analysis (Fig. 5b), components’ C1, C2, and C9 yield
strengths are selected as material variables (denoted M1, M2,
and M3, respectively), as shown in Fig. 8.

The objective function is defined with respect to Ws and
1/Fmax. Several constraints are set to regulate the vehicle
body’s torsion mode and rollover crashworthiness. Formally,
the multi-disciplinary and multi-objective optimization model
for SUV rollover crashworthiness and weight is expressed as:

find T1; T 2; T3; T4; T 5; T6;M 1;M 2;M 3ð Þ
minWs; 1=Fmax

s:t 32:5Hz≤ f q≤35:5Hz
Fmax≥58:8kN
1:4mm≤T1; T2; T3≤2:2mm
1:2mm≤T4≤1:8mm
1mm≤T5≤1:6mm
1:16mm≤T6≤1:76mm
M1;M2;M3∈ magnesium; aluminumð Þ

8>>>>>>>>>>><>>>>>>>>>>>:
ð3Þ

4 SUV rollover crashworthiness and weight
surrogate model

Due to large deformations in SUV components, there is a
strong nonlinear relationship between the components’ pa-
rameters and crash performance, which cannot be easily
expressed with formulae. By relying solely on the FE model
to optimize the structural parameters, high calculation costs
are obtained. RBF neural network has strong fault tolerance,
robustness, adaptability, and ability to handle highly nonlinear
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Fig. 5 SUV components’ contribution to maximum contact force and
total weight. a Maximum contact force. b Total weight

Table 1 The components’ initial thickness

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

Initial thickness (mm) 0.9 0.9 1.2 1.3 1.22 1 1.36 1.1 0.95 0.98 0.79 2.25 2.24
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problems. Thus, it is commonly employed to build surrogate
models using mass, impact force, and mode (Wang et al.
2017). A similar approach is followed within this work.
Since test data greatly affects the RBF neural network’s accu-
racy, the OLHD sampling method was used to generate 90
data groups, of which 75 were used to train the network’s
weights and optimize the hyperparameters. The remaining
data validated the surrogate model’s precision. To improve
the forecast precision in the case of the limited samples, the
RBF neural network’s hyperparameters are optimized using a
genetic algorithm (Fig. 9).

(a) 

(b) 

Fig. 7 The first torsion modal shape of SUV body. aOriginal SUV body.
b Improved SUV body
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Fig. 8 Design variables for the multi-disciplinary and multi-objective
optimization
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Fig. 6 Locally improved A-pillar
and B-pillar. a Reinforcing plate
added to A-pillar. b Reinforcing
plate added to B-pillar
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4.1 A surrogate model based on RBF neural network

The RBF neural network’s input layer takes a vector X con-
taining nine variables (T1–T6 and M1–M3). The output layer
includes Fmax, Ws, and fq. The hidden layer has 75 nodes.

The input layer directly maps vector X to the hidden layer.
There is a nonlinear relationship between the input layer and
the hidden layer and a linear mapping between the hidden and
the output layers. Formally, the RBF neural network’s output
is obtained from the hidden layer as:

y j ¼ ∑
i¼1

nm

wijφi xð Þ ð4Þ

where wij denotes the weight from the ith neuron to the jth

output, and φi(X) represents the radial basis function, i.e.,
the ith neuron’s activation. The radial basis function is defined
using the Gaussian activation function:

φi ¼ exp −
1

2σ2
X−Sik k2

� �
i ¼ 1; 2;…; nm ð5Þ

where σ is the Gaussian distribution’s variance, Si denotes the
ith neuron’s Gaussian center, and nm is the number of neurons
in the hidden layer.

Throughout the training process, RBF neural network
modifies the weights to improve the forecast precision. The
error is calculated as:

E ¼ 1

2t
∑
t

k¼1
e2k ð6Þ

ek ¼ byk−yk ð7Þ

where E denotes the surrogate model’s mean square error
(MSE), yk is the actual value, byk is the predicted value, and t
denotes the number of samples.

The calculation steps are:

w iþ1ð Þ j ¼ wij−η
∂E
∂wij

i ¼ 1; 2;…; nm ð8Þ

∂E
∂wij

¼ φi xð Þ ∑
t

k¼1
ek ð9Þ

where ∂E
∂wij

is the error correction, and η is the learning rate.
Gaussian centers (Si), variance (σ), and learning rate (η)

greatly affect the RBF neural network’s accuracy. Si is
obtained by collecting the evenly distributed samples from
the sample space. Improper σ value increases the discrep-
ancy between the predicted and the actual value. Learning
rate η impacts the convergence speed and plays a key role
when the sample is limited. Too large η prevents conver-
gence, while a small η hampers learning. The surrogate
model’s errors are defined as (Yildiz and Solanki 2012):

R2 ¼ 1−
∑
t

k¼1
yk−byk� �2

∑
t

k¼1
yk−y

� �2
ð10Þ

emax ¼ max
yk−byk��� ���
ykj j

0@ 1A ð11Þ

eRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t
∑
t

k¼1

yk−byk� �
yk

vuut ð12Þ

Table 2 Magnesium and
aluminum alloys’ mechanical
properties

Material Density Elastic modulus Poisson ratio Yield strength

Aluminum 2.7 g/cm3 70GPa 0.3 189 MPa

Magnesium 1.82 g/cm3 45GPa 0.3 160 MPa

σ* η*OLHS

S1

S2

S3

Snm

Ws

Hidden layer Output layer

Fmax

fq

X9x1

Input

layer

Parameters optimized

by genetic algorithm

Fig. 9 The surrogate model’s optimization flow chart
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where y is the average value, R2 denotes the surrogate model’s
overall accuracy, and emax and eRMS represent the surrogate
model’s maximum error and root mean square (RMS) error.

4.2 Parameter optimization using a genetic algorithm

As already noted, a genetic algorithm can optimize variance (σ)
and learning rate (η) to improve the surrogatemodel’s accuracy.
The optimization process is shown in Fig. 10. The RBF neural
network’s loss function after training is used as the objective
function. Next, 20 (σ, η) pairs are randomly generated within
the variables’ range and taken as the initial population. The
RBF neural network is established, and the weights are trained
2000 times to obtain a surrogate model. Ten (σ, η) pairs with
the highest surrogate models’ accuracies are selected for cross-
over and mutation, generating 20 new (σ, η) pairs. After 50
iterations, the optimal pair (σ*, η*) is chosen.

4.3 Surrogate models’ accuracy analysis

Once established, the optimal parameters, σ* and η*, are used
in the RBF neural network. Three optimal surrogate models
can be considered: the maximum contact force surrogate mod-
el, the total weight surrogate model, and the torsion frequency
surrogate model. Surrogate models’ MSEs are shown in
Fig. 11, whereas their accuracy and maximum errors are given
in Table 3.
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Calculating the mean square

error of RBF neural network

Updating the weights
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50 iterations

Output σ* and η*

Selection
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training times
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No
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Fig. 10 Flowchart of the RBF neural network’s optimization using a
genetic algorithm
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Figure 11 shows that the RBF neural network (when opti-
mized by the genetic algorithm) converges rapidly and signif-
icantly reduces the surrogate models’ MSEs in the training
process. In other words, the genetic algorithm improved the
neural network’s training efficiency.

The surrogate models’ performance on the validation data
was compared before and after optimization (Table 3). The
overall accuracy increased by 6.5% for the total weight model,
4.3% for the contact force model, and 6.6% for the torsion
frequency model. The maximum errors decreased by 37.2%,
31%, and 42.1%, and RMS errors decreased by 31.9%,
23.5%, and 38.7%, respectively. Thus, the optimization sig-
nificantly improved the surrogate models’ performance. The
overall accuracy is over 0.9 for each model, while the maxi-
mum errors are less than 0.1.

5 Hybrid algorithm for SUV rollover
crashworthiness and weight optimization

As previously emphasized, the considered objective function
(defined in Section 3) has high dimensionality and strong
nonlinearity. Furthermore, to minimize the objective function,
the optimizationmethod needs to solve three surrogate models
iteratively and repeatedly screen, sort, clone, and mutate the
intermediate results for nine variables. These characteristics
pose significant requirements for the optimization method.

One candidate method is PSO. However, in addition to its
previously noted limitations, once PSO converges, the parti-
cles may oscillate near the optimal solution, affecting the op-
timization accuracy. On the other hand, the artificial immune
algorithm can enhance global convergence ability and restrain
oscillations. However, when iteratively solving the three sur-
rogate models, the artificial immune performs many complex
calculations and reduces the optimization efficiency.

These two optimization algorithms can complement each
other. Their combination may result in a more efficient opti-
mization algorithm. Similar ideas were utilized in the existing
research. For example, El-Sherbiny and Alhamalib (2013)
used a mutation equation that considers antibody affinity to
update the particle swarm flight speed. In Mahapatra et al.
(2015), the gray image values are optimization targets. First,

PSO was utilized for optimization, and then affinity was used
to screen the particle swarm for the optimal parameters. The
selection strategy based on antibody density optimizes the
speed update formula weights, consequently preventing the
particle swarm’s premature convergence (Du et al. 2016).

5.1 Particle swarm optimization

PSO is an intelligent optimization method that is based on the
social behavior of particles’ swarm. A suitable analogy is that
of a bird flock. One particle can be regarded as a bird and the
whole particle swarm as a group of birds looking for food. The
optimal value is a spot with an abundance of food. In the initial
state, the birds do not know where the food is, and they are
randomly distributed. Each bird records the coordinates of the
place where it found the food (individual optimal solution). In
each iteration, the bird group records the optimum coordinates
among the places visited by the birds (the global optimum).
Each bird adjusts its flight path towards the global optimum
(Hart and Vlahopoulos 2010; Cheng et al. 2012). In each
iteration, particles’ velocity and position are updated follow-
ing the equations:

viþ1 ¼ ωivi þ λ1randðÞ⋅ pibest−xi
� 	þ λ2randðÞ⋅ gibest−xi

� 	 ð13Þ
xiþ1 ¼ xi þ viþ1 ð14Þ
where vi and xi are the ith particle’s current flight speed and
position, pibest denotes the individual’s optimal position, gibest
represents the global optimal position, λ1 and λ2 are learning
factors, and rand() is a function that generates random num-
bers between 0 and 1. Thus, the particles’ flight speed is af-
fected by the global optimum, individual optimum, and cur-
rent flight speed. If the current flight speed is too influential on
the proceeding flight speeds, the particle vibrates around the
optimal solution. In contrast, the lack of movement may affect
the calculation efficiency. Therefore, the flight speed’s weight
should change over the iterations. Formally:

ωp ¼ 0:9−
p

pmax
� 0:5 ð15Þ

where p and pmax denote current and the maximal number of
iterations, respectively.

5.2 Artificial immune optimization algorithm

The immune algorithm is a new intelligent search algorithm
inspired by a biological immune system. It is a heuristic ran-
dom search algorithm, which combines certainty and random-
ness, enabling both exploration and exploitation (Carlos and
Nareli 2005). The immune algorithm ensures population di-
versity by screening, cloning, and mutation. It has strong

Table 3 The surrogate models’ accuracy comparison

Surrogate model R2 emax eRMS

Ws Original 0.894 0.137 0.047

Optimized 0.952 0.086 0.032

Fmax Original 0.923 0.042 0.017

Optimized 0.963 0.029 0.013

fq Original 0.873 0.114 0.031

Optimized 0.931 0.066 0.019
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global search ability and robustness (Alonso et al. 2014;
Wakui et al. 2019).

The immune algorithm simulates the process of antibody
recognition in an immune system to find the optimal solution.
The optimization process includes affinity evaluation, anti-
body concentration evaluation, excitation degree evaluation,
immune selection, cloning, mutation, clonal inhibition, and
population renewal. Commonly, the objective function ex-
presses affinity. Thus, the higher the function value, the higher
the affinity. The antibody concentration represents the degree
of antibody population aggregation and is formulated as:

αi ¼ 1

nc
∑
j¼1

nc

μ i; jð Þ ð16Þ

μ i; jð Þ ¼ 1; d i; jð Þ < γ
0; d i; jð Þ≥γ



ð17Þ

where μ(i, j) denotes the similarity between the jth and ith

antibodies. d(i,j) represents the normalized distance between
the jth and ith antibodies and is defined by (21). Finally, γ is the
normalized distance threshold.

The antibody excitation degree can be obtained as:

ϑi ¼ λ3ζi−λ4αi ð18Þ
where ϑi, ζi, and αi denote the excitation degree, the affinity,
and the ith antibody’s concentration, respectively. λ3 and λ4
are the weights.

Immune selection determines which antibodies should
enter the cloning based on the antibodies’ incentive de-
gree. Highly motivated antibodies are more likely to be
selected. Cloning copies the screened antibodies. The mu-
tation adds a small disturbance to the clone, causing it to
deviate from the original position and produce new anti-
bodies. Clonal inhibition selects mutated clones, inhibits
the low-affinity antibodies, and retains the high-affinity
ones to enter the new antibody population. The low in-
centive antibodies in the population are deleted and re-
placed by new, randomly generated antibodies. New anti-
bodies enter the next iteration. However, the immune al-
gorithm’s sorting and screening require multiple objective
function evaluations, resulting in numerous calculations.

5.3 Hybrid algorithm combining PSO and artificial
immune

A hybrid optimization algorithm that combines particle swarm
with artificial immune is proposed to optimize the SUV com-
ponents’ parameters (Fig. 12). The hybrid optimization algo-
rithm uses PSO to quickly search a group of non-dominated
solutions on the Pareto front. Crossover operation is added to
PSO. Each iteration randomly selects several particles for the
variables’ exchange. Such operation improves the population

diversity and prevents falling into a local optimum (Ardakan
and Rezvan 2018). Then, artificial immune optimization re-
stricts the uniform non-dominated solutions to a limited range
to avoid oscillations.

The nine SUV components’ variables, T1–T6 and M1–M3,
are selected as a group particle. The initial particle swarm is
generated randomly. Each particle’s objective function is cal-
culated (i.e., WS and Fmax) from three optimal surrogate
models. New non-dominated solutions are obtained and
punished by the penalty conditions, as follows:

Ws ¼ 100; Fmax ¼ 0
if f q > 35:5Hz or f q < 33:5Hz or Fmax < 58:8kN ð19Þ

An external file is established to store the non-dominated
solutions. The external file’s capacity (nc) is set to 60.

The density variance was introduced to evaluate the solu-
tions’ spatial distribution. Each particle’s normalized total
weight and maximum contact force are calculated as:

bWi

s ¼
Wi

s−min W1
s ;W

2
s ;…;Wnc

s

� �
max W1

s ;W
2
s ;…;Wnc

s

� �
−min W1

s ;W
2
s ;…;Wnc

s

� �
bFi

max ¼
bFi

max−min F1
max; F

2
max;…; Fnc

max

� �
max F1

max; F
2
max;…; Fnc

max

� �
−min F1

max; F
2
max;…; Fnc

max

� �

8>>>><>>>>:
ð20Þ

Then, the normalized distance and the density variance are
defined:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibWi

s− bWi‐1

s

� �2

þ bFi

max−bFi−1

max

� �2
s

i ¼ 2…nc ð21Þ

Vd ¼ 1

nc−1
∑
i¼2

nc

di−dmax= nc−1ð Þ½ �2 ð22Þ

where Vd is the density variance, di denotes the normalized
distance between the (i-1)th solution and the ith solution, and
dmax is the maximum distance between non-dominated
solutions.

When the number of non-dominated solutions exceeds the
external file’s capacity, the solution set is filtered. Small di
means the short distance between the ith solution and other
surrounding solutions, i.e., a high solution density in the re-
gion. Thus, deleting the solution with small d reduces the
calculation cost and ensures solutions’ diversity.

Once the external file is updated, it contains 60 relatively
scattered solutions. Then, the solutions’ distribution is judged
based on the density variance. If the distribution is not uniform
(i.e., the density variance exceeds the threshold), the particle
swarm performs a global search. In PSO, a global leader should
be searched, but the external file solutions are not mutually
dominated. Therefore, unlike single-objective optimization,
multi-objective optimization cannot select a global optimum.
To ensure solutions’ diversity, the smallest density variance in
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the external file is searched as the global leader solution. The
fifth PSO optimization result is shown in Fig. 13.

Nine variables of one particle are exchanged with other
particles to enhance PSO’s global search. The cross probabil-
ity equals 0.8 and ensures population diversity.

Suppose the solutions’ distribution in the external file is
uniform (i.e., the density variance is smaller than the thresh-
old). In that case, the artificial immune algorithm obtains an
optimal solution by limiting the non-dominated solutions to
vibrate in a small range. This mechanism prevents PSO oscil-
lations around the optimal solution and reduces the computa-
tional cost.

The affinity function is constructed to generate initial
antibodies and evaluate each antibody’s quality.
Formally:

ζi ¼ ‐ bWi

s þ bFi

max ð23Þ

The 25% of non-dominated solutions with the largest af-
finity in the external file are selected as initial antibodies
(Fig. 14).

These new antibodies are immunized by sorting, screening,
cloning, mutation, and inhibition cloning. To decrease the
computational cost, the T1–T6 variables’ range is limited to
20% of the initial range. The antibody mutation rate is set to
0.7. Then, 60 antibodies are generated, and the antibodies with
a large excitation degree (i.e., top 50%) are selected to renew
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Fig. 13 The PSO’s results after five iterations
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Fig. 12 Flowchart of hybrid
optimization algorithm combined
particle swarm with artificial
immune
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the external file. After 200 iterations, the optimal Pareto solu-
tion set is found.

5.4 Analysis of optimization results

Figure 15 shows the Pareto solution sets obtained using the
hybrid optimization algorithm, immune algorithm, and PSO
algorithm, respectively. The solutions obtained using the hy-
brid optimization algorithm are the closest to the Pareto front,
indicating better SUV rollover crashworthiness and weight
reduction. Furthermore, since the hybrid optimization algo-
rithm utilizes density variance in solution selection, its
Pareto solution set is more uniform than that of PSO or im-
mune algorithm. The number of solutions obtained using PSO
is 29, while the hybrid optimization and immune algorithms
created 60. Due to its poor global search performance, PSO
obtains fewer and less accurate Pareto solutions. The hybrid
PSO algorithm uses a crossover operator to overcome this
problem and shows strong global searchability. The immune
algorithm has a high global searchability, but its convergence

is slow. The immune algorithm does not converge to a solu-
tion in the specified number of iterations. Consequently, its
accuracy is suboptimal. Given the same number of iterations,
the immune algorithm takes three times the proposed algo-
rithm’s computation time. The hybrid PSO algorithm employs
PSO for the global search and then builds on the search results
to reduce the subsequent antibody mutation range.

Therefore, the hybrid optimization algorithm effectively
improves both PSO’s and immune system’s solutions’ diver-
sity, precision, and distribution uniformity.

None of the solutions in the Pareto solution set fully sat-
isfies the requirements for SUV rollover crashworthiness,
weight reduction, and ride comfort. Nevertheless, the Pareto
solutions can be ranked using the TOPSIS method to deter-
mine the best compromise solution (Liang et al. 2018), as
illustrated in Fig. 15. When the total weight reaches
47.07 kg, the Pareto solution set divides into two. Variable
M1 changes its value fromMagnesium alloy in the first subset
to Aluminum alloy in the second. M1 is the material for the
vehicle body’s side and, since this area is large, a lot of mate-
rial is required. Due to the difference in density between mag-
nesium and aluminum alloy, the Pareto solution set shows a
step phenomenon.

Table 4 shows the results for SUV rollover crashworthi-
ness, weight reduction, and ride comfort. The hybrid optimi-
zation algorithm decreased the total SUV components’weight
by 34.5%, while the maximum contact force between the rigid
plate and vehicle roof increases by 18.7%. In other words, the
hybrid optimization algorithm minimized the weight and im-
proved the SUV rollover crashworthiness. In addition, the
maximal first-order torsion frequency is 35.5 Hz, thus indicat-
ing no significant impact on the vehicle ride comfort.

6 Conclusions

This paper studied the SUV rollover crashworthiness and
weight reduction through the lenses of structure components
improvement and optimization.

The work analyzed the main structure components’ contri-
butions to SUV rollover crashworthiness and weight reduc-
tion. The influential factors’ detection enabled the omission of
less influential factors to increase optimization efficiency.
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Table 4 The results for SUV rollover crashworthiness, weight
reduction, and ride comfort

Ws (kg) Fmax (kN) fq (Hz)

Pre-optimized 69.6 54.5 33.6

Optimized 45.6 64.7 35.5
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Based on the structure analysis, the influential parts are opti-
mized, and crashworthiness is enhanced (the maximum con-
tact force increased by 16.7%).

RBF neural network is optimized using a genetic algorithm
and then applied to improve the accuracy of the surrogate
models. The total weight surrogate model’s accuracy im-
proved by 6.5%, that of maximum contact force improved
by 4.3%, and torsion frequency model’s improved by 6.6%.

A multi-disciplinary and multi-objective model for SUV
rollover crashworthiness and weight optimization is developed
using the material structure integrated design method. A hybrid
optimization algorithm that combines particle swarm with arti-
ficial immune is proposed. The algorithm takes full advantage
of the PSO’s fast convergence speed and uses PSO for global
optimization. The crossover operator is added to PSO to en-
hance the PSO solutions’ diversity and avoid falling into a local
optimum. The non-dominated solution distribution is moni-
tored and serves to adjust the next iteration’s calculation meth-
od, consequently improving the optimization efficiency and
reducing the calculation cost. Based on the selected non-
dominated solutions, the variables’ variation range is redefined,
and immune operation is performed to generate the next-
generation solutions. This algorithm effectively improves the
local search ability, decreases the total SUV components’
weight by 34.5%, and increases the maximum contact force
between the SUV roof and rigid plate by 18.7%. That is,
SUV rollover crashworthiness is enhanced significantly.
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