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Abstract
Reliability-based design optimization (RBDO) offers a powerful tool to deal with the structural design with heterogeneous
interval parameters concurrently. However, it is time-consuming in the practical engineering design. Therefore, a novel sequen-
tial moving asymptote method (SMAM) is proposed to improve the computational efficiency for convex model in this study, in
which the nested double-loop optimization problem is decoupled to a sequence of deterministic suboptimization problems based
on the method of moving asymptotes. In addition, the sensitivity of reliability index is derived, so the finite difference for the
nested optimization loop can be avoided to tremendously improve the computational efficiency. Then, the accuracy of the
SMAM is proved based on the error analysis. Furthermore, the Kreisselmeier-Steinhauser (KS) function is used to assemble
the multiple constraints to deal with the parallel and series RBDO problems. One benchmark mathematical example, three
numerical examples, and one complex civil engineering example, i.e., tower crane, are tested to demonstrate the efficiency of
the proposed method by comparison with other existing methods, and the results indicate that SMAM offers a general and
effective tool for non-probabilistic reliability analysis and optimization.
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RBDO Reliability-based design optimization
d Design variables
SMAM Sequential moving asymptote method
p Super parameter
KS Kreisselmeier-Steinhauser
η Non-probabilistic reliability index
ANVM Advanced nominal value methodbη Approximated reliability index
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η Target non-probabilistic reliability index
MCP Most concerned point
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of series system
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CCSTM Chaotic conjugate stability
transformation method

f(⋅) Objective function
MMA Method of moving asymptotes
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STM Stability transformation method
∇ The first-order sensitivity operator
DSTM Directional stability transformation method
∇2 The second-order sensitivity operator
NRIA Non-probabilistic reliability index approach
δ Perturbation operator
CPA Concerned performance approach
λ Lagrange multiplier
FDM Finite difference method
E Failure event
x Uncertain variables in physical space
ε Convergence precision
q Uncertain variables in q-space
ξ Controlling parameter of KS function

Responsible Editor: Yoojeong Noh

* Huanlin Zhou
zhouhl@hfut.edu.cn

1 School of Civil Engineering, Hefei University of Technology,
Hefei 230009, People’s Republic of China

https://doi.org/10.1007/s00158-020-02775-1
Structural and Multidisciplinary Optimization (2021) 63:1767–1788

/Published online: 7 January 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02775-1&domain=pdf
http://orcid.org/0000-0003-3678-7688
mailto:zhouhl@hfut.edu.cn


1 Introduction

It is today widespread acknowledged that computational ap-
proaches permit the analyses and design with respect to real-
world engineering systems, while the inevitable effects of un-
certainties have led the scientific community to recognize the
importance of the uncertain approach for engineering applica-
tions (Hu and Du 2015; Xiao et al. 2020; Youn and Wang
2008; Zhang and Han 2020). As a result, the probability mod-
el, non-probabilistic convex model, and fuzzy model are de-
veloped to account these uncertain behaviors during optimi-
zation design phase (Kang et al. 2016; Kang et al. 2019;
Moens and Vandepitte 2006; Wang et al. 2018a). Among
them, non-probabilistic convex model shows tremendous po-
tential for handling uncertain problems with limited or poor-
quality experimental data (Ni et al. 2018; Qiu and Elishakoff
1998; Wang et al. 2019). An exhaustive comparison between
interval analysis method and probabilistic approach was con-
ducted by Qiu et al. (2004), and the results indicated that the
variations of dynamical responses yielded by the probabilistic
approach were tighter than those produced by non-
probabilistic approach. Zhao et al. (2018) approximated the
failure shear stress of simulated lunar soil using the convex
model. In such case, the application of reliability-based design
optimization (RBDO) using convex model becomes a prom-
ising way to account the interval parameters in optimization
design (Elishakoff 1995; Meng et al. 2020; Zhang et al. 2019).

The precursor works of non-probabilistic RBDO could be
traced back to the works of Ben-Haim (1994) and Ben-Haim
and Elishakoff (1995), who established the basis of non-
probabilistic model. Until now, a series of non-probabilistic
convex models were put forward to reasonably measure the
experimental samples, in which interval set and ellipsoid
models are two distinguished representatives. Majumder and
Rao (2009) tried to adopt the interval set model to acquire a
reasonably structural safety estimation for the aircraft wings.
Kang et al. (2011) and Guo (2014) gave a new mathematical
definition for reliability index of convex model, which was
inspired by the first-order reliability method (FORM) in prob-
abilistic theory. In the study of Jiang et al. (2011), a correlation
analysis technique for ellipsoid convex model was created,
and this concept was extended into the interval set model
(Jiang et al. 2015). Wang et al. (2008) and Jiang et al.
(2013) used the ratio of the volume of the safe region to the
total volume for measuring the structural safety of interval and
convex models. Moreover, Elishakoff and Bekel (2013) sug-
gested a new super ellipsoid model, which provided more
alternatives for non-probabilistic theory from a broader per-
spective (Elishakoff and Elettro 2014). Furthermore, Meng
et al. (2018) gave a new mathematical definition of the super
parametric convex model to enclose the experimental samples
accurately, where the advanced nominal value method
(ANVM) was further created to solve RBDO problems

effectively. Moreover, it was proved that interval and ellipsoid
models are two special cases of super parametric convex mod-
el, and the superiorities were demonstrated from both theoret-
ical and experimental aspects (Meng and Zhou 2018). In gen-
eral, it is well known that RBDO is composed by a nested
double-loop optimization structure, where the deterministic
optimization (outer loop) repeatedly calls the non-
probabilistic reliability analysis at each iterative step (Guo
et al. 2009; Hamzehkolaei et al. 2018; Wu et al. 2020).
Consequently, it needs a large amount of numerical estimation
number and is computationally challenging (Jiang et al. 2020;
Keshtegar and Chakraborty 2018; Keshtegar et al. 2020).

Pursuing high efficiency is a glorious and vital target to
ease the heavy computational burden caused by nested opti-
mization loops of RBDO (Jiang et al. 2019). As Tsompanakis
and Papadrakakis (2004) pointed out, the calculation of nested
optimization problem is an extremely computationally inten-
sive task, and how to accelerate the iterative process is crucial.
To this end, a series of promising exploratory works could be
found to circumvent the problem of expensive computation-
ally involvement in reliability analysis and optimization
(Papadrakakis and Lagaros 2002). Lombardi and Haftka
(1998) integrated the anti-optimization strategy and worst-
case scenario approach to alleviate the computational cost of
RBDO. Kang and Luo (2010) employed the linearized expan-
sion for the concerned performance function, and the number
of function calls of reliability assessment was significantly
decreased. Based on interval model, Wang et al. (2018b) sug-
gested an efficient single-loop strategy to circumvent the dou-
ble loops of RBDO through shifting and updating the
constraints, and then it was applied to address the
multidisciplinary optimization design issue. Hao et al.
(2017) constructed an adaptive loop method by combing the
single-loop and double-loop strategies to efficiently compute
the optimum of ellipsoid model. Sofi and Romeo (2018) used
the response surface method to enhance the efficiency of the
finite element method involving the interval model. Meng and
Zhou (2018) established a target performance approach based
on inverse optimization technique. However, all these existing
RBDO methods still cannot avoid solving the nested double-
loop structure. For probability model, Yi et al. (2008) devel-
oped the sequential approximate method, which was deemed
as one of the most efficient strategies in RBDO (Aoues and
Chateauneuf 2010). However, as an indispensable part of un-
certain optimization, there are rare works on concerning se-
quential approximation strategy for non-probabilistic RBDO
problems. What’s more, although a huge improvement has
been achieved, a common limitation shared by the aforemen-
tioned approaches lies in that most of existing works only
focus on solving one type of special RBDO problem (interval
model or ellipsoid model) efficiently. Thus, the improvement
of generality and efficiency for RBDO approaches is urgently
required. Additionally, sensitivity analysis is another
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indispensable and crucial task. It not only determines the ef-
ficiency of RBDO approach to a large extent, but also reflects
the influence degree of non-probabilistic parameters onto the
reliability of a given system. Unfortunately, very scarce works
focus on this challenging task up to now.

In this work, we propose a generalized sequential moving
asymptote method (SMAM) in order to decrease the unbear-
able computational cost of system RBDO problem through
converting the nested double-loop optimization model into a
series of deterministic suboptimization models, in which the
Kreisselmeier-Steinhauser (KS) function is adopted to handle
the parallel and series systems effectively. The sensitivity
propagation from inner sensitivity of performance function
to outer sensitivity of reliability index constraint is derived,
and thus, the number of function calls is greatly reduced. The
rest of this study is arranged as follows: Section 2 presents a
brief review of RBDO. Then, the proposed SMAM is intro-
duced in Section 3, and the error analysis of approximate
reliability index constraints is also analyzed to validate the
accuracy of the proposed sensitivity calculation method and
reliability index constraint. Some case studies are presented to
demonstrate the feasibility and effectiveness of SMAM in
Section 4. In Section 5, conclusions are summarized and
listed.

2 Reliability-based design optimization
for interval parameters

This section reviews the reliability-based design optimization
with interval parameters, which includes interval model, ellip-
soid model, and super parametric convex model.

2.1 Reliability index based on convex model

Convex model characterizes the domain of uncertain parame-
ters through a bounded convex set rather than giving an accu-
rate probability distribution. Theoretically, different catego-
ries of convex sets are used to construct the uncertain domain.
The most frequently utilized models include interval model
and ellipsoid model, which can be employed to address the
RBDO problem effectively.

In convex model, the status of a structure is represented by
limit state function (LSF), i.e., G(x) = 0. To conveniently im-
plement the reliability analysis, we should transform the un-
certain variables x into q in the q-space; the details can be seen
in the work of Kang et al. (2011). Then, the LSF G(x) = 0
becomes g(q) = 0. The uncertain domain of structures can be
divided into two parts by LSF: failure domain g(q) < 0 and
safe domain g(q) ≥ 0. For interval model, the geometric figure
in two-dimensional q-space is depicted as a square (as shown
in Fig. 1a) (Kang et al. 2011), and the mathematical definition
is as follows:

find q
min
d

η ¼ sgn g 0ð Þð Þ⋅max q1j j;…; qij j;…; qnj jf g
s:t: g qð Þ ¼ 0

ð1Þ

where sgn(g(0)) is the signum function. η is the non-
probabilistic reliability index. The optimum q∗ of (1) is called
the most concerned point (MCP). If η = 1, the square is tangent
to the limit surface and the MCP is located on the boundary,
and then the critical state is reached. If η > 1, it means all
possible points are located in the reliable domain and the
structure is safe; otherwise, if η < 1, the structure is unsafe.

For ellipsoid model, the reliability index in two-
dimensional q-space is represented by Euclidean norm ‖q‖,
and the corresponding geometric figure is a unit circle, as
illustrated in Fig. 1b. The reliability index for ellipsoid model
is defined as follows (Kang et al. 2011).

find q
min
d

η ¼ sgn g 0ð Þð Þ⋅ qk k
s:t: g qð Þ ¼ 0

ð2Þ

From (2), the absolute value of reliability index is defined
as the shortest Euclidean distance from the origin to LSF in q-
space, which is similar to the reliability index of FORM.
Therefore, the typical FORM methods, such as Hasofer-Lind
Rackwitz-Fiessler algorithm, chaotic conjugate stability trans-
formation method (CCSTM), and hybrid descent mean value
method (Keshtegar 2016; Keshtegar and Hao 2018), can be
employed to solve (2) without much modifications. However,
these FORM methods cannot be utilized to estimate other
complex non-probabilistic models, such as interval model,
super parametric convexmodel, and exponential convexmod-
el (Zhu et al. 2020).

Unlike interval and ellipsoid models, super parametric con-
vex model describes the uncertain parameters from a more
generalized perspective, which uses the p-norm, i.e.,

qk kp ¼ ∑
n

i¼1
qij jp

� �1
p

, to compute the reliability index.

Without loss of generality, the reliability index can be com-
puted by the following formulations:

find q
min
d

η ¼ sgn g 0ð Þð Þ⋅ qk kp
s:t: g qð Þ ¼ 0

ð3Þ

where the subscript p is super parameter. The two-
dimensional geometric figure is schematically illustrated in
Fig. 1c. It can be observed that the super parametric model
becomes the classical ellipsoid model when the value of p is
set to be 2. Moreover, if the super parameter is ∞, the super
parameter model degrades into a classical interval model.
Evidently, the interval and ellipsoid models are only two spe-
cial cases of super parametric convex model, and thus, we can
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conclude that super parameter model is more general than the
classical non-probabilistic RBDO models. Moreover, its su-
periorities in terms of theory and experiment are also validated
in Meng et al. (2018). So it is adopted as a general non-
probabilistic RBDO model in this work.

2.2 General formula of RBDO of convex model

Based on convex model, the typical RBDO formulation is
expressed as follows:

find d
min f dð Þ
s:t: η j d; xð Þ≥η

j
j ¼ 1;⋯; ng

dL≤d≤dU

ð4Þ

where f(d) is the objective function. ηj and η
j
are the jth non-

probabilistic reliability index and the target non-probabilistic
reliability index, respectively. ng is the number of constraints.
d are the design variables with lower bound dL and upper
bound dU, which can be selected as deterministic design var-
iables or nominal values of uncertain design variables. x are
the interval parameters. It should be noted that the reliability
constraints are different with different convex models.
Recently, the authors introduced the ANVM to compute the
reliability index of super parametric convex model simply and
accurately (Meng et al. 2018), and the iterative formulas are
expressed as follows:

ηkj ¼
gkj− ∇qgkj
� �T

qk
� �

∇qgkj
��� ���

p
p−1

� � 1
p−1

∇qgkj
��� ���T ∇qgkj

��� ��� 1
p−1

qkþ1
i ¼ −sign

∂gkj
∂qki

 !
ηkj

j ∂g
k
j

∂qki
j

∇qgkj
��� ���

p
p−1

0BB@
1CCA

1
p−1

i ¼ 1;⋯; n

ð5Þ

where q are the normalized uncertain variables that are trans-
formed from uncertain design variables d or uncertain

parameters p. n is the number of uncertain variables q. k is

the number of iteration. ∇q g j ¼ ∂g j

∂q1
;
∂g j

∂q2
; :…;

∂g j

∂qn

h i
is the sen-

sitivity vector of performance function with respect to uncer-
tain variables q. For RBDO, the outer deterministic optimiza-
tion needs estimating the MCP repeatedly, and the design
sensitivities of non-probabilistic constraint should constantly
perform finite difference with respect to optimization formula
of (3). Therefore, it results in computational cost unbearable.

3 The proposed sequential moving asymptote
method for reliability-based design
optimization

In this section, a generalized sequential moving asymptote
method (SMAM) is established to deal with the uncertainty
parameters in Section 3.1, where the method of moving as-
ymptotes (MMA) is employed for updating the design vari-
ables efficiently. Then, the generalized sensitivity estimation
method is established and the error analysis of SMAM is
proved in Section 3.2. The framework and flowchart are given
in Section 3.3.

3.1 Sequential moving asymptote method

In SMAM, the non-probabilistic reliability analysis and opti-
mization are both implemented in parallel, and then the inner
loop is eliminated. Therefore, high efficiency can be achieved
by SMAM. At the mth iterative step, SMAM uses the approx-
imate reliability index to substitute the actual reliability index,
and the formulation can be expressed as follows:

find d
min f dð Þ
s:t: η j d

m; xmð Þ≥η
j

j ¼ 1;⋯; ng

dL≤d≤dU

ð6Þ

where ηj(d
m, xm) denotes approximate reliability index at the

mth iterative step. Like the sequential approximate

(a)

=1

−1 1

−1

1

q1

q2 g=0

=1

(b)

−1 1

−1

1

q1

q2 g=0

p=1000

p=4 p=2

p=1
p=0.6

=1

−1 1

−1

1
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Fig. 1 Different non-probabilistic models. a Interval set model. b Ellipsoid model. c Super parameter model
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programming in deterministic optimization, we use the linear
Taylor expansion of the reliability index ηj(d

m, xm) with respect
to the deterministic design variables dm, which is expressed as

η j d
m; xmð Þ ¼ η j d

m−1; xm−1
� 	þ ∇dm−1η j

� �T
d−dm−1
� 	 ð7Þ

where reliability index ηj(d
m − 1, xm− 1) requires complete reli-

ability computation loop. In this way, the proposed method
avoids solving the nested optimization loops, and this is adverse
to the efficiency. To address this issue, we use the following

approximation formulation:

η j d
m; xmð Þ ¼ bη j d

m−1; xm−1
� 	þ ∇dm−1bη j

� �T
d−dm−1
� 	 ð8Þ

In (8), the approximate reliability index bη j is used to sub-

stitute ηj. Accordingly, the approximate sensitivities ∇dm−1bη j

and ∇xm−1bη j are adopted to replace the actual sensitivities.

Based on ANVM, the approximate reliability index bη j can

be calculated as follows:

bη j ¼
gm−1j dm−1; xm−1

� 	
− ∇qgm−1j dm−1; xm−1

� 	� �T
qm−1

� �
∇qgm−1j

�
dm−1; xm−1

���� ���
p

p−1

� � 1
p−1

∇qgm−1j dm−1; xm−1
� 	��� ���T ∇qgm−1j

�
dm−1; xm−1

���� ��� 1
p−1

qmi ¼ −sign
∂gm−1j dm−1; xm−1

� 	
∂qm−1i

 !bηm−1j

j ∂g
m−1
j dm−1;xm−1ð Þ

∂qm−1i
j

∇qgm−1j dm−1; xm−1
� 	��� ���

p
p−1

0BB@
1CCA

1
p−1

i ¼ 1;⋯; n

ð9Þ

where the superscript m − 1 represents the (m − 1)th iterative
step of outer deterministic optimization. In this way, we per-
form the approximate performance function instead of actual
performance function at the approximated MCP qm − 1. Then,
we can substitute (9) into (6), and the formulas are described
as follows:

find d
min f dð Þ
s:t: bηm−1j þ ∇dm−1bη j

� �T
d−dm−1
� 	

≥η j j ¼ 1;⋯; ng
dL≤d≤dU

ð10Þ

where dm − 1 is the optimum design at the (m − 1)th iteration. It
is well known that the convex optimization approach provides
more opportunity to search the optimum, and MMA is one

promising convex optimization method that has been widely
used in the structural optimization domain (Svanberg 1987).
Thus, we employ the MMA by introducing four intermediate
variables: 1= dUi −di

� 	
, 1= di−dLi

� 	
, 1= xUi −xi

� 	
, and

1= xi−xLi
� 	

. At the mth iterative step, we can construct the
following suboptimization problem.

find d

min ∑
nd

i¼1

Pm
di

Um
xi−di

þ Qm
di

di−Lmdi

� �
þ rm

s:t: ∑
nd

i¼1

Pm
dji

Um
di−di

þ Qm
dji

di−Lmdi

� �
þ rmj ≥η j j ¼ 1;⋯; ng

max dLi ;α
m
di


 �
≤di≤min dUi ;β

m
di


 �
i ¼ 1;⋯; nd

ð11Þ

where

Pm
dji ¼

�
Um

di
∂bηm−1j

∂di
; if

∂bηm−1j

∂di
> 0

0; if
∂bηm−1j

∂di
≤0

8>>>>>><>>>>>>:
Qm

dji ¼
0; if

∂bηm−1j

∂di
≥0

−
�
dmi

∂bηm−1j

∂di
; if

∂bηm−1j

∂di
< 0

8>>>>>><>>>>>>:
rmj ¼ bηm−1j − ∑

nd

i¼1

Pm
dji

Um
di−d

m
i
þ Qm

dji

dmi −L
m
di

� �
Lmdi < αm

di < dmi < βm
di < Um

di

αm
di ¼ 0:9Lmdi þ 0:1dmi ;β

m
di ¼ 0:9Um

di þ 0:1dmi

ð12Þ
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The moving asymptotes exhibit convex characteristic at
each iterative step. For m = 0 and m = 1, the parameters Lmdi
and Um

di are as follows:

Lmdi ¼ dmi −s dUi −d
L
i

� 	
;Um

di ¼ dmi þ s dUi −d
L
i

� 	 ð13Þ

where s is a real number and is less than 1.0. It is set to be 0.7
according to the reference (Svanberg 1987). For m ≥ 2,

Lmdi ¼ dmi −s dm−1i −Lm−1di

� 	
;Um

di ¼ dmi þ s Um−1
di −dm−1i

� 	
; if sgn dmi −d

m−1
i

� 	
≠sgn dm−1i −dm−2i

� 	
Lmdi ¼ dmi −

dm−1i −Lm−1di

� 	
s

;Um
di ¼ dmi þ Um−1

di −dm−1i

� 	
s

; if sgn dmi −d
m−1
i

� 	 ¼ sgn dm−1i −dm−2i

� 	
8>><>>: ð14Þ

In MMA, Ldi and Udi are given parameters. Also, we can
expand the objective function by the same way. When Ldi =
−∞ and Um

di ¼ ∞, the MMA is degraded into typical sequen-
tial approximate programming. From the above analysis, the
asymptote values are adaptively modified from current itera-
tion to next, and then the degree of convexity is accordingly
adjusted to enhance the convergence. Then, we can obtain all
required parameters for SMAM except the sensitivities, which
will be given in the next section.

3.2 Sensitivity analysis for SMAM

For RBDO, the sensitivities of non-probabilistic reliability
index with respect to design variables have also critical im-
portance. In general, it is easy to compute the design sensitiv-
ities of non-probabilistic reliability constraint functions by fi-
nite difference method (FDM), but it requires preforming the
optimization of reliability analysis repeatedly. For a RBDO
problem with n-dimensional design variables, it needs solving
the optimization problem of (3) n + 1 times. Therefore, it in-
curs extremely expensive computational cost. To address this
issue, an efficient sensitivity computation method of non-
probabilistic reliability index with respect to design variables
is developed in this paper. Firstly, we can give a small pertur-
bation to the non-probabilistic reliability index at the MCP q∗

for non-probabilistic reliability analysis in (3).

δη ¼ ∇qηδq
* ð15Þ

Besides, the following conditions must be satisfied.

∇qηþ λ∇qg d; q*
� 	 ¼ 0

g d; q*
� 	 ¼ 0

�
ð16Þ

where λ is the Lagrange multiplier. For (16), we can also give
a perturbation for variables d and q∗ with respect to the limit
state function, as well as the variables x and q∗.

δg d; q*
� 	 ¼ ∇dg d; q*

� 	
δdþ ∇qg d; q*

� 	
δq* ¼ 0 ð17Þ

Substituting (16) and (17) into (15), one obtains

δη ¼ λ∇dg d; q*
� 	

δd ð18Þ

According to author’s previous work (Meng et al. 2018),
the Lagrangian multiplier λ is

λ ¼ 1

∇qg
�� ��

p
p−1

ð19Þ

Then, we can compute the design sensitivities of non-
probabilistic reliability index by combining (18) and (19).

∇dη ¼ ∇dg d; q*ð Þ
∇qg d; q*ð Þ�� ��

p
p−1

ð20Þ

Especially, if uncertain variables x are selected as design
variables, the design sensitivities ∇dη can be assessed using
chain rule.

∇dη ¼ ∇dq∇xg d; qð Þ
∇qg d; qð Þ�� ��

p
p−1

ð21Þ

It should be noted that the above formulation is valid at the
MCP for LSF, while the SMAM formulation in the previous
section is constructed using the approximate design sensitivi-
ties. Then, we use the following formulas to provide the sen-
sitivity for SMAM.

∇dmbη ¼ ∇dmg dm; qmð Þ
∇qmg dm; qmð Þ�� ��

p
p−1

ð22Þ

When the nominal values are selected as design variables, the
approximate design sensitivities can be computed as follows:

∇dmbη ¼ ∇dmq∇qmg dm; qmð Þ
∇qmg dm; qmð Þ�� ��

p
p−1

ð23Þ

It is observed that the design sensitivities can be calculated
by the sensitivities of performance function. Compared to the
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FDM for the non-probabilistic reliability index, the proposed
method can avoid complete reliability iterations, which can be
directly obtained according to ∇dmg and ∇qmg. In other words,
the design sensitivities can be calculated by computing the
optimization formula of (3) only once, which means the com-
putational cost of the proposed sensitivity computational
method is only about 1/(n + 1) of the FDM.

Since the SMAM uses the first-order Taylor expansion,
it produces some errors for non-linear problems. Thus, the
error between actual and approximate reliability index
constraint should be analyzed. It should be emphasized
that MMA only introduces the intermediate variables to
provide the convex property, and this does not affect the
accuracy at the current design point. Thus, we perform the
error analysis for the approximated performance function
in (10) for simplicity. The error of reliability constraint is
formulated as follows:

η j− bηmj þ ∇dmbη j

� �T
d−dmð Þ

� �
¼ O d−dmð Þ2�� ��� �

þ O qm−q*
� 	�� �� d−dmk k� 	

ð24Þ

The details of derivative process are given in the
Appendix A. From (24), it can be concluded that the dif-
ference between (6) and (10) is the second-order small
quantities of d − dm and cross product of qm − q∗ and d
− dm. Thus, when the point (d, qm) is located in a small
neighborhood of (dm, q∗), the difference between (6) and
(10) is of second-order small quantities. Consequently, it
can be concluded that in the ɛ-vicinity of optimum design
and corresponding MCP, the difference between the actu-
al MCP and approximate MCP is of higher order of ɛ.
Moreover, with the increase of iteration numbers, the it-
erative points qm and dm gradually converge to the opti-
mum q∗ and d, so the relative error in (24) vanishes at the
optimum. Therefore, SMAM can provide accurate results
for RBDO.

3.3 Procedure and flowchart of the proposed SMAM

In general, the computation procedure of the proposed SMAM
is outlined as follows:

Step 1. Define the performance function g, super parameter
p, and target non-probabilistic reliability η. Initialize
the design variables d and x. Set iterative stepm = 0.

Step 2. Transform the interval variables xm into normalized
variables qm by the method in Kang et al. (2011).

Step 3. Compute the approximate reliability index bη j and
iterative point qmi . Estimate the sensitivity of reliabil-
ity index using (22) and (23). Set m =m + 1.

Step 4. Perform the deterministic optimization by MMA in
(12) and update the design variables dm + 1.

Step 5. Convergence check. If ‖dm + 1 − dm‖/‖dm + 1‖ ≤ εd,
the computational procedure of SMAM is terminat-
ed. Here εd is set to be 10−3. Otherwise, transform
qm to xm and go back to Step 2.

The iterative framework of SMAM is given in Fig. 2,
which demonstrates the iterative process is simplified as a
single deterministic optimization loop. Generally, there
are three major different differences between the SMAM
and other non-probabilistic RBDO algorithms. Firstly,
from the viewpoint of mathematics, FORM and classical
non-probabilistic RBDO models are two special cases of
the super parametric convex model. Secondly, the single-
loop strategy is implemented in SMAM. In classical
RBDO problem, an efficient adaptive-loop method and
target performance approach still requires solving the
nested optimization problem (Hao et al. 2017; Kang
et al. 2011; Meng and Zhou 2018). Thirdly, the compu-
tational cost of sensitivity analysis of reliability index is
greatly reduced. In the traditional RBDO algorithm, even
the estimation of sensitivity of reliability index for one
uncertain parameter requires running the reliability opti-
mization formula twice. Besides, the sensitivity analysis is
also a hot topic, which can measure the influence of input
model parameters on the response of reliability index.
Consequently, SMAM not only can accelerate the conver-
gence rate to a great extent, but also provide a new non-
probabilistic sensitivity analysis tool.

Initialization 0 0,d x

Update the design variables dm

using MMA 

Transform the uncertain-but-

bounded variables xm into 

normalized variables qm

Convergence?

Compute the approximate non-

probabilistic reliability index 

and its sensitivity

End

Yes

No

Fig. 2 Iterative framework of SMAM

System reliability-based design optimization with interval parameters by sequential moving asymptote method 1773



4 System non-probabilistic reliability-based
design optimization using SMAM

For RBDO, there are always involving multiple non-
probabilistic constraints. Unfortunately, there are rare re-
searches focusing on system RBDO problem with interval var-
iables. Because the connectivity between different events are
complex, the evaluation of system BRDO model is more diffi-
cult than that with single non-probabilistic constraint. For phys-
ical system with multiple constraints, the series and parallel are
two primary assemblies of each component, as illustrated in
Fig. 3. Assume that Ej denotes the failure event corresponding
to the failure domain gj(x) < 0. Inspired the reliability concepts
in probabilistic theory, the reliability indexes of series and par-
allel systems are defined in (25) and (26), respectively.

ηseries ¼ η ∪p
j¼1

E j

� �
¼ η ∪p

j¼1
g j xð Þ < 0

� �
ð25Þ

ηparallel ¼ η ∩
p

j¼1
E j

� �
¼ η ∩

p

j¼1
g j xð Þ < 0

� �
ð26Þ

Besides, it is always possible to convert series arrangement
into parallel one and vice versa using De Morgan’s laws,

∪E j ¼ ∩E j. More details of probabilistic reliability system
can be referred in Ditlevsen and Madsen (1996). For both
series and parallel systems, the multiple performance func-
tions can combine into a single composite function using the
following formulas:

x : ∪p
j¼1

g j xð Þ < 0

� 
¼ x : gseries xð Þ ¼ min

j
g j xð Þ < 0

� 
ð27Þ

x : ∩
p

j¼1
g j xð Þ < 0

� 
¼ x : gparallel xð Þ ¼ max

j
g j xð Þ < 0

� 
ð28Þ

Based on (27) and (28), the system reliability/RBDO prob-
lem is transformed to a component reliability/RBDO problem,
and then it can be solved easily. The solid line in Fig. 3a, b
denotes the composite limit state function of series system and
parallel system, respectively. For a RBDO problem with same
performance functions, when the series system is considered,

the optimum is located in the vicinity of the limit state function
min

j
g j xð Þ ¼ 0. However, when the parallel system is consid-

ered, the optimum is located in the vicinity of the limit state
function max

j
g j xð Þ ¼ 0.

However, it should be underlined that the composite func-
tion may lead to highly non-linearity and non-differential fea-
ture, especially at the intersections of different performance
functions. To address this issue, we can use the KS function
(i.e., aggregate function method) (Kang and Bai 2013;
Kreisselmeier and Steinhauser 1983), which can transform
multiple constraints into one composite constraint. The KS
functions of series and parallel systems can be depicted by
(29) and (30), respectively.

gseries xð Þ ¼ −
1

ξ
ln ∑

N

i¼1
e−ξgi xð Þ

� �
ð29Þ

gparallel xð Þ ¼ 1

ξ
ln ∑

N

i¼1
eξgi xð Þ

� �
ð30Þ

where gi(x) (i = 1, 2,…, N) are the performance functions
with N numbers, and ξ denotes the controlling parameter.
A one-dimensional example of series system is shown in
Fig. 4 with two functions: g1 = − (x − 3/2)2 + 5/2 and
g2 = (x − 2)2 + 1/2. The composite function eg denotes the
envelop function approaches min(g1, g2). As the increase
of ξ, the composite function gradually tends to actual se-
ries system, but it remains maintaining the differentiabil-
ity. Thus, the value of ξ should be large enough and it is
set to be [50, 100] in this study. Also, we can obtain the
sensitivities of composite function as follows:

∇dgseries xð Þ ¼ − ∑
N

i¼1
∇dgi xð Þ

� �
ð31Þ

∇dgparallel xð Þ ¼ ∑
N

i¼1
∇dgi xð Þ ð32Þ

Since the traditional RBDO problem is always deemed as
series system, (28) and (29) can be avoided. Therefore, we can
use the classical non-probabilistic RBDO strategy to handle
the series system.

x1

x2
(a)

x*

1( )g x

2
( )g x

x1

x2
(b)

x*

1( )g x

2
( )g x

Fig. 3 RBDO for different
systems. a Series system. b
Parallel system
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5 Illustrative examples

In this section, five examples are presented to demonstrate
the accuracy, robustness, and efficiency of the proposed
SMAM. The first and second examples are mathematical
RBDO examples, which illustrate the validity and effi-
ciency of the SMAM. In the next three examples, the
mechanical structure examples are considered. The last
example is related to a complex tower crane in civil en-
gineering. Additionally, we compare the results computed
by SMAM with those obtained from other three prevalent
FORM algorithms, i.e., stability transformation method
(STM) (Yang 2010), CCSTM (Keshtegar 2016), and di-
rectional stability transformation method (DSTM) (Meng
et al. 2017), and four non-probabilistic RBDO algorithms,
i.e., non-probabilistic reliability index approach (NRIA)
(Kang et al. 2011), concerned performance approach
(CPA) (Kang and Luo 2009), ANVM (Meng and Zhou
2018), and SMAM.

5.1 Non-linear series example

In this case, a RBDO problem is investigated with two
uncertain variables, and their nominal values are selected
as design variables (Meng and Keshtegar 2019). The in-
terval radiuses of both uncertain variables are considered
as unchanged during the optimization process, and their
values are set to be 0.5. The RBDO model is expressed as
follows:

find d ¼ xC1 ; x
C
2

� �T
min xC1 þ xC2
s:t: η j gi xð Þ≥0½ �≥η� j

; j ¼ 1; 2; 3

0≤xC1 ≤10; 0≤xC1 ≤10

where g1 xð Þ ¼ x21x2
20

−1

g2 xð Þ ¼ x1 þ x2−5ð Þ2
30

þ x1−x2−12ð Þ2
120

−1

g3 xð Þ ¼ 80

x21 þ 8x2 þ 5
� 	 −1

η�1
¼ η�2

¼ η�3
¼ 1; d0 ¼ 5:0; 5:0½ �T

ð33Þ

The optimal results are summarized in Table 1, in
which six different super parameters p = 1, 2, 4, 8, 16,
and ∞ are considered. The improved FORM algorithm is
applied for NRIA, and CPA and ANVM are served as a
comparison group. The number of function evaluations is
denoted as F-evaluations in Table 1, in which the number
of function evaluations of both objective and constraints
is given to demonstrate the efficiency. The iterative

histories of different methods are illustrated in Fig. 5.
The non-probabilistic reliability index at the optimum is
validated by ANVM to test whether the optimum can
provide enough accuracy for different methods.

The results in Table 1 indicate classical RBDO
methods, i.e., NRIA and CPA, only can solve the classical
interval and ellipsoid models. STM, CCSTM, and DSTM
have a narrower application range compared to NRIA and
CPA, because it only can deal with the ellipsoid model.
ANVM and SMAM can solve RBDO problem with dif-
ferent super parameters, so it has broader application
range than NRIA, STM, CCSTM, DSTM, and CPA.
However, since NRIA consists of nested double-loop
structure, it results in inefficiency. Similarly, ANVM re-
quires a large amount of function evaluations. Although
the number of objective function evaluations of SMAM is
equivalent to that of ANVM, the number of non-
probabilistic constraint function evaluations is significant-
ly decreased owing to converting the optimization loop
into a series of deterministic constraints. For different su-
per parametric convex models, the number of function
evaluations of constraints of SMAM is about 20 times
less that of ANVM. Thus, it can be concluded that the
computational cost of SMAM is remarkably reduced.

5.2 Mathematical example with series and parallel
systems

This RBDO problem also has two uncertain-but-bound
variables. The nominal values are considered as design
variables, and the initial point is [0, 0]. The interval
radiuses of both uncertain variables are 1. The super
parameter is selected as 6. Both the series and parallel
systems are considered. The formulas are expressed as
follows:

Fig. 4 Envelops of KS function with different ξ for a one-dimensional
example
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Table 1 Optimal results for case
1 Methods Objective Design

variables
F-evaluations ηANVMmin

Objective Constraint

p = 1

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 5.904 (3.240, 2.664) 21 1044 1

SMAM 5.904 (3.240, 2.664) 21 75 1

p = 2

NRIA 6.018 (3.254, 2.764) 18 2700 1

STM 6.018 (3.254, 2.764) 18 3555 1

CCSTM 6.018 (3.254, 2.764) 18 2277 1

DSTM 6.018 (3.254, 2.764) 18 2700 1

CPA 6.018 (3.254, 2.764) 21 801 1

ANVM 6.018 (3.254, 2.764) 18 1602 1

SMAM 6.018 (3.254, 2.764) 21 75 1

p = 4

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 6.153 (3.290, 2.863) 21 2511 1

SMAM 6.153 (3.290, 2.863) 21 75 1

p = 8

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 6.232 (3.314, 2.918) 21 2835 1

SMAM 6.232 (3.314, 2.918) 21 75 1

p = 16

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 6.274 (3.328, 2.947) 21 2772 1

SMAM 6.274 (3.328, 2.947) 21 75 1

p =∞
NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA 6.318 (3.343, 2.975) 21 852 1

ANVM 6.318 (3.343, 2.975) 24 2790 1

SMAM 6.318 (3.343, 2.975) 21 75 1
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find d ¼ xC1 ; x
C
2

� �T
min xC1 þ xC2
s:t: ηseries≥η�; or ηparallel ≥η� j

;

−3≤xC1 < 3; −3≤xC2 ≤3

where g1 xð Þ ¼ −2þ 0:1x21 þ x2

g2 xð Þ ¼ −2:1þ 0:1 x1cos 60þ x2sin60ð Þ2
þ x2cos 60þ x1sin60

η�series
¼ 1 or ¼ η�parallel

¼ 1

ð34Þ

The optimal results of series and parallel systems are sum-
marized in Tables 2 and 3, respectively, and the corresponding
results are plotted in Fig. 6. KS function is used in all methods
to search the optimum of parallel system. Although both series

and parallel systems use the same performance functions,
there are significant differences between these two different
systems. For series system, only the minimum parts of the
performance functions g1(x) and g2(x) work, and the iterative
point converges to an optimum (− 0.407, 0.898). For parallel
system, the maximum parts of the performance functions
g1(x) and g2(x) work, and the iterative point converges to an
optimum (− 1.680, 0.434). Comparing with parallel system,
series system results in a more conservative result with a larger
feasible region. From Tables 2 and 3, it is found that only
ANVM and SMAM can find correct optima. However, the
SMAM method is the most effective method for this system
RBDO problem, and the convergence speed is about three
times faster than that of ANVM.

Fig. 5 Iterative histories of different methods for non-linear series example with super parameters a p = 1, b p = 2, c p = 4, d p = 8, e p = 16, and f p =∞

Table 2 Optimal results of series system for case 2

Methods Objective Design
variables

F-evaluations η
series

Objective Constraint

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM − 2.202 (− 0.407, 0.898) 5 213 1

SMAM − 2.202 (− 0.407, 0.898) 8 81 1
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5.3 Stepped cantilever beam

The volume of a stepped cantilever beam with square cross-
section (Gandomi et al. 2013), as shown in Fig. 7, is mini-
mized. The left side of the stepped cantilever beam is fixed,
while a vertical force is applied at the free end of the cantile-
ver. The design variables are related to the heights/widths of
different beam elements, while the thickness t is considered as
a fixed value 2/3. All design variables are considered as inter-
val variables with nominal values 5, and the reference coeffi-
cients of variations are assumed as 10%. The problem is
expressed as follows:

find d ¼ xC1 ; x
C
2 ; x

C
3 ; x

C
4 ; x

C
5

� �T
min 0:0624 xC1 ; x

C
2 ; x

C
3 ; x

C
4 ; x

C
5

� 	
s:t: η g xð Þ≥0½ �≥η�

0:01≤xCi ≤10; i ¼ 1;…; 5

where g xð Þ ¼ 1−
61

x31
−
37

x32
−
19

x33
−
7

x34
−
1

x35
d0 ¼ 5:0; 5:0; 5:0; 5:0; 5:0½ �T; η� ¼ 2

ð35Þ

Table 4 presents a comparison of optimal results ob-
tained by the aforementioned RBDO methods, in which

six different super parameters, i.e., super parameters p =
1.5, 2, 4, 8, 16, and ∞, are selected. The comparison
results indicate that only ANVM and SMAM can solve
super parametric convex models, while other methods,
including NRIA, STM, CCSTM, DSTM, and CPA, lack
ability for handling this complex RBDO problem.
However, SMAM is about 35 times and 43 times faster
than ANVM with p = 1.5 and p = 2, and it is about 50
times faster than ANVM with p = 4, 8, 16, and ∞. So, it
can be concluded that SMAM is more general and effi-
cient than NRIA, STM, CCSTM, DSTM, and CPA, and it
is far more efficient than ANVM.

To demonstrate the performance of different algo-
rithms, we take the super parameters p = 2 and 16 as
two special cases, as illustrated in Fig. 8. Since super
parameter p = 2 is the ordinary ellipsoid model, all differ-
ent algorithms can find the optimum robustly. CPA is
more efficient than NRIA, STM, CCSTM, DSTM, and
ANVM. However, SMAM is the most efficient method,
and the number of function evaluations is only 30 times
less than that of CPA. For super parameter p = 16, it is a
complex RBDO model. As proved in Fig. 8b, only
ANVM and SMAM can find the correct optimum, and
other methods converge to the incorrect optimum, as well
as other super parameters p ≠ 2 and p ≠ ∞. Thus, the re-
sults indicate that SMAM is the most efficient, robust, and
general RBDO method.

Table 3 Optimal results of parallel system for case 2

Methods Objective Design
variables

F-evaluations η
parallel

Objective Constraint

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM − 2.547 (− 1.680, 0.434) 13 237 1

SMAM − 2.547 (− 1.699, 0.424) 14 90 1

x1

(a)

x 2

x*

g1=0

g2=0

(b)

x1

x 2 x*

g2=0

g1=0

Fig. 6 Optimal results for case 2.
a Series system. b Parallel system

1 2 3 4 5

jx

jxt

Fig. 7 Stepped cantilever beam
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Table 4 Optimal results for
stepped cantilever beam Methods Objective Design variables F-evaluations ηANVMmin

Objective Constraint

p = 1.5

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 1.361 (6.084, 5.377, 4.563, 3.570, 2.221) 167 2310 2

SMAM 1.361 (6.084, 5.377, 4.563, 3.570, 2.221) 66 66 2

p = 2

NRIA 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 153 2580 2

STM 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 146 4206 2

CCSTM 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 153 2682 2

DSTM 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 160 3402 2

CPA 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 134 1800 2

ANVM 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 153 2580 2

SMAM 1.368 (6.106, 5.399, 4.585, 3.591, 2.240) 60 60 2

p = 4

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 1.382 (6.150, 5.443, 4.628, 3.635, 2.286) 159 2772 2

SMAM 1.382 (6.151, 5.443, 4.627, 3.635, 2.286) 54 54 2

p = 8

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 1.391 (6.180, 5.473, 4.658, 3.665, 2.316) 137 2388 2

SMAM 1.391 (6.184, 5.474, 4.656, 3.662, 2.317) 48 48 2

p = 16

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 1.396 (6.197, 5.490, 4.675, 3.682, 2.334) 143 2496 2

SMAM 1.396 (6.200, 5.490, 4.674, 3.681, 2.334) 48 48 2

p =∞
NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA 1.402 (6.216, 5.509, 4.694, 3.701, 2.353) 120 468 –

ANVM 1.402 (6.216, 5.509, 4.694, 3.701, 2.353) 133 2316 2

SMAM 1.402 (6.219, 5.509, 4.694, 3.700, 2.352) 48 48 2

System reliability-based design optimization with interval parameters by sequential moving asymptote method 1779



5.4 Tension/compression spring

As illustrated in Fig. 9, the target of this RBDO problem is to
minimize the weight of tension/compression spring with four
non-linear constraints. There are two design variables: wire
diameter x1 and mean coil diameter x2, while the reference
coefficients of variations are assumed as 5%. The active coil
number NP is set to 11. The optimization model is formulated
as follows:

find d ¼ xC1 ; x
C
2

� �T
min NP þ 2ð Þx2x21
s:t: η j g j xð Þ≥0

h i
≥η� j

; j ¼ 1; 2; 3; 4

where g1 ¼
x32NP

71785x41
−1

g2 ¼ 1−
4x22−x1x2

12566 x2x31−x41
� 	 þ 1

5108x21

g3 ¼
140:45x1
x22NP

−1

g4 ¼ 1−
x1 þ x2
1:5

0:05≤x1≤2; 0:25≤x2≤1:3

d0 ¼ 0:05; 0:5½ �; η� j
¼ 1; j ¼ 1; 2; 3; 4

ð36Þ

The comparison results are tabulated in Table 5, where
six different super parameters, including p = 1, 2, 4, 8, 16,
and ∞, are considered. For comparison purposes, NRIA,
STM, CCSTM, DSTM, CPA, and ANVM are also

performed with the same initial point. The optima of dif-
ferent RBDO approaches are verified by ANVM to vali-
date whether the results satisfy the target non-probabilistic
reliability requirement. The results of Table 5 indicate that
only ANVM and SMAM can solve all different RBDO
models. NRIA, STM, CCSTM, and CPA demonstrate the
feasibility and validity for conventional ellipsoid model,
but it cannot be used to calculate the other complex
RBDO problems with p = 1, 4, 8, 16, and ∞. DSTM is
not robust for this problem. CPA can handle both ellip-
soid and interval models, and thus, it has broader appli-
cation range than NRIA, STM, CCSTM, and DSTM.
ANVM exhibits effectiveness for all different RBDO
models, but the convergence rate is too slow. For all
RBDO models, SMAM can solve them accurately and is
approximately ten times faster than ANVM, and thus, it is
the most general and efficient method.

5.5 A twenty-five-bar truss

A steel truss with 24 degrees of freedom and 4 uncertain loads
is considered here (Ganzerli and Pantelides 2000). All bars
have the same elasticity modulus E = 29,000 ksi. The height
of the truss is 600 in., and the length of the bays is also 600 in.
The structure is shown in Fig. 10, and all these loads are
assumed as the interval variables. The nominal values of ex-
ternal loads are P1 = P3 = 400 kip, P2 = 500 kip, and P4 = 300
kip, and the corresponding coefficients are considered as the
following values: β1 = β2 = β3 = 10% and β4 = 20%. The
RBDO model is expressed as follows:

find d ¼
h
A1;A2;A3;A4;A5;A6;A7;A8;A9;A10;A11;A12;A13;

A14;A15;A16;A17;A18;A19;A20;A21;A22;A23;A24;A25

i
T

min V dð Þ
s:t: η j g j d;P1;P2;P3;P4ð Þ≥0

h i
≥η� j

; j ¼ 1;…; 25

where g j ¼ 25 ksi−σ j d;P1;P2;P3;P4ð Þ; j ¼ 1;…; 25
η� j

¼ 1; j ¼ 1;…; 25

0:1≤Ai≤25; i ¼ 1;…; 25

ð37Þ

(a) (b)Fig. 8 Iterative histories of
different methods for stepped
cantilever beam with super
parameters a p = 2 and b p = 16

x2

x1

NP

Fig. 9 A tension/compression spring
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Table 5 Optimal results for
tension/compression spring Methods Objective Design variables F-evaluations ηANVMmin

Objective Constraint

p = 1

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 0.0261 (0.0625, 0.5140) 15 1440 1

SMAM 0.0261 (0.0625, 0.5140) 21 99 1

p = 2

NRIA 0.0291 (0.0639, 0.5482) 12 810 1

STM 0.0291 (0.0639, 0.5482) 12 2844 1

CCSTM 0.0291 (0.0639, 0.5482) 12 1773 1

DSTM – – – – –

CPA 0.0291 (0.0639, 0.5482) 18 489 1

ANVM 0.0291 (0.0639, 0.5482) 12 810 1

SMAM 0.0291 (0.0639, 0.5482) 21 99 1

p = 4

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 0.0319 (0.0653, 0.5757) 12 720 1

SMAM 0.0319 (0.0653, 0.5757) 21 99 1

p = 8

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 0.0336 (0.0661, 0.5920) 12 684 1

SMAM 0.0336 (0.0661, 0.5920) 18 87 1

p = 16

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 0.0346 (0.0665, 0.6008) 15 855 1

SMAM 0.0346 (0.0665, 0.6008) 18 87 1

p =∞
NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA 0.0356 (0.0670, 0.6099) 21 312 1

ANVM 0.0356 (0.0670, 0.6099) 15 837 1

SMAM 0.0356 (0.0670, 0.6099) 15 75 1
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where the design variables d represent the cross-section areas
of bars. Additionally, the maximum tension and compression
stresses of each bar are 25 ksi, and the finite element method is
used to compute the structural response.

The RBDO with different super parameters p = 1, 2, 4,
8, 16, and ∞ are tested, and the comparison results are
tabulated in Table 6. It can be found that NRIA, STM,
CCSTM, DSTM, and CPA cannot search the correct op-
tima, while ANVM and SMAM robustly converge to the
optimum. Since this RBDO problem contains many de-
sign variables and constraints, it requires unbearable
computational cost. Taking ellipsoid model as a case,
all RBDO approaches can solve this simple RBDO prob-
lem, and CPA is more efficient than NRIA, STM,
CCSTM, DSTM, and ANVM. However, the number of
function calls of proposed SMAM method is about 23
times less than that of CPA. For interval set model, the
computational cost of SMAM is about 34 times less than
that of CPA and 241 times less than ANVM. Evidently,
it can be concluded that SMAM is the most general and
efficient method.

The design variable values of SMAM at the optimum
are tabulated in Table 7. It can be found that the design
variables are drastically changed with the change of super
parameters, which means the selection of super parame-
ters is vital for optimization results, and the minimum
volume method is suggested to select the reasonable un-
certain model (Meng et al. 2018). The larger the super
parameter value is, the more conservative of design be-
comes. It is interesting to mention that the choice of the
RBDO models is critical to offer credible design results,
and different safety levels can be achieved for SMAM by
selecting suitable super parameter (Fig. 11).

5.6 A tower crane

In civil engineering, tower crane is widely applied for lifting
materials from one place to another place, which is shown in
Fig. 12 (Meng and Zhou 2018). A lightweight design of a

tower crane with 1.52 m × 1.52 m × 87 m is carried out. This
tower crane includes 928 bars, in which every 32 bars form a
standard component. Sectional dimensions of vertical bars
and cross bars are chosen as design variables. Young’s mod-
ulus E, windward wind load, transverse wind load, and allow-
able normal stress σ are assumed as interval variables with
reference coefficients of variations 2.5%. The nominal values
of these four uncertain variables are [206 GPa, 172.29 kN,
109.16 kN, and 345 MPa]T. The RBDO model is established
as follows:

find d ¼ b1; t1; b2; t2½ �T

min
d

C dð Þs:t:η σ−σ ≥0ð Þ≥η�
35≤b1≤200; 5≤ t1≤15

15≤b2≤100; 2≤ t2≤6

d0 ¼ 120; 10; 7; 5½ �T

ð38Þ

A comparison of the RBDO results obtained by differ-
ent methods is gathered in Table 8. It is evident that
NRIA, STM, CCSTM, and DSTM lack of ability to find
the optimum results, while CPA and SMAM converge to
the optimum result stably. The weight of initial design is
345,953 kg. After performing RBDO, the weight is de-
creased to 178,782 kg, which is only about half of the
initial design. Thus, it generates huge economic benefits.
Besides, we also perform the deterministic optimization,
and the corresponding structural weight and design vari-
ables are 177,937 kg and [53.954, 5.984, 16, 4], respec-
tively. It is observed that the difference of the structural
weight between the deterministic design and RBDO de-
sign is very small, but the non-probabilistic reliability
index of the deterministic design decreases to 0. It means
that the deterministic design is too sensitive to the varia-
tions of uncertain parameters and has a risk of failure.

Among all RBDO approaches, NRIA, STM, CCSTM,
DSTM, CPA, and ANVM converge to the incorrect optimum,
and the non-probabilistic reliability index of ANVM is only

1 2 3 4 5

11 10 9 8 7 612

6 600 in. 3600in.

600in.

1 3 4

5 6 7 8 9 10

11 12 13 14 15

16 17 19 21 23 25

18 20 22 24

2

P1 P2 P3

P4

Fig. 10 A twenty-five-bar truss
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Table 6 Optimal results for
twenty-five-bar truss Methods Objective F-evaluations ηANVMmin

Objective Constraint

p = 1

NRIA – – – –

STM – – – –

CCSTM – – – –

DSTM – – – –

CPA – – – –

ANVM 1.2162 × 105 552 828,000 1

SMAM 1.2163 × 105 728 3651 1

p = 2

NRIA 1.2311 × 105 445 667,500 1

STM 1.2311 × 105 419 5,185,110 1

CCSTM 1.2311 × 105 454 3,119,580 1

DSTM 1.2311 × 105 630 3,738,000 1

CPA 1.2311 × 105 476 64,500 1

ANVM 1.2311 × 105 445 667,500 1

SMAM 1.2311 × 105 468 2401 1

p = 4

NRIA – – – –

STM – – – –

CCSTM – – – –

DSTM – – – –

CPA – – – –

ANVM 1.2535 × 105 764 1,146,000 1

SMAM 1.2537 × 105 988 4901 1

p = 8

NRIA – – – –

STM – – – –

CCSTM – – – –

DSTM – – – –

CPA – – – –

ANVM 1.2690 × 105 988 1,483,860 1

SMAM 1.2691 × 105 1846 9026 1

p = 16

NRIA – – – –

STM – – – –

CCSTM – – – –

DSTM – – – –

CPA – – – –

ANVM 1.2780 × 105 738 1,107,000 1

SMAM 1.2783 × 105 1222 6026 1

p =∞
NRIA – – – –

STM – – – –

CCSTM – – – –

DSTM – – – –

CPA 1.2879 × 105 1208 190,500 1

ANVM 1.2879 × 105 888 1,332,000 1

SMAM 1.2885 × 105 1118 5526 1
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0.1904 at the optimum. TPA and SMAM show effectiveness
for solving super parametric convex model. However, for this
complex engineering example, the convergence speed of
SMAM is significantly faster than TPA. It can be concluded
that SMAM is the most effective, general, and accurate
method.

6 Conclusions

Reliability-based design optimization (RBDO) exhibits
unique competitiveness in the situation of inadequate sample
data. For system RBDO problem, there is always involving an
inefficient and non-universal problem. In this study, consider-
ing the reasonability update of random and design variables, a
novel sequential moving asymptote method (SMAM) is pro-
posed to simultaneously perform the deterministic optimiza-
tion and reliability analysis, which leads to a dramatic reduc-
tion of computational cost. Furthermore, a general sensitivity
computation method is provided, in which the sensitivities of
reliability index with respect to design variables can be direct-
ly obtained by using the gradient of performance function, and
thus, the time-consuming finite difference method can be
avoided. To further promote the computational efficiency,
the MMA is applied for converting the suboptimization prob-
lem into a series of convex optimization models at each iter-
ative point. Furthermore, the KS function is applied to deal
with the system reliability analysis effectively.

Numerical results on mathematical and complex engineer-
ing examples verify that (1) SMAM can estimate the

Table 7 Design variables at the
optimum Design variables p = 1 p = 2 p = 4 p = 6 p = 8 p = 16 p =∞

A1 2.390 2.702 3.502 3.742 3.854 4.015 4.006

A2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A3 0.779 0.726 0.796 0.828 0.853 0.872 0.710

A4 0.1 0.230 0.374 0.298 0.368 0.373 0.855

A5 12.764 13.016 13.370 13.527 13.612 13.749 13.850

A6 5.735 5.667 5.403 5.402 5.418 5.460 5.546

A7 0.1 0.1 0.1 0.1 0.1 0.1 0.1

A8 0.322 0.464 0.480 0.507 0.511 0.522 0.343

A9 0.1 0.1 0.1 0.192 0.140 0.185 0.447

A10 5.916 5.938 5.980 5.994 6.005 6.028 6.217

A11 10.530 10.345 10.036 10.019 10.026 10.054 10.156

A12 12.404 12.792 13.580 13.825 13.944 14.115 14.142

A13 10.968 10.986 11.007 11.019 11.028 11.041 11.071

A14 10.900 11.138 11.273 11.321 11.352 11.398 11.420

A15 11.758 11.726 11.707 11.751 11.715 11.735 11.742

A16 2.313 2.696 3.204 3.425 3.546 3.740 3.905

A17 15 14.820 14.364 14.331 14.336 14.372 14.519

A18 9.999 10.579 11.534 11.786 11.901 12.059 12.081

A19 7.833 7.847 7.913 7.951 7.972 8.004 7.969

A20 7.833 7.846 7.909 7.947 7.967 7.998 7.962

A21 7.692 7.803 7.913 7.957 7.984 8.023 8.067

A22 7.768 7.767 7.809 7.833 7.845 7.867 7.855

A23 8.262 8.307 8.351 8.289 8.312 8.318 8.292

A24 8.262 8.196 8.202 8.253 8.255 8.282 8.282

A25 8.367 8.397 8.457 8.477 8.492 8.526 8.791

Fig. 11 Iterative histories of SMAM for the twenty-five-bar truss with
different super parameters
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reliability index constraints with high convergence rate, which
is more efficient than existing RBDO methods, including
ANVM, TPA, CPA, and the first-order reliability methods
(NRIA, STM, CCSTM, DSTM, and CPA), and it is more
general than FORM algorithms and CPA. By using different
non-probabilistic super parameters, different non-probabilistic
RBDO tasks can be achieved according to existing experi-
mental data, so it is very flexible. (2) We provide a general
sensitivity analysis method for non-probabilistic reliability
analysis and optimization, which has been not found until
now. In practical engineering application, the proposed
SMAM may be of great significance, which can be easily
extended to perform the RBDO and reliability analysis for
other models and systems.
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Table 8 Optimal results for tower crane

Method Objective Design variables F-evaluations ηMVM
min

Objective Constraint

NRIA – – – – –

STM – – – – –

CCSTM – – – – –

DSTM – – – – –

CPA – – – – –

ANVM 178,095 kg (54.091, 6.00, 16, 4) 156 1404 0.1904

TPA 178,783 kg (54.877, 6.04, 16, 4) 20 130 1

SMAM 178,782 kg (54.877, 6.04, 16, 4) 20 50 1
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the algorithm is implemented in Section 3. Based on the MMA code
developed by Svanberg (1987), the proposed algorithm is easy to code.
Readers are welcome to contact the authors for details and further
explanations.

Appendix

In the proposed SMAM, we develop the approximate sensi-
tivity analysis method to substitute the FDM in order to pro-
mote the efficiency, and the corresponding computational er-
ror should be performed. By using the Taylor expansion, we
can expand the performance function at the MCP, which is
formulated as follows:

g dm;qmð Þ ¼ g dm; q*
� 	þ ∇qg dm; q*

� 	T
qm−q*
� 	þ O qm−q*

� 	�� ��2� �
ð39Þ

∇dg dm; qmð Þ ¼ ∇dg dm; q*
� 	þ ∇2

dqg dm; q*
� 	T

qm−q*
� 	þ O qm−q*

� 	�� ��2� �
ð40Þ

where ∇2g denotes the second-order derivative of function g.
Then, the sensitivity of approximate non-probabilistic reliabil-
ity index with respect to design variables in SMAM can be
written as follows:

∇dmbη ¼ ∇dmg dm; qmð Þ
∇qmg dm; qmð Þ�� ��

p
p−1

¼
∇dg dm; q*ð Þ þ ∇2

dqg dm; q*ð ÞT qm−q*ð Þ þ O qm−q*ð Þk k2
� �

∇qg dm; q*ð Þ�� ��
p

p−1

0@ 1A�
∇qg dm; q*ð Þ�� ��

p
p−1

∇qg dk ; qm
� 	�� ��

p
p−1

ð41Þ

In (41), the term
∇qg dm;q*ð Þk k p

p−1

∇qg dk ;qmð Þk k p
p−1

can be expanded as follows:

∇qg dm; q*ð Þ�� ��
p

p−1

∇qg dm; qmð Þ�� ��
p

p−1

¼
∑
n

i¼1
∇qg q*i
� 	þ ∇2

qqg qið ÞT qmi −q*i
� 	þ O qmi −q*i

� 	�� ��2� ���� ��� p
p−1

∑
n

i¼1
∇qg q*ið Þ�� �� p

p−1

0BB@
1CCA

p−1
p

≤ 1þ
∑
nq

i¼1
∇2
qqg qið ÞT qmi −q*i

� 	þ O qmi −q*i
� 	�� ��2� ���� ��� p

p−1

∑
nq

i¼1
∇qg q*ið Þ�� �� p

p−1

0BB@
1CCA

p−1
p

¼ 1þ O ‖ qm−q*
� 	

‖
� �

ð42Þ

Hence, ∇dmbη satisfies:

∇dη ¼ ∇dg dm; q*ð Þ
∇qg dm; q*ð Þ�� ��

p
p−1

¼
∇dg dm; q*ð Þ þ ∇2

dqg dm; q*ð ÞT qm−q*ð Þ þ O qm−q*ð Þk k2
� �

∇qg dm; q*ð Þ�� ��
p

p−1

0@ 1A� 1þ O ‖ qm−q*
� 	

‖
� �� �

¼ ∇dbηþ ∇2
dqg dm; q*ð ÞT qm−q*ð Þ

∇qg dm; q*ð Þ�� ��
p

p−1

þ O qm−q*
� 	�� ��2� �

¼ ∇dbηþ O qm−q*
� 	

ð43Þ

For reliability index, it can be expanded by Taylor expan-
sion.
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η dm;q*
� 	 ¼ bη dm; qmð Þ þ ∇dbη dm; qmð Þ

� �T
d−dmð Þ þ O d−dmð Þ2�� ��� �

ð44Þ
η dm;q*
� 	 ¼ η dm; qmð Þ þ ∇dη dm; qmð Þð ÞT dm−d*

� 	þ O dm−d*
� 	2��� ���� �

ð45Þ
∇dη dm; q*
� 	 ¼ ∇dbη dm; qmð Þ þ O qm−q*

� 	�� ��� 	 ð46Þ

∇dbη dm; qmð Þ ¼ ∇dη dm; q*
� 	

−O qm−q*
� 	�� ��� 	 ð47Þ

∇dbη dm; qmð Þ ¼ ∇dη dm; q*
� 	þ ∇2

dqbη dm; q*
� 	� �T

q*−qm
� 	þ O qm−q*

� 	2��� ���� �
ð48Þ

Considering q∗ is the optimal solution, which satisfies
∇qη(d

m, q∗) = 0, so the error of reliability constraint can be
computed as follows:

η j− bηmj þ ∇dmbη j

� �T
d−dmð Þ

� �
¼ η j− bηmj þ ∇dη dm; q*

� 	
−O qm−q*
� 	� 	T

d−dmð Þ
� �

¼ η j−bηmj − ∇dη dm; q*
� 	

d−dmð Þ−O ‖ qm−q*
� 	

‖‖d−dm‖
� �� �

¼ ∇dbη dm; qmð Þ−∇dη dm; q*
� 	� �T

d−dmð Þ þ O ‖ d−dmð Þ2‖
� �

þ O ‖ qm−q*
� 	

‖‖d−dm‖
� �

¼ O ‖ d−dmð Þ2‖
� �

þ O ‖ qm−q*
� 	

‖‖d−dm‖
� �

ð49Þ
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