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Abstract
Methods based on Gaussian stochastic process (GSP) models and expected improvement (EI) functions have been promising for
box-constrained expensive optimization problems. These include robust design problems with environmental variables having set-
type constraints. However, themethods that combineGSP and EI sub-optimizations suffer from the following problem, which limits
their computational performance. Efficient global optimization (EGO) methods often repeat the same or nearly the same experi-
mental points.We present a novel EGO-type constraint-handlingmethod that maintains a so-called tabu list to avoid past points. Our
method includes two types of penalties for the key “infill” optimization, which selects the next test runs. We benchmark our tabu
EGO algorithm with five alternative approaches, including DIRECT methods using nine test problems and two engineering
examples. The engineering examples are based on additive manufacturing process parameter optimization informed using point-
based thermal simulations and robust-type quality constraints. Our test problems span unconstrained, simply constrained, and robust
constrained problems. The comparative results imply that tabu EGO offers very promising computational performance for all types
of black-box optimization in terms of convergence speed and the quality of the final solution.

Keywords Surrogate systems . Kriging . Robust optimization . Constrained optimization . Computer experiments

1 Introduction

Engineering design optimization problems often involve ex-
pensive black-box functions such as finite element methods
(FEM), computational fluid dynamics (CFD), or thermal sim-
ulations based on Green’s functions. The computational times
required to build and run these simulations could be minutes,
hours, or even days. Therefore, methods based on Gaussian
stochastic process (GSP) or Kriging meta-models provide
computationally inexpensive approaches to speed up the op-
timization by providing surrogates for more expensive simu-
lations (Matheron 1963; Santner et al. 2018). GSP meta-

models have been incorporated into the so-called efficient
global optimization (EGO) to solve unconstrained (Jones
et al. 1998), simply constrained (Audet et al. 2000; Sasena
et al. 2002; Sasena 2002), and robust constrained (ur
Rehman and Langelaar 2017) optimization problems. In all
these cases, the EGO algorithm selects the next expensive (in
terms of computation time) function evaluation or sample
using an “infill” optimization involving the GSP meta-model.
These infill optimizations involve some form of expected im-
provement (EI, Jones et al. 1998) formula or other infill sam-
pling criterion (ISC) such as mode-pursuing sampling (Wang
et al. 2004) to balance exploration and exploitation.

EGO applications have been extended to “noisy” problems
involving either stochastic simulations or real-world experi-
ments (e.g., Huang and Allen, 2005). The term “noisy” in
optimization referring to the problem affected by uncer-
tainties, and it is often called the robust optimization problem.
Ben-Tal et al. (2009) summarized the recent progress of robust
optimization for linear, convex-quadratic, conic-quadratic,
and semidefinite problems. However, literature related to ro-
bust optimization of non-convex problems affected by
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uncertainties is relatively limited. Bertsimas et al. (2010) pro-
posed an algorithm for robust optimization of non-convex
problems with constraints, but the method is aimed at identi-
fying local robust optima only. In 2015, Reman and Langelaar
proposed the first Kriging-based constrained optimization for
addressing efficient global robust optimization of uncon-
strained problems affected by parametric uncertainties, and
they expanded to the constrained optimization problem (ur
Rehman and Langelaar 2017). This paper utilizes the frame-
work introduced by Reman and Langelaar to solve the
constrained optimization problem with max/min-typed con-
straints, which will be explained in detail in Section 2.1, by
dividing the optimization problem into two sub-optimization
problems.

EGOmethods often suffer from repeating the same or near-
ly the same experimental points, which limits their computa-
tional performance. Huang et al. (2005) addressed the
“diminishing return of addition replicates” in creating a new
EI-based infill sampling formula; i.e., they addressed the un-
fortunate tendency of the EI methods to return to the same
points for noisy problems. The associated relatively slow con-
vergence rates were noted even for noisy cases in which re-
peated sampling could be (hypothetically) beneficial. Those
authors created a so-called augmented expected improvement
(AEI) to reduce resampling. Here, we propose methods that
directly and explicitly increase the probability of avoiding
returns to or near previously sampled points using a so-
called tabu list. Our proposed lists comprise previously sam-
pled points, and points predicted to be infeasible identified
during infill optimizations.

Tabu searches (TS) are highly regarded meta-heuristics
for the optimization of inexpensive black-box functions
(Glover 1986, 1989, 1990; Chelouah and Patrick 2000).
Generating variants of TS methods continues to be an ac-
tive area of research for inexpensive functions, including
new types of “hybrid” optimization (Duarte et al. 2011).
TS methods have been combined with other meta-heuris-
tics, such as particle swarm methods (Lin et al. 2019).
However, TS methods have not been applied to expensive
black-box functions and have not been combined with
EGO methods. Although the idea of tabu search could be
applied to most of the sequential global optimization
methods, combining TS and EGO to address expensive
black-box optimization is our primary objective here.

It should be noted that Forrester et al. (2006) also observed
the repetition tendency in noisy black-box methods of EGO.
They proposed that nontrivial regression models should be
included in the Kriging modeling to avoid repetition. Even
though our problem here is noiseless, we include the so-
called superEGO methods with first-order regression in our
comparison.

The method for performing infill optimizations using
the inexpensive GSP meta-models is generally not a major

concern in the context of the EGO method because the
computational overhead often has less importance than
the costs of the expensive black-box runs. Therefore,
many types of non-linear programming approaches can
be applied, including DIRECT methods (Jones 2009a;
Liu et al. 2017), constraint importance mode-pursuing
sampling for continuous global optimization (CIMPS,
Kazemi et al. 2010), and constrained local metric stochas-
tic radial-based function (ConstrLMSRBF, Regis 2011)
methods. In our implementation, we use DIRECT for
our infill optimization; a brief introduction of the
DIRECT method can be found in Section 2.4. However,
non-linear programming approaches have been proposed
to apply to expensive black-box functions (e.g., Liu et al.
2017). We also included MATLAB’s build-in constrained
non-linear optimization algorithm fmincon (The Math
Works, Inc 2020), and Tree Parzen Estimator (Bergstra
et al. 2013) from a python package hyperopt is included
in the results comparison study. Therefore, the methods
mentioned above are included in our computational com-
parison together with the pre-existing EGO-type methods.

The motivating application for this work is the opti-
mal design of additive manufacturing process parameters
informed by point-based thermal simulations (Frazier
2014; Schwalbach et al. 2019). These thermal simulation
outputs derive from a sum over Green’s function evalu-
ations evaluated at discrete points in a physical two-
dimensional layer (Schwalbach et al. 2019). This type
of simulation differs from usual FEM or CFD simula-
tions in that it is possible to obtain values at discrete
X-Y points only. The FEM and CFD methods almost
unavoidably generate outputs at all X-Y points in the part
geometry. Therefore, the use of discrete thermal simula-
tions motivates the application of a robust formulation in
which the part thermal quality must be guaranteed at all
X-Y points in the process parameter optimization. This is
challenging because potentially the worst X-Y point
might differ depending on the process parameter values.
We address the decision problem posed for robust EGO
methods (ur Rehman and Langelaar 2017).

The remainder of this article is organized as follows.
Section 2 reviews the decision problems in unconstrained
(Jones et al. 1998), simply constrained (Audet et al. 2000;
Sasena et al. 2002; Sasena 2002), and robust constrained
(ur Rehman and Langelaar 2017) optimization and pro-
vides a brief introduction to the DIRECT method. The
first two problems are described as a special case of the
third. Also, the mechanics of GSP meta-models and
pseudo-code for EGO methods are reviewed, again with
unconstrained and simply constrained methods described
as special cases of robust EGO methods. Further, TS
method concepts and methods are briefly described. In
Section 3, we propose the novel tabu EGO methods
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building on robust EGO and concepts from TS methods.
Sections 4 and 5 compare the performance of tabu EGO
with three alternative methods on nine numerical test
problems and two additive manufacturing process param-
eter optimization problems. Finally, Section 6 discusses
the implications and suggests multiple opportunities for
future research.

2 Review of alternative methods

2.1 Decision problems

The general robust decision problem was explored by ur
Rehman and Langelaar (2017). The controllable decision
variables are xc which are restricted to the set Xc. In
addition, there are environmental or noise variables, xe,
restricted to the set Xe. In our additive example, the pro-
cess parameter variables are controllable, and the noise
variables are the X-Y positions because our part must have
acceptable quality at all points in each layer. The objec-
tive function is f(xc, xe), and the q constraints are gj(xc,
xe), j = 1, ⋯, q. In our example, the objective is the pro-
cessing speed times, and the constraints related to part
quality at all points. The general formulation is

min xc max xe f xc; xeð Þ
s:t:max xeg j xc; xeð Þ≤0 ∀ j ¼ 1;…; q

xc∈Xc; xe∈Xe:
ð1Þ

Note that “simply” constrained formulations are spe-
cial cases for which the environmental variable is a
constant, i.e., Xej j ¼ 1. Unconstrained problems are spe-
cial cases with q = 0.

Two potentially significant quantities are the worst envi-
ronmental conditions at iteration t, x*e;t, for a given set of con-

trol parameters x*c and the best control parameters at iteration t,
x*c;t, for a given environmental set of conditions x*e . These
quantities are

x*e;t ¼ argmax xe∈Xe f x*c ; xe
� �jg j x

*
c ; xe

� �
≤0∀ j ¼ 1;…; q; xe ∈Xe:

ð2Þ

and

x*c;t ¼ argmin xc∈Xc f xc; x*e
� �jg j xc; x

*
e

� �
≤0∀ j ¼ 1;…; q; xc ∈Xc:

ð3Þ

The two quantities in (2) and (3) relate to the two sub-
optimizations of the robust EGO algorithm (ur Rehman and

Langelaar 2017). For methods without robustness constraints,
(2) is not relevant (e.g., Jones et al. 1998; Sasena 2002).

2.2 Gaussian stochastic process models

Gaussian stochastic process (GSP) or “Kriging” meta-models
have proven useful for the modeling and optimization of ex-
pensive black-box functions (Matheron 1963; Santner et al.
2018). The derived empirical models can generate surrogate
predictors, F f and Gj, for the objectives and constraint
functions, f and gj, in (1).

We assume that the decision vector x has d dimensions, and
n is the current total number of data points. The assumptions
of GSP models are often expressed in terms of outputs, Y(x),
regression terms, h(x), and random terms Z(x). The assumed
model is

Y xð Þ ¼ h xð Þ þ Z xð Þ: ð4Þ

Where Z(x) is a zero mean stationary Gaussian process with
Cov(Z(xi ), Z(xj) = σ

2Ri, j(θ, p), where Ri, j(θ, p) is defined in (5).
In our numerical examples, we make the common assump-

tion that the regression terms are constant, i.e., h(x) = β0.
However, detrending data using regression can be critical in
some problems.

The GSP model parameters are d dimensional vectors of
correlation parameters, θ, and exponents, p. A critical model
quantity is the correlation matrix, R, between the responses at
the points, x1, ⋯, xn. Here, we assume the standard Gaussian
correlation function R with i, jth entry Ri, j:

Ri; j θ; pð Þ ¼ ∏m
k¼1e

−θk xk−xi;kð Þpk : ð5Þ

where Ri, j(θ, p) is only a valid correlation function when 0 <
pk ≤ 2 for all k. And the Gaussian correlation function assumes
all pk= 2.

The best linear unbiased predictor for the regression coef-
ficients in h(x) = β0 is

βest θ; pð Þ ¼ 1
0
R−11

� �−1
1

0
R−1y ð6Þ

where 1 is an n-dimensional vector of 1s. This coefficient is
used for estimating the point-specific variance s2est xjθ; pð Þ and
optimizing the likelihood. The standard formula to predict the
variance of the GSP at point x is

s2est xjθ; pð Þ ¼ n−1 y−1βestð Þ0R−1 y−1βestð Þ: ð7Þ

The valued of θ and p that maximize the right-hand side of
(8) are the MLEs:

max θ;pln L θ; pð Þ ¼ −max
θ;p

nlns2est þ ln det Rð Þ½ �
2

: ð8Þ
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Predictions from the derived meta-model are then generat-
ed using the best linear unbiased predictor (BLUP, Santner
et al. 2018):

F xð Þ ¼ βest þ r
0
xð ÞR−1 y−1βestð Þ ð9Þ

where r(x) = [R(x, x1),⋯, R(x, xn)]
′ with R(xi, xj) given by

R xi; x j

� � ¼ ∏m
k¼1e

−θk xi;k−x j;kð Þpk . The BLUP is a predictor with
pleasing properties, including that it passes through the design
points and provides a smooth interpolation between the points
when pk = 2. Far from the points (depending on the estimated
correlation parameters, θ), the BLUP returns to the regression
model. In our examples, this means that the model returns to a
constant value.

2.3 Efficient global optimization and variants

The method proposed by ur Rehman and Langelaar
(2017) to solve (1) is called robust EGO. Because the
worst possible environmental conditions are not precisely
known at any iteration for a given set of control variables,
xc, the current best estimate for the objective value, but, is
needed. Also, the estimated worst possible objective value

for a given set of environmental variables, xe, is needed blt.
Formulas to estimate these quantities given the meta-
models F f and G j are

but ¼ min xc∈Xc F f xc; x*e;t
� �

jG j xc; x*e;t
� �

≤0∀ j

¼ 1;⋯; q; xc∈Xc; xe∈Xe

ð10Þ

and

blt ¼ max xe∈Xe F f x*c;t; xe
� �

jG j x*c;t; xe
� �

≤0∀ j

¼ 1;⋯; q; xc∈Xc; xe∈Xe:

ð11Þ

At iteration t, two quantities are successively estimated
corresponding to the environmental conditions to study, x*e;t,

and control conditions to study, x*c;t. Intermediate quantities

are the improvement function, Ic(xc) at the point xc, which is

defined as I c xcð Þ ¼ max but−F f xc; x*e;t
� �� �

and the con-

straint violation function, Vj, c(xc) at the point xc, which is

d e f i n e d a s V j;c xcð Þ ¼ max bg j;max xeð Þ−0
� �

; j ¼ 1;⋯; q.

Similar definitions hold for Ie(xe) and Vj, e(xe), j = 1, ⋯, q.
The so-called worst-case Kriging functions arebf max xeð Þ ¼ F f x*c;t; xe

� �
,

bg j;max xcð Þ ¼ G j xc; x*e;t
� �

∀ j ¼ 1;⋯; q, bf max xeð Þ ¼ F f

x*c;t; xe
� �

;bg j;max xeð Þ ¼ G j x*c;t; xe
� �

∀ j ¼ 1;⋯; q: Then, the

intermediate quantities are

E I c xcð Þ½ � ¼ − but−bf max xcð Þ
� �

Φ
but−bf max xcð Þ
s xc; x*e;t
� � !

−s xc; x*e;t
� �

ϕ
but−bf max xcð Þ
s xc; x*e;t
� � ! ð12Þ

and

E V j;c xcð Þ� � ¼ bg j;max xcð Þ−0
� �

Φ
bg j;max xcð Þ−0
s j xc; x*e;t
� � !

þ s j xc; x*e;t
� �

ϕ
bg j;max xcð Þ−0
s j xc; x*e;t
� � !

:

E I e xeð Þ½ � ¼ blt−bf max xeð Þ
� �

Φ
blt−bf max xeð Þ
s x*c;t; xe
� � !

þ s x*c;t; xe
� �

ϕ
blt−bf max xeð Þ
s x*c;t; xe
� � !

ð13Þ

and

E V j;e xeð Þ� � ¼ bg j;max xeð Þ−0
� �

Φ
bg j;max xeð Þ−0
s j x*c;t; xe
� � !

þ s j x*c;t; xe
� �

ϕ
bg j;max xeð Þ−0
s j x*c;t; xe
� � !

:

The two expected improvement optimizations for infill
candidate selections are

x*c;t ¼ argmin xc∈XcEI cg ¼ argmin xc∈Xc E I c xcð Þ½ �jE V j;c xcð Þ� �� 	
:

ð14Þ
and

x*e;t ¼ argmax xe∈XeEI eg ¼ argmax xe∈Xe E I e xeð Þ½ �jE V j;e xeð Þ� �� 	
:

ð15Þ

With these definitions, the robust EGO from ur Rehman
and Langelaar 2017 is defined in Algorithm 1. Therefore, the
method progressively identifies undesirable environmental
conditions and desirable controllable parameters. The stop-
ping conditions may relate to convergence, termination of a
computational budget (as in our numerical examples), or the
attainment of quality objectives.
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Note that Algorithm 1 reduces to superEGO from Sasena
et al. (2002) if Xej j ¼ 1 and the environmental variables are
fixed. Then, step 6 is trivial, and step 7 is the constrained EI
optimization. Also, if there are no constraints, i.e., q = 0, then
(12) reduces to the standard unconstrained EI formula (Jones
et al. 1998). The reduction to standard unconstrained EGO is
not exact because EGO originally used the best-obtained pre-
diction value forbrκ rather than attempting to predict that value
using the GSP model in (9). Here, we seek a further general-
ization of Algorithm 1 to include a tabu list for the infill
optimization.

2.4 Tabu search methods

Tabu search (TS) is an evolving topic, but the core method
elements persist (Glover 1986, 1989, 1990; Chelouah and
Patrick 2000). An initial solution is generated, perhaps using
a pre-procedure. Then, candidate solutions of interest are iden-
tified. The restrictions from an updating list of off-limits or
“tabu” solutions are considered in selecting which candidate is
to be sampled. If the sampled candidate offers an improve-
ment, then it becomes the current best solution. Stopping
criteria are checked. If the criteria are not met, then the restric-
tion list is potentially updated, adding or removing items de-
pending on the specific rules chosen.

Note that this structure is already similar to EGO methods.
Both methods identify desirable candidates and take single
steps, preserving their best solutions so far. The infill optimi-
zations in EGO promise to provide a desirable way to identify
and screen candidates. The major difference is the application
of tabu lists during candidate screening. This is the difference
that we seek to address in our proposed methods.

2.5 The DIRECT method

DIRECT is a derivative-free method for constrained (or un-
constrained), non-linear optimization (Jones 2009b). DIRECT
works by using Lipschitz theory to divide up the design space
into hyper-rectangles. At each iteration, the set of hyper-

rectangles most likely to contain good function values are
further subdivided.

DIRECT is used by superEGO and tabu EGO to find opti-
mal Kriging model parameters and to solve the infill sampling
criterion (ISC) sub-optimization problem.

3 Proposed methods

Asmentioned previously, both EGO and tabu searches share a
common structure of initialization followed by single steps
leading to evaluations and iteration. A key difference for our
proposed tabu EGO methods compared with other EGO
methods relates to the infill optimizations being restricted by
a list of “tabu” solutions. As for ordinary EGO, the expected
improvement functions are successively optimized to obtain
the corresponding environmental conditions, x*e;t, and control

conditions, x*c;t. However, the closest relevant point, c*t xcð Þ
(which will be written as c*t for simplification), on the tabu
list is considered in a penalty term involving weights μ1 and
closeness ε as follows:

x*c;t ¼ argmin xc∈XcEI cg

¼ argmin xc∈Xc E I c xcð Þ½ �jE V j;c xcð Þ� �þ μ1 ε−min d xc; c*t
� �

; ε
� �� �� 	

:

ð16Þ

where d xc; c*t
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1 xc−ct;i
� �2q

; ct∈Xt;c.

bf max xcð Þ ¼ F f xc; x*e;t
� �

;bg j;max xcð Þ ¼ G j xc; x*e;t
� �

;∀ j

¼ 1;⋯; q; xc∈Xc; xe∈Xe;

μ1 ¼
bf max xcð Þ

ε ;Xt;c is the tabu list for the control variables.

Similarly, for the environmental variable optimization
phase, we have
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x*e;t ¼ argmax xe∈XeEI eg

¼ argmax xe∈Xe E I e xeð Þ½ �jE V j;e xeð Þ� �þ μ2 ε−min d xe; e*t
� �

; ε
� �� �� 	

:

ð17Þ

where d xe; etð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xe−et;i
� �2q

; et∈Xt;e:

bf max xeð Þ ¼ F f x*c;t; xe
� �

;bg j;max xeð Þ ¼ G j x*c;t; xe
� �

;∀ j

¼ 1;⋯; q; xc∈Xc; xe∈Xe;

μ2 ¼
bf max xeð Þ

ε ;Xt;e

is the tabu list for the environmental
variables.

Equations (16) and (17) are simple generalizations of the
previous equations with the penalties included for points be-
ing similar to previous points. In terms of these equations,
Algorithm 2 provides a detailed description of the proposed
tabu EGO method for unconstrained, simple constrained, or
robust design problems. In our examples, we use

ε ¼ min xi;x j∈χ xi−x j

�� ��, i ≠ j, 1 ≤ , i, j ≤N, the minimum possi-

ble distance between the points in the tabu list, for our tuning
parameter. Random Latin hypercubes with n = 11d runs are
applied by default.

It is noted that your algorithm only uses points at which the
black-box function has been evaluated for purposes of esti-
mating the optimum which is consistent with superEGO algo-
rithm. Therefore, tabu EGO differs from other forms of EGO,
including superEGO (Sasena et al. 2002) and robust EGO (ur
Rehman and Langelaar 2017):

& A tabu list is included within the infill optimizations to
screen candidates for novelty.

& Specifically, our penalty is either μ1ε/μ2ε, or a value that
linearly decreases to zero depending on the sub-
optimization problem as points differ from those on the
tabu list.

& In addition, our method carefully updates and applies the
apparent best solution, x**c;t , and worst environmental con-

dition, x**e;t in lines (12) and (13). This does not directly

relate to the tabu search aspects, but we have found that it
improves the method performance.

4 Numerical comparisons

4.1 Illustrations of tabu EGO

We illustrate the behavior of tabu EGO and its comparison to
the traditional EGO method with the Ackley, Rastrigin, and
G06 functions. Figure 1 shows the 3D and contour plots of
Ackley, Rastrigin, and G06 benchmark functions. Both
Ackley and Rastrigin functions pose a risk for optimization
algorithms, particularly iterative algorithm algorithms, to be
trapped in one of its many local minima. Note in Fig. 2 that, by
employing the tabu search method, tabu EGO converges very
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(a)

(b)

(c.1)

(c.2)

Fig. 1 3D and contour plots of Ackley, Rastrigin, and G06 benchmark functions. a Ackley, b Rastrigin, (c.1) G06 Objective function, (c.2) G06
Constraints function
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Fig. 2 Evolution of approximation of Ackley function (2 variables) with
tabu EGO and superEGO. a Cycle 01 – tabuEGO, b Cycle 02 –
tabuEGO, c Cycle 03 – tabuEGO, d Cycle 06 – tabuEGO, e Cycle 20 –

tabuEGO, f Cycle 01 – superEGO, g Cycle 02 – superEGO, h Cycle 03 –
superEGO, i Cycle 06 – superEGO, j Cycle 20 – superEGO

L. Wang et al.2818



quickly to the optimum with high accuracy (0.0046) for
Ackley function at cycle 20, while superEGO obtained a min-
imum of 1.5245 when the maximum function evaluation
reached. In addition, if we let tabu EGO to continue with the
exploration, the meta-model quality is continuously
improved.

We observed the same performance of tabu EGO for other
functions as well. For instance is the evolution of the Rastrigin
and G06 function in Figs. 3 and 4. In those cases, tabu EGO has
found the optimum points within high accuracy at cycle 26
(0.0258) and cycle 27 (−6.36E+03) compared to superEGO.

Based on these preliminary results with unconstrained and
constrained functions, we can conclude that tabu EGO has a
good performance on driving EGO algorithm, with a single
infill point per cycle. Note as more infill points are added per
cycle, the faster is the convergence to the global optimum
(exploitation), and the quality improvement (predictability)
of the meta-model is visioned. Future work could improve
the convergence rate of tabu EGO by including multiple infill
points method.

4.2 Comparative study

The test problems in Table 1 include the Ackley, Griewank,
Rastrigin, Eggholder, Schaffer, Rosenbrock, Mishra’s Bird
function, and other standard global optimization benchmarks
(Ma and Simon 2017). We also adapted the test functions
G04, G09, and G09 from standard global optimization bench-
marks (Ma and Simon 2017) to the robust constrained prob-
lem by setting controllable and environmental variables.
Therefore, problems 1–5 are unconstrained, problems 6–10
are simply constrained, and problems 11–13 are robust design
problems. The feasibility ratio of the constrained problems is
generally small such that it is challenging for black-box
methods to find optimal or even feasible solutions.

We used the same n = 11d runs from a Latin hypercube for
all EGO methods in each test problem. As noted previously,

the penalty parameter ε ¼ min xi;x j∈χ xi−x j

�� ��, i ≠ j, 1 ≤ , i, j ≤
N, was applied for tabu EGO implementations.

For the robust design problems (7–9), only robust EGO
offers a valid peer method. Therefore, we only compare these
results with robust EGO results. For the comparison, the stop-
ping criterion for all methods was a fixed budget of runs. This
is an excellent way to simulate engineering applications re-
stricted by expensive simulation (e.g., FEA, CFD, and thermal
simulation in additive manufacturing). We permitted n = 50
evaluations for test problems 1–6, n = 100 evaluations for test
problems 7–8, and n = 150 evaluations for test problem 9.

Tables 2 and 3 show the resulting solutions of mean, best,
and standard deviation for each method and test problem. The
best results are marked in bold. All the test problems are re-
peated 20 times with different DOE seeds. The sample means

and standard deviations for comparison are provided. The
DIRECT method does not require any experimental design
or other random inputs, so the standard deviation is not fitted
for this case.

In ten of the thirteen cases, tabu EGO obtains the best mean
solution. For all the cases in which it does not, fmincon and
superEGO get a better solution. In terms of best results over
ten different runs, the tabu EGO algorithm wins in eight of the
thirteen cases. Also, for the cases it does not, fmincon and TPE
obtain a better one. The success rate (SR) of each algorithm
for every test function is 1, except for test problems #7 and
#13. For test problem #7, both tabu EGO and superEGO with
constant regression got a 0.9 SR while superEGO with first-
order regression got a 0.95 SR. This also suggests that the
Kriging optimization method with higher-order regression
could increase its success rate and algorithm performance
(Forrester et al. 2006). However, except for test functions #2
and #9, tabu EGO tends to achieve superior results compared
with the higher-order regression version of EGO. For test
problem #13, the SR is 0.85 for robust EGO while SR is 1
for tabu EGO, which also implies tabu EGO has the potential
of improving success rate by decrease the probability of
returning to points in the tabu list.

Figure 5 presents the boxplots of the optimization results
for twenty experimental designs for tabu EGO comparison
with superEGO for the Ackley, Griewank, Rastrgin, and
G06 test functions. Note that as the objective function is min-
imized as the function optimization cycles evolve, the disper-
sion is comparatively smaller in tabu EGO than superEGO.

In the same direction as the results presented by Viana et al.
(2013), we found that by using tabu EGOwith a penalty added
in expected improvement function, a reduction in the disper-
sion of the results (minimum of the objective function) can be
achieved as long as the optimization cycles evolve. For the
Ackley case and Griewank case, the dispersion tends higher
for tabu EGO than superEGO for the first 1–2 iterations.
However, the dispersion for tabu EGO will be lower after 4
iterations for Ackley case and 3 iterations for Griewank case
than superEGO as the algorithm evolves. This trend is more
distinct for Griewank case than Ackley which maintain a
slightly better dispersion from iterations 10–28 for tabu
EGO than superEGO. For the Rastrigin and G06 function,
the dispersion is similar for both tabu EGO and superEGO
algorithm; however, the algorithm gets a better average result
after 27 iterations for tabu EGO.

Figure 6 a‑c present a comparison among tabu EGO and
superEGO for Ackley, Griewank, and G06 functions. For
both cases, the superEGO algorithm appears to outperform
the tabu EGO algorithm except at cycle 23 for Ackley and
Griewank function and the very last point for G06 function.
Overall, the final performance of tabu EGO is better over all
the alternative methods. For both cases, tabu EGO was faster
in convergence rate than superEGO.
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Fig. 3 Evolution of approximation of Rastrigin function (2 variables)
with tabu EGO and superEGO. a Cycle 01 – tabuEGO, b Cycle 02 –
tabuEGO, c Cycle 16 – tabuEGO, d Cycle 20 – tabuEGO, e Cycle 26 –

tabuEGO, f Cycle 01 – superEGO, g Cycle 02 – superEGO, h Cycle 16 –
superEGO, i Cycle 20 – superEGO, j Cycle 26 – superEGO

L. Wang et al.2820



(a) (f)

(b) (g)

(c) (h)

Fig. 4 Evolution of approximation of G06 function (2 variables) with
tabu EGO and superEGO. a Cycle 01 – tabuEGO, b Cycle 02 –
tabuEGO, c Cycle 04 – tabuEGO, d Cycle 06 – tabuEGO, e Cycle 27 –

tabuEGO, f Cycle 01 – superEGO, g Cycle 02 – superEGO, h Cycle 04 –
superEGO, i Cycle 06 – superEGO, j Cycle 27 – superEGO
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In order to compare the level of improvement (Limp) vs.
optimization cycles, for all test problems, it was consid-
ered f max

eval = 50. In this case, Limp is calculated for each
cycle k as

Limp ¼ 100%� ykmin−y
0
min

yexactmin −y0min

���� ���� ð18Þ

where y0min is the minimum for the initial sample, ykmin is
the minimum value at cycle k, and yexactmin is the exact min-
imum value. Figure 6 d‑f are to compare tabu EGO and
superEGO in terms of computational costs, measured by
the number of optimization cycles (function evaluations)
required for the same level of improvement on the objec-
tive function at each optimization cycle.

As shown in the curves of Fig. 6d‑f, we can observe that for
Ackley and Griewank at the beginning of the optimization
cycles, superEGO has lower cost in terms of the number of
function evaluations than tabu EGO for the same level of
improvement, but at some point (e.g., around 91% for
Ackley and 95% for Griewank), the situation is more favor-
able to tabu EGO. In the case of the G06 function, the com-
putational cost of both methods is quite similar before 55% of
Limp while tabu EGO outperforms superEGO when Limp is
around 67%. These results confirm the fact that tabu EGO,
in general, is beneficial in terms of delivering results in rea-
sonable processing time.

Note that additional experimental work is done on the ef-
fect of the initial sample size for the algorithm’s results, and
the results are summarized in Table 4. The results indicated

(d) (i)

(e) (j)

Fig. 4 (continued)
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Table 1 Test problems for the numerical comparisons

Name Function descriptions Source

#1 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ 20þ e−20e
−0:2 ∑

2

i¼1

x2
i
n −e

∑
2

i¼1

cos 2πxið Þ
n

−15≤xi≤30 i ¼ 1; 2 .
x*=(0,0), f*=0.

Ackley

#2 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ ∑
2

i¼1

x2i
4000

− ∏
2

i¼1
cos

xiffiffi
i

p
� 

þ 1

−600≤xi≤600 i ¼ 1; 2 .
x*=(0,0), f*=0.

Griewank

#3 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ 10nþ ∑
n

i¼1
x2i −10cos 2πxið Þ� �

−5:12≤xi≤5:12 i ¼ 1; 2 .
x*=(0,0), f*=0.

Rastrigin

#4 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ − x2 þ 47ð Þsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x1

2
þ 47

��� ���r� 
−x1sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1− x2 þ 47ð Þj j

p� �
−512≤xi≤512 i ¼ 1; 2 .
x*=(512,404.2319), f*=−959.6407.

Eggholder

#5 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ 0:5þ cos2 sin x21−x22
�� ��� �� �

−0:5

1þ 0:001 x21 þ x22
� �� �2

−100≤xi≤100 i ¼ 1; 2 .
x*=(0,±1.25313), f*=0.292579.

Schaffer

#6 n=2
min
x1 ;x2

f x1; x2ð Þ ¼ x1−10ð Þ3 þ x2−20ð Þ3 þ 3

s. t.:g1(x1,x2 )= −(x1−5)2−(x2−5)2+100
g2(x1,x2)=(x1−6)2+(x2−5)2−82.81
13≤x1≤15
0≤x2≤15
g1(x1,x2 )≤0; g2(x1,x2 )≤0.
x*=(14.095,0.84296), f*=−6961.8139.

G06

#7 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ −
sin3 2πx1ð Þsin 2πx2ð Þ

x31 x1 þ x2ð Þ
s:t: : g1 x1; x2ð Þ ¼ x21−x22 þ 1
g2(x1,x2 )=1−x1+(x2−4)2

0≤xi≤10 i ¼ 1; 2
g1(x1,x2 )≤0; g2(x1,x2 )≤0.
x*=(1.2279713, 4.2453733), f*=− 0.095825.

G08

#8 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ − 1−xxð Þ2 þ 100 x2−x21
� �2

s. t.:g1(x1,x2 )=(x1−1)3−x2+1
g2(x1,x2 )=x1+x2−2
−1.5≤x1≤1.5,−0.5≤x2≤2.5
g1(x1,x2 )≤0; g2(x1,x2 )≤0.
x*=(1.0, 1.0), f*=0.

Rosenbrock function constrained
with a cubic and a line

#9 n=2

min
x1 ;x2

f x1; x2ð Þ ¼ sin x2ð Þe 1−cosx1ð Þ2½ � þ cos xxð Þe 1−sinx2ð Þ2½ � þ x1−x2ð Þ2

s. t.:g(x1,x2)=(x1+5)
2+(x2+5 )2

−10≤x1≤0,−6.5≤x2≤0
g1(x1,x2 )≤0; g2(x1,x2 )≤0.
x*=(−3.1302468, −1.5821422), f*=−106.7645367.

Mishra’s Bird function -
constrained

#10 The three-bar truss design problem is to minimize the volume subject to
stress constraints. This problem has two design variables and
three constraints, and is formulated as

Three-bar truss design
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that the performance of the tabu EGO does not always en-
hance as the number of initial samples increases.
Specifically, the algorithm got its best results for problem #2
when n = 8d, problem #3 when n = 8d, problem #4 when n =
10d, and problem #6 when n = 16d. For problems #1 and #5,
the algorithm results are optimal when n = 11d. However, the
performance of tabu EGO is not monotonously increased as

the initial sample size increased those two cases, which obtain
their second better results for n = 6d (problem #1) and n = 8d
(problem #6).

By changing the stopping criterion to relative error E ¼
bf min− f min

f mins

���� ���� and set E < 0.01 for tabu EGO, we can compare

Table 1 (continued)

Name Function descriptions Source

n=2
f xð Þ ¼ 2

ffiffiffi
2

p
x1 þ x2

� �� l,

g1 xð Þ ¼ 2
ffiffi
2

p
x1þx2ð Þffiffi

2
p

x21þ2x1x2
P−σ≤0,

g2 xð Þ ¼ x2ffiffi
2

p
x21þ2x1x2

P−σ≤0,

g3 xð Þ ¼ 1
x1þ

ffiffi
2

p
x2
P−σ≤0,

0≤x1≤1, 0≤x2≤1, l=100cm,
P=2KN/cm2, σ=2KN/cm2

f*=263.8958
#11 n=5

min
x1;⋯;x5

f x1;⋯; x5ð Þ ¼ 5:3578547x23 þ 0:8356891x1x5 þ 37:293239x1−40792:141

s. t.:g1(x1,⋯,x5)=85.334407+0.0056858x2x5+0.0006262x1x4−0.0022053x3x5−92;
g2(x1,⋯,x5)= −85.334407−0.0056858x2x5−0.0006262x1x4+0.0022053x3x5;
g3(x1,⋯,x5)=80.51249+0.0071317x2x5+0.0029955x1x4+0.0021813x3x5−110;
g4(x1,⋯,x5)= −80.51249−0.0071317x2x5−0.0029955x1x4−0.0021813x3x5+90;
g5(x1,⋯,x5)=9.300961+0.0047026x2x5+0.0012547x1x4+0.0019085x3x5−25;
g6(x1,⋯,x5)= −9.300961−0.0047026x2x5−0.0012547x1x4−0.0019085x3x5+20;
max
x3 ;x4

g x1;⋯; x5ð Þ≤0
Control variables: x1, x2, x3.
Environmental variables: x4, x5
78≤x1≤102
33≤x2≤45
27≤xi≤45 i ¼ 3; 4; 5 .
f*=−30,453.0000

G04

#12 n=3

min
x1 ;x2

f x1; x2; x3ð Þ ¼ −
100− x1−5ð Þ2− x2−5ð Þ2− x3−5ð Þ3

100
s. t.:g(x1,x2,x3)=(x1−p)2+(x2−q)2+(x3−r)2−0.0625
max
x2 ;x3

g x1; x2; x3ð Þ≤0; p; q; r ¼ 1; 2;⋯; 9

Control variables: x1
Environmental variables: x2, x3
0≤xi≤10 i ¼ 1; 2; 3 .
f*=−1.0000

G12

#13 n=7
min

x1 ;⋯;x7
f x1;⋯; x7ð Þ ¼ x1−10ð Þ2 þ 5 x2−12ð Þ2 þ x43 þ 3 x4−11ð Þ2 þ 10x65 þ 7x26 þ x47−4x6x7−10x6−8x7

s:t: : g1 x1;⋯; x7ð Þ ¼ −127þ 2x21 þ 3x42 þ x3 þ 4x24 þ 5x5;
g2 x1;⋯; x7ð Þ ¼ −282þ 7x1 þ 3x2 þ 10x23 þ x4−x5;
g3 x1;⋯; x7ð Þ ¼ −196þ 23x1 þ x22 þ 6x26−8x7;
g4 x1;⋯; x7ð Þ ¼ 4x21 þ x22−3x1x2 þ 2x23 þ 5x6−11x7;
max

x4 ;⋯;x7
g x1;⋯; x7ð Þ≤0

Control variables: x1, x2, x3
Environmental variables: x4, ⋯, x7
−10≤xi≤10 i ¼ 1;⋯; 7 .
f*=−822.5900

G09
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the results of G06, G08, and three-bar truss function to the
results from eDIRECT-C method (Liu et al. 2017). It can see

that the tabu EGO has the potential of saving function runs as
suggested by G08 function, which saves more than 50 runs to

Table 2 Numerical test results for solutions after 50 evaluations for test problems 1–6. The responses and design variables are dimensionless except for
problem 10. Problem 10 has outputs in centimeters3 and inputs in centimeters

Prob. Criteria tabu EGO superEGOk0 superEGOk1 DIRECT fmincon TPE

#1 Mean 0.77521 0.82716802 0.88772 N/A 10.6318412 1.99509532

STD 1.00911728 0.88183514 0.74176529 N/A 4.72061935 0.34528959

Best 7.7435E-08 5.1945E-07 0.0266 8.1617 2.57993055 1.1393235

#2 Mean 0.211615 0.224145 0.18935 N/A 49.5914514 1.64855025

STD 0.34208793 0.1910219 0.28715915 N/A 24.5932104 0.88394953

Best 0.000 0.000 0.000 0.0000 2.07897736 0.57027292

#3 Mean 2.16519 2.240585 2.231575 N/A 17.9091651 6.05205471

Std 2.10533683 2.11235791 1.25534861 N/A 8.70476054 3.09686107

Best 0.0538 0.0536 0.0021 0 8.9546051 2.84578444

#4 Mean −751.43364 −712.72311 −744.01392 N/A −566.02319 −659.0315
STD 147.501478 167.725313 141.135239 N/A 194.310591 115.695612

Best −920.5677 −883.9833 −881.2731 −724.8978 −753.05015 −869.82201
#5 Mean 0.305735 0.30591 0.3115 N/A 0.49667675 0.39354921

STD 0.00684648 0.00755119 0.00810573 N/A 0.0007163 0.06057949

Best 0.2956 0.2956 0.3021 0.4846 0.49606902 0.31930608

#6 Mean −5.70E+03 −5.65E+03 −5.65E+03 N/A −3.81E+03 N/A

STD 983.065292 988.679946 1525.92985 N/A 0.05567482 N/A

Best −6387.1 −6430.7 −6430.5 −5254.5 −3249.5643 N/A

#7 Mean −6.96E-02 −6.64E-02 −5.88E-02 N/A −0.0557482 N/A

STD 0.02684105 0.02723288 0.03088459 N/A 0.01918962 N/A

Best −0.0949 −0.0955 −0.0953 −0.023 −0.0898234 N/A

#8 Mean 0.200425 0.20582331 0.52978306 N/A 1.65206798 N/A

STD 0.41126541 0.53333019 0.6826115 N/A 2.36187796 N/A

Best 0 0 0 1.7864 4.3641E-07 N/A

#9 Mean −106.67522 −106.73024 −106.67898 N/A −77.268406 N/A

STD 0.22924671 0.03924444 0.12534214 N/A 48.19548 N/A

Best −106.7645 −106.7643 −106.7645 −106.5496 −106.76454 N/A

#10 Mean 2.74304 2.760115 2.74304 N/A 2.63970174 N/A

Std 0.09648001 0.07631617 0.09648001 N/A 0.00468045 N/A

Best 2.6432 2.6432 2.6432 2.653 2.63895851 N/A

Table 3 Numerical test results for
solutions after 100 evaluations for
test problems 7–8, and 150
evaluations for test problem 9.
The responses and design
variables are dimensionless

Prob. Criteria tabu EGO robust EGO

#11 Mean −30,035.65 −29,634.3
Best −30,453 −30,589
Std 276.716133 490.9842

#12 Mean −0.969006 −0.9407405
Best −0.99999 −0.9939
Std 0.04240601 0.03750872

#13 Mean 1463.73311 409,895.602

Best 822.6929 836.1874

Std 1665.95622 1,176,664.78
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Fig. 5 Comparison of the convergence of tabu EGO (left boxplots) vs.
superEGO (right boxplots), over 10 different initial DOE in each case for
the functions Ackley, Griewank, Rastrigin, andG06. aAckley, tabuEGO,

b Griewank, tabuEGO, c Rastrigin, tabuEGO, d G06, tabuEGO, e
Ackley, superEGO, f Griewank, superEGO, g Rastrigin, superEGO, h
G06, superEGO

L. Wang et al.2826



Fig. 6 Comparison of tabu EGO vs. other alternatives on the averaged results (a‑c) and level of improvement (d‑f) in each iteration. a Ackley, b
Griewank, c G06, d Ackley, e Griewank, f G06
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get a result with an error around 0.01(Table 5). For the three-
bar truss case, the algorithm requires slightly large function
runs than eDIRECT-C but better than all the other methods
while maintaining a high level of accuracy. However, for G06
test function, the result from tabu EGO got stuck by a local
minimum,meaning that tabu EGO has the threat of preventing
the algorithm from finding the exact minimum. This issue will
be discussed in detail in Section 6.

5 Additive manufacturing case studies

Additive manufacturing (AM) or 3D printing has become one
of the most promising commercial manufacturing techniques.

Benefits of AM include delivery savings as parts are made on-
site, lower environmental wastes with less warehousing, and
(in some cases) improved product quality and performance.
The principal barriers of AM include cost, speed, quality,
range of materials, and size limitations (Frazier 2014). Here,
we focus on additive manufacturing process design with the
objective of reducing costs and increasing the speed with qual-
ity constraints.

For our case studies, the Green’s function thermal simula-
tion method is used for evaluating the part quality constraints
at different points in the X-Y space (Schwalbach et al. 2019).
The thermal simulations identify a lattice of source and mea-
surement points and estimate the temperature histories. The
parameter T0 is the initial temperature, σ is the physical size

Table 4 Results of tabu EGO for test functions #1‑#6 based on different LHC design variables

Prob. Criteria tabu EGO, n=4d tabu EGO, n=6d tabu EGO, n=8d tabu EGO, n=10d tabu EGO, n=11d

#1 Mean 0.8245 0.4743 0.5882 0.5130 0.4531

Std 0.8614 0.4237 0.4992 0.3852 0.5001

Best 0.0005 2.3231E-07 8.8818E-16 0.0046 8.8818E-16

#2 Mean 0.1773 1.1909 0.0967 1.0199 0.1384

Std 0.1482 2.1987 0.1127 1.5165 0.1451

Best 0.0000 0.0000 0.0000 0.0000 0.0000

#3 Mean 1.0295 4.4539 1.7586 2.6868 2.2978

Std 0.9372 4.0158 1.4796 2.3373 1.3329

Best 0.0102 1.0235 0.0069 0.0154 0.0258

#4 Mean −5642.2000 −5911.7300 −4666.3300 −6256.5800 −5407.8400
Std 478.1101 348.0901 3681.7573 245.6329 1881.4660

Best −5811.7000 −6365.1000 −6425.4000 −6386.8000 −6384.0000
#5 Mean 2.7443 2.9161 2.7262 2.7624 2.7166

Std 0.0965 0.3556 0.1056 0.1049 0.1028

Best 2.653 2.6488 2.645 2.6635 2.6509

#6 Mean −0.0731 −0.0748 −0.0704 −0.0669 −0.0743
Std 0.0242 0.0192 0.0280 0.0252 0.0251

Best −0.0949 −0.0958 −0.0957 −0.0949 −0.0958

Table 5 Simple constrained comparison based on a 1% stopping criterion. In the table, fmin is the minimum objective value. The average number of
evaluations and the success rate (SR) are estimated using 10 problem instances

Prob. Criteria tabu EGO eDIRECT-C constrLMSRBF CORBA CiMPS DIRECT

G06 fmin −6371.4100 −6956.9684 −6935.3844 −6961.8139 −6961.8139 N/F

Avg. #evals. 44.5 34.8 >943.4 >1000.0 29,721.0 >1000.0

SR 1.0 1.0 0.1 0.0 N/A 1.0

G08 fmin −0.095604 −0.095822 −0.088963 −0.095610 −0.095825 −0.095825
Avg. #evals. 105.1 154.2 >197.2 980.6 11,914.0 326.0

SR 0.8 1.0 0.9 0.2 N/F 1.0

Three-bar truss fmin 267.6860 263.8958 263.9168 263.9150 N/F N/F

Avg. #evals. 51.1 24.8 89.4 >486.2 N/F >1000

SR 1.000 1.000 1.000 0.8 N/F 0.000
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over which the energy is deposited, τi is the actual power
deposit time, pi is the laser power at point i, ρ is the power
(Ti-6Al-4 V) density, and α is the thermal diffusivity. The
temperature field is expressed by

T r j; t
� � ¼ T0 þ ∑N

i CiΘ t−τ ið Þλ−3=2
i e

−
R2
ij

2λi

� �
: ð19Þ

where

Ci ¼ piΔt

ρcp
ffiffi
2

p
π
3
2
;λi ¼ σ2 þ 2α t−τ ið Þ;Rij ¼ r! j− r!i

�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ij þ y2ij þ z2ij

q
; r!i ¼ xi;yi; zi

� �
; r! j ¼ x j;y j; z j

D E
,

and α ¼ κ
ρcp

.

Figure 7 shows the thermal history at an arbitrary point in
the X-Y space for a given layer and scan pattern. The temper-
ature reaches a maximumwhen the laser is closest to the point.

When the thermal temperature is estimated as the func-
tion time, two quality measures can be calculated: (1)
times molten nm, i.e., the number of times a discrete point
is melted during the laser scanning process and (2) molten
duration tm, i.e., the total time a discrete point melted
during the laser scanning process.

The thermal simulations based on (18) differ from many
types of finite element methods in that there is a considerable
incremental cost to obtaining results from each point in X-Y
space. Finite element methods (FEM) generally provide re-
sults across spatial points such as latent stresses or part distor-
tion values, making it relatively easy to identify the worst
points on the parts involved. In our simulations, however,
the most difficult points on the part must be identified using
a spatial optimization. Therefore, (19) involves speeding up

the laser path as shown in Fig. 8. The parameters in (19)
determine the raster pattern of the beam as indicated in Fig. 9.

In our study, we consider two different layer geometries.
The first is a rectangular grid indicated in Fig. 9. The second is
shown in Fig. 10b.

For the airfoil case, additional constraints defining airfoil
boundaries (A jxþ B jyþ C j≤0 ∀ j ¼ 1;⋯;N ) are includ-
ed in the problem constraints. However, no meta-models are
fitted on these boundary constraints since its functions are
known and given.

Fig. 7 The thermal temperature
of a discrete point changes with
time. The horizontal line shows
the melting temperature of Ti-
6Al-4 V in °C

Laser
Beam

Mul�ple
Layers

Laser
Path

Fig. 8 Hypothetical laser path in additive manufacturing
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With these definitions, the additive process design problem
can be written as

max p;v;hsvhs
s:t: : min x1;x2nm p; v; hs; x1; x2ð Þ≥3;
min x1;x2 tm p; v; hs; x1; x2ð Þ≥0:001
max x1;x2 tm p; v; hs; x1; x2ð Þ≤0:02

ð20Þ

where p is the laser scanning power, v is the laser scanning
velocity, and hs is the hatch spacing of the scanning vector.
Therefore, the objective relates to the square of the overall
completion rate.

For both cases, the objectives are maximization of vhs,
which can be defined as the laser printing “efficiency”.
Similarly, we adapted the other methods where a grid of
16 or 31 environmental variable points was applied so

that the robust problem was approximated as a simple
constrained problem with constraints for each set of envi-
ronmental conditions. The results from the rectangular
and airfoil cases show that our method offers a promising
process parameter combination while satisfying thermal
quality constraints. The benefits of the second problem
are quite significant.

Figure 11 and Table 6 show the results from a single rep-
lication (for time reasons) of the alternative method solution
values plotted against iteration. Compared with robust EGO,
tabu EGO produces a solution with almost double the velocity
× hatch spacing or the square root of two times the production
rate (41% faster). Such benefits could make a significant dif-
ference in making AM viable for practical problems. Note that
we are plotting the proven best solution and not the predicted

Thin power layer Scan vector

Thermal source

Fig. 9 Standard scan pattern for a
rectangular coupon

(b)(a)

Fig. 10 a 3D airfoil and b 2D cross section of N-10 with constraints defining the boundary
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best, which makes our plot relatively constant (e.g., compared
with Ferreira and Serpa 2018).

6 Discussion

We propose the incorporation of tabu list penalties in infill
optimization to improve the computational performance of
EGO methods for a variety of black-box optimization prob-
lems. This approach decreases the possibility that experimental
effort is directed at or near previous points in the decision or
environmental variable spaces, with an additional sub-step to
identify and store the currently relevant conditions. This frees
up evaluations to search new points resulting in faster conver-
gence and improved solution quality. To comprehensively eval-
uate the proposed methods, we compare the performance of the
proposed tabu EGO with alternatives, including DIRECT,
superEGO, robust EGO, fmincon, TPE and for unconstrained,
constrained, and robust constrained problems, selecting the ap-
propriate method alternative for each type of problem.

The results show the generally better performance of tabu
EGO in terms of convergence speed and solution quality, given
a fixed run size, for the majority of our test problems. For all the

tests for which tabu EGO did not perform the best, one other
solution method (TPE, fmincon) provided better results. Our
applications to thermal-based optimization of additive
manufacturing suggest that the benefits from tabu EGO could
be quite relevant practical. Tabu EGO produces solutions in
one case that produces (almost) 41% improved speed of part
production compared with robust EGO. Note that the objective
function used is proportional to the square of the speed.

Note that one of the features of the original EGO algorithm
is its ability to locate all the minima when there are multiple
minima. One concern for the tabu EGO algorithm is that the
penalty term will prohibit the algorithm from sampling near
these minimums. Thus, it might never discover there are mul-
tiple minima. However, with tabu EGO, it is possible to move
within the current epsilon value of another point. Such moves
are merely penalized. Both the penalty and ε are dynamic.
This explains why our new approach often results in an ongo-
ing reduction in the tabu list ε value. More importantly, tabu
EGO converges for all instances and all test functions except
for test function #4 (G06). Our performance is superior to all
the alternatives that we consider except on test function #4.
Note that superEGO repeatedly fails to converge on test func-
tion #2 (Table 7). This occurs presumably because the failure

Fig. 11 fbest vs. iteration of tabu EGO including all alternative methods for 2 application cases. Alternative methods include tabu EGO and superEGO. a
and b The comparison plots for applications 1 and 2, respectively. In these problems, the objective is maximization

Table 6 Case study-based
comparison of solutions after 100
evaluations for application 1 and
150 evaluations for application 2
(the objectives are maximization)

Application Method Best solution xd fbest

1 robust EGO 288.519,1.833,3.080e-5,0.004,0.003 5.640e-5

tabu EGO 258.889,1.877,3.030e-5,0.005,0.007 5.690e-5

2 robust EGO 229.259,1.744,2.880e-5,0.069,6.710e-3 5.030e-5

tabu EGO 261.852,1.789,3.030e-5,0.034,0.007 5.420e-5
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of the Kriging model based on empirical estimation of the
smoothness parameter can cause convergence issues that are
mitigated through a more widespread search.

There are several opportunities for future research. First,
tabu EGO can be extended to address noisy optimization
problems (e.g., Huang et al. 2006a) and multi-objective opti-
mization problems (e.g., Li et al. 2008 or for variance or qual-
ity objectives and exploration Allen et al. 2018). Also, both
single objective and multi-objective problems could employ
techniques such as parallels computing for speed and efficien-
cy improvement. Second, multiple fidelity optimization (see
Huang and Allen 2005; Huang et al. 2006b) and problems
involving two or more types of simulation can be studied,
e.g., thermal and finite element method (FEM) simulations
of additive manufacturing. Third, more elements of the stan-
dard tabu search structure can be explicitly incorporated to
extend tabu EGO. These elements include short and long-
term tabu lists, expiration conditions for points on the tabu
list, candidate lists, and filter strategies. We have argued that
the EI function approaches are likely to result in better perfor-
mance than the local search strategies common in tabu
searches. However, this can be studied empirically. Fourth,
the additive manufacturing application can be explored more
thoroughly, including experimental data and addressing layer
interactions and part structure ending conditions.
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Replication of results Throughout this paper, we have included pseudo-
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results. The interested reader should also ask Dr. Sasena or Dr. Regis
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ConstrLMSRBF. Also, here is the download link for hyperopt: https://
github.com/hyperopt/hyperopt.
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