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Abstract
This article presents an extended algorithm for topology optimization of compliant mechanisms and structures with design-
dependent pressure loadings using the moving iso-surface threshold (MIST) method. In this algorithm, the fluid-structure
interface is modeled using the finite element method via considering equivalent virtual strain energy and work and is tracked
by an element-based searching scheme. Design-dependent pressure loads are directly applied on interface boundary and are
calculated as virtual work equivalent nodal forces in the interface elements based on the finite element formulation. Several
numerical examples are presented for topology optimization of mean compliance and compliant mechanisms. The present
algorithm is validated through benchmarking with the results in literature and/or full finite element analysis (FEA) results of
the optimum compliant mechanism and structure designs.
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Nomenclature
σ Stress vector
ε Strain vector
u Displacement
F Force vector
fp Pressure load vector
fb Body force vector
Ω Design domain
Γ Topology boundary
V Total volume
Vf Volume fraction
xe Solid material area ratio for element e
xe Vector of xe for all elements
D Constitutive matrix
B Strain-displacement matrix
N Shape function matrix
p Material penalty factor
ζ Local coordinate along interface boundary
ξ, η Element natural coordinates

J Objective function
Φ Physical response function
t Threshold level
H Heaviside function
kΦ, α Coefficients for constructing Φ
kmv Move limit
P Pressure magnitude
k Spring stiffness
E Young’s modulus
υ Poisson’s ratio

Subscripts
e Element e
i Subdomain/element node number
min Minimum value
solid Solid material
out Output degree of freedom
sed Strain energy density
med Mutual strain energy density
(1), (2) Real and virtual load cases

Superscripts
k Iteration numbering
(1), (2) Real and virtual load cases
1pt 1-point Gaussian quadrature
ex Exact integration
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1 Introduction

Compliant mechanism has promising applications in
small-scaled morphing wing structures, due to its smooth
shape movements and cost-effective manufacturing and
maintenance, compared to rigid body mechanism (Sofla
et al. 2010; Vasista et al. 2012; Weisshaar 2013).
Inspired by cellular fluidic systems in natural plants,
adaptive fluid pressurized actuators have exhibited large
actuation, and their control can be implemented by reg-
ulating fluid pressures (Vos and Barrett 2011; Gramüller
et al. 2015; Lv et al. 2016). Thus, by using compliant
mechanism or structure with pneumatic or hydraulic
pressure actuation, the generated structural configuration-
al changes are expected to be smoother and more com-
patible compared to those actuated via concentrated or
point load(s). For example, this is particularly important
for achieving smooth morphing wing structures in aero-
space applications and for achieving compatible shape
changes in matching with surrounding structures in soft
robots or wearable devices in biomedical applications.

Topology optimization of compliant mechanism has
attracted a great research interest. Vast existing works focus
on compliant mechanism actuated by fixed input load, such as
single-input-single-output (SISO) (Sigmund 1997) and multi-
input-multi-output (MIMO) (Saxena 2005) problems. Only
very few works (Panganiban et al. 2010; Vasista and Tong
2012) have studied topology optimization of pressure-
actuated compliant mechanism. In this type of problems, the
loads involve design-dependent surface loadings, where the
locations and directions of pressure can change with designs
due to evolutions of interface boundary (Hammer and Olhoff
2000; Chen and Kikuchi 2001). Thus, major challenges are
tracking and modeling of the fluid-structure interface.

To identify the fluid-structure interface boundary, a num-
ber of methods have been developed. For example, fictitious
thermal or electrical field (Chen and Kikuchi 2001; Zheng
et al. 2009) or iso-line (Hammer and Olhoff 2000; Du and
Olhoff 2004; Lee and Martins 2012) have been adopted in
solid isotropic material with penalization (SIMP) method. In
the level set method (LSM), techniques were developed to
track loaded boundaries from zero level set and topology
boundary (Wang et al. 2015; Xia et al. 2015; Emmendoerfer
et al. 2018). Moreover, element-based algorithm searching
schemes using a criterion such as element density (Zhang
et al. 2008) or element types (Chen and Kikuchi 2001;
Picelli et al. 2019) to systematically identify interface ele-
ments in the fixed-grid mesh were also developed. In terms
of modeling fluid-structure interface, methods such as equiv-
alent nodal forces (Lee and Martins 2012; Wang et al. 2015;
Emmendoerfer et al. 2018; Picelli et al. 2019) and enrichment
via extended finite element method (XFEM) (Jenkins and
Maute 2016) have been studied.

An alternative method is using hydrostatic incompressible
fluid to transfer pressure loads to structure, in which determin-
ing and tracking the pressurized boundary is unnecessary
(Sigmund and Clausen 2007). Based on this method, mixed
displacement-pressure (u/P) coupling formulation (Sigmund
and Clausen 2007; Bruggi and Cinquini 2009; Vasista and
Tong 2012, 2013) and displacement-based nonconforming
element (Jang and Kim 2009; Panganiban et al. 2010) have
been developed to deal with the incompressibility.

Most research on topology optimization with design-
dependent pressure loadings focuses onminimum compliance
problems. In terms of topology optimization of pressure-
actuated compliant mechanism problems, Panganiban et al.
(2010) applied displacement-based nonconforming element
and method of moving asymptotes (MMA) and Vasista and
Tong (2012) employedmixed u/P formulation associatedwith
the SIMP or MIST method, in which fluid-structure interface
was not identified. In solving such a problem, the calculation
of the sensitivity of the design-dependent force vector with
respect to design variables and the searching of interface
boundaries can be difficult (Hammer and Olhoff 2000; Chen
and Kikuchi 2001; Du and Olhoff 2004; Sigmund and
Clausen 2007). In MIST (Tong and Lin 2011), a physical
response function and its threshold level are used in each
iteration to define and update topology with a clear boundary
without involving direct sensitivity analysis. These two fea-
tures render MIST a potential candidate for solving the
design-dependent topology optimization problem.

In this work, we develop an extended MIST-based al-
gorithm to study topology optimization with design-
dependent fluidic pressure loadings. For the sake of sim-
plicity, fluid-structure interaction is handled by consider-
ing the structure subjected to fluidic pressure load without
modeling of fluid field. Fluidic pressure is directly applied
on interface boundary to simulate the real scenario of a
pneumatic or hydraulic actuator and applied to interface
elements as work equivalent nodal forces. A new general
formulation of pressurized fluid-structure interface ele-
ment based on the finite element method and equivalent
virtual strain energy and work is also developed.
Although equivalent nodal forces using Gaussian quadra-
ture (Lee and Martins 2012; Wang et al. 2015; Picelli
et al. 2019) have been studied, we derive and evaluate
equivalent loads analytically via exact integration for
iso-parametric bilinear rectangular elements and com-
pared with Gaussian quadrature. Interface boundary is
identified and tracked via an element-based algorithm
searching scheme—fluid flooding method (Chen and
Kikuchi 2001; Picelli et al. 2019). Numerical examples,
including benchmark problems and typical compliant
mechanism design cases, are presented to validate the
present extended MIST algorithm and compare different
methods of load calculations.
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2 Problem formulation and discretization

2.1 Problem formulation

Considering a linear elastic body Ω subjected to general load-
ing, including design-dependent load such as pressure, as
shown in Fig. 1, the elastic body that produces a movement
uout at selected output port under a given loading forms a
compliant mechanism. For such compliant mechanism, by
using the concept from Frecker et al. (1997), the optimization
problem can be defined as finding the optimum topology of
the elastic body that maximizes the output displacement sub-
ject to satisfying the equilibrium equation and a given material
volume constraint, and it can be mathematically formulated as
follows:

max : uout ð1aÞ

s:t: : ∫Ω δεT σdΩ ¼ ∫Ω δuT fbdΩþ ∫Γ δuT fpdΓþ ∑
i¼1

NF

δui
TFi

∫ΩdΩ≤V f V

8<
: ð1b; cÞ

where uout denotes the displacement at the output port; σ, fb,
fp, and Fi (i = 1,2,…, NF) represent the vectors of stress, body
force, surface traction, and point loads, respectively; δε and
δu are the vectors of virtual strain and displacement with T
being transpose; Ω is the domain of the elastic body; Γ is the
boundary of Ω on which a surface traction, whether design-
dependent or independent, is known; and Vf and V denote the
prescribed volume fraction and the total volume of Ω. In this
study, we focus on design-dependent surface traction loading,
such as pressure, by assuming fb = 0 and Fi = 0. In addition to
the compliant mechanism problem as defined in (1), we also
consider the minimum mean compliance problem.

The finite element method (FEM) has been used to solve
the equilibrium equation in (1b) and to describe the topology

of domain Ω through its discretization with a finite number of
elements, each of which may contain one or more materials.

In order to describe the topology and conduct finite element
(FE) analysis, we discretize the design domain Ω with a finite

number of elements, Ω ¼ ⋃Ne
e¼1Ωe (where e represents the eth

element; Ne denotes the total number of elements, and Ωe

represents the domain of the eth element). In this case, assum-
ing fb = 0 and Fi = 0 and considering pressure loading only
(Panganiban et al. 2010; Vasista and Tong 2012), the topolo-
gy optimization problem in (1) can be rewritten as follows:

max : uout ð2aÞ

s:t: :
∑
e¼1

Ne

∫Ωe δε
T σdΩe ¼ ∑

e¼1

Ne

∫Γe δu
T fpdΓe

∑
e¼1

Ne

∫ΩedΩe≤V f V

8>>><
>>>:

ð2b; cÞ

In this study, the design-dependent surface traction fp is
assumed to be applied via quasi-static fluidic pressure loading,
such as hydrostatic or air pressure. Hence, there are three types
of fluid-structure interface elements with and without fluidic
pressure as illustrated in Fig. 2. For a solid element with a
pressure acting on one or more sides, the relevant equivalent
load vector can be determined routinely. For a void element
with internal pressure (or an internally pressurized void ele-
ment), there is no need to consider an equivalent load vector
because the internal fluid pressure acting on the element’s four
sides can be balanced by neighboring adjacent elements. For
an interface element with a solid and a pressurized void sub-
element, because the void sub-element behaves similar to the
void element, we only need to determine the equivalent nodal
force vector of the pressure acting on the solid-void interface
Γe in element Ωe as shown in Fig. 3a, b or in an illustrative
structure in Fig. 3c, d.

Fig. 1 An elastic body subjected
to general loading, including
design-dependent pressure load
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Without losing generality, let us consider an element
Ωe with two subdomains, Ωei (i = 1,2), of two different
materials with or without design-dependent pressure act-
ing on the interface Γe from materiel 2 to 1, as illus-
trated in Fig. 3a. This creates a requirement to evaluate
the virtual strain energy and the associated virtual work
done by such pressure for all elements. Our aim is to
transform the element in Fig. 3a to a homogenized one
with equivalent virtual strain energy and equivalent

virtual work, such as the element shown in Fig. 3b with
one material in Ωe and equivalent nodal forces.

2.2 Equivalent strain energy

The virtual strain energy for an element with two
subdomains in the equilibrium equation in (2b) can be
evaluated as:

Fig. 3 Illustrative examples for a
an interface element with two
materials and a pressure; b the
interface element homogenized
based on equivalent strain energy
and work; c fluid-structure
interface, and d equivalent FE
model homogenized based on
equivalent strain energy and work

Fig. 2 Three types of elements with and without pressure
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∫Ωe δε
T σdΩe ¼ ∫Ωe1 δε

T σ1dΩe þ ∫Ωe2 δε
T σ2dΩe

¼ f 1 Ωe1; ε;σ1ð Þ∫Ωe δε
T σ1dΩe

þ f 2 Ωe2; ε;σ2ð Þ∫Ωe δε
T σ2dΩe

ð3aÞ

where

f 1 Ωe1; ε;σ1ð Þ ¼ ∫Ωe1 δε
T σ1dΩe

∫Ωe δεT σ1dΩe

f 2 Ωe2; ε;σ2ð Þ ¼ ∫Ωe2 δε
T σ2dΩe

∫Ωe δεT σ2dΩe

ð3bÞ

where σi =Diε (i = 1,2) represents the stress vectors in
subdomain Ωei (i = 1,2).

To evaluate (3b), since stress and virtual strain vectors are
continuous functions of global coordinates x and y (where (x,
y) ∈Ωe or Ωei (i = 1, 2), the virtual strain energy densities
δεT σi (i = 1,2) are also continuous functions of x and y in
Ωei (i = 1,2) and Ωe. Thus, by using the first mean value
theorem for definite integral, (3b) can be written as:

f i Ωei; ε;σið Þ ¼ δεT x*i ; y
*
i

� �
σi x*i ; y

*
i

� �
δεT xi; yið Þ σi xi; yið Þ

∫ΩeidΩe

∫ΩedΩe

ð4Þ

where δεT x*i ; y
*
i

� �
σi x*i ; y

*
i

� �
denotes the mean values of

δεT σi at x*i ; y
*
i

� �
∈Ωei (i = 1,2); δεT(xi, yi) σi(xi, yi) repre-

sents the mean values of δεT σi at (xi, yi) ∈Ωe (i = 1,2).
It is evident that the second ratio on the right-hand side of

(4) represents the area ratio of material 1 or 2. For material 1,
the area ratio can be expressed as:

xe ¼ ∫Ωe1dΩe

∫Ωe dΩe

ð5Þ

The area ratio formaterial 2 can be defined as 1− xe. However,
the virtual strain energy density ratio on the right-hand side of (4)
depends on the real and virtual nodal displacements of the ele-
ment andmaterial properties. Thismakes it impossible to evaluate
this ratio prior to solving the equilibrium equation in (2b).
Therefore, as an approximation, one can assume that this energy
density ratio is a function of the area ratio xe. Thus, (3a) can be
simplified approximately via (4)–(5) as follows:

∫Ωe δε
T σdΩe ¼ f xeð Þ∫Ωe δε

T σ1dΩe

þ g xeð Þ∫Ωe δε
T σ2dΩe ð6Þ

where f(xe) is a user-defined function of the area ratio xe and f(x-
e) + g(xe) = 1.

For the linear case, σ1 =D1ε and σ2 =D2ε, (6) can used in
the displacement-based FE formulation to define the element
stiffness matrix as:

∫Ωe B
TDeBdΩe ¼ f xeð Þ∫ΩeB

TD1BdΩe þ g xeð Þ∫ΩeB
TD2BdΩe ð7Þ

or the material matrix for the homogenized element in Fig. 3b:

De xeð Þ ¼ f xeð ÞD1 þ g xeð ÞD2 ð8Þ
where De, D1, and D2 represent the constitutive matrix of the
element, material 1 and material 2, respectively and B denotes
the strain-displacement matrix. Equation (8) can be viewed as a
material interpolation or homogenization based on equivalent
strain energy with function f(xe). A number forms of such func-
tion have been proposed in the literature with material density or
area ratio as a variable (e.g., power function in solid isotropic
material with the penalization (SIMP) model (Bendsoe and
Sigmund 2003) and the rational function in a rational approxi-
mation of material properties (RAMP) model (Stolpe and
Svanberg 2001)). Among various proposed functions, the power
function is probably the most common and classical choice, such
as the following two-phase material interpolation (Bendsøe and
Sigmund 1999; Emmendoerfer et al. 2018):

De xeð Þ ¼ xpeD1 þ 1−xpe
� �

D2 ð9Þ

The equivalent strain energy formulation in (7) together with
(8) or (9) has been used in various topology optimization
methods with xe being either material density or area ratio, for
example, in the SIMP method (Bendsoe and Sigmund 2003) or
in the ersatz material model used in LSM (Emmendoerfer et al.
2018; Picelli et al. 2019) and MIST (Vasista and Tong 2012).

2.3 Equivalent nodal forces

The virtual work done by the pressure in the equilibrium (2b)
needs to be discretized using the displacement-based FE formu-
lation in order to determine the work equivalent nodal force
vector. Consider a distributed pressure acting on the interface
of an element in the direction pointing towards material 1 (from
materials 2 to 1): fp = P(ζ ) n, where P(ζ ) and n indicate its
magnitude and direction vector as illustrated in Fig. 4. Linearly
distributed pressure P(ζ ) = P0 + P1ζ is considered in this work,
where ζ is a local parametric coordinate along Γe ranging be-
tween − 1 and 1 as shown in Fig. 4, and P0 and P1 are constants
(for example, as shown in Fig. 4, P0 = (P5 + P6)/2 and P1 = − (P5
− P6)/2, where P5 and P6 denote the pressure at nodes 5 and 6
with ζ= − 1 and ζ = 1, respectively). From (2b), the work equiv-
alent nodal force vector can be determined by:

Fe ¼ ∫Γe N
T fpdΓe ¼ P0∫Γe N

TdΓeþP1∫Γe N
TζdΓe

� �
n¼ P0 N0Γ þ P1N1Γð Þ n ð10Þ

where Fe is the equivalent load vector of element e; N repre-
sents the matrix of shape functions of an element, and

N0Γ ¼ ∫Γe N
TdΓe ¼ ∫Lc

0 N Sð ÞT dS;

N1Γ ¼ ∫Γe N
TζdΓe ¼ ∫Lc

0 N Sð ÞT ζdS
ð11Þ

where Lc denotes the length of the interface Γe and S
represents the curvilinear coordinate along Γe, which is
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the interface boundary between materials 1 and 2 in el-
ement e. As an illustrative example, for the 4-node rect-
angular element with pressure applied on Γe as illustrated
in Fig. 4, (10) and (11) define the equivalent nodal
forces at the four nodes of the element. Hence, it is
important to determine the integral in (11).

Consider 4-node iso-parametric quadrilateral element
with the following shape function matrix being used for
displacements and global coordinates (x, y):

N ¼ N 1 0 N 2 0 N 3 0 N 4 0
0 N1 0 N2 0 N3 0 N4

� �
ð12aÞ

where

Ni ξ; ηð Þ ¼ 1

4
1þ ξiξð Þ 1þ ηiηð Þ i ¼ 1; 2; 3; 4ð Þ ð12bÞ

and ξ and η are the usual parametric coordinates. We as-
sume that the interface Γe is straight in the (ξ, η) space with
(ξg, ηg) being the midpoint along its length. Thus, the straight
line Γe can be defined in a parametric form as:

ξ ζð Þ ¼ ξg þ ξdζ; η ζð Þ ¼ ηg þ ηdζ ð13Þ

where ζ is a local parametric coordinate along Γe similar to
(ξ,η) and ranges between − 1 and 1. Substituting (13) into
(12), we can define the integrand N(S)T in (11) in terms of
the local coordinate ζ as N(ξ(ζ), η(ζ))T by using the iso-

parametric definition of global coordinates (x, y), i.e., x ¼ ∑
4

i¼1

Ni ξ; ηð Þxi and y ¼ ∑4
i¼1Ni ξ; ηð Þyi. Furthermore, we can also

derive dS in (11) as:

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

q
¼ Se ζð Þdζ ð14aÞ

where

Se ζð Þ ¼ dTζ J
T ζð ÞJ ζð Þdζ

� �1
2 ð14bÞ

and

J ζð Þ ¼ x;ξ ζð Þ x;η ζð Þ
y;ξ ζð Þ y;η ζð Þ
� �

; dζ ¼ ξd ηdf gT ð14cÞ

where J(ζ) is the Jacobian matrix and dζ is the directional
coefficient vector according to (13). Thus, (11) can be rewrit-
ten as follows:

N0Γ ¼ ∫1−1N ξ ζð Þ; η ζð Þð ÞTSe ζð Þdζ;

N1Γ ¼ ∫1−1N ξ ζð Þ; η ζð Þð ÞTSe ζð Þζdζ
ð15aÞ

Due to the presence of the term Se(ζ), the matricesN0Γ and
N1Γ in (15a) can be only evaluated via numerical integration
methods. By using Gaussian quadrature, we have

N0Γ ¼ ∑
i¼1

Ng

N ξ ζið Þ; η ζið Þð ÞT Se ζið Þwi;

N1Γ ¼ ∑
i¼1

Ng

N ξ ζið Þ; η ζið Þð ÞT Se ζið Þζiwi

ð15bÞ

where ζi and wi are the coordinate and weight of the ith
Gaussian point and Ng is the total number of Gaussian points.
For the case of one or two Gaussian points, we have:

N0Γ ¼ 2N ξ 0ð Þ; η 0ð Þð ÞT Se 0ð Þ; N1Γ ¼ 0 ð16Þ

or

N0Γ ¼ N ξ −
1ffiffiffi
3

p
� �

; η −
1ffiffiffi
3

p
� �� �T

Se −
1ffiffiffi
3

p
� �

þN ξ
1ffiffiffi
3

p
� �

; η
1ffiffiffi
3

p
� �� �T

Se
1ffiffiffi
3

p
� � ð17aÞ

N1Γ ¼ −
1ffiffiffi
3

p N ξ −
1ffiffiffi
3

p
� �

; η −
1ffiffiffi
3

p
� �� �T

Se −
1ffiffiffi
3

p
� �

þ 1ffiffiffi
3

p N ξ
1ffiffiffi
3

p
� �

; η
1ffiffiffi
3

p
� �� �T

Se
1ffiffiffi
3

p
� � ð17bÞ

As in structural topology optimization, rectangular ele-
ments are often used. Thus, let us consider the 4-node

Fig. 4 Work equivalent nodal
forces calculation and coordinate
systems
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rectangular element with side length 2a and 2b and pressure
applied on Γe as illustrated in Fig. 4. Let (xc, yc) and (xg, yg)
denote the global coordinates of the center of the element and
the midpoint of the interface Γe respectively, one has x = xc +
a ξ and y = yc + bη, and thus,

ξg ¼
xg−xc
a

¼ ξ 0ð Þ; ηg ¼
yg−yc
b

¼ η 0ð Þ ð18aÞ

ξd ¼
xd
a
¼ x6−x5

2a
; ηd ¼

yd
b
¼ y6−y5

2b
ð18bÞ

Se ζð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2d þ y2d

q
¼ Lc

2
ð18cÞ

and Lc is the length of the interface Γe. Thus, for the 4-node
rectangular element, we can obtain the explicit expressions for
(16) and (17); in addition, we can also work out the explicit
exact analytical expression for (15a). These formulations are
listed below for three cases:

1) Gaussian quadrature with one Gauss point

Equation (16) can be rewritten as follows:

N0Γ ¼ LcN x ζ ¼ 0ð Þ; y ζ ¼ 0ð Þð ÞT¼LcN x ¼ xg; y ¼ yg
	 
T

¼ LcN ξ ¼ xg−xc
a

; η ¼ yg−yc
b

	 
T
N1Γ ¼ 0

ð19Þ
which is the same as (Picelli et al. 2019) for uniform pressure.

2) Gaussian quadrature with two Gauss points

Equation (17) now becomes:

N0Γ ¼ Lc
2

N x ζ ¼ −
ffiffiffiffiffiffiffiffi
1=3

p	 

; y ζ ¼ −

ffiffiffiffiffiffiffiffi
1=3

p	 
	 
T
þ N x ζ ¼

ffiffiffiffiffiffiffiffi
1=3

p	 

; y ζ ¼

ffiffiffiffiffiffiffiffi
1=3

p	 
	 
T� �

¼ Lc
2

N x ¼ xg−
ffiffiffi
1

3

r
xd ; y ¼ yg−

ffiffiffi
1

3

r
yd

 !T

þ N x ¼ xg þ
ffiffiffi
1

3

r
xd ; y ¼ yg þ

ffiffiffi
1

3

r
yd

 !T" #

N1Γ ¼ Lc
2
ffiffiffi
3

p −N ξ −
1ffiffiffi
3

p
� �

; η −
1ffiffiffi
3

p
� �� �T

þ N ξ
1ffiffiffi
3

p
� �

; η
1ffiffiffi
3

p
� �� �T

" #

¼ Lc
2
ffiffiffi
3

p −N x ¼ xg−
ffiffiffi
1

3

r
xd ; y ¼ yg−

ffiffiffi
1

3

r
yd

 !T

þ N x ¼ xg þ
ffiffiffi
1

3

r
xd; y ¼ yg þ

ffiffiffi
1

3

r
yd

 !T" #
ð20Þ

3) Exact integration

To derive an exact formula for the equivalent nodal force
vector Fe in (10), one needs to work out the analytical expres-
sions for N0Γ and N1Γ in (11) or (15a) for the rectangular
element. The exact formula for each term in N0Γ and N1Γ

corresponding to the relevant shape function Ni(ξ, η) (i = 1,
2, 3, 4) in (15a) can be derived using (13) and (18) as follows:

N0Γi ¼
Lc
2
∫1−1Ni x ζð Þ; y ζð Þð Þdζ

¼ Lc
2
∫1−1

1

4

xi−xc
a2

xdζþ
xg−xc
� �

xi−xcð Þ
a2

þ 1

� �
yi−yc
b2

ydζþ
yg−yc
	 


yi−ycð Þ
b2

þ 1

2
4

3
5dζ

¼ Lc
8

2

3

xi−xcð Þ yi−ycð Þ
a2b2

xdyd þ 2
xg−xc
� �

xi−xcð Þ
a2

þ 1

� � yg−yc
	 


yi−ycð Þ
b2

þ 1

2
4

3
5

8<
:

9=
;

N1Γi ¼
Lc
2
∫1−1Ni x ζð Þ; y ζð Þð Þζdζ

¼ Lc
12

xi−xc
a2

xd
yg−yc
	 


yi−ycð Þ
b2

þ 1

0
@

1
Aþ yi−yc

b2
yd

xg−xc
� �

xi−xcð Þ
a2

þ 1

� �8<
:

9=
;

i ¼ 1; 2; 3; 4ð Þ
ð21Þ

where (xi − xc)/a and (yi − yc)/b are equal to ±1 depending on i
value. Substituting (21) into (10) and noting (15a) yields the
exact formula.

By using (19), (20), or (21), the equivalent nodal force
vector for the 4-node rectangular element as shown in Fig. 4
can be calculated via (10). This equivalent force vector of the
interface pressure load can be employed in topology optimi-
zation methods that involve clear topology boundary, such as
LSM or MIST.

It is worth noting that the present formulation for the equiv-
alent nodal force vector of a non-uniformly distributed pres-
sure can be used to capture variation in both pressure magni-
tude and direction once the fluidic pressure field is determined
by using a method, such as FEM (Picelli et al. 2019).

3 Algorithm and implementation

The compliant mechanism problem of maximizing uout is
equivalent to that of maximizing the mutual potential energy
or mutual energy expressed in terms of the symmetric global
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stiffness matrix and nodal displacement vectors due to the
applied loads and the dummy load (Frecker et al. 1997). In
FEM, this mutual energy can also be equivalent to the total
mutual strain energy as in (22a). Thus, the problem of maxi-
mizing the total mutual strain energy can be formulated using
FEM discretization in (2b) together with (7) and (10) as find-
ing a topology such that

max : J ¼ u 1ð Þ
out ¼ ∫Ωσ 2ð ÞTε 1ð Þ dΩ ð22aÞ

s:t: :

∑
e¼1

Ne

∫Ωe B
TDe xeð ÞBdΩe

 !
u 1ð Þ ¼ ∑

e¼1

Ne

∫Γe N
T fpdΓe

∑
e¼1

Ne

∫Ωe B
TDe xeð ÞBdΩe

 !
u 2ð Þ ¼ Fout

∑
e¼1

Ne

∫ΩedΩe≤V f V

0≤xe≤1

8>>>>>>>>>><
>>>>>>>>>>:

ð22b; c; d; eÞ
where J denotes the objective function defined using mutual
strain energy, the displacement u, and strain ε and stress σ
with superscripts (1) and (2) refer, respectively, to those ob-
tained under the real load fp and the virtual load Fout. As there
is only one non-zero unit dummy load acting in the direction
of u 1ð Þ

out at the output port, (22a) can also be obtained according
to the unit load method as:
FT
outu

1ð Þ ¼ 1� u 1ð Þ
out ¼ ∫Ωσ 2ð ÞTε 1ð Þ dΩ. Equation (22b, c) is

the equilibrium equations for the real and virtual load cases
respectively, and (22d) is the material volume constraint. xe is
an element-based variable calculated and updated iteratively
to facilitate the transformation of a topology to a finite element
model for structural analysis as shown in Fig. 3.

It is worth noting that, for both real and virtual load cases,
an artificial spring of stiffness kout is attached to the output port
only, because it is difficult to attach artificial springs to input
ports on evolving and moving pressurized surfaces. A rela-
tively large kout is employed and added in the present study in
solving (22b, c).

3.1 Objective function

In using the MIST (Tong and Lin 2011), the objective func-
tion in (22a) at the kth iteration can be expressed using a
response function Φ in terms of both mutual strain energy
density and strain energy density in domain Ω as follows:

J k ¼ J k Φk ; tk
� � ¼ ∫ΩΦkH Φk−tk

� �
dΩ k ¼ 1; 2;…ð Þ

ð23Þ
in which the response function is given by

Φk ¼ Φ k xk−1e

� �
k ¼ 1ð Þ

Φk ¼ 1−kΦð ÞΦk−1 þ kΦ Φ k xk−1e

� �
k ≥2ð Þ

ð24aÞ

where

Φ k xk−1e

� � ¼ 1−αð ÞEk
med xk−1e

� �þ αEk
sed xk−1e

� �
k ¼ 1; 2;…ð Þ ð24bÞ

and

Ek
med xk−1e

� � ¼ 1

2
σT

2ð Þ xk−1e

� �
ε 1ð Þ xk−1e

� �
k ¼ 1; 2;…ð Þ

Ek
sed xk−1e

� � ¼ 1

2
σT

1ð Þ xk−1e

� �
ε 1ð Þ xk−1e

� �
k ¼ 1; 2;…ð Þ

ð24cÞ

where Jk, Φk and tk (k = 1, 2,…) denote the objective function,
response function, and the iso-surface threshold level at the kth
iteration, respectively; H is the Heaviside function; σ 1ð Þ xk−1e

� �
,

ε 1ð Þ xk−1e

� �
, σ 2ð Þ xk−1e

� �
, Ek

med xk−1e

� �
, and Ek

sed xk−1e

� �
(k = 1, 2,

…) denote the real stress, real strain, virtual stress, mutual strain
energy density, and the strain energy density calculated at the kth
iteration using the topology, or, area ratio vector, xk−1e , of the

previous (k-1)th iteration; for each element, σ 1ð Þ xk−1e

� �
¼ De xk−1e

� �
ε 1ð Þ xk−1e

� �
, σ 2ð Þ xk−1e

� � ¼ De xk−1e

� �
ε 2ð Þ xk−1e

� �
;

and α and kΦ are user-chosen coefficients (0 ≤α ≤ 1; 0 < kΦ ≤
1). In this study, De is interpolated using a modified SIMP

scheme as De xk−1e

� � ¼ 1−xminð Þð xk−1e

� �p þ xminÞDsolid (i.e.,
(9) with D1 =Dsolid and D2 = xmin Dsolid). This interpolation is
selected for the purpose of comparing the present results with
those available in the literature (Emmendoerfer et al. 2018; Picelli
et al. 2019).

Since the objective function in (22a) is the total mutual
strain energy in the domain, thus, the mutual strain energy
density should be chosen as the response function. However,
to circumvent potential discontinuity on pressurized surfaces
(interface boundaries), the response function should be re-
vised as a combination of both mutual strain energy density
and strain energy density as in (24b) with a coefficient α. Here
α represents the weight of strain energy density and mutual
strain energy density in the response function. When α = 1,
the objective becomes minimizing the overall compliance;
when α = 0, the objective is to maximize uout. However, topo-
logical discontinuity may occur on the pressurized boundary
when α = 0. Therefore, to maximize uout, α should be chosen
as small as possible but also sufficiently large to avoid topo-
logical discontinuity (in this study α = 0.2 is chosen).

In addition, the response function is also re-constructed by

the combined energy in the current Φ
k
and previous Φk − 1

iterations as in (24a) to reduce possible fluctuations due to
moving and evolving pressured interfaces via introducing a
new coefficient kΦ, which denotes the weight distribution be-
tween the previous and current iterations. In present compu-
tations, kΦ = 0.5 is chosen for maximizing uout. For the mini-
mum compliance problem, α = 1, the response function is
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stable during optimization and thus there is no need to include
the previous iteration, i.e., kΦ = 1.

3.2 Implementation

The basic algorithm and implementation of MIST are
presented in details in (Tong and Lin 2011; Vasista
and Tong 2014). The basic MIST includes initialization,
structural model and analysis, calculation of the re-
sponse function and threshold level, and update of the
topology and structural model. The present extension to
the original MIST consists of the following new ele-
ments: (a) modified update scheme for physical re-
sponse function; (b) equivalent design-dependent load
vector formula and update scheme; and (c) design-
dependent pressure-loaded interface tracking scheme.

The element-based fluid flooding method for interface
tracking (Picelli et al. 2019) is adopted in this work, and the
element type (i.e., fluid, interface, or solid) can be determined
by checking the area ratio of each element using the present
material model. Thus, the solution procedure for the extended
algorithm can be given as follows:

Step 1: Initialization (k = 0)

& Create fixed-grid finite element mesh and model, including

initial equivalent nodal force ∑Ne
e¼1F

0
e using (10) and f0p;

& Assign initial x0e e ¼ 1; 2;…Neð Þ in Ω0;
& Select parameters: α, kΦ, kmv, xmin, and p.

Step 2: FE analysis with iteration index k = 1, 2, 3, …

& Assign material properties using De xk−1e

� � ¼ 1−xminð Þð
xk−1e

� �p þ xminÞDsolid, e = 1, 2, …Ne);
& Conduct FEA in (22b, c) for virtual and real load cases

using De xk−1e

� �
;

& Output nodal stresses, strains and displacements.

Step 3: Constructing Φk, determining tk, and creating Ω
k
t

& Calculate initial nodal Φk by using (24) and nodal stresses
and strains from step 2;

& Construct Φk function after filtering and normalizing ini-
tial nodal Φk (e.g., with a filter radius being 2.5 times of
element edge length Lx; normalized between − 1 and 1);

& Determine tk for the prescribed volume constraint via the
bisection method;

& Generate the kth topology Ω
k
t and the associated area ratio

xke , including solid, void, and interface elements with in-

terface boundaries Γ
k
e , by the intersection of Φk and tk;

& Calculate Jk using (23) and ΔJk = Jk − Jk − 1 for k ≥ 2;

Step 4: Interface tracking and update of equivalent loads

& Track pressurized element interfaces in the kth topology

Ω
k
t via x

k
e using the element-based fluid flooding method

(Chen and Kikuchi 2001; Picelli et al. 2019), with criteria
xke ≤xmin, xmin < xke < 1, and xke ¼ 1 for fluid, interface,
and solid element respectively;

& Calculate equivalent nodal forces F
k
e for each pressurized

element interface Γ
k
e via (10);

& Update equivalent nodal forces to ∑Ne
e¼1F

k
e in the FE

model;

Step 5: Updating xke and material properties

& Update xke using:

xke ¼ xk−1e þ kmv xek−xk−1e

	 

ð25Þ

where kmv is a dynamic move limit;

& Modify material properties using (9), xke and penalty p;

Fig. 5 An interface element with
node 5 pivoted and node 6
moving along S1
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Step 6: Convergence check

& Calculate the change in response function:

ΔΦk ¼ 1

Nn
∑
n¼1

Nn

Φk rnð Þ−Φk−1 rnð Þ�� �� !
k ≥2ð Þ ð26Þ

where rn and Nn are node number and the total number of
nodes;

& IfΔΦk > ε or k < designated iteration number, update k as
k+1 and go to step 2 and repeat steps 2–5; otherwise ter-
minate iteration.

It is worth noting that, although the above algorithm is
presented for the linear compliant mechanism and structure
problems, it can be extended to take into account the geomet-
rical nonlinearity by modifying the relevant structural analy-
ses and using the response function determined from nonlin-
ear solutions (Luo and Tong 2016).

4 Numerical examples

In this section, an example of equivalent nodal forces at the
element level is first presented to illustrate the present equiv-
alent nodal force calculation method. Then, four examples are
presented to validate the present extended MIST algorithm.

Fig. 6 Equivalent nodal forces
using the 1-point Gaussian
quadrature and exact integration
for varying S1 of a node 1; b node
2; c node 3 and d node 4; and e
relative error between the 1-point
Gaussian quadrature and the exact
integration versus S1
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In all the present computations, x0e (e = 1, 2,…Ne) are
initialized as the material being evenly distributed, and

pressure loads f0p are initialized as being applied to ex-

ternal boundaries of the design domain as defined in
each example. In the minimum compliance examples
4.2 and 4.3, material properties are E = 1, υ = 0.3 and
polyurethane with E = 100 MPa and υ = 0.3 is chosen
for the compliant mechanism examples 4.4 and 4.5.
Material penalization factor is set as p = 3 for the mini-
mum compliance problems, whereas it is initially chosen
as 1 and gradually increased to 3 with an increment of
0.05 per iteration for the compliant mechanism problems
in order to reduce the effect of low-density elements at
the beginning of optimization. The filter radius is 2.5
times of element size Lx, and xmin = 10−3. In addition,
kΦ = 0.5, α = 0.2, and kΦ = 1, α = 1 are chosen for the
maximum uout compliant mechanism and the minimum
compliance problems, respectively. In the dynamic move
limit, kmv is initialized as 0.5 and then reduced by half if
an oscillation in the objective function occurs (i.e.,
ΔJk > 0, ΔJk − 1 < 0, and ΔJk − 2 > 0 or ΔJk < 0, ΔJk − 1 >
0, and ΔJk − 2 < 0 (k ≥ 4)) and kmv ≥ kmv,min (where kmv;min

¼ 0:5
24

is the minimum value of the move limit).

Although equivalent nodal force vectors are derived for
linearly distributed pressure P(ζ ) = P0 + P1ζ in 2.3, uniform
pressure loadings (P(ζ ) = P, i.e., P0 = P and P1 = 0) are applied
to be consistent with the literature. In examples 4.3 and 4.4,
non-uniform hydrostatic fluidic pressures that vary linearly
with depth h are considered.

4.1 A comparison of equivalent nodal forces at the
element level

In this example, the virtual work-based equivalent nodal
forces are calculated by (10) with (19), (20), or (21), respec-
tively, for a varying geometry of a pressurized interface ele-
ment. As shown in Fig. 5, the pressurized boundary of the
rectangular interface element of size 1 × 1 is pivoted on the
midpoint of the right edge, and the other end of the pressurized
boundary can move along the top edge for S1 = 0 to 1. The
uniform pressure load applied is P = 1. In addition, the relative
error between the equivalent nodal forces predicted using the
exact integration and the 1-point or 2-point Gaussian quadra-

ture are defined as usual. For example, F1pt
1x =F

ex
1x−1

��� ��� % de-

notes the relative error between the results predicted by using
the 1-point Gaussian quadrature and the exact integration for
the force at node 1 in the x-direction.

The largest error between the 2-point Gaussian quadrature
and the exact integration are in the order of 10−13%, which
indicates the errors of the 2-point Gaussian quadrature are
negligible. Therefore, only the results of the exact integration
and the 1-point Gaussian quadrature are presented. The nodal
forces in x- and y-directions at nodes 1 to 4 are shown in Fig. 6
a to d, respectively. The variations and trends of the nodal
forces along S1 for both methods are very much similar.
However, the magnitudes of the nodal forces in the x-
direction at nodes 2 and 3, F2x and F3x, decrease with S1,
whereas those of all the remaining nodal forces increase with
S1. This is due to the variation in the pressure direction and the
increase in the length of the 5–6 interface as S1 varies from 0 to
1. The relative errors for nodes 1 to 4 are calculated and plot-
ted in Fig. 6e. For nodes 3 and 4, the 1-point Gaussian quad-
rature gives reasonable predictions with a maximum relative
error about 10%. However, for nodes 1 and 2, the relative
errors between the exact integration and the 1-point
Gaussian quadrature methods are relatively large and close
to 50%.

In the following four topology optimization examples, the
1-point Gaussian quadrature and exact integrations methods
are used to illustrate the influences of these two equivalent
nodal force formulations. The 1-point Gaussian quadrature
results are presented for the purpose of comparison as they
are available in the literature.

Fig. 7 The design domain and support and loading conditions for the
piston problem

Fig. 8 Optimal topologies and compliances of the piston subjected to equivalent loads using a exact integration (C = 27.90) and b 1-point
Gaussian quadrature (C = 33.43)
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4.2 Piston

Figure 7 depicts the design domain, supported and loading
conditions for the piston design example that has been studied
by using other topology optimization methods (Sigmund and
Clausen 2007; Lee and Martins 2012; Xia et al. 2015;
Emmendoerfer et al. 2018; Picelli et al. 2019). The cylindrical
piston is pressurized from the top with a uniform pressure of
P = 1, and the center of the bottom edge is fixed. Both the left
and right edges are constrained in the horizontal direction as
the cylinder walls. A 150 × 50 mesh is used to minimize the
mean compliance for the design domain with a volume frac-
tion of 30%.

The present extended MIST algorithm for the compliant
mechanism problem can be easily adapted to solve the mini-
mum compliance problem by letting α = 1. The response
function in (24b) becomes the strain energy density and the
objective function in (22a) becomes:

min : J ¼ ∫Ω
1

2
σ 1ð ÞTε 1ð Þ dΩ ð27Þ

To prevent the structure from collapsing, as pointed out in
(Lee and Martins 2012), fixed-point loads are applied to the
top-left and top-right corner. The magnitude of the fixed loads
is 0.0005, which is 2.5% of P × Lx; therefore, the fixed loads
can be considered as negligible compared with the applied
pressure load.

The optimized topologies and compliances using both
equivalent nodal force methods are shown in Fig. 8. The
optimized topology with the exact integration (Fig. 8a) is
very similar to Fig. 15 in (Xia et al. 2015), except for a
small hole near the upper center part. The minimum com-
pliance (C = 27.90) is comparable to and slightly lower than
the values in literature by using LSM (Emmendoerfer et al.
2018) (C = 30.22) and (Xia et al. 2015) (C = 29.88), which
also involve clear topology boundaries. The optimal topol-
ogy using 1-point Gaussian quadrature (Fig. 8b) is compa-
rable to Fig. 16 in (Bruggi and Cinquini 2009) and Fig. 7e
in (Sigmund and Clausen 2007).

Fig. 9 a Compliance versus
iteration of the piston design case
and the topologies at iteration 50,
57 (oscillating iteration), and 70
using exact integration; b the
normalized Φ surface and the
corresponding threshold level of
the optimized topology using the
exact integration (Fig. 8a); and c
schematic of deformation (scaled
to 0.005 times) and the von Mises
stress distribution of the
optimized topology in Fig. 8a
(where the wireframe indicates
the un-deformed structure and the
contour denotes the deformation)

Fig. 10 The design domain of an externally pressure-loaded structure

Y. Lu, L. Tong1900



The curves of the compliance versus iteration are shown in
Fig. 9a. As is shown in Fig. 9a for the exact integration case,
the topology and objective function almost converge at around
iteration 50. However, there is an abrupt change in the local
topology of the upper boundaries of the two center cavities
(see the second topology in Fig. 9a at iteration 57), and this
change of interface boundary generates an oscillation in the
objective function. Thereafter, as these local upper boundaries
evolve back to those prior to iteration 57, the oscillation dis-
appears and the convergence is achieved. The magnitude and
iteration ranges of the oscillation appear smaller than those
observed for the 1-point Gaussian quadrature case.
Compared with the load calculation via 1-point Gaussian
quadrature (C = 33.43), the use of exact integration provides
less oscillations and lower optimal compliance.

The 3D surface of the normalized Φ ranging between − 1
and + 1 and the corresponding threshold level t for the opti-
mized topology in Fig. 8a are shown in Fig. 9b. Since the
single-point constraining boundary condition is applied to
the center of the bottom edge in this example, the strain energy
level at the fixed point is extremely high compared to the rest
of the design domain. Thus, only the Φ surface plot excluding
the steep peak around the fixed point is presented.
Additionally, a full FEA is conducted for the optimized topol-
ogy using the exact integration, which gives compliance: C =
31.54. The deformation (shown in 0.005× scale) and von
Mises stress distribution are shown in Fig. 9c.

Fig. 11 Optimal topologies and
compliances of the externally
pressurized lid subjected to
uniform pressures using a exact
integration (C = 11.30) and b 1-
point Gaussian quadrature
(C = 12.17); c non-uniform
hydrostatic pressures with Ps = 1
and Ph = 1 (C = 20.32); d the
compliance versus iteration of a
and b; and e schematic of
deformation (scaled to 0.004
times) and von Mises stress
distribution of the optimized
topology using the exact
integration, where the wireframes
indicate the un-deformed
structure and the contours denote
the deformation

Fig. 12 The design domain of the compliant gripper case
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4.3 Externally pressurized lid

As illustrated in Fig. 10, the minimum compliance design of
an underwater structure subjected to external hydrostatic pres-
sure load is studied. This is another classical problem for to-
pology optimization under pressure load (Sigmund and
Clausen 2007; Picelli et al. 2014; Emmendoerfer et al. 2018)
with a series of different material properties and constrained
regions used in literature. The imposed uniform pressure is
P = 1, and a regular 80 × 40 mesh is used. In the present com-
putation, the design domain is fixed at the bottom-left and
bottom-right corner, and the volume fraction is set as 20%.

As expected, the optimal topologies using both methods
are arch-like structures to support the external pressures as
shown in Fig. 11a and b. The heights of optimized arch-like
topologies via the two methods are almost identical and agree

well with those reported in literature (Sigmund and Clausen
2007; Picelli et al. 2014; Emmendoerfer et al. 2018). The
uptake of the exact integration method provides a lightly low-
er objective function value (C = 11.30). The histories of the
objective function for both methods are shown in Fig. 11d.
The full FEA of the optimized topology using the exact inte-
gration shows C = 17.42, where the deformation (shown in
0.004× scale) and the von Mises stress distribution are shown
in Fig. 11e.

For this underwater structure, a non-uniform hydrostatic
pressure loading is also studied. For this case, the pressure
can be considered as linear to depth h. Thus, for each element
as shown in Fig. 4 P(ζ ) = P0 + P1ζ, where P0 = (P5 + P6)/2,
P1 = − (P5 − P6)/2, and the hydrostatic pressures P5 = Ps +
Phh5 and P6 = Ps + Phh6. In this example, as shown in
Fig. 10, Ps = P = 1 and Ph = 1. By using the exact integration,
one can obtain the topology as shown in Fig. 11c. The thick-
ness at the root and midpoint of the arch are 29% and 7%
larger than these for uniform pressure case (Fig. 11a)
respectively.

4.4 Compliant gripper

In this example, half of a compliant gripper is studied using
the present extended MIST algorithm. As illustrated in
Fig. 12, half of the gripper is constrained around the top-
right corner and pressurized from the top side. The dimension
of the design domain is 80 mm× 40 mm, and the non-design
domains include two solid and one void regions. The objec-
tive is to maximize the gripping displacement at the output
port. The mesh used is 80 × 40 and the prescribed volume
fraction is 25%, with an imposed uniform pressure load P =
0.5 MPa.

Fig. 13 Optimal topologies and output displacements of the compliant
gripper subjected to uniform pressures using a exact integration (uout = –
21.19 mm) and b 1-point Gaussian quadrature (uout = –16.85 mm); non-

uniform hydrostatic pressures with Ps = 0.5 MPa and c Ph = 1/160 MPa/
mm (uout = –22.12 mm) and d Ph = 1/80 MPa/mm (uout = –26.84 mm)

Fig. 14 Output displacements versus iteration of the gripper design case
and the topologies at iteration 10, 25, 50, and 100 using exact integration
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If α = 0 (the response function is a mutual strain energy
density only) is used, material separation can occur on the thin
hinge connected to the inclined bar-like member in the top-
right (see Figs. 13 and 14). Therefore, α = 0.2 is applied to
stabilize the interface boundary. An artificial spring is attached
to the output port only, and thus, relatively high stiffness is
used in the present computation: kout = 10N/mm. Because the

u 1ð Þ
out value calculated from solving (22b) is dependent on the

choice of kout, the exact u
1ð Þ
out of the final optimal topology must

be calculated via FEA without the artificial spring included.

The FEA is conducted via ANSYS, with final optimal topol-
ogies converted and imported as CAD models.

The optimal topologies and displacements by using both
methods are shown in Fig. 13a and b, and the histories of the
output displacements as well as the topologies of iterations 10,
25, 50, and 100 using the exact integration are presented in
Fig. 14. Similar to the previous examples, the optimized out-
put displacement is larger with less oscillation when using the
exact integration method. As shown in Fig. 14, the interface
surface evolves quickly in the first 15 iterations and then
moves downwards iteratively to reduce the thickness of the
pressure-carrying part of the structure and improve the flexi-
bility of the gripper. A thin hinge is observed on the bar-like

Fig. 15 Schematic of
deformation and the von Mises
stress distribution under 25 kPa
pressure for the gripper design
using a the exact integration
(uout = –8.32 mm) and b the
1-point Gaussian quadrature
(uout = –3.60 mm) (where the
wireframes indicate the un-
deformed structures and the
contours denote the true scale
deformations)

Fig. 16 The design domain of the inverter case

Fig. 17 Optimal topologies and output displacements of the inverter
subjected to equivalent loads using a exact integration (uout = –13.83
mm) and b 1-point Gaussian quadrature (uout = –11.90 mm)
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pressure-loaded member from iteration 25, but it is eliminated
gradually during iterations. The optimal topologies for both
cases are imported to ANSYS and are used to conduct FEA
with the polyurethane material (E = 100 MPa, υ = 0.3), and
the deformation of optimal topologies with the von Mises
stress are presented in true scale as Fig. 15, which shows that
the desired deformation of the gripper is achieved. With a
pressure load of 25 kPa applied to the gripper, the optimal
topology obtained using the exact integration shows much
larger deformation.

Non-uniform hydrostatic pressure, similar to example 4.3,
is also considered using the exact integration with Ps = P =
0.5 MPa and Ph = 1/160 or 1/80 MPa/mm, and the optimized
topologies and output displacements are shown in Fig. 13c

and d. The locations of the thin hinge in both cases are lower
than that for the uniform pressure case (Fig. 13a) and notable
differences can be observed in the internal structural topolog-
ical members. The optimal output displacements are larger
than that in Fig. 13a as expected as the pressure loads are
higher.

4.5 Inverter

Force inverter is another type of classical compliant mecha-
nism problem, which generates displacement output in the
reverse direction of the input force. In this case, the input force
is replaced by a design-dependent uniform pressure load. Half
of the inverter is demonstrated in Fig. 16. It is pressurized
from the bottom edge and constrained at the bottom-right
corner, and the downward displacement at the output port is
maximized. The dimension of design domain, material prop-
erties, uniform pressure imposed, spring stiffness, and finite
element mesh are the same as in example 4.4.

The optimal topologies using both methods are similar,
except for the interface boundaries, as shown in Fig. 17. The
surface area of the pressure-loaded boundary using exact in-
tegration is larger, which offers a larger input load and thus
larger output displacement. Figure 18 presents the histories of
the output displacements and the topologies of iterations 15,
50, 100, and 150 with the exact integration. Oscillations occur
around the 15th iteration and end about the 100th iteration,
due to the iterative changes of interface boundary, while the
oscillation is eliminated after the interface boundary con-
verges after 100 iterations. Although the changes of interface
boundary are slight in these iterations, the oscillation in

Fig. 18 Output displacements versus iteration of the inverter design case
and topologies at iteration 15, 50, 100, and 150 using exact integration

Fig. 19 Schematic of the deformation and von Mises stress distributions
under a 15 kPa pressure for the inverter design using a the exact
integration (uout = (uout –6.50 mm) and b the 1-point Gaussian

quadrature (uout = -3.93mm) (where the wireframes indicate the un-
deformed structures and the contours denote the true scale deformations
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objective function can be large, as can be seen from Fig. 18. It
should be noted that a relatively large dynamic move limit is
used in the present computations for achieving faster conver-
gence, and the oscillation can be reduced by using a small kmv.

As illustrated in Fig. 19, a pressure of 15 kPa is applied to
the optimized topologies of the inverter with the same poly-
urethane material properties as in example 4.4, where the de-
formations are shown in true scale. This FEA validation
shows that the desired deformations are achieved for both
methods, and the output displacement predicted using the ex-
act integration is larger.

The final optimized topologies, near the output port, of the
present gripper and inverter look similar to these of the con-
ventional compliant mechanism structures under design inde-
pendent load settings (e.g., (Tong and Lin 2011) with single-
input-single-output (SISO). However, the topological config-
urations near the input port(s) are substantially different.

5 Conclusion

This work presents an extendedMIST algorithm for structural
topology optimization with design-dependent loads. This al-
gorithm has the following features: a a general formulation of
element stiffness matrix and material interpolation derived
based on equivalent virtual strain energy; b a general formu-
lation for equivalent nodal forces for pressure acting on inter-
face boundary of an iso-parametric rectangular element de-
rived based on equivalent virtual work using exact integration
or Gaussian quadrature; c a novel physical response function
defined via a linear combination of strain energy and mutual
strain energy densities re-constructed from previous and cur-
rent iterations for compliant mechanism problems; and d ele-
ment type can be determined using the present material model
directly from element area ratio, with which an element-based
interface searching scheme can be easily implemented. The
present algorithm is benchmarked by two well-studied exam-
ples, and the optimized topologies and compliances with the
exact integration agree well with those obtained in the litera-
ture using LSM. Two typical compliant mechanism design
cases are studied and validated by full FEA solutions. It is
noted that the exact integration method is more appropriate
in calculating equivalent load, compared with 1-point
Gaussian quadrature, as it provides better convergence and
better-optimized objectives with lower compliances or larger
displacements in the compliance or compliant mechanism
problems.
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