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Abstract

The hexagonal periodic structure of the honeycomb is a magic product of nature and shows great mechanical potential. In this work,
a type of metamaterial vibration isolator with a honeycomb structure is proposed. The strain, deformation, and natural frequency of
the vibration isolator are calculated by the two-dimensional plane finite element model and the simulation accuracies are validated
by the experiments. As the design of the metamaterial vibration isolator involves time-consuming finite-element simulation, a multi-
fidelity sequential optimization approach based on feasible region analysis (MF-FA) is proposed. In the proposed method, the
refined and coarse mesh models are developed as the high- and low-fidelity models, and a two-phase multi-fidelity updating
strategy is carried out. In the first phase, sample points are added to the constraint boundary to find the feasible solution quickly,
in the second phase, the quality of the feasible optimization solution is gradually improved in the feasible region until it converges to
the global optimal solution. Finally, the optimized metamaterial vibration isolator is manufactured and its superiority is validated.
Results illustrate that the proposed approach can obtain a desirable optimum, whose natural frequency error between the experi-
mental and the expected value is improved by 12.67% compared with the initial design.

Keywords Metamaterials vibration isolator - Multi-fidelity surrogate model - Simulation-based optimization

1 Introduction

Vibration isolation is an important method to reduce the ex-
ternal transmission of mechanical equipment vibration
(Snowdon 1979). Most of the elastic components used in vi-
bration isolation are rubber and metal spring isolators.
However, these two isolators have an obvious shortcoming
that is excessive static deformation and instability for low-
frequency vibration isolation (Rivin 2003). To address this
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issue, various new vibration isolation methods, such as non-
linear vibration isolation (Ibrahim 2008) and active vibration
isolation (Aridogan and Basdogan 2015; Mikhailov and
Bazinenkov 2017; Simonovic et al. 2016), are developed. In
recent years, quasi-zero stiffness vibration isolators gain a lot
of attention in nonlinear vibration isolation because they can
obtain a nice effect of low-frequency vibration isolation (Fan
et al. 2020; Yan et al. 2020). While these quasi-zero stiffness
vibration isolators are made up of many parts, the complex
system makes itself difficult to be widely used. The
metamaterial is a kind of material with supernormal physical
properties. The macroscopic physical properties of the mate-
rial can be changed by manually adjusting the microstructure,
which has a good application prospect in vibration reduction
and isolation. Some scholars take advantage of the bandgap
effect of metamaterials on elastic waves and build metamate-
rials with low-frequency local resonance band gaps in certain
frequency bands by periodically attaching local resonance
units to different support structures (Ma and Sheng 2016;
Moscatelli et al. 2019). At present, the bandwidth of the
low-frequency bandgap of the local resonant metamaterial is
relatively narrow, and the vibration isolation effect at different
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frequencies is uneven. Therefore, the engineering application of
local resonant metamaterial prototype is rare. In addition to
isolating vibration by bandgap, the metamaterial can also utilize
stiffness for vibration isolation, just like rubber isolators, which
can not only greatly expand the frequency band of low-
frequency vibration isolation, but also design the supernatural
mechanical properties that rubber vibration isolators do not
have by changing the microstructure parameters. There are a
few kinds of research on the use of metamaterials stiffness for
vibration isolation. In the snapping mechanical metamaterials
literature (Plummer 2015; Rafsanjani et al. 2015; Shan et al.
2015), the experimental results show that under certain micro-
structural parameters, the multistable characteristics of alternat-
ing positive and negative stiffness can transform into quasi-zero
stiffness characteristics, which provides a new idea for the ap-
plication of metamaterials in the field of vibration isolation.
The design of vibration isolation metamaterials needs to sat-
isfy all kinds of constraints, such as the stress constraint of base
materials. When the cells of metamaterial are under external
force, the distribution of stress and strain will be very different
for different cell parameters. Therefore, it is necessary to optimize
the microstructural parameters to reduce the stress concentration
effect, so as to realize the reliable application of vibration isola-
tion metamaterials. However, it is impractical to directly deter-
mine the optimal design parameters of vibration isolation meta-
materials because the relationships between the design parame-
ters and the performance are complicated and cannot be
expressed explicitly (it can be regarded as a black box).
Directly incorporated the finite-element (FE) simulation models
into the optimization process will be time-consuming and even
computationally prohibitive. A promising way to address this
issue is to adopt surrogate models (Hu et al. 2021), which can
approximate the black box models with limited FE simulation
samples. To construct a surrogate model with desirable accuracy,
a certain number of high-fidelity (HF) simulations are required.
HF simulation models generally can reflect the majority of the
physical characteristics but require expensive computation cost.
However, due to the limited computational budget, it is unafford-
able to use a large number of HF samples to build a high-
accuracy surrogate model. Compared with the HF simulation,
the low-fidelity (LF) simulation is computationally cheaper but
contains fewer physical details, which may result in an inaccurate
surrogate model or even a distorted one. An effective solution to
address this dilemma is to construct a multi-fidelity (MF) surro-
gate model by incorporating both the LF and HF data into the
surrogate modeling process (Park et al. 2017; Rokita and
Friedmann 2018). A great number of methods have sprung up
in recent years. For example, Le Gratiet et al. (Le Gratiet and
Garnier 2014) proposed a multi-level multi-fidelity co-kriging
model, in which a closed-form expression for the posterior dis-
tribution of the scale factor is provided; Han et al. (Han et al.
2012) put forth an alternative approach for the construction of the
co-kriging covariance matrix that significantly reduced the
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complexity of the estimation of the hyper-parameters; Zhou
et al. (Zhou et al. 2020) developed a generalized hierarchical
co-kriging (GCK) surrogate model that can integrate MF data
under both nested and non-nested sampling data. In addition to
the development of MF surrogate modeling methodology, the
application of the MF surrogate model on the industry optimiza-
tion problems also attracts significant attention, e.g., the aircraft-
design (Feldstein et al. 2020; Toman et al. 2019; Zhonghua et al.
2020), automobile industry (G. Sun et al. 2012; G. Sun et al.
2010), marine industry (Dong et al. 2015; Pellegrini et al.
2016; S. Sun et al. 2019), electronics engineering (Hassan et al.
2017; Koziel and Bekasiewicz 2018), and intelligent manufactur-
ing field (Zhou et al. 2018; Zhou et al. 2017; Zhou et al. 2020).

This work investigated the application of the MF surrogate
model in the design of the metamaterial vibration isolator with
a honeycomb structure. MF surrogate model is constructed to
incorporate two different fidelity FE simulation models,
whose effectiveness of the FE simulation models is validated
by the physical experiments. Then, a multi-fidelity sequential
optimization approach based on feasible region analysis (MF-
FA) computational to search the optimal design parameters of
the metamaterial vibration isolator with honeycomb structure.
Specifically, a two-phase multi-fidelity updating strategy is
proposed, where in the first phase, sample points are added
to the constraint boundary to find the feasible solution quickly
and in the second phase, the quality of the feasible optimiza-
tion solution is gradually improved in the feasible region until
it converges to the global optimal solution. The metamaterial
vibration isolator with the optimal design parameters is
manufactured and its superiority is validated.

The rest of this paper is organized as follows. In Section 2,
the details of the two different fidelity simulation models of
the honeycomb structure vibration isolator are presented. In
Section 3, the experimental details to validate the effective-
ness of the simulation models of the honeycomb structure
vibration isolator are introduced. In Section 4, a multi-
fidelity sequential optimization approach based on feasible
region analysis is developed for obtaining the optimal design
parameters of the MI300-type honeycomb structure vibration
isolator. Finally, the concluding remarks and future work are
presented in Section 5.

2 Establishment of the FEM of the honeycomb
structure vibration isolator

2.1 Geometric description

The geometry of the typical MI300-type vibration isolator is
shown in Fig. 1. The MI300 vibration isolator consists of
polyurethane honeycomb structure in Fig. 1a and correspond-
ing metal packages in Fig. 1b.
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Fig. 1 The geometry of the
MI300 vibration isolator. a The
polyurethane honeycomb
structure of the MI300 vibration
isolator. b The CAD drawings of
the MI300 vibration isolator

The polyurethane honeycomb structure is used to isolate
the vibration, and the metal packages have the effect of en-
capsulation and support. The polyurethane honeycomb struc-
ture is composed of hexagonal honeycomb cells with rounded
corners as shown in Fig. 2.

There are mainly six geometric parameters of this hex-
agonal honeycomb cell, which are the length of the oblique
bar of the cell L, the height between the center of the
oblique bar h, the angle between the oblique bar and the
horizontal line 6, the thickness of the oblique bar f;, the
thickness of the vertical bar fj, the radius of the internal
rounding Ry and the depth of the cell D. In addition, m and
n are the numbers of the rows in the vertical and horizontal
directions respectively.

2.2 Finite-element model

The finite-element simulation was performed using the finite-
element software ANSYS 18. Because the hexagonal

Fig. 2 The geometry of a
hexagonal honeycomb cell with
rounded corner
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honeycomb cell is linearly stretched along the depth direction,
it can be regarded as a plane strain problem when calculating
the compression deformation of the honeycomb structure un-
der the pressure load in the vertical direction. Therefore, the
finite-element model can be simplified into a two-dimensional
plane model as shown in Fig. 3, which was meshed with
planel82 elements.

The upper surface of the structure is defined as the rigid
displacement plane and applied with vertically downward
uniformly distributed force. The degrees of the lower sur-
face is fully constrained. The APDL language of the
ANSYS software was used to establish an automated anal-
ysis process including the modeling of the parametric ge-
ometry, mesh generation, load application, constraints set-
ting, evaluation, and post-processing. The density of the
polyurethane is 1166 kg/m3, Poisson’s ratio is 0.475, the
elastic modulus is 50 MPa, and the related load is 300 kgf.
In the range of 1.25 times of related load, 20 load steps are
settled to carry out the static analysis of the polyurethane

SIS
>

(’

I R/

@ Springer



426

J. Qian et al.

Fig. 3 The FE Model of the
polyurethane honeycomb
structure with hexagonal cells
(m=2,n=4)

honeycomb structure. The output values of strain, stress,
stiffness, natural frequency, etc. can be obtained.
Generally speaking, the vibration isolation system com-
posed of vibration isolators and equipment is relatively com-
plex and needs to be simplified under certain assumptions. For
example, the actual vibration isolation system can be simpli-
fied as a single-degree-of-freedom system and converted into
a dynamic model of mass, spring, and damping. According to
the standard GB/T 15168/2013 “Test Method for Static and
Dynamic Performance of Vibration and Impact isolation
Devices,” the natural frequency f (unit Hz) of the vibration
isolator under rated load can be expressed as follows:

1 kg
r-5va M

where M is the rated load (kgf), kg is the dynamic stiffness
(N/m) under the related load which is usually equal to 1.3Ks,
and ks can be obtained by the FE static analysis under the
related load. The detailed description can be found in the
standard GB/T 15168/2013.

2.3 Finite-element mesh consistency check

In order to evaluate the influence of finite-element mesh on
the results, the consistency check is firstly carried out under
the different mesh grid divisions. The mapping grid is used to

Fig. 4 The schematic diagram of
mesh division for high- and low-
precision finite element. a Fine
mesh. b Coarse mesh
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mesh the geometry. In the thickness direction of the oblique
bar, we use the number of elements to express the fine and
coarse level of the mesh grid as shown in Fig. 4.

The numbers of the grid are taken from 2 to 22, respective-
ly, and the interval is set to 2. With the change of the grid
number, the calculated natural frequency of the honeycomb
structure by FEM at the rated load is shown in Fig. 5.

As shown in Fig. 5, when the number of grids is greater
than 12, the value of natural frequency changes very little and
tends to converge. Through convergence analysis, the number
of the grids in the thickness direction of the oblique bar is set
to 14 and 6 for the high-fidelity and low-fidelity finite-element
model respectively as shown in Fig. 4.

3 Experimental test and validation of the FE
model

3.1 Numerical simulation

The initial design parameters of the MI300-type vibration iso-
lator are (X] , X2, X3, X4, X5, X6) = (1037 0.0900, 0.0031
,0.0145,0.0075,0.0038). The geometric and finite-element
mesh model of the initial design is shown in Fig. 6.

Through the finite-element simulation and post-processing,
the load-static deformation curve, static stiffness-load curve,
and related curves of the initial design are shown in Fig. 7.

(a)
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From Fig. 7, we can get the vertical static stiffness
ks = 221.87N/mm, equivalent strain &,,, = 0.1632, nonlin-
ear coefficienté = 0.7363, transverse-longitudinal stiffness ra-
tio Ry =2.466. The ratio of static deformation under rated load
to deformable displacement R, =0.504 and the natural fre-
quency of the initial design can be calculated as

f = Vka/m/2% — 4 935Hz. The simulation results of the initial
design are shown in Table 1, which was compared with the
experimental results in Section 3.3.

3.2 Manufacturing of the polyurethane honeycomb
structure

To ensure the dimensional accuracy, a four-axis milling machine
DOOSAN T4050E is used for fabricating these honeycomb cells
as shown in Fig. 8a. The dimensional tolerance of cells for the
linear axes is less than + 0.05 mm and the angle accuracy is less
than = 0.1°. Firstly, the whole polyurethane material is fixed with
clamps. Then, different types of cutting tools are used for ma-
chining the honeycomb structure of the MI300-type vibration
isolator. The experimental setup for honeycomb structure cutting
and the finished product is given in Fig. 8.

3.3 Experimental test

In order to complete the measurement of mechanical proper-
ties such as the strain of the polyurethane honeycomb struc-
ture, the experimental static and dynamic tests are performed
by using MTS universal testing machine (UTM) with a capac-
ity of 300 kN, as shown in Fig. 9. In the experimental test, the
polyurethane honeycomb structure is placed on the lower plat-
form, and then the load is applied by moving the upper platen
(pressure head) which is accurately controlled by the MTS
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Fig. 5 The variation of natural frequency of vibration isolator with grid
components

UTM. Some kinds of tests, such as tensile, compression, and
shear tests can be carried out by installing fixtures.

The vertical and transverse static/dynamic tests were car-
ried out according to the process specified in GB/T 15168/
2013; the test process diagrams are shown in Fig. 10.

Through the mechanical property test and post-processing,
the test curves of the initial design are shown in Fig. 11.

From Fig. 11, we can get the vertical static stiffhess
ks = 225.8N/mm, nonlinear coefficient = 0.7232, vertical dy-
namic stiffnessky = 276.3N/mm, and transverse-longitudinal
stiffhess ratioRy = 2.450. The natural frequency of the initial

design can be calculated f = V&i/"/27 — 4 83Hz, and the re-
lated test results are shown in Table 1 for details. It should be
noted that the equivalent strain was not measured due to the lack
of test equipment, such as the non-contact full-field test system
VIC-3D. And whether the dimensional coordination and
manufacturing constrain are met or not can be known through
the machining results.

3.4 Comparison of the experimental and the
simulation results

The comparison of simulation and experimental results is
shown in Table 1. It can be seen that the maximum error
between the finite-element simulation and the test results is
only 2.17%. The finite-element simulation results are in good
agreement with the measured results, which indicates that the
established finite-element model for the performance analysis
of the honeycomb structure is feasible and accurate.

4 Optimization design of the MI300-type
honeycomb structure vibration isolator

4.1 Definition of the optimization problem

The goal of the design of the MI300-type vibration isolator is
to minimize the ratio of the natural frequency difference be-
tween the design value and expected value under the con-
straints of the dimensional coordination of cell, the equivalent
strain, the transverse-vertical stiffness ratio, and the
manufacturing limitations. Therefore, the mathematical ex-
pression of the optimization design problem is defined as

Find X1,X2,X3,X4,X5,X6

Min e= |1—L|
0

Emax 4
L. =—1<0 =1-—x<0
s &1 OZR SV, 8 2 0.72 — ) (2)
k X
=1—<0 =—-1<0
BT 048 T 06
H
85 = %_lioagé = ngoa
g7 = KCSO
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Fig. 6 The geometric and finite-
element model of the initial
design

where x1, X, X3, X4, X5, Xg are the design variables, g, 22, g3,
24, 85, 6, g7 are the constraints and e is the objective function.
The physical meanings and the ranges of each design variable
are shown in Table 2 and Table 3, respectively. Table 4 illus-
trates the boundary condition of the constraint functions.

As shown in Table 4, the constraints g1, 2», g3, g4 require to
be evaluated by computationally expensive FE simulations,
while gs, g6, g7 can be calculated by mathematical formulas.
The details of the FE simulations are shown in Section 2. The
computationally inexpensive formulas are shown in (3) to (5).

The relate Load:2940N, The static deformation:10.15mm
00 f

O High-fidelity simulation 2
3500 O Low-fidelity simulation =
High-fidelity fitting /t!
3000 L= Low-fidelity fitting )_3
2500 1
z 1
8 2000 1
o
3 1
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1
1000 1
1
500 !
1
0 ||
0 5 10 15
Static deformation(mm)
(a)
Equivalent strain at related load:16.32%
‘ = High-fidelity simulation
20t Low-fidelity simulation

Equivalent strain(%)

500 1000

1500 2000 2500 3000 3500 4000
Load(N)

©
Fig. 7 The simulation results of the initial design. a Load-static

deformation curve. b Static stiffness-load curve. ¢ Equivalent strain-
load curve. d Nonlinear coefficient curve. e Transverse-longitudinal
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Fig. 7 (continued)
Table 1 Comparison of the simulation and experimental results of the initial design
Characteristic variable Test High-fidelity FEM Errors
Equivalent strain €, - 0.1632 -
Minimum value of nonlinear coefficient & 0.7232 0.7363 1.81%
Transverse-longitudinal stiffness ratio Ry, 2.450 2.466 0.65%
Ratio of static deformation under rated load to 0.502 0.504 0.4%
deformable displacement R,
Total height of vibration isolator H 56.8 57.00 0.35%
Dimensional coordination conditions T Meet manufacturing requirement —0.0817 -
Manufacturing constraint K Meet manufacturing requirement —45 -
Natural frequency f 4.83 4.935 2.17%
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Fig. 8 Manufacturing the
polyurethane honeycomb
structure of the initial design. a
DOOSAN T4050E milling
machine. b Manufacturing
process. ¢ Product of the initial
design

(@

Polyurethane material

(b)

K. = x/2-15D,<0

where :

Dbzzi’fz l'fi"f1<5

Dy,=2 (I’f2—|—0.5) lf l"f125
xg =x370.1 (5)
ry = [IOxd]

Tty = num2str (rf)
rp1 = str2double (rg(2)
rpy = str2double (ry(1)

In (5), the least integer function “[]” indicates the maxi-
mum integer not greater than itself, num2str() is to convert a
numeric value into a string, and st#r2double() is to convert a
string into double-precision number. The designed and ex-
pected values of natural frequency are fand f,, respectively.
These two values are used to calculate the objective function
e, as shown in Table 5.
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4.2 A multi-fidelity sequential optimization approach
based on the feasible region analysis

Since relying on the high-fidelity FE simulation is com-
putationally expensive, to relieve the computational bur-
den, a multi-fidelity sequential optimization approach
based on feasible region analysis (MF-FA) is proposed
to incorporate both the high- and low-fidelity FE simu-
lations into optimization. In the proposed MF-FA ap-
proach, a two-phase multi-fidelity sequential surrogate
model optimization strategy is proposed to cope with
the constraints. Specifically, in the first phase, sample
points are added to the constraint boundary to find the
feasible solution quickly. In the second phase, the quality
of the feasible optimization solution is gradually im-
proved in the feasible region until it converges to the
global optimal solution.
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- —

Fig. 9 MTS exceed microcomputer-controlled mechanical testing
machine (100 kN)

The mathematical optimization model in (2) for the poly-
urethane honeycomb structure can be described as follows by
introducing the MF surrogate model

min ?( )

St (00 = 1,20, ©)
gpx)<0 j=1,2...0,
Xip <X<X,p

where ]A‘(x) represents the surrogate of the objective function,
gj(x) j=1,2...J represents the surrogate of the compu-
tationally expensively constraints, g»(x)<0 j=1,2...J, rep-
resents the computationally inexpensively constraints. In this
case, J; =4, J, = 3.

Fig. 10 Experimental test of the
initial design. a Vertical test. b
Transverse test

@

The surrogate of objective function prefers to update with
desirable objective function values. However, the surrogate of
the constraint function pays more attention to the constraint
boundary whether the accuracy is sufficient, so as to ensure
that the constraint violation can be accurately judged in the
optimization process.

In the sequential optimization process based on the multi-
fidelity kriging model, it is necessary to make full use of the
information of high- and low-fidelity sample points to search
for the optimal solution. The sequential multi-fidelity kriging
model can make full use of the information between the multi-
fidelity analytical models obtained in the modeling process to
guide the construction of the multi-fidelity model adaptively
to improve the efficiency of the algorithm.

The construction of multi-fidelity kriging model generally
involves the superposition of two single-fidelity kriging models.
Suppose that there are low-fidelity samples x; = (x/,x5,...,x/,)
(F1o15: s ) high-
,x",), and corresponding re-

and corresponding responses f; =
fidelity samples x;, = (x’l',x’g,
sponses [, = (f1,f4, ..., f%,) in the current sample set.

Firstly, a low—ﬁdehty kriging model can be established through
low-fidelity sample points

Fiw) = it (£ 17, (7)

Then, a multi-fidelity kriging model based on the additive
scaling function is constructed to achieve effective fusion be-
tween high- and low-fidelity models. The essence of the scaling
function is the discrepancy function between the high-fidelity
sample points and the low-fidelity kriging model, i.e., for any
high-fidelity sample point, the scaling function value can be
defined by

() = fi—f1(xh) (8)

where f7 h represents the high-fidelity response value at the point

" while f ( ) represents the predicted value of low-fidelity
kngrng at sample x”.

(b)

@ Springer



432

J. Qian et al.

Fig. 11 The experimental results
of the initial design. a Load-static
deformation curve. b Static
stiffness-force curve. ¢ Nonlinear
coefficient curve. d Dynamic
load-deformation curve. e
Transverse-longitudinal stiffness
ratio curve

The response set of the scaling function C(x) =
{c(x}),c(xh),....c(x%,) } can be calculated, and the kriging

Load (N)

Nonlinear coefficient

4000

3500 |-
3000 |-
| (10.05,2940)
2500 - '
2000 |-
1500
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500 -
0 L L L L i s
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Static deformation (mm)
(a)
150 -
1
1
075
(3675,0.7232)
0.50 L n n " n " s
500 1000 1500 2000 2500 3000 3500 4000
Load (N)
(©)

model of additive scaling function can be given by

Cx) = Ayt 07 (£ (07,0017,

Table 2 Physical meaning and
ranges of design variables
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Dynamic stiffness fitting curve
Equation y=a+b'x
Intercept
Slope

o L L L L L L L L ,
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Dynamic deformation (mm)
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(e)

o~

Sy (x) = [1(x) + C(x)

(d)

According to (7) and (8), the predicted value of the multi-
fidelity kriging model can be obtained by

(10)

Design variables Description Ranges Initial value
X1 Oblique angle 0 4.0~15.0° 10.3°

X5 Depth D 70.0~200.0 mm 90.0 mm
X3 Radius of rounding Ry 3.0~5.0 mm 3.1 mm

X4 Length of oblique bar L 120.0~180.0 mm 145.0 mm
X5 Thickness of vertical bar , 5.0~10.0 mm 7.5 mm

X6 Thickness of oblique bar # 3.5~10.0 mm 3.8 mm
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Table 3  Fixed parameters and their values

Fixed parameters Value
Number of Rows m 2

Number of columns n 4

Density of polyurethane p 1166 kg/m®
Poisson’s ratio p 0.475
Rated Load F 300 kgf

Correspondingly, the predicted variance of the multi-
fidelity kriging model is

S (%) = /57 (%) +32(x) (11)
where 5;(x) ands,.(x) are the predicted uncertainties (predicted
variances) of low-fidelity kriging model and scaling function
kriging model respectively.

In addition, to measure the optimization efficiency of dif-
ferent fidelity samples under unit computing resource, and to
reflect the relative calculation cost required to obtain a sample
point for different fidelity models, the simulation time of a
high-fidelity response value is used as the reference to estab-
lish cost function c(7)

re)
re(m)

c(t) = ym=hl (12)
where rc(h) represents the computational time of one high-
fidelity simulation, rc(/) denotes that of a low-fidelity. c(f) =

1 when m = h, while ¢(¥)>1 when m=1.

Table 4 Constraint functions and their boundary conditions

The updating criterion of MF-FA in the first phase can be
defined as (13) for searching the feasible solutions

MF-FA1(x, 1) = ¥, (g,;f(x)—aaf <x7 z)c(z)>, t=1mf (13)

where §inf (x) are the predicted values of the MF kriging mod-

el of the constraint functions, Eﬁ(x, t) are the predicted vari-
ances of the different fidelity kriging models of the constraint
functions, c({) is the cost coefficient for adjusting the global
exploration and local exploitation, and the coefficient a is used
to balance global and local search which is set as 1.96. To
obtain the update sample, the genetic algorithm is utilized to
search for the minimum value of (13).

Once a feasible solution is found, the updating criterion
goes to the second phase to improve the quality of the current
feasible solution. Then the sequential updating criterion needs
to use the information of the MF surrogate of the objective
function which can be defined as (14)

MF-FA2(x,t) = w,']?m/(x) + wys (x, 1) (r) + amax{ginf (x), 0}, t=1mf
(14)

where J?mf (x) is the predicted values of the MF kriging model
of the objective function, wyand w; are the weights calculated

by the entropy weight method (Qian et al. 2020a), amax

{ gfnf(x), 0} is the penalty function to ensure the feasibility

of the solutions (Qian et al. 2020b). The flowchart of the MF-
FA is shown in Fig. 12.

Constraint functions Description Boundary Condition Whether computationally
expensive or not
g, Equivalent strain &, Emax<0.2 Yes
9> Minimum value of nonlinear coefficient £ £>0.72 Yes
[ Transverse-longitudinal stiffness ratio R,=K_/K_. Ri>2.4 Yes
o Ratio of static deformation under rated load to Rx<0.6 Yes
deformable displacement R, =X/X,.
gs Total height of vibration isolator H H<60.0mm No
Js Dimensional coordination conditions Tg T,<0 No
[ol manufacturing constraint K¢ K.<0 No
Table 5 Details of the objective function

Objective function Objective function description

Expected value Whether computationally

expensive or not

—1=L
ef‘l 7

The ratio of the natural frequency

fo=6 Hz Yes

difference between the designed and expected value
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Fig. 12 Flowchart of the MF-FA
optimization framework

Step I-1 ¢
Generate LF/HF samples
Step 1-2 ¢

Calculate responses of LF/HF respectively and
construct the MF Kriging surrogate model

Step I-3

Yes . . )
easible solution existed ?

Step -4

Phase I Find a feasible solution

Determine the new sample by minimizing MF-FA1

v

Calculate responses of LF/HF respectively and
construct the MF Kriging surrogate model

Step II-1

A 4

Determine the new sample by minimizing MF-FA2

Phase 11
improve optimal value

The MF-FA method divides the optimization process into

two phases described as follows.

Step .

Search for the feasible point

Step I-1: To make the distribution of sampling points in the
design space more uniform, the Optimal Latin Hypercube
Sampling (OLHS) method is adopted to generate the initial
sample points. The numbers of initial sample points of the

Table 6 Parameter setting of the MF-FA

Method Initial low-fidelity ~ Initial high-fidelity =~ Cost  Stopping
model samples model samples ratio  criterion

MF-FA 36 18 6.134 500
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Fig. 13 The optimization historical diagrams of GA and MF-FA
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Table 7  The comparison of optimization results of GA and MF-FA
Characteristic items GA MF-FA
Design variables X1 7.578(7.6°) 6.402(6.4°)
X2 112.94(112.9) 108.090(108.0)
X3 3.459(3.5) 3.184(3.2)
X4 159.694(159.7) 167.224(167.0)
Xs 9.464(9.5) 9.426(9.4)
X6 3.585(3.6) 4.136(4.1)
Constraint g, —0.0768 —0.4305
functions 9 ~0.0748 ~0.1564
g; —0.0962 —0.0533
g4 —0.2199 —0.2908
Js —2.2544 —0.0219
oA —0.0837 —0.0936
g, —33.53 —35.96
Objective function e 0.24%.f=6.0762 0.23%,f =5.9829

Fig. 14 Product of the optimized
design

low-fidelity model and the high-fidelity model are n; = 6
xd and np = 3 x d, respectively.

Step 1-2: The response values of the objective function
and constraint function of initial sample points are calcu-
lated, and the MF kriging surrogate models of initial ob-
jective function and constraint functions are established.
Step I-3: Evaluating that whether there is any point of
high-fidelity solutions that satisfies the constraints in the
sample points, if yes, go to Step II; otherwise, it goes to
Step 1-4.

Step [-4: The MF-FAL1 criterion was used to search the
potential sample points that satisfy the constraints. In the
search process, a genetic algorithm is used to search the
design space, and the minimum point of the MF-FA1
criterion was selected to update the multi-fidelity kriging
surrogate model. Then, it will go back to Step I-3.

Step II.  Search for the optimum point

Step II-1: In the current iteration, feasible solutions al-
ready existed in the sample points. At this time, the

sequential updating process should focus on improving
the quality of the feasible solution. The MF-FA2 criterion
is used to update the multi-fidelity kriging surrogate mod-
el. Similarly, the generation of update points is calculated
by minimizing the MF-FA?2 criterion.

Step I1-2: Judging whether the stopping criterion is satis-
fied or not, if yes, the optimization iteration is finished;
otherwise, it goes to Step II-1.

4.3 Results and discussion

In the iterative process of the MF-FA algorithm, the sample
space satisfying the constraints can be fully developed and
explored by using the low-fidelity model in step 1. The utili-
zation efficiency of high-fidelity sample points to quickly find
the global optimal solution in the feasible region is improved
in step 1L

In Table 6, the initial sample points of the MF-FA method
are set as 18 high-fidelity sample points and 36 low-fidelity
sample points respectively. The high-fidelity and low-fidelity
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Fig. 15 The experimental results 4000 - 500
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model are calculated by using the fine mesh (14 grids) and
coarse mesh (6 grids) finite-element models described in
Section 2.3, respectively. The cost ratio of low/high-fidelity
model is about 1:6, which means that the time of running one
high-fidelity sample is six times that of the low-fidelity one.
Specifically, all the initial 18 high-fidelity sample points of the
polyurethane honeycomb structure are infeasible. The stop-
ping criterion is that the total cost is 500 (equivalent) high-
fidelity sample points.
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In order to be compared with the MF-FA algorithm, the
genetic algorithm is also used to solve this engineering opti-
mization problem. The parameters set for the GA are as fol-
lows: the population size and max iterations are 20 and 25,
respectively. The crossover probability and mutation proba-
bility are 0.80 and 0.15, respectively. The generation gap is
0.95 to keep the elites in each generation.

The historical diagrams of the optimization process of GA
and MF-FA are given in Fig. 13. The MF-FA algorithm firstly
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Table 8 Comparison of the simulation and experimental results of the optimal design

Characteristic items

Simulation

Experimental

Equivalent strain €,
Minimum value of nonlinear coefficient &
Transverse-longitudinal stiffness ratio Ry,

Ratio of static deformation under rated load to
deformable displacement R,
Total height of vibration isolator H

Dimensional coordination conditions Tg
Manufacturing constraint K¢

58.687, gs=—0.0219
—0.0936

—35.96

Natural frequency of optimal design f 5.98

0.1139, g;=-0.4305 —
0.8326, g,=—0.1564
2.528, g3=—0.0533

0.4255, g4=-0.2908

0.792, g,=—0.0999
2.958, g3=—-0.2325
0.4302, g4=—0.283

58.66, gs=—0.0223

Meet manufacturing requirement
Meet manufacturing requirement
5.59

finds a feasible solution and has a better optimization solution
within the total cost. The results shown in Fig. 13 illustrated
that the MF-FA method can take full advantage of high- and
low-fidelity models to obtain a better optimal solution.

The optimal solutions of the two algorithms are listed in
Table 7.

The optimized design calculated by MF-FA was
manufactured, and the final polyurethane honeycomb structure
is shown in Fig. 14.

Through the mechanical property test and post-processing,
the test curves of the optimal design are shown in Fig. 15.

As shown in Fig. 15, the vertical static stiffness is
ks = 310.1N/mm, the nonlinear coefficient is £ = 0.7919, ver-
tical dynamic stiffness is kg = 370.2N/mm and transversal-
longitudinal stiffness ratio is Rx = 2.9579. The natural frequen-
cy of the optimal design can be calculated by (1) and
f = 5.59Hz. The comparison of the simulation and experimen-
tal results are shown in Table 8.

In Table 8 and Table 9, the obtained optimal solution sat-
isfies all the constraints. The natural frequency error between
the experimental and the expected value (6 Hz) is just 6.83%,
which is improved by 12.67% compared with the initial de-
sign. And the experimental error mainly comes from the
changes in mechanical properties caused by non-uniformity
and different batches of the polyurethane material.

According to the requirements of CB 1359-2002 “Rubber
Vibration Isolators for Ships”, the natural frequency variation
of vibration isolation in the main bearing direction should not
exceed 15%. Therefore, the optimized design meets the standard
requirements. The proposed MF-FA algorithm can effectively
handle the computationally expensive optimization problems in

practical engineering cases. The product of the MI300-type vi-
bration isolator is made by assembling the polyurethane honey-
comb structure with metal fittings as shown in Fig. 16.

5 Conclusions

In this work, a type of metamaterial vibration isolator with a
honeycomb structure is proposed. The mechanical performances
of which are computed by the finite-element method and are
validated by the physical experiments. A multi-fidelity sequential
optimization approach based on feasible region analysis is pro-
posed for the design optimization of the metamaterial vibration
isolator with a honeycomb structure. A two-phase multi-fidelity
updating strategy is introduced to reduce the computational bur-
den and to improve optimization accuracy. The final obtained
optimal solution is manufactured and tested. Based on the testing
results, some conclusions can be drawn as follows: (1) The two-
dimensional plane finite-element model can be employed to ac-
curately simulate the static mechanical performances of the
metamaterial vibration isolator with a honeycomb structure; (2)
MF-FA method can take full advantage of high- and low-fidelity
models to obtain a better optimal solution compared with that
only relying on high-fidelity simulations with the less computa-
tional costs; (3) The natural frequency from the simulation results
at the optimum is 5.98 Hz, which is in good agreement with the
physical experiments that is with 5.59 Hz. Compared with the
initial design, the natural frequency error between the experimen-
tal and the expected value of the obtained optimum is improved
by 12.67%.

Table 9 Comparison of the initial

and optimal designs Characteristic item Expected value Initial design Optimal design
Value Error Value Error
Natural frequency f(Hz) 6(£15%) 4.83 19.5% 5.59 6.83%
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Fig. 16 The product of MI300-
type vibration isolator

There are also some limitations of the proposed op-
timization method. When there are a huge number of
constraints, the feasible area is very small and discon-
nected. The proposed optimization method only searches
within the whole feasible area during Phase II, which
may lead to very low searching efficiency in these
cases. What’s more, the effectiveness of the penalty
function method is highly dependent on the accuracy
of each individual MF model, which is hard to ensure
if the computational cost is limited. Extending the pro-
posed method to multiple constraint problems will be
investigated in our future work. It is also noted that
the geometry uncertainty is not considered in the design
optimization of the metamaterial vibration isolator. As a
part of future work, extending the proposed approach to
robust optimization/reliability optimization will be inves-
tigated to consider the effects of the geometry uncer-
tainty.
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