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Abstract
This paper presents a structural topology optimization method using moving wide Bezier components with constrained
ends. In the proposed method, components which are determined by using Bezier curves with a certain width are regarded
as design units. These wide Bezier curves are represented by using level set functions. The control points of such wide
Bezier curves are taken as design variables. In addition, based on that principle, in order to form one single connected load-
bearing structure, the loading, supporting, and/or some other functional interactions must be connected. This is achieved
by constraining the ends of the utilized wide Bezier curves which can essentially avoid any structurally invalid designs and
thereby smooth the optimization process. The validity of the proposed method is tested on the stiffness and the compliant
mechanisms design problem.

Keywords Topology optimization · Level set · Explicit boundary · Compliant mechanisms · Moving morphable components ·
Minimum length scale

1 Introduction

Structural topology optimization is a mathematical method
that determines material layout within a given design
space with the purpose of maximizing some structural
performances for a given set of constraints (Rozvany
et al. 1995). Compared with shape optimization and sizing
optimization which deal with predefined configurations,
topology optimization can attain any shape within the
design space. This leads topology optimization to be one
of the most promising development directions in the field
of structural optimization (Rozvany 2009; Bendsœ and
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Sigmund 2003; Deaton and Grandhi 2014). Moreover,
topology optimization has been adopted to a wide range
of design problems in aerospace, mechanical, bio-chemical,
and civil engineering (Liu and Ma 2016; Zhu et al. 2020a;
Dehghani et al. 2020; Zhu et al. 2016).

For a continuum topology design problem, the conven-
tional topology optimization formulation uses finite element
analysis (FEA) to evaluate the structural performance. In
the FEA, the design space is discretized into sub-regions
of known shapes (e.g., triangle, square, or hexagonal cells)
(Nguyen et al. 2020; Zhu et al. 2020b; Andreassen et al.
2011; Kumar et al. 2020). The material state of each sub-
region is modelled as a function of the design variables,
which is often known as the mathematical parameteriza-
tion of the design space (Aulig and Olhofer 2016; Zhu
et al. 2020a). The difference between various continuum
topology optimization methods lies in their mathematical
representations. Up to now, the representations that are used
in the field of topology optimization can be roughly cate-
gorized into two classes: grid and geometric representation
(Wein et al. 2020).

In the grid representation-based topology optimization
methods, the allowable design space is firstly discretized
into finite elements. The optimization procedure will
determine which elements should contain solid material to
form the structure and which elements should be void. The
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first topology optimization method based on this strategy is
the so-called homogenization method (Bendsœ and Kikuchi
1988). This approach introduces a void hole into each
element with solid material to represent composite material.
Each element’s state (void or solid) is determined by
three design variables (the size and orientation of the void
hole). The presently most popular topology optimization
method in grid representation is the SIMP (Solid Isotropic
Material Penalization) method (Andreassen et al. 2011;
Ferrari and Sigmund 2020). When a topology optimization
is performed, it deals with a pure [0,1] problem. However,
the algorithm can not deal with Boolean variables. The
SIMP method helps to overcome this problem by relaxing
the design variables, so intermediate values can be used
in the optimization algorithm. To suppress the intermediate
material problem, one must penalize the elements with
intermediate Young’s moduli (Rozvany 2009). The ESO
(Evolutionary Structural Optimization) method has been
developed based on the simple idea of gradually removing
inefficient material from a structure to obtain the optimal
structure. In an ideal structure, the stress at every point
is near the same safe level, which leads to a rejection
criterion based on the local stress level. Any material
under low stress is assumed to be inefficient and therefore,
can be removed (Xia et al. 2018; Wang et al. 2020).
Although, for the most part, the topology optimization
methods use gradient information for searching optima, one
can also find papers that use global search, which is called
genetic algorithm-based topology optimization (Yoshimura
et al. 2017; Boichot and Fan 2016). However, non-gradient
topology optimization methods are generally inefficient
for solving grid representation-based topology optimization
problems where often millions of variables are involved
(Sigmund 2011).

The grid representation-based topology optimization
methods have reached a great level of maturity over the
past decades and have been applied in industrial software
(Schramm and Zhou 2006; Qu et al. 2016). However,
from the very start, there have existed several numerical
instabilities, e.g., checkerboards and mesh-dependence,
in the grid representation based topology optimization
methods (Sigmund and Petersson 1998). Precautions must
be taken to deal with such instabilities (Bendsœ and
Sigmund 2003). Since early 2000, researchers started to do
topology optimization using the propagation of structural
boundaries (Osher and Santosa 2001; Wang et al. 2003a;
Allaire et al. 2004). In this case, intermediate densities can
be completely avoided. This kind of topology optimization
method can be regarded as the geometric representation
based method. In such a method, the structural geometry is
defined by properties of a set of movable shape primitives.
It uses geometry mapping to connect the design variable and
the phenotypic finite element mesh. Instead of the number

of finite elements, the potential structural complexity
only depends on the number of shape primitives. This
can inherently avoid mesh dependency and checkerboard
patterns that are inevitable in the grid representation based
methods (van Dijk et al. 2013; Zhu et al. 2013; Yamasaki
et al. 2010). A typical method that uses this idea is the level
set method (LSM) (Wang et al. 2003a; Allaire et al. 2004;
Yamada et al. 2010). The LSM was originally introduced
by Osher and Sethian (Osher and Sethian 1988; Osher
and Fedkiw 2006). The seminal works incorporating LSMs
into structural optimization can be found in Osher and
Santosa (2001). Then the method is further developed in
Allaire et al. (2004) and Wang et al. (2003a) in which the
optimized structural configuration is obtained by solving
a Hamilton-Jacobi partial differential equation. Recently
developed LSMs are quite different from the conventional
one. Examples can be found in Jiang and Chen (2017)
where the level set function is defined by using a series
of radial basis functions, or in Kim et al. (2020) where
a reaction-diffusion equation is used to update the level
set function. The LSM utilizes a level set function to
represent the structural boundaries implicitly. Although a
smooth structural boundary can be obtained, it is difficult
to establish a direct relationship between the optimized
results and the computer-aided design (CAD) system (Guo
et al. 2016). In order to overcome this issue, the moving
morphable component (MMC)-based methods which allow
one to conduct topology optimization in an explicit and
geometrical way have been developed (Xu et al. 2014; Guo
et al. 2016).

These methods use explicit geometrical representation
in which the design problem is formulated using a set
of morphable components, and the optimized structural
topologies are obtained by optimizing shapes, sizes, and
locations of these components (Zhu et al. 2018; Yang and
Huang 2020). Over the years, the effectiveness of theMMC-
based topology optimization method has been demonstrated
through the use of different component geometries, e.g.,
moving morphable bars (Hoang and Jang 2017), moving
morphable voids (Zhang et al. 2019), extruded geometric
components (Hoang and Nguyen-Xuan 2020), adaptive
geometric component (Hoang et al. 2020a; Hoang et al.
2020b), and curved skeletons (Guo et al. 2016). In addition,
the MMC-based topology optimization methods have also
been applied for the solving of various problems, such as
minimum length scale control (Wang et al. 2019), nonlinear
structures (Zhu et al. 2018), stress constraints (Zhang
et al. 2018b), multi-material (Zhang et al. 2018c), thermal-
fluid problem (Yu et al. 2019), and isogeometric topology
optimization (Xie et al. 2020).

However, in the conventional MMC-based methods,
invalid topologies often occur (input and fixed boundaries
are not connected by solid material, as shown in Fig. 1)
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Fig. 1 Input and fixed boundaries are not connected by solid material
within the design domain. This case can occur even the curved skeleton
components are used (Guo et al. 2016)

during the optimization process (Zhu et al. 2018; Zhang
et al. 2016a). This phenomenon has a strong influence on
the stabilization of the optimization process and will be even
worse when a non-convex design problem, e.g., compliant
mechanisms, is considered (Zhang et al. 2016a). In this
paper, to overcome this issue, we adopt the basic idea of
MMC and present a new structural topology optimization
method that uses moving wide Bezier components with
constrained ends. In the proposed method, components
which are determined by using wide Bezier curves are
regarded as design units. These design units are represented
as the zero level sets of one higher-dimensional level
set function. The complexity of the structural topology is
controlled by the control points of such Bezier curves. The
ends of the utilized wide Bezier curves are constrained
based on the boundary conditions of the design problem so
that it can essentially avoid any structurally invalid designs
and thereby smooth the optimization process.

The remainder of the paper is organized as follows. In
Section 2, the underlying idea of the proposed method
is presented. In Section 3, optimization problems to be
considered are introduced. In Section 4, sensitivity analysis
is presented. In Section 5, the optimization algorithm to
implement the proposed method is presented. In Section 6,
several numerical examples are presented to demonstrate
the effectiveness of the proposed method. Conclusions are
documented in Section 7.

2 Structural topology optimization
usingmoving wide Bezier components
with constrained ends

2.1 Geometric representation scheme

For structural topology optimization, the goal is to seek
a sufficiently regular elastic body � ⊂ Rd(d =
2, 3) within a given design domain D. In the following,

we only consider d = 2 for simplicity since the
extension to d = 3 is straightforward. Similar to
the conventional MMC-based methods, we use a set of
movable wide Bezier components to represent the structural
boundaries/topologies. As demonstrated in Guo et al.
(2016), the optimized structural topology can be achieved
by properly arranging the positions and sizes/geometries of
these components.

As shown in Fig. 2, to form the component, we use
a Bezier curve as the skeleton. The shape of this curve
can be controlled by its control points Pi(xi, yi)(i =
0, 1, ..., p) where p + 1 is the total number of control
points. In order to form a valid design, the width of each
component is set to 2r (Fig. 2) in which r is also taken
as a design variable. Therefore, the used component is
called the moving wide Bezier component. In this case,
suppose we use M components, then the topology of the
structural shape can be entirely determined by a vector d =[
d1 d2 · · · dm · · · dM

]T
, where dm consists of geometry

parameters of the mth component:

dm = [
x0, y0, x1, y1, ..., xi, yi, ..., xp, yp, rm

]
(1)

where (xi, yi) are the coordinates of the control point i and
r is the half width of the wide Bezier curve (Fig. 2).

As mentioned in Tai and Chee (2000), Wang and
Zhang (2012), and Zhou and Ting (2005), while it is
still unknown how the design space is occupied by the
optimized structure, the loading, supporting and/or some
other functional interactions must be connected in order to
form a valid structural design.

Following this idea, in this paper, we use the moving
wide Bezier components as the bridges to connect all
Dirichlet and Neumann boundaries in the design domain.
Specifically, the control points at both ends of the
component can be constrained on the design condition in
which the support, loading, and other functional interactions
are predefined. Taking the cantilever design as an example,
we briefly introduce the connection ways. In addition to
the free boundaries, the design domain of the cantilever
normally contains two specific areas, i.e., the loaded area
and the fixed part. To form a valid design, these two
areas must be connected to each other with solid material.
Suppose we use four moving wide Bezier components to
connect these two areas, a valid design can be shown in
Fig. 2 (left). Figure 2 (right) shows one example where the
fixed and loaded areas are connected by one wide Bezier
component. According to the fixed boundary condition,
during the optimization process, it only needs to restrict the
horizontal coordinates of the control point at the left end of
the component so that it can move along the displacement
boundary. Whereas, since the input force is applied at
one point, the right end of the component needs to be
completely fixed. This means the values of x0, xp, and yp
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Fig. 2 A cantilever example to
show the underlying idea of the
presented method

in dE
m can be predefined. This strategy will not render any

structurally invalid designs and thereby significantly smooth
the optimization process.

Therefore, the moving wide Bezier components with
constrained ends (MWB-CE) is defined in this paper. The
design variable vector dm can be separated into two parts:

dm =
[
dE

m

dF
m

]
(2)

where dE
m = [

x0, y0, xp, yp

]� and dF
m =

[
x1, y1, x2, y2, ..., xp−1, yp−1, rm

]� represent the coor-
dinates of the end and intermediate control points,
respectively.

2.2 Construction of the level set function φm
of the component m

In the proposed method, the material domain � is
determined by M moving wide Bezier components with
constrained ends, i.e.:

� = C1 ∪ C2... ∪ Cm... ∪ CM (3)

where Cm denotes the mth component that is defined using
a level set function φm as:
⎧
⎨

⎩

φm(x) > 0 if x ∈ Cm

φm(x) = 0 if x ∈ ∂Cm

φm(x) < 0 if x ∈ D\Cm

(4)

where x is a point in the design domain. In this case, the
structure � can be determined by a level set function φs as:

φs(x) = max(φ1(x), φ2(x), ..., φm(x), ..., φM(x)). (5)

The position vector C of any point on a Bezier
polynomial curve can be determined by using the following
general equation:

C = C (t) =
p∑

i=0

bi,p(t)Pi (6)

where t varying from 0 to 1 is the intrinsic parameter along
the curve, bi,p(t) denotes the Bezier coefficient of degree p,

and Pi is the coordinates vector of the ith control point:

bi,p(t) = p!
i!(p − i)! (1 − t)p−i t i . (7)

The 1st derivative of the Bezier curve can be expressed
as:

C(1)(t) = p

p−1∑

i=0

bi,p−1(t)(Pi+1 − Pi ). (8)

We use a signed distance function φm to represent the
moving wide Bezier component Cm. A signed distance field
is constructed in the discrete domain and offset by r unit
lengths along the z-axis:

φm(x) = r − smin = r − |C(t) − x| (9)

where smin is the signed distance function reflecting the
shortest distance from point x to the curve. These points
can be taken as element nodes in the discrete domain. The
shortest distance from any point xk to the parameterized
curve can be obtained by solving the following extreme
value problem:

smin
k = min

tk∈[0,1],k∈I
|C(tk) − xk| (10)

where I is the set of nodes in the discrete domain. Since the
closed-form solution of the derivative of the Bezier curve
has been deduced in (8), the problem can be solved directly
by Newton’s iterative method. Obviously, the more control
points there are in a Bezier curve, the higher the order and
thus the more complex the shape of the curve. This can lead
to a larger search space, which allows the Bezier component
to construct a structure closer to the optimal solution. But
this introduces more design variables and requires higher
costs to estimate the boundary of the component, which
introduces an increased computational burden (Tai and Chee
2000). It is up to the designer to weigh it against personal
choice.
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2.3 Mathematical formulas for solving structural
topology optimization under theMWB-CE
framework

By using the proposed MWB-CE, a topology optimization
problem with the goal of minimizing an objective functional
J for a specific physical type described by j (u) under a
constraint on material usage V can be formulated as:

min
d

: J = J (u, φs(d)) = ∫
D

j (u)H(φs (d))d�

s. t. : V/V ∗ = ∫
D

H (φs (d)) d�/V ∗ ≤ χ
(11)

where V ∗ denotes the total volume whenD is fully occupied
by solid material, χ is the requested volume fraction, and u

is the state variable. H(φs) is the Heaviside function and is
defined as:

H(φs) =
{

1 if φs ≥ 0
0 if φs < 0

. (12)

In this paper, the discrete domain is filled by bilinear
elements. In order to address the finite element problem
with an irregular interface, the Ersatz material model is
employed (Zhang et al. 2016a), in which the level set
function or topological description function is transformed
into a 0–1 distribution using the Heaviside function as given
in (12). To make the Heaviside function differentiable, this
paper uses a smoothed version of the Heaviside function
H̃ (φ):

H̃ (φ) =
⎧
⎨

⎩

1, if φ > �,
3(1−α)

4 (
φ
�

− φ3

3�3 ) + 1+α
2 , if − � ≤ φ ≤ �,

α, otherwise.

(13)

where � is the parameter to control the magnitude of the
smoothing interval. α is taken as a very small positive
number to avoid the singularity of the stiffness matrix.

3 Considered design problems

3.1 Stiffness design

A stiffness design problem can be illustrated as in Fig. 3
(left) where �d represents the Dirichlet boundary condition
and only surface load F is considered. The most commonly

Fig. 3 The design problems considered in this study

used objective function is to minimize the sum compliance
which can be expressed as Bendsœ and Sigmund (2003) and
Sigmund (2007):

min : J = F�u (14)

where u is the displacement field due to external force
vector F and is obtained by solving the following bilinear
equilibrium:
∫

D

Eijklεij (u) εkl (v)H
(
φs

)
d� =

∫

D

Fuδ
(
φs

) ∣∣∇φs
∣∣ d�

(15)

where v denotes the arbitrary virtual displacement. Eijkl

and εij denote the elasticity tensor and the strain tensor,
respectively. δ (φs) is the Dirac delta function defined as:

δ
(
φs

) = ∂H (φs)

∂φs
(16)

The smoothed version of Dirac delta function δ̃(φ) can
be expressed as:

δ̃(φ) =

⎧
⎪⎨

⎪⎩

0, if φ > �,
3(1−α)

4 ( 1
�

− φ2

�2 ), if − � ≤ φ ≤ �,

0, otherwise.

(17)

3.2 Compliant mechanisms

The compliant mechanism design problem with single
input-output behavior can be illustrated in Fig. 3 (right).
An input force F is applied at the input port i and the
displacement uo at output port o due to F is expected to be
maximized. Two artificial springs ki and ko are attached to
the input and output port, respectively. Then the objective
function J can be expressed as Bendsœ and Sigmund (2003)
and Sigmund (2007):

min : J = −l�u (18)

where u is the displacement field due to external force
vector F and l is a vector which consists of all zero except
for the output port o which is 1. The displacement u can be
obtained by solving the bilinear equilibrium with the same
form in (15).

4 Sensitivity analysis

The aforementioned problems are solved using the gradient-
based optimization algorithm. The objective functions as
described in (14) and (18) can be unified into the following
matrix form:

J = Q�U (19)
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where Q = F in the stiffness design problem and Q =
l in the compliant mechanisms problem, and U is the
displacement vector.

According to the adjoint method, the sensitivity of the
objective function J with respect to any design variable a

can be calculated as:
∂J
∂a

= ∂
∂a

(
Q�U

) + λ� ∂
∂a

(F − KU)

= (
Q� − λ�K

)
∂U
∂a

− λ� ∂K
∂a

U
(20)

Since λ� is a Lagrange multiplier, the derivative term
of the displacement can be further eliminated by solving
the adjoint equation Q� − λ�K = 0. K is the global
stiffness matrix. The sensitivity of the element stiffness with
respected to the design variable a can be expressed as:

∂Ke

∂a
= ∫

De
B�DB ∂H(φs)

∂a
d� (21)

where D is the elasticity matrix under the state of
plane stress and B denotes a matrix for displace-
ment gradients interpolation. Suppose a is a design
variable relate to the mth component, the region that
can be affected by perturbations of the design vari-
able can be expressed by (1 − H(φs

m))H(φm) where
φs

m = max(φ1(x), φ2(x), ..., φm−1(x), φm+1(x), ..., φM(x))
(Zhang et al. 2018a). The sensitivity of the element stiffness
matrix can be rewritten as:
∂Ke

∂a
= ∫

De
B�DB ∂

∂a

(
(1 − H(φs

m))H(φm)
)
d�

= ∫
De

B�DB(1 − H(φs
m))δ(φm)

∂φm

∂a
d�

. (22)

For component m, when the variable a represents the
half-width rm, the term ∂φm/∂a can be written as:

∂φm

∂rm
= ∂

∂rm
(rm − |Cm(t) − x|) = 1 (23)

and when a is the coordinate of the ith control point
Pi(xi, yi), the term ∂φm/∂a yields:

∂φm

∂xi

= ∂

∂xi

(rm −|Cm(t)−x|) = −(Cx,m(t) − x)
√

((Cx,m(t) − x)2 + (Cy,m(t) − y)2)

bi,p(t)

(24)

∂φm

∂yi

= ∂

∂yi

(rm −|Cm(t)−x|) = −(Cy,m(t) − y)
√

((Cx,m(t) − x)2 + (Cy,m(t) − y)2)

bi,p(t)

(25)

where x and y are the coordinates of the point x.
The sensitivity of the volume constraint function can be

written as:

∂

∂a

(
V

V ∗

)
= 1

V ∗

∫

D

δm(φm)
∂φm

∂a
d� (26)

5 Optimization algorithm

The optimization algorithm can be described as an iterative
process in Algorithm 1. The optimization process begins
with the initialization of all parameters related to the
design problem, including material properties, boundary
conditions, the number of control points p + 1 for each
Bezier curve, and the total number of components M to
represent the structural topology. Then, the design variable
dE

m will be preset according to the boundary conditions. The
initial structural configuration is made up of a randomly
generated dF

m. The level set functions of all components are
calculated and the configuration of the structure is obtained
using (5). After that, the finite element analysis is performed
to obtain the structural response and the sensitivity analysis
is performed. The design variables are updated by using
the Method of Moving Asymptotes (MMA) (Svanberg
1987). Finally, the optimized results are visualized. The
optimization process will be repeated if the convergence
check fails. The convergence is achieved if the volume
fraction is within 0.0005 of the required value χ and the
values of the objective in the previous 5 steps are also
within 0.05% tolerance of the values in the current step, or
a predefined maximum iteration number is achieved.

Fig. 4 The design domain of the cantilever
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Fig. 5 The final dsign of the
cantilever which is shown in
both its components plot (a) and
structural configuration plot (b)

Fig. 6 Intermediate designs
shown in their component and
topology plots of the cantilever
obtained using the proposed
method.a initial. b step 5. c step
20. d step 80. e step 320
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Fig. 7 Convergence history of the mean compliance when designing
the cantilever using the proposed method

6 Numerical examples

In this section, we present several examples to demonstrate
the validity of the proposed method. The artificial material
properties are described as follows. Young’s modulus for
solid material is E = 1 and Poisson’s ratio is υ = 0.3. The
design domain is discretized by square finite elements.

6.1 Cantilever

The first considered optimization problem is the cantilever
design problem, which is a well-known example in the
literature of topology optimization. The design domain is
shown in Fig. 4. The ratio of the length and height of the
design domain is 2 : 1. The left side of the design domain is
fixed. A single vertical load F = 1 is applied at the center
of its right side. A volume ratio 0.3 is considered. The fixed
design domain is discretized using 80 × 40 elements for
finite element analysis.

For this example, we use 12 Bezier curves to represent
the structural topology and each Bezier curve has 8 control
points. According to the boundary conditions, all the right
end control points of the utilized curves have the same
coordinates with the input load port i. The x-coordinates of
all left control points are zero while the y-coordinates are
able to vary along the y direction.

The optimized topology is shown in Fig. 5 in which both
components and structural configuration plots are presented.
The obtained topology is nearly identical to the results that
have been well accepted (Bendsœ and Sigmund 2003). The
obtained cantilever has the mean compliance of 103.6 which
is slightly higher than that obtained by using a standard
MMC method (99.5) (Zhang et al. 2016a). This is because
we set the thickness r of the components to be uniform.
One may use parametric wide Bezier curves (Zhou and Ting
2005) to obtain a better result. In this study, the thickness

r can reach 0 which means the corresponding Bezier curve
becomes dead and has no contribution to the structural
configuration, as shown in Fig. 5a.

The optimization process runs for 346 steps. The
randomly generated initial design and several intermediate
designs are shown in Fig. 6. The convergence history
of the mean compliance is shown in Fig. 7. During the
whole optimization process, topology, shape, and size of the
structure can be conveniently described and fully controlled
by the parameters of the utilized wide Bezier components
with constrained ends. Moreover, the optimization process
is relatively smooth since structurally invalid designs, e.g.,
the loading and supporting areas that are not connected with
solid material (Zhu et al. 2018), can be naturally avoided.

6.1.1 Design with different initial topologies

In this section, we examine the effect of different initial
configurations upon the resulting optimized structural
topology. For all the four studied cases, the initial value
r that determines the width of the components is set
to 0.01max(L, W) where L and W are the length and
width of the design domain, respectively. Since in the
proposed method, the structural configuration is completely
determined by the parameters of the Bezier curves which are
randomly predefined, we simply run our program four times
in which the initial configurations are shown in Fig. 8. The
corresponding optimized topologies are shown in Fig. 9.
The mean compliances of all studied cases are shown
in Table 1. For all studied cases, the obtained optimized
topologies are clear and almost the same, although the
resulting compliances are slightly different. Thus, the
dependency of the obtained optimized configurations upon
the initial configurations is extremely low. Although in this
study the initial values of the design variables are randomly
given, one can also set these values artificially as has been
done in Zhang et al. (2016a). The principle is to let curves
cross each other enough times, i.e., create many holes in the
initial configuration so as to form a complex topology. This
strategy has been proved to be effective in the standard level
set methods (Allaire et al. 2004; Wang et al. 2003b).

6.2 Bridge

In this section, we consider a Michell type bridge structure
with fixed-fixed supports, as shown in Fig. 10. The ratio of
the length and height of the design domain is 2 : 1. Both
the left and right bottom corners are fixed. A vertical unit
load F is applied at the center point of the bottom. For this
example, the volume ratio χ is set to 0.2. The design domain
is discretized by using 100×50 finite elements for the elastic
analysis.

60



Explicit structural topology optimization using moving wide Bezier components with constrained ends

Fig. 8 The four different initial configurations of the cantilever design problem generated by randomly generating the initial value of design
variables. a Case 1. b Case 2. c Case 3. d Case 4

6.2.1 Design with different number of components

We first examine the effect of a different number of
wide Bezier curves upon the resulting optimized structural
topology. Four cases are studied in which the number of
used curves is set to 3, 6, 9, and 12. The number of control
points of each curve is set to 10.

Due to the boundary conditions, we use the same number
of curves to connect points A and B, points A and i, and
points i and B (Fig. 11). For all the studied cases, the

initial configurations are shown in Fig. 11 in which only
component plots are given. The corresponding optimized
topologies are shown in Fig. 12. For all four studied cases,
the obtained optimized topologies are the same and identical
to the results that have been published such as in Zhu
et al. (2015). The mean compliances of all studied cases are
shown in Table 2.

Although an optimized topology can still be obtained
when the number of curves used is relatively small, e.g.,
3, it is still recommended to use a large number of curves
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Fig. 9 The corresponding
optimized topologies of the
cantilever with different initial
configurations. a Case 1. b Case
2. c case 3. d Case 4

to stabilize the optimization process and obtain a better
design (Table 2). However, when the used number of curves
is too large, the number of design variables will increase
dramatically. This can affect the optimization speed as
demonstrated in Zhu et al. (2018). For the studied bridge
problem, it is shown that 9 curves are an appropriate choice
since it can result in a smooth configuration with the lowest
mean compliance.

Table 1 Resulted values of mean compliance of the cantilevers

Case 1 Case 2 Case 3 Case 4

J 103.2 102.8 104.1 103.9

6.2.2 Design with different number of control points

Following Section 6.2.1, we further examine the effect of
the number of control points upon the optimized structural
configuration. The bridge problem is resolved with a fixed

Fig. 10 The design domain of the bridge problem
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Fig. 11 The initial configuration
of the bridge problem with
different number of components:
a 3 (Case 1), b 6 (Case 2), c 9
(Case 3), and d 12 (Case 4)

Fig. 12 The optimized
configurations of the bridge
problem with different number
of components: a 3 (Case 1), b 6
(Case 2), c 9 (Case 3), and d 12
(Case 4)
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Table 2 Resulted values of mean compliance of the bridges

Case 1 Case 2 Case 3 Case 4

J 23.2 21.1 20.3 21.9

number of wide Bezier curves, which is 9. In addition to
the result shown in Fig. 12c in which the number of control
points is 10, we examine two extra cases where the number
of control points is set to 4 and 20.

The optimized topologies of the two studied cases are
shown in Fig. 13 both in their component and topology
plots. Compared with Fig. 12c, although the same topology
can be obtained, the shapes are quite different to each other.
The obtained structures have mean compliances of 22.8
(Fig. 13a) and 20.9 (Fig. 13b).

One can see that, with a small number of control
points, the Bezier curve can not form complex shapes,
which will slightly affect the outcome mean compliance
of the optimized structure. With a large number of control
points, the Bezier curves can be quite twisted during the
optimization process, which lead to unsmooth boundaries
of the optimized structure. Moreover, a large number of
control points lead to a large number of design variables
which also will slow down the optimization speed. Based
on the authors’ numerical experiences, around ten control
points would be a good choice to obtain a clear and smooth
optimization result.

6.2.3 Another design condition

In this section, the bridge problem is resolved by using
the boundary conditions as shown in Fig. 14. The ratio of
the length and height of the design domain is 4 : 1. The
boundaries at points A and B are fixed. Point A and Point B

Fig. 13 The optimized
configurations of the bridge
problem with different number
of control points: a 4 and b 20

D

A B

f

Fig. 14 The design domain of another bridge problem

are respectively at 1/4 and 3/4 of the bottom of the design
domain. A unit surface load f is applied at the top of the
design domain. For this example, the volume ratio χ is set
to 0.35. The design domain is discretized by using 160× 40
finite elements for the elastic analysis. The number of used
curves is set to 12. The number of control points of each
curve is set to 8. The initial configuration (Fig. 15a) is
also randomly generated. The optimized topology and its
corresponding component plot are shown in Fig. 15b. One
can see that, with a different design boundary condition, an
optimized design with higher structural complexity can be
obtained.

6.3 Displacement inverter

From this section on, we use compliant mechanism design
problems to further demonstrate the validity of our method.
A displacement inverter is firstly considered. The design
domain can be seen in Fig. 16 in which only the bottom half
part is shown due to the symmetry. The ratio of the length
and width of the design domain is also set to 2 : 1. The left
bottom corner is fixed and a unit load F is applied at the
input port i. The output displacement uo at o is expected to
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Fig. 15 The initial configuration
a and final design b of the bridge
problem. Both of the component
and topology plots are given

be maximized. Two springs, ki = 0.5 and ko = 0.1, are
attached to the input port i and output port o, respectively.
The maximum allowable material usage χ is set to 0.25. We
use 9 wide Bezier curves to form the structural configuration
as was done in Section 6.2. Each Bezier curve has 10 control
points.

6.3.1 Comparison study with the standard MMCmethod

Compared with the standard MMC method, such as
proposed in Zhang et al. (2016a), the proposed method has
the advantage of naturally avoiding generating structurally
invalid designs during the optimization process, which is
helpful to smooth and stabilize the optimization process.
To illustrate this, the displacement inverter design problem
is firstly solved by using the MMC program provided
in Zhang et al. (2016a) under the design conditions and
convergence criteria used in this study. The optimization
process converges at step 161. However, since the generated
topology at step 161 has some broken areas, we let the
optimization process keep running for 500 steps. The
generated topology is shown in Fig. 17a. The design
problem is solved by using the proposed method and the
optimization process converges at step 176. The optimized
configuration is shown in Fig. 17b.

For the standard MMC method, the initial configuration
and some intermediate designs, as well as the convergence
history of the output displacement uo, are shown in Fig. 18.
It is shown that, during the first 50 iteration steps, invalid

Fig. 16 The design domain of the displacement inverter

designs in which the input port, output port, and fixed
boundary are not connected to each other are generated.
This makes the output displacement uo remaining 0
for around 40 iteration steps before it goes down. For
the proposed method, the initial configuration and some
intermediate designs, as well as the convergence history of
the output displacement uo, are shown in Fig. 19. It is shown
that, since no invalid designs occur during the optimization
process, the convergence history of uo is smoothed.

It has to be pointed out that the use of standard
MMC method (components with straight skeletons) can
lead to non-smooth structural boundaries (Fig. 17a).
In order to overcome this issue, Guo et al. (2016)
suggested to use moving morphable components with
curved skeletons, which is helpful to smooth the obtained
structural boundaries. However, as demonstrated in the
provided numerical examples in Guo et al. (2016), the
disconnection issue as demonstrated in Fig. 1 still exits,
especially in the first few iterations of the optimization
process. Therefore, in the authors’ opinion, the idea
proposed in this study should be more helpful to stabilize the
optimization process meanwhile smoothing the structural
boundaries.

6.3.2 Minimum length control

The minimum length scale or thickness control is a very
important issue in topology optimization. Many methods
have been proposed to deal with this problem (Wang et al.
2019; Lazarov et al. 2016; Zhang et al. 2016b). By using
the proposed method, the minimum length scale control can
be easily done without adding extra constraint. One can
directly set the lower bound of the design variable r that is
used to control the thickness of the wide Bezier curve.

To illustrate this, we resolve the displacement inverter
design problem by setting the lower bound of r to 0.01W
instead of 0, where W is the width of the design domain.
The optimized topology is shown in Fig. 20 both in its
component and topology plots. One can see that, since r

is not allowed to decrease to be 0, there are no longer
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Fig. 17 The optimized
configuration of the
displacement inverter with: a the
standard MMC method and b
the proposed method

Fig. 18 The convergence
history of the objective function
uo when using the standard
MMC method. The initial
configuration and some
intermediate designs at step 10,
step 40, and step 80 are shown.
The optimized configuration
under the convergence criteria in
Section 5 is also shown. The
maximized output displacement
is 0.18

Fig. 19 The convergence
history of the objective function
uo when using the proposed
method. The initial
configuration and some
intermediate designs at step 10,
step 40, and step 80 are shown.
The optimized configuration
under the convergence criteria in
Section 5 is also shown. The
maximized output displacement
is 0.21

Fig. 20 a, b The optimized
displacement inverter when
setting the lower bound of r to
0.01W
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Fig. 21 The optimized
displacement inverters obtained
with different mesh refinement:
a 60 × 30 = 1800,
b 100 × 50 = 5000,
c 160 × 80 = 12800,
and d 200 × 100 = 20000

any dead components. The components will sit together
to form a reasonable design while the minimum length
scale control can be naturally done. As a result, the de
facto hinges (Zhu et al. 2020a; Zhan and Luo 2019; Chen
and Wang 2007), which are quite common when designing
compliant mechanisms using topology optimization, have
been avoided.

6.3.3 Design with different mesh refinements

In this section, we examine the effect of the finite element
mesh size upon the optimized configurations obtained. Four
cases are studied in which the mesh size is restricted to
60 × 30, 100 × 50, 160 × 80, and 200 × 100. All the
other design parameters remain the same as those used in
Section 6.3.1.

The optimized displacement inverters for each case are
shown in Fig. 21 both in their component and topology
plots. All obtained optimized configurations are smooth,
clear, and have the same topology. This indicates that
a reasonable optimized configuration can be obtained by
using the proposed method regardless of which mesh size is
used.

Fig. 22 The design domain of the push gripper
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Fig. 23 The initial a and final b
topologies of the gripper

6.4 Push gripper

For using the proposed method, it is also possible and easy
to obtain the optimized results by incorporating them with
the free movable components. In this case, the number of
moving wide Bezier components with constrained ends can
be decreased. To illustrate this, we consider a push gripper
design problem. The design domain can be seen in Fig. 22
in which only half of the part is considered due to the
symmetry. The ratio of the length and width of the design
domain is set to 2 : 1. The left bottom corner is fixed. A
horizontal unit load F is applied at the left top corner of the
design domain. A vertical displacement of the outer jaw is
expected to be maximized. The design domain is discretized
with 80 × 40 finite elements. Maximal material usage χ is
restricted to 0.25. Two springs, ki = 0.1 and ko = 0.1, are
attached to the input port i and output port o, respectively.

According to the boundary conditions, we use 6 wide
Bezier curves with constrained ends and 4 wide Bezier

0 50 100 150 200

iter

0

0.2

0.4

0.6

0.8

O
b
j

Fig. 24 The convergence history of the displacement uo of the gripper
problem

curves with free ends to represent the structural topology.
The configurations of the constrained end components are
randomly generated, while the free end components are
given following the methods in Zhang et al. (2016a). The
initial configuration is shown in Fig. 23a. The optimized
configuration is shown in Fig. 23b. The convergence history
of the output displacement uo is shown in Fig. 24. It shows
that the proposed method can provide meaningful results
by incorporating the free movable components without
generating invalid designs that affect the stabilization of the
optimization process.

7 Conclusions

A structural topology optimization method that uses moving
wide Bezier components with constrained ends (MWB-
CE) is presented in this paper. The design units are set
to a number of wide Bezier curves which are represented
by the level set functions. The design variables are set
to the control points and width of such wide Bezier
curves. The optimized topology is obtained by updating the
coordinates and the width of the Bezier curves by using
the MMA. The two ends of each wide Bezier curve are
constrained based on the principle that, in order to form
one single connected load-bearing structure, the loading,
supporting, and/or some other functional interactions must
be connected. The validity of the proposed method is
demonstrated by designing several benchmark examples
in the literature of structural topology optimization. The
results show that the proposed MWB-CE method can
avoid generating invalid designs thereby smoothing the
optimization process. In addition to that, the proposed
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method can achieve minimum length scale control easily
without adding extra constraints. Future works will extend
the proposed method by solving three-dimensional and
geometrically nonlinear structural topology optimization
problems.
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