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Abstract
Topology optimization can devise structures with superior performance, while the results produced by topology optimization are
often very complex and difficult to be manufactured directly. The additive manufacturing is a free-form manufacturing technique
in which the component is built in a layer-by-layer manner. The integration of topology optimization and additive manufacturing
technologies has the potential to bring significant synergy benefits. However, typical topology optimization algorithms have not
considered the unique manufacturing limitations of additive manufacturing. This article focuses on the topology optimization for
additive manufacturing considering self-supporting constraint based on the Solid Isotropic Material with Penalization (SIMP)
framework. An explicit self-supporting constraint model is constructed, and the proposed method realizes self-supported by
gradual evolution of supporting structures. The corresponding sensitivity analysis is investigated, which requires less computa-
tional cost and can be solved in parallel. Besides, a directional sensitivity filter is specifically proposed to promote the evolution
of supporting structures. The performance and functionality of the proposed method is illustrated with three compliance mini-
mization problems. All cases achieve self-supported successfully, and the solutions own good manufacturability.

Keywords Topology optimization . Additive manufacturing . Explicit self-supporting constraint . Sensitivity analysis . Gradual
evolution

1 Introduction

Topology optimization is an advanced structural design meth-
od, which aims to generate the optimal material distribution
within a given design domain under certain constraints.
Compared to the conventional size optimization and shape
optimization, the topology optimization provides large design
freedom and owns the ability to find innovative and high-
performance structural layouts.

Since the original work proposed by Bendsøe and Kikuchi
(1988), the topology optimization has attracted wide industrial
and academic interests. Over the past decades, the topology
optimization has been extensively explored, and many topol-
ogy optimization methods have been developed. Typical

methods include Solid Isotropic Material with Penalization
(SIMP) (Bendsøe 1989; Zhou and Rozvany 1991),
Evolutionary Structural Optimization (ESO) (Xie and Steven
1993, 1997), and Homogenization method (Bendsøe and
Kikuchi 1988). Meanwhile, sensitivity filter and density filter
have been developed to avoid the formation of checkerboard
patterns and mesh dependency (Sigmund 2007), and black-
and-white projection filters have been devised to obtain black-
and-white solutions (Guest et al. 2004).

In most cases, the topology optimized designs tend to be
complicated, which are difficult to be manufactured directly
via traditional milling or casting manufacturing techniques
(Sigmund 2006; Serphos 2014). In general, the results need
to be modified based on the engineering judgment or experi-
ence by the designer, which losses the advantage of light and
physical performance.

The advent and application of additive manufacturing
(AM) solves the manufacturing problem of topology optimi-
zation successfully. Different from the traditional manufactur-
ing techniques, the AM builds part by layer-by-layer material
deposition and solidification, which removes the geometric
complexity restriction to a large extent. Besides, the
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manufacturing efficiency and fabrication cost are not sensitive
to geometric complexity. The AM is expected to be the next
generation of manufacturing technique.

The merits of topology optimization can be adequately
brought into play by adopting AM. The combination of topol-
ogy optimization and AM is a natural trend, and there is an
urgent need for the industry to develop better “design for AM”
capabilities (Liu et al. 2018).

However, the AM processes have some special manufactur-
ing limitations, such as the minimum feature size, minimum slot
distance, and overhang limitation (Serphos 2014). With the rap-
id development of technologies, some new manufacturing lim-
itations will be brought forward. These limitations should be
addressed when developing an appropriate topology optimiza-
tion algorithm for AM, which has received considerable atten-
tion from both industry and academia in recent years. Brackett
et al. (2011) pointed out that the lack of AM-friendly topology
optimization algorithms is a serious bottleneck for the applica-
tion of topology optimization in AM. Liu et al. (2018) summa-
rized the state-of-art topology optimizationmethods for a variety
of AM topics.

This article proposes a new explicit constraint function to
represent the self-supporting constraint, and then integrates it
with typical topology optimization process. The remainder of
this paper is organized as follows. The review of the topology
optimization for AM with self-supporting constraint is intro-
duced in the next section. Section 3 introduces the problem
formulation and topology optimization procedure of the pro-
posed method. Section 4 adopts three test examples to evalu-
ate the functionality and performance of the developed meth-
od. Conclusions are drawn in Sect. 5.

2 Problem review

One of the manufacturing limitations inherent within AM pro-
cesses is the overhang limitation. The inclination of down-
facing surfaces is limited to a minimum angle with respect
to the baseplate, or the part will collapse or distort when fab-
ricating the part layer by layer. Thomas (2009) identified 45°
as the critical overhang angle with a large number of

experiments for parts manufactured with selective laser melt-
ing (SLM). Such limitation can be addressed by using
supporting structures, which can prevent warping and increase
the local thermal conduction to prevent excessive deforma-
tions due to the internal stresses, see in Fig. 1b. The disadvan-
tage is that the supporting structures increase the build time,
add material cost, and further post-processing activities are
required to remove the unwanted supports.

An alternatively approach is to design the inclination of
down-facing surfaces less than the critical angle, which means
the structure is self-supported and eliminates the need for ad-
ditional supports, as shown in Fig. 1c. Leary et al. (2014)
presented an automated method to modify the topologically
optimal geometries as required to enable support-free manu-
facture, while the optimality of topology optimization results
is compromised. A better approach is to include the AM de-
sign constraint in topology optimization process, and the op-
timized designs are self-supported and can be manufactured
directly, which is of great importance for reducing the material
cost and shortening the development cycle.

Brackett et al. (2011) proposed a conceptual idea of penal-
izing the angles that violated the maximum overhang con-
straint during the topology optimization evolution following
every design iteration. Based on the SIMP framework,
Serphos (2014) investigated the incorporation of geometrical
restriction directly into the optimization process, in which
three approaches have been formulated and investigated: mul-
tiple objective, global explicit constraint, and density filter.
Results show that the density filter performs better compared
with the other two approaches. Gaynor and Guest (2014,
2016) introduced a wedge-shaped spatial filter to control the
boundary orientation during topology optimization process, in
which the self-supporting constraint is imposed through a
Heaviside projection. Johnson and Gaynor (2018) then made
some improvements to allow for specifying angles through an
updated support region and generating self-supported 3D
structures. Langelaar (2016, 2017) proposed a self-
supporting filter integrated with the topology optimization
process, which is able to rigorously exclude geometries from
the design space that violate the overhang angle criteria. A
limitation of this density filter-based method is that the

Fig. 1 a Overhang angle is less than the critical value needed to be supported. b Add supporting structures. c Self-supported design
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extra-layer of projection increases the sensitivity-related com-
putational cost. Zhao et al. (2017) formulated the self-
supporting requirement as an explicit quadratic continuous
constraint in the topology optimization problem, and the con-
volution operator and associated numerical techniques enable
the self-supported structure to be reliably generated with high
efficiency and robustness.

Unlike the self-supporting constraint analysis based on the
discrete element densities, Qian (2017) developed a density
gradient-based approach to control the overhang angle in to-
pology optimization, in which the self-supporting constraint is
cast into the Heaviside projection integral form with explicit
geometric meanings. Ven et al. (2018) introduced an overhang
filter based on the front propagation, in which the overhanging
regions are detected based on an anisotropic speed function.
Garaigordobil et al. (2018) implemented an overhang con-
straint that is introduced inside the topology optimization for-
mulation, in which the overhang constraint is analyzed by an
edge detection algorithm developed in the field of image anal-
ysis and processing.

The methods mentioned above are all integrated within
the SIMP framework. Besides, some other methods have
been developed within other topology optimization frame-
works. With the level-set framework, Mirzendehdel and
Suresh (2016) introduced a topological sensitivity ap-
proach for constraining support structure volume during
design optimization based on surface angle. Liu and To
(2017) proposed a mult i - level set interpolat ion
constraining the spatial relationship of consecutive print-
ing layers to avoid the overhang features. Guo et al.
(2017) adopted the Moving Morphable Components
(MMC) and Moving Morphable Voids (MMV) frame-
works to design self-supported structures, which transfer
the topology optimization problem into shape optimiza-
tion problem, and the overhangs are mitigated by
constraining the angle of the curve boundaries. Zhao
et al. (2019) proposed an optimization design method
for AM-oriented porous structures based on the asymptot-
ic homogenization theory, and customized element densi-
ty filters are designed to ensure the porous structure sat-
isfies the self-supporting constraint.

3 Problem formulation

In this section, the self-supporting constraint is formulated as
an explicit continuous function in terms of the discrete ele-
ment densities. Then the self-supporting constraint function is
integrated within the classical SIMP framework, and the to-
pology optimization procedure is introduced. In addition, the
sensitivity analysis of the self-supporting constraint function
is investigated.

3.1 Self-supporting constraint model

The role of self-supporting constraint model is to identify the
unsupported regions and quantify the degree of self-supporting
constraint violation, which includes the supporting regions’ def-
inition and the explicit mathematical formulation. For simplicity,
this paper only considers the topology optimization of 2D rect-
angular region problems, and the build direction is upwards.

In terms of the supporting regions, each element can be
supported by the element directly below the element or
multi-layer of elements in a specially defined neighborhood
region. For the second approach, each element can be effec-
tively supported as long as the average density of the neigh-
borhood region is greater than a threshold value, which can
lead to some unwanted intermediate elements, as shown in
Gaynor and Guest (2014). In this paper, each solid element
should be sufficiently supported by the elements in the under-
lying layer. According to the conclusion in Thomas (2009),
the critical self-supporting angle is about 45° for parts
manufactured with SLM, thus the supporting region is defined
as the three adjacent square elements in the underlying layer,
as shown in Fig. 2.

In order to avoid the solid elements being supported by
multiple intermediate elements, inspired by Langelaar (2016,
2017), the self-supporting mathematical model is based on the
maximum density in the supporting regions. The self-
supporting constraint is defined as follows: the density of each
element is no greater than the maximum density of the
supporting elements, which can be stated as:

ρi; j≤ρ
max
i; j ¼ max ρi−1; j−1; ρi−1; j; ρi−1; jþ1

� �
ð1Þ

where ρi, j and ρmax
i; j are respectively the density of element (i,

j) and the maximum density in the supporting elements.
The maximum function does not meet the differentiability

requirement. In order to use the gradient optimization algo-
rithms, the maximum function is replaced with a smooth ap-
proximation based on the P-norm:

Fig. 2 Definition of supporting regions
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ρmax
i; j ¼ max ρi−1; j−1; ρi−1; j; ρi−1; jþ1

� �
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρPni−1; j−1 þ ρPni−1; jPnþ ρPni−1; jþ1

q

ð2Þ

The parameter pn controls the accuracy and smoothness of
the approximation. Larger value of pn can result in smaller

approximation error, but the degree of nonlinearity increases.
Besides, the maximum function is overestimated for equal
inputs, and the largest error occurs for three equal solid
supporting elements. A simple linear penalization is adopted
such that the overestimation of the maximum density is
reduced:

ρmax
i; j ¼ max ρi−1; j−1; ρi−1; j; ρi−1; jþ1

� �
≈ ρPni−1; j−1 þ ρPni−1; j þ ρPni−1; j−1

� � 1
Pn−ρi− j � 3

1
Pn−1

� �
ð3Þ

Based on the self-supporting constraint definition, an ex-
plicit function φ(ρ) is constructed to represent the degree of
self-supporting constraint violation, which is stated as fol-
lows:

φ ρð Þ ¼ ∑φi; j ¼ ∑ ρi; j−ρ
max
i; j

� �
ρ0:5i; j Δi; j

Δi; j ¼ 1 if ρi; j−ρ
max
i; j > 0

0 if ρi; j−ρ
max
i; j ≤0

� ð4Þ

where Δi, j is a step function, and φ is a function of each
element density and its difference between the maximum den-
sity in supporting elements. Large value of φ indicates serious
violation of self-supporting constraint. The exponential value
of ρi, j adopts 0.5 to reduce the interference caused by low-
density elements.

The self-supporting constraint function is not differentiable
due to the step function. In order to use the gradient algorithm
in optimization, the step function is replaced with a differen-
tiable approximation, which is restated as follows:

φ ρð Þ ¼ ∑φi; j≈∑ ρi; j−ρ
max
i; j

� �
ρ0:5i; j

1

1þ e−k ρi; j−ρmax
i; j −αð Þ ð5Þ

where k is a parameter that controls the steepness of the ap-
proximation, and α is a positive shifting parameter.

The using of shifting parameter α is necessary as large
value of k will result in numerical difficulties due to the high
gradient when ρi; j≈ρmax

i; j . However, the SIMP framework will

enforce a gradual transition between solid and void regions,
especially in the supporting structures due to the low carrying
capacity. In the gradual transition regions, the density differ-
ences between each layer are very small. The parameter α
should be less than the density differences between each layer,
or when Eq. (5) cannot recognize the unsupported elements.

3.2 Topology optimization formulation

Based on the SIMP framework, the proposedmethod achieves
self-support by adding a new explicit self-supporting con-
straint. The optimization is to minimize the structural compli-
ance under volume constraint and self-supporting constraint.

Firstly, the formation of checkerboard patterns and mesh de-
pendency are avoided by adopting the typical density filter
(Sigmund 2007). Then the Heaviside filter is used to void
intermediate densities and obtain black-and-white solutions
(Guest et al. 2004). Based on the filtered density, the structural
compliance, volume constraint, and self-supporting constraint
function evaluation are performed, respectively. The topology
optimization formulation is as follows:

find ρ

min c ¼ UTKU ¼ ∑
N

e¼1
Ee ρe
� �

uTe k0ue

s:t: K ρ
� �

U ρ
� �

¼ F

V ρ
� �

=V0≤V f

φ ρ
� �

¼ ∑φi; j≈∑ ρi; j−ρi; j
max

� �
ρi; j
0:5 1

1þ e
−k ρi; j−ρi; j

max−α
� � ≤ε

0≤ρ≤1

ð6Þ
where c is the structural compliance, ρ is the design variables,
and ρ is the filtered densities.U andK are the vector of global
displacements and global stiffness matrix, ue and k0 are the
element displacement vector and element stiffness matrix for
an element with unit Young’s modulus, respectively. F is the
nodal force vector.N is the total number of elements. V and V0

are the material volume and design domain volume, respec-
tively, and Vf is the prescribed volume fraction constraint. ε is
the self-supporting constraint value.

In order to allow for a straightforward implementation of
additional density filters, a modified SIMP approach is
adopted as in Sigmund (2007):

Ee ρe
� �

¼ Emin þ ρe
p E0−Eminð Þ ð7Þ

where E0 is the stiffness of solid elements, Emin is a very small
stiffness assigned to void regions in order to prevent the stiffness
matrix from becoming singular, and p is the penalization factor.

The optimization procedure of the topology optimiza-
tion considering self-supporting constraint can be
outlined as follows:

J. Zou et al.2344



(1) The linear density filter is applied to avoid the formation
of checkerboard patterns, and the filtered density ρ∗ is
obtained by weighted average of all element densities
within the filtering radius R (Sigmund 2007):

ρ*e ¼
1

∑
i∈Ne

Hei
∑
i∈Ne

Heiρi

Hei ¼ max 0;R−Δ e; ið Þð Þ

ð8Þ

where Ne is the set of elements i for which the center-to-
center distance (e, i) to element e is smaller than the filter
radius R, Hei is a weight factor.

(2) The Heaviside projection filter is applied on the filtered
density ρ∗ to suppress the gray elements at the structural
boundary (Guest et al. 2004):

ρe ¼ 1−e−βρ
*
e þ ρ*ee

−β ð9Þ

where β is a parameter controls the smoothness of the
approximation. A continuation scheme is used where the
parameter β is gradually increased during optimization to
avoid local minima.

(3) Perform finite element analysis and constraint evaluation
based on the filtered density ρ according to Eq. (6).

(4) Perform sensitivity analysis on objective function c and
constraint functions V and φ, respectively, as the re-
sponse evaluation is based on the filtered density after
density filter and Heaviside projection. Using the chain
rule, compute the derivatives of each response with re-
spect to the element density as follows:

dϕ
dρe

¼ dϕ

dρe

dρe
dρ*e

dρ*e
dρe

ð10Þ

When considering the sensitivity analysis formulation of
objective function c, volume constraint V, density filter, and
Heaviside projection filter, refer to Andreassen et al. (2011).
The detailed sensitivity analysis of self-supporting constraint
will be introduced in Sect. 3.3, in which a directional sensi-
tivity filter is applied on the self-supporting constraint sensi-
tivity to promote the evolution of supporting structures.
(5) The method of moving asymptotes (MMA) (Svanberg

1987) is used for problem optimization, and the design
variables ρ and self-supporting constraint value ε are up-
dated until the optimization is converged. In order to make
the optimization process more stable, the following
scheme is used thus the value of ε can decrease gradually:

ε ¼ n

1:3loop=m−m
ð11Þ

where loop is the number of iterations, and m and n are
positive constants. It can be seen that the value of ε is

larger than n when the iteration number is less than m2,
then it decreases gradually to 0. In general, it would be
preferable if the self-supporting constraint is always satis-
fied in the former m2 iterations, which can be achieved by
setting the n larger than the self-supporting constraint val-
ue of the initial optimized design without self-supporting
constraint.

A flowchart of the proposed topology optimization
procedure with self-supporting constraint is given in
Fig. 3.

3.3 Sensitivity analysis

In the following, the sensitivity analysis of the self-supporting
constraint function φ ρð Þ with respect to the filtered density ρ
is introduced. Regardless of the boundary cases, each element
can provide support for the upper three adjacent elements as
described in Sect. 3.1. The sensitivity analysis only considers
the effect of element density change on the three supported

Fig. 3 Flowchart of the topology optimization procedure with self-
supporting constraint
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elements, and the self-supporting constraint sensitivity with
respect to ρi; j can be expressed as:

dφ

dρi; j
¼ dφiþ1; j−1

dρi; j
þ dφiþ1; j

dρi; j
þ dφiþ1; jþ1

dρi; j
ð12Þ

The three terms on the right side in Eq. (12) are respectively
the effect of change in ρi; j on φi + 1, j − 1, φi + 1, j, and φi + 1, j + 1,

respectively. According to Eqs. (3) and (5), each term can be
expressed as:

dφiþ1;s

dρi; j
¼ − ρi;s−1

pn þ ρi;s
pn þ ρi;sþ1

pn
� � 1

pn
−1
ρ pn

−1

i; j �
� ρiþ1;s

0:5

1þ e
−k ρiþ1;s−ρiþ1;s

max−α
� � þ

ρiþ1;s−ρiþ1;s
max

� �
ρiþ1;s
0:5 ke

−k ρiþ1;s−ρiþ1;s
max−α

� �

1þ e
−k ρiþ1;s−ρiþ1;s

max−α
� � �

s ¼ j−1; j; jþ 1

ð13Þ

For the boundary cases, additional layers of void elements
are added to the left, right, and upper side of the density ma-
trix, while the bottom elements are always taken as supported
as they are always supported by the baseplate.

It can be noted that the sensitivity values of the self-
supporting constraint are always nonpositive, which means
that for the elements to violate the self-supporting constraint,
the constraint value is reduced by increasing the support ele-
ment densities. Besides, the sensitivity analysis does not con-
sider the knock-on effect of unsupported elements, thus the
optimization process realized is self-supported by gradual
supporting structure evolution. Compared with the layer-by-
layer–wise sensitivity analysis method, the sensitivity analysis
can be solved concurrently, and the computational time can be
greatly reduced for large problems.

During the gradual evolution of supporting structures, a
density gradual transition will exist between the solid and void
regions caused by the density filters. The sensitivity values of
these elements are very small, which will result in weak sup-
port or unsupport during optimization, as shown in Fig. 4a, b.

In order to promote the evolution of supporting structures, a
directional self-supporting sensitivity filter is proposed. As
shown in Fig. 4c, the filtered self-supporting sensitivity is
obtained by the weighted average of all element sensitivities
above the element and within the filtering radius R:

dφ
dρe

¼ 1

∑
i∈Ne

Hei
∑
i∈Ne

Hei
dφ
dρi

Hei ¼ max 0;R−Δ e; ið Þð Þ

ð14Þ

where Ne is the set of elements i for which the center-to-center
distance (e, i) to element e is smaller than the filter radius R,
and Hei is a weight factor. The row number of element i is not
less than the row number of element e.

4 Numerical examples

Three numerical examples are adopted to demonstrate the
functionality and performance of the developed optimization
procedure. For illustration purposes, the material, load, and
geometry data are dimensionless. In all cases, a Young’s mod-
ulus E0 = 1, lower bound Emin = 1e−9, and Poisson’s ratio ν =
0.3 are used. The penalization factor p is set to 3, parameter pn
is set to 60, and the initial value of Heaviside projection pa-
rameter β is set to 1. The build direction is assumed to be
always vertical and upwards, and the baseplate is at the lower
side of the design domain. All optimizations start from the
uniform density with 0.5. The MMA algorithm is adopted,
and the movement limit is set to 0.05.

4.1 MBB beam

The first case is the well-known MBB beam problem. The
design domain, boundary conditions, and external load for
the MBB beam are shown in Fig. 5. The design domain is a
rectangular area with a width (W) and height (H) =W/3, which
is discretized with 150 × 50 equally sized square finite

Fig. 4 The illustration of weak
support a and unsupported b. c
Description of the directional self-
supporting sensitivity filter
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elements. The allowable volume fraction is set to 50%, and
density filter is applied with a radius of 3.0 element widths.
The value of Heaviside projection parameter β is doubled
every 80 iterations.

The optimal design without self-supporting constraint is
depicted in Fig. 6a, and the structural compliance c is
206.79. It can be seen that the dome of the structure is virtually
horizontal, and the inclination angles of some down-facing
edges are less than 45°, all of which violate the self-
supporting constraint. When considering the self-supporting
constraint, the self-supporting constraint parameters are set as
k = 150, α = 0.03, m = 10, and n = 80. Figure 6b is the opti-
mized design after 380 iterations. It can be seen that the design
result is self-supported, and the optimal structural compliance
c is 256.95, which is 24.26% higher than the conventional
design due to the added self-supporting constraint. It can be
observed that the proposed method successfully evolves
around some supporting structures, and the inclination of most
down-facing edges is exactly 45. Besides, the structural height
of the right side is reduced compared with the conventional

design so that more material can be used in the inner zone to
generate the supporting structures.

In order to demonstrate the validity of the proposed sensi-
tivity filter in Eq. (14), topology optimization was also per-
formed without the sensitivity filter while other parameters
remained the same. However, the results have shown that
the optimization process is unable to converge, and the result
after 450 iterations is depicted in Fig. 7. It should be noted that
there are two supporting structures that fail to connect with the
lower sides, which suggests that the proposed self-supporting
sensitivity filter is effective and necessary for the evolution of
supporting structures.

Figure 8 illustrates the design evolution history of MBB
beam with self-supporting constraint, and Fig. 9 gives the
variations of the objective and self-supporting constraint value
with iterations. It can be seen that in the first 100 iterations, the
effect of the self-supporting constraint is negligible, as shown
in Figs. 8a–c and 9. The structural compliance reaches the
minimum value around 100 iteration steps, while the self-
supporting constraint value reaches the maximum. With the
increase of iteration steps, the self-supporting constraint value
ε decreases gradually to 0. Meanwhile, the structure boundary
changes gradually, and eventually evolves around some
supporting structures and is fully self-supported.

4.2 Bridge structure

The second example is the bridge structure topology optimi-
zation problem. The design domain and boundary conditions

Fig. 5 Design domain for the
MBB beam example

Fig. 6 Optimized designs for the MBB beam case. a Without the self-
supporting constraint, c = 206.79; b with the self-supporting constraint,
c = 256.95 Fig. 7 Result without self-supporting sensitivity filter after 450 iterations
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for the bridge structure problem are shown in Fig. 10. The
design domain is a rectangular area with a W and H =W/2,
which is discretized with 100 × 50 equally sized square finite
elements. The structure is supported in the lower right and left
corners. A concentrated load is applied vertically at the middle

point of the lower edge. Figure 11 shows the optimized design
without self-supporting constraint with filter radius R = 3.0
element widths and allowable volume fraction Vf = 40%. It
can be seen that the nonconstrained optimum topology shows
several boundaries where the inclination is less than 45°, and

Fig. 8 Design evolution of MBB
beam with self-supporting
constraint. a Initial Design; b
Iteration 50; c Iteration 100; d
Iteration 150; e Iteration 200; f
Iteration 250; g Iteration 300; h
Iteration 350; i Iteration 380

Fig. 9 Variations of the objective
and self-supporting constraint
values with iterations
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the height of overhang regions is relatively higher compared
with the first example in Fig. 6a, which is more challenging
for the proposed algorithm.

In order to fully demonstrate the performance of the pro-
posed algorithm, the optimizations with different filter radius-
es and volume constraints are studied. The bridge problem is
solved with filter radius of 2.0 and 3.0 element widths and
allowable volume fractions of 30%, 40%, and 50%. The
self-supporting constraint parameters are set as k = 200 and
α = 0.02. It should be noted that the overhang height when
Vf = 0.3 is higher than the other two cases, and a smaller α =
0.016 is used to suppress the interference caused by density
gradual transition in supporting structures. The values of m
and n are set to 8 and 40, respectively, and the Heaviside
projection parameter β is doubled every 50 iterations.

All optimizations are converged within 320 iterations, and
the optimized solutions are shown in Fig. 12. It can be seen
that all optimized designs are self-supported and the structural
heights are reduced. As the boundary conditions and load are
symmetrical, the final optimized results are almost symmetri-
cal. When the allowable volume fraction Vf = 0.3 and 0.4, the
middle support deviates to one support structure when it
evolves downward to the baseplate. Half-optimization design
domain of the bridge structure can be adopted to obtain full
symmetrical results.

The ratio of the optimal structural compliance c and the
optimal structural compliance cref without self-supporting
constraint is adopted to evaluate the performance loss caused
by self-supporting constraint. It can be seen in Fig. 12 that the
volume constraint has significant effect on the structural per-
formance. Increased allowable volume fraction will lead to
reduced structural compliance, which is the same trend seen
in any free-form topology optimization. Besides, the structural
performance loss caused by self-supporting constraint is much
larger with smaller allowable volume fraction. For example,
the value of c/cref is 120.0% when R = 2.0 element widths and
Vf = 0.3, while it is only 104.8% when Vf = 0.5. The reason is
that the volume proportion of the supporting structures is rel-
atively higher with less allowable materials, which owns low-
er carrying capacity.

The SIMP framework can always lead to intermediate den-
sity zones near the structural boundaries. It can be seen in Fig.
12 that the optimized designs are almost 0–1 solution except
for a very low fraction of elements. The solutions are indicated
by the measures of nondiscreteness (Mnd, Sigmund 2007),
which can be computed with Eq. (15), and the results are also
shown in Fig. 12.

M nd ¼
∑
N

e¼1
4ρe 1−ρe

� �

N
ð15Þ

It can be seen that the filter radius has a great influence on
the size of the supporting structures and the values of Mnd.
Smaller filter radius will result in finer supporting structures
and details, and the structural compliance is reduced.
However, there are many unwanted holes with smaller filter
radius. In addition, the nondiscreteness Mnd value is much
larger when adopting larger filter radius, which is about 4%
for R = 3.0 element widths, and only about 1% for R = 2.0
element widths. The reason is that larger filter radius will lead
to a relatively larger amount of intermediate density elements,
which are less efficient in minimizing compliance and in-
creases the nondiscreteness.

4.3 Tensile beam

The third case is a tensile beam problem designed to challenge
the proposed optimizer to create self-supported structures,
which is based on the example in Serphos (2014). The design
domain is a rectangular area with aW andH =W/2, and bound-
ary conditions for the topology optimization problem are
shown in Fig. 13. The design domain is discretized with
100 × 50 finite elements. A clamped condition is applied at
the mid-height of the left side, and a concentrated load is ap-
plied oppositely at the middle point of the right edge. It is easy
to figure out that the optimized design without self-supporting
constraint is a rod-shaped structure, as shown in Fig. 14, which

Fig. 10 Design domain for the bridge structure example

Fig. 11 Optimized design for the bridge structure without self-supporting
constraint

Topology optimization for additive manufacturing with self-supporting constraint 2349



is the result for R = 3.0 element widths and Vf = 0.4. It can be
seen that the conventional optimized design is completely un-
supported as the baseplate is located at the bottom of the design
domain. This is an interesting test case to exploit any weak-
nesses of the implementation of the proposed method.

Different filter radiuses and volume constraint values are
adopted to verify the effectiveness of the proposed algorithm.
The tensile beam is solved with filter radius of 2.0 and 3.0
element widths and allowable volume fractions of 30%, 40%,
and 50%. The self-supporting constraint parameters are cho-
sen as k = 150, α = 0.03, m = 8, and n = 80, in which the value
of n is much larger as the conventional optimized design is
completely unsupported. Besides, the value of Heaviside pro-
jection parameter β is doubled every 50 iterations. All

optimizations with self-supporting constraint are converged
within 220 iterations, and the optimized solutions are shown
in Fig. 15. It can be seen that all solutions are self-supported
and totally symmetrical.

Regarding the influence of volume fraction constraint on
structural compliance, it is easy to find that it is more signif-
icant compared with the second example. For example, the
optimal value of structural compliance c is 17.34 when R =
2.0 element widths and Vf = 0.3, while it is only 8.94 when
R = 2.0 element widths and Vf = 0.5. Besides, compared with
the conventional optimized design, the structural compliance
increased 63.5%, 13.7%, and 7.1% for Vf = 0.3, 0.4, and 0.5,
respectively, when R = 2.0 element widths, as shown in
Fig. 15a–c. As the conventional optimized design is

Fig. 12 Optimized solutions for
the bridge structure with various
allowable volume fractions and
filter radiuses. a R = 2,Vf = 0.3; c =
26.32, c/cref = 120.0%, Mnd =
1.2%; b R = 2, Vf = 0.4; c = 19.13,
c/cref = 109.9%,Mnd = 1.4%; c R =
2, Vf = 0.5; c = 15.28, c/cref =
104.8%,Mnd = 0.8%; d R = 3, Vf =
0.3; c = 31.26, c/cref = 121.4%,
Mnd = 5.4%; e R = 3, Vf = 0.4; c =
21.45, c/cref = 120.4%, Mnd =
4.4%; f R = 3, Vf = 0.5; c = 16.35,
c/cref = 108.9%,Mnd = 3.5%.

Fig. 13 Design domain for the tensile beam example
Fig. 14 Optimized design for the tensile beam without self-supporting
constraint
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completely unsupported, the volume proportion of supporting
structures is much higher compared with the bridge structure
case, especially when the allowable volume fraction is small.
However, the supporting structures in the tensile beam case
barely transfer the external loads and only provide supporting
functions.

As for the influence of filter radius, the same trend as the
second example, smaller filter radius will result in finer
supporting structures and lower compliances. The
nondiscreteness Mnd values are much larger when adopting
larger filter radius due to the increased amount of intermediate
density elements.

Besides, it should be noted that if the build direction chang-
es to horizontal direction, the optimized design without self-
supporting constraint is inherently self-supported, which
means that the optimized design will remain the same as the
conventional design and the value of c/cref is 100% when
considering the self-supporting constraint.

Furthermore, by analyzing all the results obtained by the
proposed approach in the three examples, it can be found that
there are barely very tiny supporting structures in the optimal
solutions, and the structural boundaries are very smooth,
which means that results own good manufacturability. On
the other hand, the density filter approaches may lead to many
fine features that are smaller than the length scale imposed by
the filter radius, as pointed by Langelaar (2017), and the re-
sults may include some distorted structural boundaries. The

main reason is that the density filter approaches enforced in
each step of solution satisfies the self-supporting constraint by
density filtering, which may cause the supporting structures to
become distorted, or consist of a few columns of elements. In
this paper, the proposed method realized is self-supported by
gradual evolution of supporting structures, in which the self-
support is only required at the final convergence point.
Besides, the filter radius will impose a minimum length scale
on the structures. This algorithm characteristic makes the
structural topologies natural and smooth and own better
manufacturability.

5 Conclusions

Based on the SIMP framework, this article proposes a topol-
ogy optimization method that takes into account the self-
supporting constraint for AM. A structural self-supporting
mathematical model is established to identify the overhang
regions, and an explicit constraint function is proposed to
represent the degree of self-supporting constraint violation.
The topology optimization formulation and optimization pro-
cedure with self-supporting constraint are presented, in which
the density filter and Heaviside projection filter are applied to
avoid the checkerboard patterns and intermediate elements.

The sensitivity analysis method of the self-supporting con-
straint is investigated for using gradient optimization

Fig. 15 Optimized solutions for
the tensile beam with various
allowable volume fractions and
filter radiuses. a R = 2, Vf = 0.3; c
= 17.34, c/cref = 163.5%, Mnd =
10.0%; b R = 2, Vf = 0.4; c =
10.40, c/cref = 113.7%, Mnd =
5.3%; c R = 2, Vf = 0.5; c = 8.94,
c/cref = 107.1%,Mnd = 4.8%; d R
= 3, Vf = 0.3; c = 20.94, c/cref =
189.3%,Mnd = 12.7%; e R = 3, Vf

= 0.4; c = 11.89, c/cref = 125.9%,
Mnd = 10.9%; f R = 3,Vf = 0.5; c =
9.47, c/cref = 112.4%, Mnd =
9.13%.
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algorithms. The proposed method realized is self-supported
by gradual evolution of supporting structures, and the sensi-
tivity analysis does not consider the knock-on effect of unsup-
ported elements. Compared with the layer-by-layer–wise sen-
sitivity analysis method, the sensitivity analysis can be solved
concurrently, and the computational time can be greatly re-
duced for large problems. A directional self-supporting sensi-
tivity filter is devised to promote the evolution of supporting
structures. In addition, various measures have been taken to
avoid the intermediate elements and suppress the interference
caused by density gradual transition regions.

The performance and functionality of the developed opti-
mization procedure is illustrated with three compliance mini-
mization problems. Results show that all the topology optimi-
zation cases have achieved self-support and the optimized
solutions own good manufacturability. The effectiveness of
the proposed directional self-supporting sensitivity filter is
validated, which is necessary for the convergence and evolv-
ing of supporting structures. The study found that the added
self-supporting constraint will lead to a certain degree of per-
formance loss, which can be reduced or even avoided by
changing the build direction. In this paper, only 45° is consid-
ered the critical self-supporting angle. For other cases, the
design domain can be discretized with the rectangular ele-
ments that the inclination of diagonal line equals to the critical
overhang angle. The combination of build direction optimiza-
tion and topology optimization will be investigated the future
works, and the proposed topology optimizationmethod can be
further extended to the 3D problems.
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