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Abstract
Time-dependent failure possibility (TDFP) can reasonably measure the safety degree of time-dependent structure under fuzzy
uncertainty, but there lacks design optimization under the constraint of TDFP for the trade-off of the performance and the safety.
Thus, a time-dependent failure possibility-based design optimization (T-PBDO) under fuzzy uncertainty is established, and a
time-dependent performance measure approach (T-PMA) for solving T-PBDO is proposed in this paper. In the proposed T-
PMA, the TDFP constraint is equivalently transformed into the performance function constraint corresponding to the required
target TDFP. The minimum performance target point (MPTP) and its corresponding time instant in the performance function
constraint with respect to the target TDFP are determined by the single-loop optimization method of inverse TDFP analysis. This
strategy completed by the inverse TDFP analysis with respect to the target TDFP can avoid analysis of the performance function
under the unnecessary membership level, and then lead to improve the numerical stability and computational efficiency of
solving the T-PBDO model. A numerical and three engineering case studies are introduced to verify the effectiveness of the
proposed method. The results show that the proposed T-PMA is accurate, and its efficiency is higher than that of the direct
optimization method.

Keywords Fuzzy uncertainty . Time-dependent failure possibility-based design optimization . Time-dependent performance
measure approach .Minimum performance target point

1 Introduction

The purpose of engineering optimization is to reduce the cost
as much as possible under the condition that the structure
meets the required constraints. In practical engineering prob-
lems, there are various uncertainties in the boundary condi-
tions, geometric parameters, material properties, and working
environment of the structure. And these uncertainties have a
great impact on the performance of the designed structure. In

this case, if the method under deterministic conditions is used
to optimize the structure, the structure is often not robust
enough. And the slight perturbation of design parameters
may lead the deterministic optimal solution falling into the
infeasible region. Thus, design optimization by taking the un-
certainty into consideration has been produced one after an-
other (Schuller and Jensen 2008).

Design optimization considering the random uncertainty
includes reliability-based design optimization (RBDO)
(Papadrakakis and Lagaros 2002) and robust design optimiza-
tion (RDO) (Park et al. 2006). Compared with deterministic
design optimization, RBDO includes structural reliability con-
straints or reliability-related objective functions (Yao et al.
2011; Youn et al. 2003), while RDO is a design optimization
method which takes the most robust performance as the ob-
jective under the condition of considering the random uncer-
tainty. At present, RBDO by taking the random uncertainty
into consideration has attracted extensive attention in academ-
ic research and engineering applications (Chen et al. 2013;
Lee et al. 2008; Liang et al. 2004; Du and Chen 2004;
Elishakoff 1995). The random uncertainty is described by
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the probability density function (PDF), and the structural safe-
ty degree under the random uncertainty is measured by the
failure probability. The structural safety model based on the
failure probability is developed very well and applied widely
in practical engineering. However, the PDF needs a large
number of samples to be estimated accurately, and this re-
quirement is unaffordable usually (Fan et al. 2018).
Furthermore, the uncertainties of human behaviors and exper-
tise may have an important effect on the performance of the
structure, while these uncertainties cannot be considered to be
random (Cremona and Gao 1997). Aiming at solving the issue
of random uncertainty, the fuzzy uncertainty theory is devel-
oped (Beer and Liebscher 2008; Marano and Quaranta 2008).
In the fuzzy uncertainty theory, Zadeh (1978) proposed the
possibility and necessity theory based on the fuzzy uncertain-
ty, on which fuzzy uncertainty theory is applied in engineer-
ing. Under the fuzzy uncertainty, the fuzzy variable is charac-
terized by membership function, the safety degree of struc-
tures can be measured by the failure possibility (FP) (Tzvieli
1990). The FP investigated by Zadeh was defined as the lower
bound of the fuzzy safety confidence level, which states that
the structure must be safe if the membership degree of the
fuzzy input is greater than the FP. Researchers have developed
a variety of methods to solve the FP, and the failure possibility
based design optimization (PBDO) has been also developed
(Utkin et al. 1995). Mourelatos and Zhou (2005) proposed a
global-local hybrid optimization method to solve PBDO. Du
(2006) et al. established the formulation of PBDO using the
performance measure approach (PMA), and proposed the

maximal possibility search (MPS) method for inverse possi-
bility analysis, and the PMA improves the numerical efficien-
cy and accuracy of the optimization solution compared with
the vertex combinationmethod and the multilevel-cut method.
Tang et al. (2014) proposed a possibilistic safety index (PSI)-
based design optimization model (PSIBDO). The solution of
PSIBDO is a double-loop nested problem of minimizing the
objective function and assessing PSI; the assessing PSI is a

Fig. 2 Three cases of the minimum performance function minGjmin(d,
u(j)) in the standard interval space

Fig. 1 The sketch of the
equivalent constraint
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double-loop nested optimization problem. Thus, PSIBDO is a
triple-loop nested problem. To reduce the computation time,
Tang proposed a design optimization method based on PMA,
which is known as the target performance-based design ap-
proach (TPBDA). In the TPBDA, the assessing PSI is re-
placed by computing the target performance, which is only a
minimization problem; thus, the triple-loop nested problem is
simplified to the double-loop one, which leads to the reduction
of the computational cost of optimization solution and the
improvement of the computational efficiency, and
furthermore, the numerical stability of the algorithm is
better. Wang et al. (2017) established an optimization model
of fuzzy heat conduction problem based on the interval safety
possibility index. Aiming at the problem of large computa-
tional cost caused by the double-loop nested optimization
model, a subinterval perturbation method based on first-
order Taylor series was proposed in (Wang et al. 2017) to
replace the inner nesting for improving the efficiency of de-
sign optimization.

It is worth pointing out that the performances of most
structures degrade over time in engineering, the structural
analysis should take the time t into consideration in
many engineering cases. Therefore, it is of great signifi-
cance to study the design optimization of time-dependent
structures under the uncertainty. Time-dependent reliabil-
ity-based design optimization (T-RBDO) under the ran-
dom uncertainty has received widespread attention
(Kuschel and Rackwitz 2000; Hu and Du 2015; Huang

et al. 2017; Jiang et al. 2017; Fang et al. 2019). The
solution of T-RBDO is a double-loop nested optimiza-
tion process, in which the outer loop is the optimization
of design parameters and the inner loop is time-
dependent reliability analysis. The double-loop nested
optimization solution of T-RBDO requires high compu-
tational cost. In order to improve the efficiency of solv-
ing T-RBDO, Kuschel and Rackwitz (2000) proposed a
design optimization method in which the time-dependent
reliability in T-PBDO is estimated by the crossing rate
method. By defining the equivalent most probable point
(MPP) of time-dependent reliability, Hu and Du (2015)
extended the decoupling optimization method named as
sequential optimization and reliability assessment
(SORA) (Du and Chen 2004) in time-independent
RBDO to solve the T-RBDO problem, and then, the
t ime-dependen t SORA (T-SORA) method was
established for solving T-RBDO. In T-SORA, the solu-
tion of T-RBDO is divided into two parts: the determin-
istic optimization of the design parameters and the esti-
mation of the equivalent MPP. These two parts are exe-
cuted sequentially and decoupled from each other, and
this decoupling strategy improves the efficiency of solv-
ing T-RBDO. Although there are abundant researches on
T-RBDO under the random uncertainty, time-dependent
failure possibility-based design optimization (T-PBDO)
model and its solution method under the fuzzy uncertain-
ty were rarely investigated in the existing publications.

Table 1 The distribution parameters of the fuzzy variables of numerical case study

Fuzzy variables Type of MF Fuzzy mean μX i
Fuzzy standard deviation σX i

X1 Normal μX 1
0:01μX 1

X2 Normal μX 2
0:01μX 2

Fig. 3 The diagram of the MPTP in the standard interval coordinate space
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As mentioned above, it is so hard to collect enough test
data to get the accurate input probability distributions in
the early stages of design. And the fuzzy safety analysis
can consider more sources of uncertainty, especially from
human behavior and expert evaluations. It is of great
significance to design the optimal time-dependent struc-
ture satisfying safety requirements under the fuzzy uncer-
tainty. Therefore, this paper focuses on this research of
T-PBDO.

At present, there are some methods to estimate the
time-dependent failure possibility (TDFP) under the
fuzzy uncertainty (Fan et al. 2019; Liu 2010), including
double-loop optimization method (DLOM), single-loop
optimization method (SLOM), and fuzzy simulation
method. Similar to T-RBDO, T-PBDO is also a double-
loop nested solution process. The outer loop is the opti-
mization of the design parameters, and the inner loop is
the analysis of TDFP. Therefore, it is necessary to study
an efficient method to address the double-loop including
the time-consuming TDFP analysis in T-PBDO. In this
paper, the PMA method proposed in (Du et al. 2006) is
extended to the equivalent transformation of the TDFP
constraint. Meanwhile, the minimum performance target
point (MPTP) is defined corresponding to the target
TDFP, and an inverse TDFP analysis method is present-
ed for solving the MPTP. Based on the MPTP through
the inverse TDFP analysis, a time-dependent perfor-
mance measure approach (T-PMA) for solving T-PBDO
is proposed. In order to verify the accuracy and efficien-
cy of the proposed method, the solution of the double-
loop nested method (DLNM) directly solving T-PBDO is
used as a comparison, in which TDFP is estimated by
the single-loop optimization.

The rest of this paper is organized as follows. Section 2
reviews the definition of TDFP and the model of T-PBDO.
The T-PMA is proposed to solve the T-PBDO in Section 3.

Section 4 introduces case studies to verify the accuracy and
efficiency of the proposed T-PMA method. Finally, conclu-
sions are drawn in Section 5.

2 The time-dependent possibility-based
design optimization model

2.1 The definition of TDFP

Suppose an n-dimensional fuzzy input vector is collected in
X = [X1, X2,…, Xn]

T, it is characterized by its membership
function ρX i

xið Þ i ¼ 1; 2;…; nð Þ. And it is assumed that the

time-dependent performance function is Z(t) = g(X, t) with
the n-dimensional fuzzy input vector X in the time domain
t ∈ [t0, te] of interest. Because the time-dependent performance
function Z(t) = g(X, t) is a function of the fuzzy input vector X
and the time variable t, Z(t) is a time-dependent fuzzy variable,
i.e., the membership function ρZ(z) of Z(t) varies with time.
For the time-dependent performance function g(X, t) in the
time domain t ∈ [t0, te] of interest, the structure is failed as long
as there exists at least one instant t ∈ [t0, te] satisfying g(X, t) ≤
0. Therefore, the time-dependent failure domain in the time
domain t ∈ [t0, te] of interest can be denoted as F(t0, te) = {X|
g(X, t) ≤ 0, ∃t ∈ [t0, te]}, and S(t0, te) = {X| g(X, t) > 0, ∀t ∈ [t0,
te]} defines the corresponding time-dependent safety domain.

For time-dependent problems, the TDFP defined in Ref.
(Fan et al. 2019) is the possibility of the failure occurrence in
a given time domain [t0, te], which can be expressed as follows.

π f t0; teð Þ ¼ Poss X∈F t0; teð Þf g
¼ Sup αjg X αð Þ; tð Þ≤0;∃t∈ t0; te½ �f g ð1Þ

where Poss{⋅} and Sup{⋅} are the possibility operator and the
supremum operator respectively. α represents the membership

Table 3 Computational cost of
numerical case study Method Objective functions Iteration numbers Constraint functions Computational time

DLNM 122 7 719,435 221.72 s

T-PMA_DL 12 3 8928 2.73 s

T-PMA_SL 12 3 546 2.15 s

Table 2 Design parameter solutions of numerical case study

Method μX 1

�
;μX 2

� f(μX) πf1 πf2 πf3

DLNM [2.1277, 7.0169] 9.1445 0.0996 0.1000 0.0147

T-PMA_DL [2.1266, 7.0166] 9.1432 0.1000 0.1000 0.0146

T-PMA_SL [2.1267, 7.0166] 9.1432 0.1000 0.1000 0.0146
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level of Z(t) = g(X(α), t) and α ∈ [0, 1]. X(α) is the membership
interval vector of the fuzzy input vector X under the member-
ship level α and X(α) ∈ [XL(α), XU(α)] , where XU αð Þ ¼
XU

1 αð Þ;XU
2 αð Þ;…;XU

n αð Þ� �
and XL αð Þ ¼ XL

1 αð Þ;XL
2 αð Þ�

;…;XL
n αð Þg are the upper and lower bound vectors of the

membership interval of the fuzzy input vector with respect to
the membership level α respectively, and
XU

i αð Þ ¼ max ρ−1X i
αð Þ, XL

i αð Þ ¼ min ρ−1X i
αð Þ, ρ−1X i

⋅ð Þ is the in-
verse function of MF of ρX i

⋅ð Þ i ¼ 1; 2;…; nð Þ.
It can be seen from the above definition that the

TDFP is the upper bound of membership level of
time-dependent performance function under the condi-
tion of failure. That is to say, when the membership
level of the time-dependent performance function is
greater than the TDFP, the structure is safe in the time
domain t ∈ [t0, te]. Therefore, πf (t0, te) is the maximum
possibility of the structure under the fuzzy uncertainty
when the failure occurs, which can be used to measure
the safety degree of time-dependent structure under the
fuzzy uncertainty.

The necessary and sufficient condition for the failure oc-
currence of the time-dependent structure is that there at least
exists an instant t satisfying g(X, t) ≤ 0 in the time domain [t0,

te] of interest, while min
t∈ t0;te½ �

g X ; tð Þ≤0
� �

means that there ex-

ists at least one instant t satisfying g(X, t) ≤ 0; thus, the time-
dependent failure domain can be also expressed as

F t0; teð Þ ¼ X j min
t∈ t0;te½ �

g X ; tð Þ≤0
� �� �

. Let gmin(X) denote

min
t∈ t0;te½ �

g X ; tð Þ, then the time-dependent failure possibility πf

(t0, te) can be expressed as follows.

π f t0; teð Þ ¼ Poss gmin Xð Þ≤0f g ¼ Sup αjgmin Xð Þ≤0f g ð2Þ

For a given time interval [t0, te], the expression gmin(X) is
independent of the time t. Therefore, (2) transforms the esti-
mation of TDFP into the estimation of time-independent fail-
ure possibility of the minimum time-dependent performance
function with respect to the time.

2.2 The T-PBDO model and its time-independent
expression

The T-PBDO model can be formulated as follows,

min
d;μX

f d;μXð Þ

s:t: πfj t0; teð Þ ¼ Poss g j d;X ; tð Þ≤0;∃t∈ t0; te½ �
n o

≤πtarfj j ¼ 1; 2;…; ng
� �

dL≤d≤dU ;μL
X ≤μX ≤μ

U
X

ð3Þ

where f(d,μX) represents the objective function, gj(d,X, t)(j =

1, 2,…, ng) is the time-dependent performance function
of the j-th constraint, and πtar

fj is the target TDFP cor-

responding to the j-th constraint. ng is the number of
the TDFP constraint. d means an nd-dimensional deter-
ministic design parameter vector with the lower bound
dL and upper bound dU respectively. μX is the design
parameter vector of the fuzzy input vector X, μX is
usually composed of the kernel of membership function
ρX i

xið Þ i ¼ 1; 2;…; nð Þ of each input Xi in X, and the

upper and lower bound vectors of μX are μU
X and μL

X

respectively.
According to (2), by converting the time-dependent perfor-

mance function in the above optimization model into the min-
imum performance function, the T-PBDOmodel can be trans-
formed into a time-independent design optimization model
shown in the following (4).

Fig. 4 Constraint situations after optimal solutions

Fig. 5 The comparison of the iteration history
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min
d;μX

f d;μXð Þ

s:t: πfj t0; teð Þ ¼ Poss g jmin d;Xð Þ≤0
n o

≤πtarfj j ¼ 1; 2;…; ng
� �

dL≤d≤dU ;μL
X ≤μX ≤μ

U
X

ð4Þ

where g jmin d;Xð Þ ¼ min
t∈ t0;te½ �

g j d;X ; tð Þ j ¼ 1; 2;…; ng
� �

.

According to (3) and (4), it is shown that the T-PBDO is a
double-loop nested process, the outer loop is the optimization of
the design parameters, and the inner loop is the estimation of
TDFP, i.e., the estimation of TDFP is embedded in each optimi-
zation cycle. At present, there are double-loop optimizationmeth-
od (DLOM) and single-loop optimization method (SLOM) to
estimate the TDFP. The direct solution of T-PBDO is also a
double-loop nested problem including minimizing the objective
function and assessing the TDFP. Therefore, by coupling the
DLOM or SLOM into the direct solution of T-PBDO for
assessing TDFP, the direct solution of T-PBDO by combining
the optimization cycle of outer design parameters with the esti-
mation of the TDFP is a triple-loop or double-loop nested prob-
lem, which is time-consuming, especially for the problem that the
performance function of the engineering structure is implicit ex-
pression and needs to call the finite element software. Themethod
of directly solving the T-PBDO shown in (3) is the double-loop
nested method (DLNM), in which TDFP is estimated by the
SLOM. In theDLNM, the outer loop is the optimization of design
parameters and the inner loop is the evaluation of TDFP.

3 The T-PMA for solving the T-PBDO

3.1 Equivalent transformation of TDFP constraint and
its rationality proof

The key idea of the T-PMA is to replace the target TDFP
constraint with a simplified equivalent constraint, which was

proposed in (Du et al. 2006), i.e., the TDFP constraint πfj

¼ Poss g jmin d;Xð Þ≤0
n o

≤πtar
fj can be replaced by the lower

bound gLjmin d; x πtar
fj

	 
	 

of the minimum performance func-

tion g jmin d; x πtar
fj

	 
	 

corresponding to the target TDFP πtar

fj

not less than zero, and the equivalent transformation is shown
as follows.

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

≤πtarfj ⇔gLjmin d; x πtarfj

	 
	 

≥0 ð5Þ

where x πtar
fj

	 

is the membership interval vector of the fuzzy

input vector X under the membership level of the target TDFP

πtar
fj . Because x πtar

fj

	 

is an interval vector, the minimum perfor-

mance function g jmin d; x πtar
fj

	 
	 

related to x πtar

fj

	 

corre-

sponding to the j-th constraint is also an interval, and its lower

bound and upper bound are denoted by gLjmin d; x πtar
fj

	 
	 

and

gUjminðd; x πtar
fj

	 

respectively.

Figure 1 shows the equivalence of the two constraints
in (5). Three curves in the Fig. 1 represent three cases of
the membership function of the j-th minimum perfor-

mance function gjmin respectively. In Fig. 1, gkijmin

d; x πtar
fj

	 
	 

k ¼ L;U ; i ¼ a; b; cð Þ respectively represent

g jmin d; x πtarfj

	 
	 

corresponding to the k(k = L,U) boundary

of the i-th(i = a, b, c) curve. And πi
fj i ¼ a; b; cð Þ are the

TDFP of i-th(i = a, b, c) curve respectively. The equiva-
lence of the above (5) is explained in (Du et al. 2006). In
order to make it more rigorous, this study gives the proof
of equivalence in (5) by using absurdity method.

Table 4 The distribution parameters of the fuzzy variables of a corroded bending beam

Fuzzy variables Mark Fuzzy mean Fuzzy standard deviation The type of MF

a0/m X1 μX 1
0.02 Normal

b0/m X2 μX 2
0.04 Normal

σu/Pa X3 2.4×108 2.4×106 Normal
F0/N X4 3500 350 Normal

Fig. 6 The schematic structure of
a corroded bending beam
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The following two steps are used to prove the equivalence in

(5). The first step is to prove that πfj ¼ Poss g jmin d;Xð Þ≤0
n o

¼ πtar
fj and gLjmin d; x πtar

fj

	 
	 

¼ 0 is equivalent, and the second

step is to prove that πfj ¼ Poss g jmin d;Xð Þ≤0
n o

< πtar
fj and

gLjmin d; x πtar
fj

	 
	 

> 0 is equivalent.

Step 1: The proof of the equivalence between πfj ¼ Poss

g jmin d;Xð Þ≤0
n o

¼ πtar
fj and gLjmin d; x πtar

fj

	 
	 

¼ 0

Assuming that the target TDFP πtar
fj constraint πfj ¼ Poss

g jmin d;Xð Þ≤0
n o

¼ πtar
fj and the lower bound constraint of

the minimum performance function gLjmin d; x πtar
fj

	 
	 

¼ 0

are not equivalent, then one of the following two cases holds.

Case 1

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

¼ πtarfj ⇔gLjmin d; x πtarfj

	 
	 

< 0 ð6Þ

Case 2

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

¼ πtarfj ⇔gLjmin d; x πtarfj

	 
	 

> 0 ð7Þ

Case 1 and case 2 correspond to the case of curve (a) and
curve (c) in Fig. 1 respectively. As shown in Fig. 1, for case 1,
the inequality πfj > πtar

fj holds, and for case 2, the inequality

πfj < πtar
fj holds. Obviously, (6) and (7) are contradictory to

πfj ¼ πtar
fj ; thus, πfj ¼ Poss g jmin d;Xð Þ≤0

n o
¼ πtar

fj and gLjmin

d; x πtar
fj

	 
	 

¼ 0 are equivalent, that is, the following equiv-

alent relation holds.

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

¼ πtarfj ⇔gLjmin d; x πtarfj

	 
	 

¼ 0 ð8Þ

Step 2: The proof of equivalence between πfj ¼ Poss

g jmin d;Xð Þ≤0
n o

< πtar
fj and gLjmin d; x πtar

fj

	 
	 

> 0

Similar to the step 1, it is assumed that the target TDFP πtar
fj

constraint πfj ¼ Poss g jmin d;Xð Þ≤0
n o

< πtar
fj and the lower

bound constraint of the minimum performance function gLjmin

d; x πtar
fj

	 
	 

> 0 are not equivalent. From the step 1, it has

been proved that the equivalence between πfj ¼ Poss

g jmin d;Xð Þ≤0
n o

¼ πtar
fj and gLjmin d; x πtar

fj

	 
	 

¼ 0 is tena-

ble. Therefore, from the fact that πfj < πtar
fj and gLjmin

d; x πtar
fj

	 
	 

> 0 are not equivalent, it can be deduced that

the following condition must be true, namely,

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

< πtarfj ⇔gLjmin d; x πtarfj

	 
	 

< 0 ð9Þ

Equation (9) corresponds to the case of curve (a), that is
πfj > πtar

fj , which is obviously contradictory to πfj < πtar
fj , so

we can deduce that πfj ¼ Poss g jmin d;Xð Þ≤0
n o

< πtar
fj and

gLjmin d; x πtar
fj

	 
	 

> 0 are equivalent, i.e., the following

equivalent relation holds.

πfj ¼ Poss g jmin d;Xð Þ≤0
n o

< πtarfj ⇔gLjmin d; x πtarfj

	 
	 

> 0 ð10Þ

Table 6 Computational cost of a
corroded bending beam Method Objective functions Iteration numbers Constraint functions Computational time

DLNM 122 6 420,615 109.701 s

T-PMA_DL 6 2 1200 1.9497 s

T-PMA_SL 6 2 150 1.6304 s

Table 5 Design parameter solutions of a corroded bending beam

Method μX 1

�
;μX 2

� f(μ) πf

DLNM [0.0548, 0.0996] 0.1543 0.1000

T-PMA_DL [0.0542, 0.1000] 0.1542 0.1000

T-PMA_SL [0.0542, 0.1000] 0.1542 0.1000

Time-dependent performance measure approach for time-dependent failure possibility-based design optimization 1035



Based on the conclusion of the step 1 and the step 2, the
constraint equivalence shown in (5) is proved.

3.2 The T-PMA for solving the T-PBDO under the fuzzy
uncertainty

For the T-PBDO model in (4), through the constraint
equivalent transformation in (5), i.e., the TDFP con-
straint is replaced by the lower bound constraint of the
minimum performance function corresponding to the tar-
get TDFP, it can be transformed into the design optimi-
zation model under the time-dependent performance
measure constraint shown as follows.

min
d;μX

f d;μXð Þ

s:t: gLjmin d; x πtar
fj

	 
	 

≥0 j ¼ 1; 2;…; ng
� �

dL≤d≤dU ;μL
X ≤μX ≤μ

U
X

ð11Þ

Equation (11) is called the optimization model based on T-
PMA corresponding to the optimization model under the con-
straint of the target TDFP. Comparing (4) and (11), it can be
seen that the complicate target TDFP constraint in (4) is trans-
formed into the simple lower bound constraint of the mini-
mum performance function with respect to πtar

fj in (11), which

simplifies the solution of the optimizationmodel. In the equiv-
alent constraint, only the minimum performance function un-
der the necessary membership level with respect to the target
TDFP πtar

fj is needed to analyze, and this strategy can improve

the numerical stability and computational efficiency of the
optimization solution.

3.3 Analysis of the constraint function in T-PMA

gLjmin d; x πtar
fj

	 
	 

in the optimization model (11) is solved by

the following optimization model,

min g jmin d; x πtar
fj

	 
	 

s:t: x πtar

fj

	 

∈ xL πtar

fj

	 

; xU πtar

fj

	 
h i
j ¼ 1; 2; ::; ng
� �

ð12Þ

where xU πtar
fj

	 

and xL πtar

fj

	 

are the upper and lower bound

vectors of the membership interval of the fuzzy input vector
with respect to the target TDFP πtar

fj respectively. The interval

vector x πtar
fj

	 

¼ x1 πtar

fj

	 

; x2 πtar

fj

	 

;…; xn πtar

fj

	 
n o
can be

further standardized as follows.

u jð Þ
i ¼

xi πtarfj

	 

−

xLi πtarfj

	 

þ xUi πtarfj

	 

2

0
@

1
A

xUi πtarfj

	 

−xLi πtarfj

	 

2

; i ¼ 1; 2;…; n; j ¼ 1; 2; ::; ng
� �

ð13Þ

where xi πtar
fj

	 

∈ xLi πtar

fj

	 

; xUi πtar

fj

	 
h i
is the membership in-

terval variable with respect to πtar
fj of the i-th dimension fuzzy

variable.
xLi πtarfjð ÞþxUi πtarfjð Þ

2 and
xUi πtarfjð Þ−xiL πtarfjð Þ

2 are the mean value

and deviation of the i-th dimension interval variable xi πtar
fj

	 

respectively.

For the standardized variable u jð Þ
i obtained by (13), it is

obvious that u jð Þ
i ∈ −1; 1½ � holds, i.e., u jð Þ

i

	 
2
≤1. By use of

the standardization in (13), (12) can be rewritten into the fol-
lowing form in the standardized interval space u(j).

min Gjmin d;u jð Þ
	 


s:t: u jð Þ
i

	 
2
≤1 i ¼ 1; 2;…; n; j ¼ 1; 2; ::; ng

� �
u jð Þ ¼ u jð Þ

1 ; u jð Þ
2 ;…; u jð Þ

n

n o ð14Þ

where Gjmin(d, u
(j)) is the match of the j-th minimum perfor-

mance function g jmin d; x πtar
fj

	 
	 

in the standard interval

space, and u(j) is the standard interval vector corresponding

to x πtar
fj

	 

.

The optimization result of (14) is defined as the minimum
performance target point (MPTP) corresponding to πtar

fj , and it

is denoted as u jð Þ
MPTP, namely,

u jð Þ
MPTP ¼ arg min

u jð Þ
ið Þ2 ≤1

Gjmin d; u jð Þ
	 


j ¼ 1; 2;…; ng; i ¼ 1; 2;…; n
� � ð15Þ

Then, the time instant t jð Þ
min corresponding to u jð Þ

MPTP can be
obtained by the following formula,

Table 7 Design parameter solutions under different initial values of
design parameters

Method μ 0ð Þ
X 1
;μ 0ð Þ

X 2

h i
[0.1, 0.1] [0.07, 0.08]

DLNM μX 1
;μX 2

� �
[0.0878,0.0878] [0.07, 0.08]

f (μ) 0.1756 0.1500

T-PMA μX 1
;μX 2

� �
[0.0542 0.1000] [0.0542, 0.1000]

f (μ) 0.1542 0.1542
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t jð Þ
min ¼ arg min

t∈ t0;te½ �
Gj d; u jð Þ

MPTP; t
	 


ð16Þ

where Gj d; u jð Þ
MPTP; t

	 

is the counterpart of the j-th time-

dependent performance function g j d; x jð Þ
MPTP; t

	 

in the stan-

dard interval space, in which x jð Þ
MPTP is the match of u jð Þ

MPTP
transformed by (13).

From the above analysis, the time-dependent performance
measure approach (T-PMA) transforms the T-PBDO into
double-loop nested optimization of (11) and (14). In an itera-
tion process, the outer loop optimizes the design parameters,

while the inner loop solves the MPTP u jð Þ
MPTP and the time

instant t jð Þ
min corresponding to πtar

fj under the given design pa-

rameters to judge the feasibility. Because the T-PMA avoids
estimating the performance function under the unnecessary
membership level except the target TDFP πtar

fj , its solving

efficiency is higher than that of the direct solution of the T-

PBDO. Solving the MPTP u jð Þ
MPTP and the corresponding time

instant t jð Þ
min is the inverse process of solving the TDFP. The

next subsection will give the solution of the inverse analysis of
the TDFP.

3.4 An inverse analysis method of the TDFP for
solving the MPTP and its corresponding time instant

Figure 2 shows three cases of the minimum performance func-
tion minGjmin(d, u

(j)) in a two-dimensional standard interval
coordinate space. As shown in Fig. 2 and according to (5), if

gLjmin d; x πtar
fj

	 
	 

¼ minGjmin d; u jð Þ� �

< 0, then πfj > πtar
fj

(where πfj is the TDFP under the current design parameters),

a n d i f gLjmin d; x πtar
fj

	 
	 

¼ minGjmin d; u jð Þ� �

≥0, t h e n

πfj≤πtar
fj .

According to the joint analysis of (5) and (14), it can be

deduced that πfj ¼ πtar
fj if gLjmin d; x πtar

fj

	 
	 

¼ minGjmin

d; u jð Þ� � ¼ 0, and the optimal solution is obtained at the

boundary of πfj ¼ πtar
fj . Thus, the MPTP u jð Þ

MPTP should locate

on the boundary of the standard interval space, i.e., the MPTP

u jð Þ
MPTP is on the hypercube with side length of 2. Figure 3 gives

the diagram of the MPTP in a two-dimensional standard in-
terval coordinate space.

The boundary of the hypercube with the side length of 2
can be expressed by ‖u(j)‖∞ = 1 (‖⋅‖∞ represents the infinite
norm), then the optimal result of (15) can be searched in a
smaller range ‖u(j)‖∞ = 1, i.e., (15) can be expressed in the
form of (17).

u jð Þ
MPTP ¼ arg min

u jð Þk k∞¼1
Gjmin d; u jð Þ

	 

j ¼ 1; 2;…; ng
� � ð17Þ

Compared with (15), (17) only needs to find the MPTP on
the boundary of ‖u(j)‖∞ = 1, it can improve the computational
efficiency of estimating the MPTP. The inverse analysis of
TDFP includes solving the MPTP and its corresponding time

instant. The time instant t jð Þ
min corresponding to g jmin xð Þ ¼

min
t∈ t0;te½ �

g j x; tð Þ changes with different input variables; thus,

the estimation of u jð Þ
MPTP and t

jð Þ
min is a double-loop optimization

problem. The outer loop estimates the time instant corre-
sponding to the MPTP, and the inner loop searches the
MPTP at the given time instant.

t jð Þ
min ¼ arg min

t∈ t0;te½ �
Gj d; u jð Þ

MPTP; t
	 


u jð Þ
MPTP ¼ arg min

u jð Þk k∞¼1
Gj d;u jð Þ; t
	 


8>><
>>: ð18Þ

It can be seen from the above formula that directly solving

u jð Þ
MPTP and t jð Þ

min is a double loop nested optimization problem,
which requires large computational cost. It is well known that
the computational complexity of solving this single-loop op-
timization problem is extremely low compared with that of the
double-loop optimization problem (Feng et al. 2019).
Therefore, this process can also be replaced by the following
single-loop optimization problem shown in (19).

Table 8 The distribution
parameters of the fuzzy variables
of a cantilever beam

Fuzzy variables Mark Fuzzy mean Fuzzy standard deviation The type of MF

y/psi X1 40,000 4000 Normal

E/psi X2 2.9e7 2.9e6 Normal

F10/lb X3 1000 100 Normal

F20/lb X4 500 50 Normal

Fig. 7 A cantilever beam
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u jð Þ
MPTP; t

jð Þ
min

	 

¼ arg min

t∈ t0;te½ �

u jð Þk k∞¼1
Gj d; u jð Þ; t
	 


j ¼ 1; 2;…; ng
� � ð19Þ

Combining the basic principle of T-PMA and the analysis
of its constraint function, the design optimization model based
on T-PMA under fuzzy uncertainty can be expressed as the
following (20),

min
d;μX

f d;μXð Þ

s:t: g j d; x jð Þ
MPTP; t

jð Þ
min

	 

≥0 j ¼ 1; 2;…; ng
� �

dL≤d≤dU ;μL
X ≤μX ≤μ

U
X

ð20Þ

where x jð Þ
MPTP is the mapping of the MPTP u jð Þ

MPTP obtained in
the standardized interval space corresponding to the target

TDFP πtar
fj in the original coordinate space. t jð Þ

min is the time

instant corresponding to the MPTP u jð Þ
MPTP, u

jð Þ
MPTP, and t jð Þ

min

are obtained from the corresponding inverse TDFP analysis.
The specific inverse TDFP analysis is realized by solving the
single-loop optimization model shown in (19).

4 Case studies

In this section, a numerical and three engineering case studies
are introduced and compared with DLNM to verify the feasi-
bility and efficiency of the proposed T-PMA. The proposed T-
PMA involves two major types: (a) searching the MPTP by
single-loop optimization (T-PMA_SL), and (b) searching the
MPTP by double-loop optimization (T-PMA_DL). The com-
parative analysis of T-PMA and DLNM is mainly based on T-
PMA_SL. In the case studies, the membership function of the
fuzzy input variable is assumed to be the normal type. The
membership functions of the normal type and other common

types are given in the appendix. And the optimization prob-
lems expressed by (18), (19), and (20) are solved by the active
set algorithm available in the MATLAB.

4.1 Numerical case study

Suppose the T-PBDO problem with the following form,

min f μXð Þ ¼ μX 1
þ μX 2

s:t: Poss g j X ; tð Þ≤0 ∃t∈ t0; te½ �
n o

≤πtarfj j ¼ 1; 2; 3ð Þ
g1 X ; tð Þ ¼ X 2

1X 2−5X 1sin tð Þ þ X 2 þ 1ð Þsin2 t=8ð Þ−10
g2 X ; tð Þ ¼ X 1 þ X 2−0:1t−5ð Þ2

30
þ X 1−X 2 þ 0:2t−12ð Þ2

120
−2

g3 X ; tð Þ ¼ 90

X 1 þ 0:05tð Þ2 þ 8 X 2 þ 0:1tð Þ−sint þ 5
−1

0≤μX i
≤10 i ¼ 1; 2ð Þ; πtarfj ¼ 0:1 j ¼ 1; 2; 3ð Þ

ð21Þ

in which t denotes the time variable within the interval t ∈ [0,
5], and X1 and X2 are the fuzzy input variables whose mem-
bership functions are normal. The parameters of the fuzzy
input variables are shown in Table 1.

Take the initial design parameter vector as μ 0ð Þ
X ¼

μ 0ð Þ
X 1
;μ 0ð Þ

X 2

h i
¼ 2:2; 7:1½ �, the design parameters obtained by

DLNM and T-PMA (including the T-PMA_DL and the T-
PMA_SL) and the TDFPs of the constraint functions under
the convergence of the optimization are summarized in
Table 2. The computational cost and total iteration numbers
of the three methods are given in Table 3. The computational
cost in Table 3 involves all the necessary calls of the constraint
functions and objective functions. In this paper, the conver-
gent condition is that the minimum values of all constraints
functions is greater than 10−6 or the relative difference be-
tween the objective functions of two adjacent iterations is less
than 10−6, and this convergent criterion is applicable to all the
case studies. Figure 4 shows a comparison of the iterative
history for DLNM and T-PMA.

It can be seen from Table 2 that the results of the
three methods are basically consistent. The optimal re-
sults of DLNM show that the T-PMA_DL and the T-
PMA_SL are accurate and effective. The difference be-
tween the T-PMA_DL and the T-PMA_SL is in solving
the MPTP, while the iterative process and the optimal
results of the two methods for solving T-PBDO are con-
sistent. Compared with the T-PMA_DL, the total

Table 10 Computational cost of a
cantilever beam Method Objective functions Iteration numbers Constraint functions Computational time

DLNM 278 14 4,259,540 781.981 s

T-PMA_DL 18 5 2250 2.3137 s

T-PMA_SL 18 5 792 2.3407 s

Table 9 Design parameter solutions of a cantilever beam

Method [w, h] f(d) πf1 πf2

DLNM [2.1950, 4.3432] 9.5334 0.1000 0.0248

T-PMA_DL [2.1833, 4.3665] 9.5333 0.1000 0.0248

T-PMA_SL [2.1833, 4.3665] 9.5333 0.1000 0.0248

X. Jiang et al.1038



computational cost of calling constraint functions in the
T-PMA_SL is less, which illustrates that searching the
MPTP by single-loop optimization is more efficient than
by double-loop optimization. Therefore, the inverse
TDFP analysis method is completed by the single-loop
optimization for solving the MPTP in T-PMA. The com-
parative analysis of T-PMA and DLNM is based on T-
PMA_SL in the case studies. The computational cost of
T-PMA is less than that of DLNM, and the computation-
al time of T-PMA is 2.15 s, while the computational
time of DLNM is 221.72 s, the above comparison shows
the effectiveness of T-PMA. The constraint situations in
the standard interval space after the convergence of the
optimization estimated by T-PMA is shown in Fig. 4.
From the Fig. 4, it can be seen that the minimum per-
formance target points of the constraint functions
G1min(u) and G2min(u) are on the boundary of ‖u(j)‖∞ =
1(j = 1, 2), while G3min(u) has a certain allowance. The
conclusion in Fig. 4 is consistent with TDFPs of the
constraint functions under the convergence of the optimi-
zation given in Table 2. The conclusion of Fig. 4 also
shows the feasibility of T-PMA. The comparison of
Fig. 4 shows that the total number of iterations involved

in the proposed T-PMA is less than that of the DLNM,
and the iteration process is faster than that of the DLNM.

The results of the case study fully verify that the
equivalent transformation of the TDFP constraint in
the T-PMA is accurate and effective, and since the T-
PMA only needs to analyze the minimum performance
function under the necessary level with respect to the
target TDFP, its computational cost is much less than
that of the DLNM Fig. 5.

4.2 Design optimization of a corroded bending beam

It is shown in Fig. 6 that the cross section B-B of the
beam (Jiang and Lu 2020) is rectangular, and a0 and b0
represent the initial width and height of the cross sec-
tion respectively. As a result of corrosion, the width and
height of the cross section of the beam vary with time t.
Let a(t) and b(t) respectively represent the width and
height of the beam changing with the corrosion time t,
and κ represents the corrosion coefficient, κ = 0.25 ×
10−3m/year, then the specific expressions of a(t) and
b(t) are shown as follows,

a tð Þ ¼ a0−2κt b tð Þ ¼ b0−2κt ð22Þ

The center point of the bending beam is applied by
the concentrated force F and F tð Þ ¼ F0sin πt

12

� �
. M(t) rep-

resents the bending moment at the center point of the
beam, and the time-dependent performance function can
be expressed as

Fig. 9 A welded beam

Table 11 The distribution parameters of the fuzzy variables of a welded
beam

Fuzzy variables Fuzzy mean Fuzzy standard variance Type of MF

X1/mm μX 1
0.3 Normal

X2/mm μX 2
3 Normal

X3/mm μX 3
3 Normal

X4/mm μX 4
0.3 Normal

E/Mpa 20,685 2068.5 Normal

L/mm 355.6 35.56 Normal

G/Mpa 82,740 8274 Normal

d0/mm 6.35 0.635 Normal

τ/Mpa 9.377 0.9377 Normal

σ/Mpa 206.85 20.685 Normal

F0/N 26,688 2668.8 Normal

Fig. 8 Iterative process of design optimization solutions of case study 3
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g X ; tð Þ ¼ Mu tð Þ−M tð Þ

¼ a tð Þb2 tð Þσu

4
−

F tð ÞL
4

þ ρsta tð Þb tð ÞL2
8

� 
ð23Þ

where Mu(t) is the ultimate bending moment, L = 5m is
the length of the beam, σu is the ultimate strength, and
ρst = 78.5KN/m3 is the density. In the above variables, a0,
b0, σu, and F are fuzzy input variables which are denoted
as X = [X1, X2, X3, X4] = [a0, b0, σu, F0]. Table 4 shows the
parameters and MF types of fuzzy input variables. The
T-PBDO model of the corroded bending beam is
expressed as follows,

min f μXð Þ ¼ μX 1
þ μX 2

s:t: Poss g X ; tð Þ≤0 ∃t∈ t0; te½ �f g≤πtar
f

g X ; tð Þ ¼ a tð Þb2 tð Þσu

4
−

F tð ÞL
4

þ ρsta tð Þb tð ÞL2
8

� 
0:01≤μX 1

≤0:2; 0:01≤μX 2
≤0:1;πtar

f ¼ 0:1; t∈ 0; 1½ �
ð24Þ

Take the initial design parameter vector as μ 0ð Þ
X ¼

μ 0ð Þ
X 1
;μ 0ð Þ

X 2

h i
¼ 0:05; 0:1½ �, the design parameters obtained by

DLNM and T-PMA are summarized in Table 5. The computa-
tional cost of the number of calling functions and the number of
iterations are listed in Table 6. From Table 5, one can observe
that the convergent optimal solutions estimated by the proposed
T-PMAcanmatchwell with that of the DLNM,which illustrates
the accuracy of the T-PMA for T-PBDO. But the computational

cost of calling constraint functions by DLNM is more than 105,
and the computational cost of calling constraint functions by T-
PMA_DL and T-PMA_SL are no more than two hundred, the
computational cost of calling constraint functions by T-
PMA_SL is least. Meanwhile, the proposed T-PMA requires
less iteration steps than DLNM. The above analysis shows that
T-PMA is more efficient than the DLNM for solving T-PBDO.

In order to verify the numerical stability of the proposed T-
PMA, the convergent optimal solutions under different initial
values of the design parameter vector are given in Table 7, where

μ 0ð Þ
X ¼ 0:1; 0:1½ � is in the feasible region and μ 0ð Þ

X ¼
0:07; 0:08½ � is in the infeasible region. And the inverse TDFP
analysismethod is completed by the single-loop optimization for
solving the MPTP in T-PMA. It can be seen from Table 7 that
the DLNM and the T-PMA can obtain the convergent optimal
solutions satisfying the requirement under the appropriate initial
values of the design parameter vector. However, the DLNM is
more sensitive to the initial value of the design variables than T-
PMA, and may obtain wrong optimization solutions or even
infeasible solutions. The reason is that direct solution of the T-
PBDO involves a more complicated constraint than the T-PMA,
which leads to poor numerical stability. Therefore, the design
parameters obtained by the T-PMAaremore stable, and it shows
that the PMA method has wider applicability.

4.3 A cantilever beam

As shown in Fig. 7, the left end of a cantilever beam (Shi et al.
2020) is a fixed end, and the right end is a free end. The free
end of the beam is under a vertical concentrated force F1 and a
horizontal concentrated force F2 changing with time. Let F1(t)
and F2(t) represent the concentrated forces in the vertical and
horizontal directions on the free end of the beam, then the

Table 13 TDFPs of constraint
functions under convergent
optimal solutions

Method πf1 πf2 πf3 πf4 πf5

DLNM 0.099997 4.2059×10−6 0.099993 2.0684×10−4 1.1548×10−7

T-PMA_DL 0.099998 4.2059×10−6 0.10000 2.0685×10−4 1.1548×10−7

T-PMA_SL 0.099998 4.2059×10−6 0.10000 2.0685×10−4 1.1548×10−7

Table 12 Design parameter solutions and computational cost of a welded beam

Method μX 1

�
;μX 2

;μX 3
;μX 4

� f(d) Iteration numbers Objective functions Constraint functions

DLNM [15.1742, 253.9981, 253.9969, 16.1482] 11.2833 7 55 16,638,491

T-PMA_DL 15.1740, 254, 254, 16.1481] 11.2832 2 15 82,100

T-PMA_SL [15.1740, 254, 254, 16.1481] 11.2832 2 15 6770
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specific expressions of F1(t) and F2(t) are shown as follows,

F1 tð Þ ¼ F10e
−t2ð Þ F2 tð Þ ¼ F20 cos πtð Þ ð25Þ

In this case study, the optimization objective is to minimize the
weight of the beam. The thickness h and width w of the cross
section of the beam are deterministic design parameters, while
Young’s modulus E and yield stress y are fuzzy input variables.
There are two failure possibility constraint functionswhich respec-
tively represent that the maximum stress is not allowed to be
greater than the yield stress y and the replacement of the free end
should be not greater than the allowable displacementD0 = 2.5 in.
The T-PBDO of this cantilever beam is expressed as follows.

min f dð Þ ¼ w� h

s:t: Poss g j d;X ; tð Þ≤0 ∃t∈ t0; te½ �
n o

≤πtar
fj j ¼ 1; 2ð Þ

g1 d;X ; tð Þ ¼ y−
600F1 tð Þ

wh2
þ 600F2 tð Þ

w2h

� 

g2 d;X ; tð Þ ¼ D0−
4L3

Ewh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F1 tð Þ
h2

� 2

þ F2 tð Þ
w2

� s

d ¼ w; h½ �;X ¼ X 1;X 2;X 3;X 4½ � ¼ y;E; F10; F20½ �
w > 0 in; 0 in < h≤5 in;πtar

fj ¼ 0:1 j ¼ 1; 2ð Þ
ð26Þ

where L is the length of the beamwhich is equal to 100 in. The
parameters of fuzzy input variables are listed in Table 8.

In this case study, the deterministic design parameters, the
fuzzy input variables, and the time variable are involved in the
constraint functions. The initial design parameter vector is set
to [w, h] = [2.2, 4.4] for the DLNM and the T-PMA. The de-
sign parameter solutions of DLNM and T-PMA are listed in

Table 9. Table 10 shows the computational cost required by
three methods, and Fig. 8 shows the iterative process of the
two methods for solving the T-PBDO.

It can be found from Table 9 that the design parameter solu-
tions estimated by the three methods are similar with each other,
which can demonstrate the effectiveness of the proposed T-PMA
for solving T-PBDO. Compared with the DLNM method, the
computational cost of calling constraint functions by T-PMA_SL
is about 104 orders of magnitude less than that of the DLNM
method, and the computational cost of calling objective functions
by T-PMA is less than that of the DLNMmethod. Furthermore,
the computational time of the DLNM method is 781.981 s, and
that of T-PMA is no more than 3 s, which obviously improves
the computational efficiency of optimal solutions. And the total
iteration numbers involved in the T-PMA is 5, and the total
iteration numbers of DLNM is 14. These results also show the
efficiency of T-PMA for solving the T-PBDO.

4.4 A welded beam

Considering a welded beam (Shi et al. 2020) shown in
Fig. 9. The left end of this beam is welded and there is a
time-dependent loading F tð Þ ¼ F0sin πt

48

� �
in the right end

of this beam. The fuzzy design parameters are the depth X1,
the length X2, the height X3, and the thickness X4 of the
welding point. Four time-dependent possibility constraint
functions and one time-independent possibility constraint
function are involved in this optimization, in which the
four time-dependent possibility constraint functions related
to the shear stress, bucking, bending stress, and displace-
ment of free end, and the time-independent possibility con-
straint functions is about the restriction of welding size.
The objective is to minimize the cost of welding. The fuzzy
input variables are Young’s Modulus E, the length of this
beam L, the shear Modulus G, the allowable displacement
of free end d0, the maximum shear stress τ, the maximum
normal stress σ, and the load F0. The parameters and dis-
tribution forms of fuzzy input variables are listed in
Table 11. The T-PBDO of this beam is as follows,

min f μXð Þ ¼ c1μ2
X 1
μX 2

þ c2μX 3
μX 4

Lþ μX 2

� �
s:t: Poss g j Z ; tð Þ≤0 ∃t∈ t0; te½ �

n o
≤πtar

fj j ¼ 1; 2; 4; 5ð Þ
Poss g3 Zð Þ≤0f g≤πtar

f 3

g1 Z ; tð Þ ¼ 1−
τ Z ; tð Þ

τ
; g2 Z ; tð Þ ¼ 1−

σ Z ; tð Þ
σ

g3 Zð Þ ¼ 1−
X 1

X 4
; g4 Z ; tð Þ ¼ 1−

δ Z ; tð Þ
d0

; g5 Z ; tð Þ ¼ Pc Zð Þ
F tð Þ −1

Z ¼ X ;P½ �;X ¼ X 1;X 2;X 3;X 4½ �;P ¼ E; L;G; d0; τ ;σ; F0½ �
3:175mm < μX 1

≤50:8mm;μX 2
≤254mm;μX 3

≤254mm;μX 4
≤50:8mm

πtar
fj ¼ 0:1 j ¼ 1; 2; 3; 4; 5ð Þ; t0; te½ � ¼ 0; 4½ �year

ð27Þ

Fig. 10 Iterative process of design optimization solutions of a welded
beam
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where

τ Z; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L Z ; tð Þ2 þ L Z; tð ÞS Z ; tð ÞX 2

R Zð Þ þ S Z ; tð Þ2
s

L Z ; tð Þ ¼ F tð Þffiffiffi
2

p
X 1X 2

; S Z; Y tð Þð Þ ¼ M Z; tð ÞR Zð Þ
J Zð Þ

M Z ; tð Þ ¼ F tð Þ Lþ 0:5X 2ð Þ; δ Z; tð Þ ¼ 4F tð ÞL3
EX 3

3X 4

R Zð Þ ¼ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

2 þ X 1 þ X 3ð Þ
q

; J Zð Þ ¼
ffiffiffi
2

p
X 1X 2

X 2
2

12
þ X 1 þ X 3ð Þ2

4

" #

σ Z ; tð Þ ¼ 6F tð ÞL
X 2

3X 4
;Pc Zð Þ ¼ 4:013X 3X 3

4

ffiffiffiffiffiffiffi
EG

p

6L2
1−

X 3

4L

ffiffiffiffi
E
G

r !

c1 ¼ 6:74135� 10−5; c2 ¼ 2:93585� 10−6

ð28Þ

Take the initial design parameter vector as μ 0ð Þ
X ¼

μ 0ð Þ
X 1
;μ 0ð Þ

X 2
;μ 0ð Þ

X 3
;μ 0ð Þ

X 4

h i
¼ 15:2; 254; 254; 16:2½ �, the design pa-

rameter solutions and the computational cost estimated by
DLNM and T-PMA are listed in Tables 12 and 13 shows
the TDFPs of constraint functions under the convergent opti-
mal solutions. Figure 10 shows the iterative process of DNLM
and T-PMA.

It can be seen from Table 12 that the design param-
eter solutions of the three methods are almost the same.
The computational cost of calling constraint functions
by T-PMA_SL and T-PMA_DL are 6770 and 82,100
respectively, while that of DLNM is about 107 orders
of magnitude, and the computational cost of calling ob-
jective functions by T-PMA is less than that of DLNM,
and the iteration times of T-PMA are lower than that of
DLNM method. Meanwhile, the TDFPs of constraint
functions under the convergent design parameters esti-
mated by DLNM and T-PMA satisfy the required target
TDFP, which further proves the feasibility of optimiza-
tion solutions estimated by T-PMA. Table 12 also
shows that the DLNM is not suitable in engineering
application due to the large amount of computational
cost. The case study results fully prove that the efficien-
cy of the proposed T-PMA is higher than that of the
DLNM and the T-PMA_SL is more efficient than T-
PMA_DL.

5 Conclusion

In this paper, a time-dependent failure possibility-based de-
sign optimization model (T-PBDO) is proposed. The efficien-
cy of solving T-PBDO directly is not acceptable in engineer-
ing application. Therefore, a time-dependent performance
measure approach (T-PMA) is established to solve the T-

PBDO. In the proposed method, the time-dependent failure
possibility (TDFP) constraint is equivalently transformed into
the time-dependent performance function constraint corre-
sponding to the target TDFP. The minimum performance tar-
get point (MPTP) and its corresponding time instant in the
performance function constraint are determined by the
single-loop method of inverse TDFP analysis with respect to
the target TDFP, which avoids the analysis of performance
function under unnecessary membership level and improves
the numerical stability and computational efficiency of solv-
ing the optimization model.

The main contributions of the work include as follows:

(1) Establish the T-PBDO under the fuzzy uncertainty,
which is of great significance to design the optimal struc-
ture in case of meeting the safety requirements.

(2) Define theminimum performance target point (MPTP) cor-
responding to the target TDFP, and establishing an inverse
TDFP analysis method completed by a single-loop optimi-
zation for solving the MPTP. At the same time, combining
the MPTP with its corresponding time instant, the TDFP
constraint is equivalently transformed into the time-
dependent performance function constraint corresponding
to the target TDFP, and a time-dependent performance
measure approach (T-PMA) is proposed for solving T-
PBDO, the proposed T-PMA avoids the analysis of con-
straint function under the unnecessary membership level
except the target TDFP, then the computational efficiency
is improved.
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Appendix common membership functions

Several common membership functions, including the normal
type, the logarithmic normal type and the Gaussian type, the
triangular type, and the trapezoid type are listed in Table 14
(Jia and Lu 2018).
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