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Abstract

Sampling efficiency is important for simulation-based design optimization. While Bayesian optimization (BO) has been suc-
cessfully applied in engineering problems, the cost associated with large-scale simulations has not been fully addressed.
Extending the standard BO approaches to multi-fidelity optimization can utilize the information of low-fidelity models to further
reduce the optimization cost. In this work, a multi-fidelity Bayesian optimization approach is proposed, in which hierarchical
Kriging is used for constructing the multi-fidelity metamodel. The proposed approach quantifies the effect of HF and LF samples
in multi-fidelity optimization based on a new concept of expected further improvement. A novel acquisition function is proposed
to determine both the location and fidelity level of the next sample simultaneously, with the consideration of balance between the
value of information provided by the new sample and the associated sampling cost. The proposed approach is compared with
some state-of-the-art methods for multi-fidelity global optimization with numerical examples and an engineering case. The
results show that the proposed approach can obtain global optimal solutions with reduced computational costs.

Keywords Bayesian optimization - Efficient global optimization - Multi-fidelity optimization - Hierarchical kriging model -
Sequential sampling - Constrained optimization

1 Introduction when high-cost simulations or physical experiments are in-
volved. Different definitions of acquisition functions have

Bayesian optimization (BO) is a metamodel-based global op-  been developed to balance between exploration and exploita-

timization approach, where the search process is assisted by
constructing and updating a metamodel iteratively, and the
sequential sampling is guided by an acquisition function to
incorporate uncertainty (Ghoreishi and Allaire 2019; Tran
et al. 2019b). The construction of metamodels helps improve
the search efficiency, while the sequential sampling guided by
the acquisition function reduces the overall number of sam-
ples. The sequential sampling strategy is particularly helpful
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tion, such as expected improvement (EI), probability of im-
provement, and lower confidence bound. BO with the EI ac-
quisition function is also called efficient global optimization
(EGO) by some researchers.

Similar to other metamodel-based global optimization
methods (Queipo et al. 2005; Wang and Shan 2007), the com-
putational challenge for BO to solve large-scale problems still
exists, because the number of samples to cover the search
space grows exponentially as the dimension of the space in-
creases. Multi-fidelity (MF) surrogate modeling is one ap-
proach to reduce the cost by combining sample points predict-
ed by high-fidelity (HF) and low-fidelity (LF) models to con-
struct the surrogates, since running LF models is less costly
(Huang et al. 2006; Jones 2001; Shu et al. 2019a; Xiong et al.
2008; Zhou et al. 2017). The existing MF metamodels can be
categorized as three types. The first type is the scaling
function-based MF metamodeling, which tunes the LF model
according to the HF model responses (Chang et al. 1993;
Zhou et al. 2015). The second type is space-mapping MF
metamodels, in which a transformation operator is applied to
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map the LF design space to the HF space and the optimal
sample point in the HF space can be estimated (Bakr et al.
2001; Bandler et al. 1994; Koziel et al. 2006). The third type is
MF Kriging models, such as the co-Kriging model (Kennedy
and O'Hagan 2000) and hierarchical Kriging model (Han and
Gortz 2012). Co-kriging models are constructed with the in-
formation of covariance between the LF and HF samples.
However, they are constructed based on the nested HF sample
points, which adds limitations in their applications. In hierar-
chical Kriging models, the LF Kriging model is directly used
as the trend of the MF metamodel, without the requirement of
nested sample points (Han and Gortz 2012; Zhang et al.
2018). Hierarchical Kriging allows designers to choose sam-
ple points more freely in the optimization process. Because of
its flexibility in sampling, hierarchical Kriging received much
more attentions in engineering design optimization (Courrier
et al. 2016; Palar and Shimoyama 2017; Zhang et al. 2015).
MF metamodels for multi-objective optimization (Shu et al.
2019b; Zhou et al. 2016), incorporating gradient information
(Song et al. 2017; Ulaganathan et al. 2015), and adaptive
hybrid scaling method (Gano et al. 2005) have also been
developed.

The acquisition-guided sequential sampling has been ap-
plied in MF metamodel-based design optimization. For in-
stance, Xiong et al. (2008) applied the lower confidence
bound in sequential sampling to construct MF metamodels.
Kim et al. (2017) used the EI acquisition function for the
hierarchical Kriging model. However, these methods merely
adopt the high-fidelity simulation data to update the MF
metamodels. The acquisition functions were only applied to
determine the locations of new samples, while the different
costs associated with LF and HF samplings are not
considered. To solve this problem, Huang et al. (2006) devel-
oped an augmented EI acquisition function for co-Kriging, in
which EI is augmented by the correlation of predictions be-
tween different fidelity models and a ratio of sampling costs so
that both the sample location and the fidelity level can be
determined by maximizing the acquisition. Liu et al. (2018)
improved the augmented EI criterion with the consideration of
the sample cluster issue to reduce the computational cost of
the co-Kriging. Ghoreishi et al. (2018) proposed to identify
the next best fidelity information source and the best location
in the input space via a value-gradient policy. Then they con-
sidered more information sources with different fidelity levels
and explicitly account for the computational cost associated
with individual sources (Ghoreishi et al. 2019). Zhang et al.
(2018) proposed a multi-fidelity global optimization approach
based on the hierarchical Kriging model, in which an MFEI
acquisition function is extended from EI with different uncer-
tainty levels corresponding to the samples of low and high
fidelities. Tran et al. (2020) proposed to combine the overall
posterior variance reduction and computational cost ratio to
select the fidelity level.

@ Springer

In this paper, a new MF Bayesian optimization (MFBO)
approach with the hierarchical Kriging model is developed. A
MF acquisition function based on a new concept of expected
further improvement is proposed, which enables the simulta-
neous selections of both location and fidelity level for the next
sample. The different costs of HF and LF samples as well as
the extra information of HF samples are considered altogether.
A constrained MF acquisition function for unknown con-
straints is also introduced. The proposed MFBO approach is
compared with the standard EGO method and the MFEI meth-
od (Zhang et al. 2018) using five numerical examples and one
engineering case.

The remainder of this paper is organized as follows. In the
“Background” section, the hierarchical Kriging model and
standard EGO method are reviewed. In the “The proposed
MFBO approach” section, the proposed MFBO approach
and the new acquisition function are described in details.
Five numerical examples and one engineering case study with
the comparisons of results are presented in the “Examples and
results” section, followed by concluding remarks in the
“Concluding remarks” section 5.

2 Background
2.1 Hierarchical Kriging

Hierarchical Kriging is a MF metamodeling method, in which
the LF Kriging model is taken to predict the overall trend
whereas the HF samples are used to correct the LF model.
The metamodel can be expressed as

Y(x) = Boy(x) + Z(x) (1)

where J,(x) is the predicted mean of the LF Kriging model,
which is constructed based on LF sample points, 3, is a scal-
ing factor, and Z(x) is a stationary random process with zero
mean and a covariance of

CoZ(x), Z(x')] = o*R(x, ) 2)

where o? is the process variance. R(x, x'") is the spatial corre-
lation function which only depends on the distance between
two design sites, x and x'. Given HF sample points X}, = {x;, 1,
Xy, 2 .- Xp, »p and their responses f,(X;) = {f(xy,. 1), fixn, 2).
..., flx. )}, the predicted mean and variance of the hierarchi-
cal Kriging model at an unobserved point can be calculated as

$x) = BFx) + T (OR£,(X0)-6, ] ()
and
MSE{3() } = B3y () + T OR£,(X0) -5 F] (4)
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respectively, where r(x) is the correlation vector with elements
ri{x)=R(x, x,), x;€ X). R is the correlation matrix with ele-
ments R(i, j) = R(x;, X;), Xi, Xj € X, F is the vector of predic-
tions by the LF Kriging model at the locations of HF samples.
The Gaussian correlation function

R(x,x’) = k]”:i[l Ry (H,xk—xlk) = k]z_[l exp (—9k ’x—x’ ’2> (5)

is used in this paper. The hyper-parameters of hierarchical
Kriging can be trained by maximizing the likelihood function:

L(30,0™.6) — LX) R ,,<Xh>fwo>> (6)

1
€X]
J/@ro?R| p( 2 o

More details of hierarchical Kriging can be found in Han
and Gortz (2012).

2.2 Efficient global optimization approach

The EGO is a Bayesian optimization method where the EI
acquisition function is used. The standard EGO method was
originally proposed by Jones et al. (Jones et al. 1998) for
expensive black-box problems. For Kriging and hierarchical
Kriging models, the prediction at an unsampled point x can be
regarded as a random variable and obeys a normal distribution
Y (x)~N (3(x), 0%(x)), where (x) and o°(x) are the predicted
mean and variance. The improvement at x for a minimization
problem is

1(x) = max(f n =Y (x), 0) (7)

where f,in is the best solution in the current sample set. The
expected improvement is

El(x) = E[max(f pnn—Y (x), 0)] (3)

By expressing the right-hand side of (8) as an integral, one
can obtain the EI in the closed form as

-~ fminij}\(x) fminij;(x)
El(x) = (fmi,,—yu))@(W) + a(x)«s(W) 9)

where ¢(¢) and ®(°) are the probability density function
and cumulative distribution function of the standard nor-
mal distribution, respectively. The EGO method helps ob-
tain the next sample point by maximizing the EI function
expressed in (9). Then the new sample point is used to
update the metamodel. The iteration continues until the
algorithm converges. More details of EGO can be found
in Jones et al. (1998).

3 The proposed MFBO approach

The standard EGO method provides a way to select a new
sample point in single-fidelity optimization. However, in
MF optimization, the decision of choosing the next sample
at either HF or LF level needs to be made to update the MF
metamodel. In the proposed MFBO, a new acquisition func-
tion is developed to support the sequential sampling strategy
for selecting sample points of different fidelity levels adap-
tively in MF optimization.

3.1 Acquisition function based on the expected
further improvement

In general, HF sample points are more expensive to obtain but
can provide more precise information, whereas LF sample
points are less costly but less reliable. In MF optimization,
the sample points in both HF and LF levels are chosen to
update the MF metamodel. Here, a new acquisition function
is defined so that the choice of fidelity level incorporates the
considerations of both cost and benefit in LF and HF samples.

With the sequential sampling, the maximum EI grad-
ually decreases as the BO algorithm converges to the
optimal solution. If a sample point x* is selected to up-
date the metamodel, the EI will decrease from EIl(x")
calculated from (9) to zero. Therefore, the reduction of
the EI value can be equivalently used to guide the se-
quential sampling. In the proposed MFBO, the reduction
of EI value incorporates the different effects of LF and
HF samples. If a HF sample is chosen at x*, the HF
effect on reducing the EI is

AEIL (x")=EI(x")-0 = EI(x") (10)

where EI(-) is the EI function of hierarchical Kriging
based on the existing HF samples and LF samples. If a
LF sample at this location x; is chosen instead, the LF
effect on reducing the EI, which is named further im-
provement given that xl* is taken, is calculated as

NEI (Y1) <1 ()BT (x| Y1 () (1)

where Y/(*) is the LF metamodel with predicted mean 3,
() and variance o;°(x*), EI(x"|Y;(x])) represents the EI
if calculated by HF sample x* given that a LF sample x;
was taken instead at the same location of x* with the
predicted LF response Y; (x;) Note that Y; (x;) is a ran-
dom variable which follows a Gaussian distribution.
Therefore, both the conditional expected value EI
(x"|Y;(x/)) and the conditional further improvement in
(11) vary according to Y;(x;). The overall expected val-
ue of EI(x"|Y,(x])) is obtained as
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E[EIE ()] = IP[vi(e) [EL (Y (7)) d Y ()

Vi) ) .
=o <701(x*) )EI (x

Vi())dri ()
(12)

Note that EI(x"|Y;(x])) in (12) is calculated based on the
HF metamodel with HF sample x*. Thus the expected further
improvement is

lan)) =EEE WD)
=EI(x")-E[EI(x"|Y:(x)))]

Considering the different costs of HF and LF samples and
assuming that the cost ratio of a HF sample to a LF sample is
T, we define a new acquisition function as

%AEI,, (), if  fidelity =2

a(x, fidelity) = {
EIABLW), if  fidelity = 1 (14)

= EI(x) + (fidelity-1) %E[(x) + (fidelity=2)E [EI (x"|Y/(x)))]

Table 1 Formulations and solutions for five numerical examples

to decide both the sample location and the fidelity level, where
fidelity equals 1 for LF level and fidelity equals 2 for HF level.
The location and fidelity level can be obtained by maximizing
the acquisition function.

The proposed approach can be further extended to prob-

lems with multiple fidelity levels. The expected value of EI
(x* ’ Y, (xi)) at the jth fidelity level can be calculated simi-

larly as in (12), whereas EI (x*‘ Y, (x]*)) itself is calculated
based on metamodel ¥ ;.1 (x) = 3;¥;(x) + Z;(x) that is sim-
ilar to (1). The acquisition function in (14) can be adjusted to
include all fidelity levels with different cost ratios accordingly.

Because of the multiple integral in (12), direct calculation
of the acquisition function in (14) can be computationally
expensive. An alternative approach can be taken here to
search the maximum of the acquisition function. From (11),
it is seen that AEI(x") tends to be large when EI(x") is large.
AEI(x") has a similar trend as EI(x"). Thus, the location of the

Case Formulation Optimal solution
Case 1 f(x) = (6x-2)*sin(12x—4) Xpest = 0.7573
f1(x) = 0.5f,(x) + 10(x—0.5)=5 S n(best) = —6.0207
x€(0, 1]
Case 2 f3(%) =40 +x° +x100 Xpesr = [0.8846, 1.1500]
gy(x) = 1/x1 + 1/x2 J i (Xpest) = 5.6684
() = 4(x1 4 0.1)* + (x2-0.1)° + x1x2 + 0.1
g/(x) =1/x; +1/(x3 + 0.1)-2-0.001
xl,xze[O.l, 10]
Case 3 I (x) = 4x12—2.1x14 + X1XQ—4)C22 + 4XZ4 Xbest = [70-08987 0-7127}
F(x) = 40 4 0.1)* + (x2-0.1)° + x1x2 + 0.1 Sy (Xpest) = —1.0316
X1,X%6[-2, 2]
Case 4 4 3 Xpest = [0.114,0.556,0.852]
Salx) =~ X Crexp {— Z Ay (x/=Py) F(Xpest) = 3.8627
i= Jj=
f1(x) = f(x) + 7.6MA3(x)
310 30
0.1 10 35
where A = 310 30 , C=
0.1 10 35
0.3689 0.1170 0.2673
p_ | 04699 04387 07470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828
MA3(x) = 0.585-0.324x,-0.379x,—0.43 1.x3—0.208x,
40.326x1x3 + 0.193x2x3 4 0.225x;2 + 0.263x,% + 0.274x3>
0<x;<1,fori=1,2,3;
Case 5 Xper = [1,1,1,1,1,1,1,1,1,1]

f‘h (xbest) =0

flx) = ;zol exp(x;) (A(i) +x-In @1 exp (xk)> )

10 10
110 = ¥ expla) (B(z') txn (F. exp(xk>))
A= [-6.089,~17.164,~34.054,-5.914,~24.721,
~14.986,~24.100,—10.708, ~26.662, ~22.179]
B =[-5,-10,-30,-5,-25,~15,-20,~10,~25, —20]
xel-5,5),i=1,2,..., 10
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Fig. 1 The hierarchical Kriging model and EI function of the one-dimensional function a The initial samples, MF model, and EI functions b The updated
MF model and EI function after the first iteration ¢ The updated MF model and EI function after the second iteration
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new LF sample point tends to be selected near the location
where a large El is obtained. Therefore, the EI function for HF
sampling can be used in search of maximum, which approx-
imates the true location of the maximum expected further
improvement. From the sample location, the acquisition func-
tion in (14) can be evaluated based on the surrogates at both
fidelity levels, and the fidelity level which leads to a larger
acquisition value is selected. The worst-case scenario of this
heuristic searching approach is that its searching efficiency is
the same as the standard EGO.

3.2 Constrained acquisition function

In general, the constraints in engineering optimization can be
divided into two categories: known constraints and unknown
constraints. Known constraints can be evaluated easily and
analytically without running a simulation. In contrast, un-
known constraints are much more complex and usually related
to design performance. Whether they are satisfied or not can
only be determined after running a simulation. In this work,
the penalty function approach (Coello 2000; Shu et al. 2017)
is used to handle known constraints where the objective func-
tion is penalized. Researchers have proposed different ap-
proaches to hand unknown constraints such as constrained
EI (Schonlau et al. 1998) and surrogates of constraints
(Gardner et al. 2014; Gelbart et al. 2014; Tran et al. 2019a).
Here, unknown constraints are incorporated in the new acqui-
sition function.

For an unknown constraint g(x)<0, we define an indication
function F(x) as

=1, if g(x)<0

Flx) = {: 0, if g(x) >0 (13)

Since g(x) cannot be evaluated without running a simula-
tion, we can also construct a hierarchical Kriging model and
assume that the prediction of g(x) obeys a normal distribution

glx)~N (g(x)7a§(x)). Then, the constrained acquisition

function is defined as

Table 2 The searching process of the proposed approach

No. Location Fidelity level The best observed objective function
1 08712 1 0.9093
2 0.8232 1 0.9093
307211 2 —5.4033
4 0.7283 2 —5.6147
5 02953 1 —5.6147
6  0.7565 2 —6.0204

1 :

Best '

observed Of
objective i \
-1t i !

\!

—EGO
----MFEI T

--=-- Proposed approach

2r :
-3t i
-4t X

5t

B}

Ty 6 8 10 12

Computational cost

Fig. 2 The convergence curves of the three approaches for the one-
dimensional example

ac(x, fidelity) E[F(x)a(x, fidelity)]
g[F(x)]E[a(x,ﬁdelity)] + cov[F(x), a(x, fidelity)] (16)

[F(x)]a(x, fidelity) + cov[F (x), a(x, fidelity)]

In general, the correlation between F(x) and a(x, fidelity)
can be ignored. Thus, cov[F(x), a(x, fidelity)] = 0. According
to the definition of F(x), E[F(x)] can be calculated as

EIF()] = Ple(x)=0) = @(f((jj))) (1)
Then (16) can be expressed as
ac(x, fidelity) = ® @&) ) alx, fidelity) (18)

4 Examples and results

In this section, five numerical examples and one engineering
case study are used to demonstrate the applicability and per-
formance of the proposed approach. The formulations of the
five numerical examples and the respective optimal solutions
(Caietal. 2016; Zhang et al. 2018; Zhou et al. 2016) are listed
in Table 1. f,(x) and f(x) represent the HF and LF models,

Table 3 The number of sample points and computational cost in
different approaches for Case 1

Number of HF  Number of LF
sample points

Computational
sample points  cost

MFEI 9 11.25

Standard EGO 10 6 11.5

Proposed 6 9 8.25
approach

@ Springer
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Table 4 The average numbers of sample points in different approaches for Cases 2, 3, and 4
Case 2 Case 3 Case 4
Number of LF Number of HF Number of LF Number of HF Number of LF Number of HF
samples samples samples samples samples samples
Standard EGO 12.00 44.86 12.00 25.40 18.00 19.10
MFEI 38.50 44.76 19.63 23.97 27.00 15.90
Proposed approach 12.26 45.77 21.63 20.47 24.20 15.77
(T=4)
Proposed approach 12.63 44.50 26.43 19.93 29.00 14.87
(T=10)

respectively. gj(x)and g,(x) represent the HF and LF con-
straints, respectively. X, is the optimal solution and f},(xpes)
is the corresponding response.

The proposed approach is compared with the standard
EGO (Jones et al. 1998) and the MFEI method (Zhang et al.
2018). Note that the cost difference between HF and LF sam-
ples is not considered in the MFEI method, in contrast to our
approach. The computational cost is calculated as

cost = ny + (19)

T
where n;, and n; are the numbers of HF and LF samples, re-
spectively. T is the cost ratio.

4.1 The one-dimensional example

The first numerical example in Table 1 is used for the illustra-
tion of the proposed approach as well as a detailed comparison
between different approaches. Here we assume that the cost of
a HF sample point is 4 times of a LF sample point (7'=4).
The initial hierarchical Kriging model is constructed based
on six LF sample points S;= {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
and three HF sample points S, = {0.0, 0.5, 1.0}. The initial
samples are uniformly distributed in the design space. The
initial sample points, the constructed HF and LF models, the
initial hierarchical Kriging model, and the EI function are
shown in Fig. la. The maximum value of EI function is at
x1=0.9093. At this location, X AEl(x;) = 1.8598 and

Table5 Computational costs of different approaches for Cases 2,
3, and 4

T=4 T=10

Case2 Case3 Case4 Case2 Case3 Case4
Standard EGO 48.67 29.77 23.60 4687 2797 20.90
MFEI 5439 2888 22.65 4861 2593 18.60
Proposed approach 48.84 2588 21.82 4576 2258 17.77

E[AEI(x;)] = 6.7459. Hence, a LF sample point is added at
this location.

The updated hierarchical Kriging model and EI function
are shown in Fig. 1b. Similarly, a LF sample point is added
at x, =0.8232 in the second iteration, where + AEI}(x;) = 1
7698 and E[AEI[(x,)]=5.7174. The updated hierarchical
Kriging model and EI function are shown in Fig. 1c. The
maximum value of EI function in this iteration is at x3 =
0.7211. At this location, +AEl,(x;) = 0.8018 and
E[AEI(x3)] = - 1.8252. Hence, a HF sample point is added
in the third iteration.

The searching process of the proposed approach in the first
numerical example is listed in Table 2. The proposed ap-
proach requires three LF samples and three HF samples to
find the optimal solution. The termination criterion for this
numerical example is set as

|fmin7fh (xbest) | <e

where £, i the best observed objective function and ¢ is set
to be 0.01.

The convergences of the three approaches for the first nu-
merical example are compared in Fig. 2. The numbers of total

(20)

30
Best
observed —EGO
objective 25 ===-MFEI i

--=:- Proposed approach

20l |
15 1
o kg’
10} | &k .
- el
5l e —
o 1 1 1 1
100 150 200 250

Computational cost

Fig. 3 The convergence curves of the three approaches for the high-
dimensional example
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Table 6 Comparing results of the

three approaches Best observed Number of LF Number of HF Computational cost
objective samples samples
Standard EGO 8.36 100 210 235
MFEI 5.57 204 49 100
Proposed approach 4.85 160 100 140

HF and LF sample points, including the initial samples, and
the computational costs of the three approaches are listed in
Table 3. Note that the initial samples also need to be included
in estimating the overall costs. For the standard EGO which
itself is for single-fidelity optimization, the same numbers of
initial LF and HF samples are recorded for comparison. After
the initial model is constructed, the sample points added in the
following iterations are counted as HF samples. It is seen from
Table 3 that the proposed approach requires the least compu-
tational cost to find the optimal solution for the first example.
The convergence criterion in Eq. (20) is applied in all three
approaches.

4.2 Numerical examples for Cases 2 to 4

For numerical examples of Cases 2 to 4, Latin hypercube
sampling (LHS) (Park 1994; Wang 2003) is used to generate
the initial HF and LF sample sets. The sizes of the initial HF
and LF sample sets are set to be 3 times and 6 times of the
dimensions of the problems, respectively. To account for the
influence of randomness, each of these cases is solved 30
times with each of the three approaches. The results for the
average numbers of LF and HF sample points are compared in
Table 4. The same convergence criterion in (20) is applied for
all cases. To illustrate the effect of the cost ratio on the pro-
posed approach, two different cost ratios (7’=4 and 7= 10)
are tested for the proposed approach. Based on the acquisition
functions in (14) and (18), the proposed approach tends to

The circumferential
shell

Fig. 4 The geometric model of the cylindrical shell and the long base
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select more LF sample points if the cost of LF sampling is
lower (i.e., a higher cost ratio).

For Case 2, the EGO and proposed approach require almost
the same number of LF and HF sample points, while the MFEI
method samples much more LF sample points than the other
two approaches. However, this does not reduce the number of
HF samples required in the MFEI method. For Case 3 and
Case 4, the MFEI method and the proposed approach require
fewer HF sample points than the EGO by supplementing with
LF sample points. One key difference between the MFEI
method and the proposed approach is that the cost ratio is
not considered in the MFEI method. The proposed approach
tends to sample more LF sample points and fewer HF sample
points as the cost ratio increases.

The computational costs of different approaches for 7'=4
and 7= 10 according to (18) are listed in Table 5. For Case 2,
the EGO and the proposed approach have similar computa-
tional costs, which are lower than that of the MFEI method.
For Case 3 and Case 4, the MFEI method is more efficient
than EGO, and the proposed approach has the lowest cost
among the three approaches.

4.3 Case 5: a high-dimensional example

The fifth numerical example is used to test the ability of the
different approaches to solve high-dimensional optimization
problems. LHS is applied to generate the 40 initial HF samples
and 100 initial LF samples. In this example, we set the

The long base
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Table 7  The ranges of the design variables

Design variables Range

The first half of the base Thickness of the panel ¢, 40-90 mm
Thickness of the web #, 12-40 mm
Thickness of the rib #3 10-60 mm

The second half of the base ~ Thickness of the panel z;, ~ 40-90 mm
Thickness of the web 5 12-40 mm
Thickness of the rib 7 10-60 mm

maximum number of iterations to 200 to observe the conver-
gence process of different optimization approaches.

The convergences of the objective values along with the
computational costs for the three different approaches are
compared in Fig. 3. The best observed objectives, the numbers
of LF and HF sample points, and the corresponding compu-
tational costs (7'=4) for the three approaches after conver-
gence are listed in Table 6.

From Fig. 3 and Table 6, it is seen that the standard EGO and
the proposed approach can obtain a better optimal solution than
the MFEI approach. Compared to the EGO, the proposed ap-
proach has a lower computational cost to converge to the optimal
solution. After 200 iterations, the cost of MFEI is the least, since
the MFEI approach added the most LF samples and the fewest
HF samples. The overreliance on LF samples led to the missing
out on the opportunities to reach a better solution.

4.4 Engineering case study: impedance optimization
of the long base

As an engineering case study, the proposed approach is ap-
plied to optimize the long base of a ship. The simulation mod-
el of the problem consists of a cylindrical shell and a long
base, which is shown in Fig. 4. The optimization objective is
to maximize the minimum impedance of the pedestal while
keeping the weight below 3.4 tons. The mechanical imped-
ance of a vibrating system is the complex ratio of a harmonic

Table 8 The fixed parameters related to materials and geometries

Parameters Values
Young’s modulus 2.09 x 10°MPa
Density 7850 kg/m®
Poisson’s ratio 0.3

Length of the shell 12,000 mm
Radius of the shell 3300 mm
Spacing of ribs 600 mm
Radius of the hole in the web 75 mm

Width of the hole in the web 210 mm
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Fig. 5 The convergence curves of the three approaches

excitation to its response. In this example, the impedance is
the origin impedance, which is the complex ratio of a harmon-
ic excitation to its response at the same location. To calculate
the impedance, two unit harmonic forces are loaded in the Y-
axis direction at point A and point B of the long base in Fig. 4.
The frequency of the unit harmonic forces ranges from 0 to
350 Hz. The displacements at the ends of the cylindrical shell
and the part of the base connected to the bulkhead are fixed to
zeros. The six design variables shown in Fig. 4 are listed in
Table 7. Other fixed parameters related to materials and ge-
ometry are shown in Table 8.

For the HF model, the step size of frequency calculation is
chosen to be 2.5 Hz. For the LF model, the step size of calcu-
lation is 10 Hz. The computational cost of the HF model is 4
times of the LF model (7'=4). The convergence of the objec-
tive values along with the computational costs for the three
approaches is plotted in Fig. 5. The best observed objectives,
the numbers of LF and HF sample points, and the correspond-
ing computational costs for the three approaches after conver-
gence are listed in Table 9. For further comparison, the simu-
lation resolution is further reduced to the step size of 25 Hz
and applied as the LF model (7=10). The results are also
listed in Table 9.

From Fig. 5 and Table 9, it is seen that the MFEI method
and the proposed approach can obtain a better optimal solu-
tion than the standard EGO. Compared to the EGO and MFEI,
the proposed approach has a lower computational cost to con-
verge to the optimal solution. The proposed approach can rely
more on LF sample points when the LF model is cheaper. This
indicates that the proposed approach can adjust the sampling
process adaptively according to the cost of obtaining extra
information.

5 Concluding remarks

In this paper, a MFBO approach for global optimization is
proposed based on the hierarchical Kriging model and a new
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Table 9 Comparing results of the

three approaches Best observed Number of LF Number of HF Computational cost
objective samples samples
Standard EGO 5.2696 36 40 51
MFEI 5.2782 43 49 59.75
Proposed approach (7'=4) 52763 40 37 47.75
Proposed approach (7'=10) 52774 46 29 40.5

acquisition function. In the new acquisition function, the value
of LF sample points is quantified as the expected further im-
provement and the cost ratio between HF and LF sampling is
considered. Both the location and fidelity level of the next
sample point are determined simultaneously by maximizing
the acquisition function. For constrained problems, the acqui-
sition function can be further generalized with the surrogates
of constraints. The proposed approach has been demonstrated
with five numerical problems and one engineering design
case. Compared to single-fidelity BO and an existing multi-
fidelity BO method, the new approach incorporates the sam-
pling cost differences in the sequential process and shows a
higher level of efficiency.

The major limitation of the proposed acquisition function is
the cost of direct computation. In this paper, a heuristic ap-
proach is taken in search of the maximum of acquisition based
on the EI of the HF model. The search efficiency is usually
better than or at least not worse than the standard EGO. In
future work, efficient computational methods for the new ac-
quisition function with the expected further improvement will
be investigated. Numerical integration methods such as quad-
rature and importance sampling can be helpful.

In the proposed acquisition function, the cost ratio of HF to
LF samples plays a major role. In all examples of this paper,
the ratios were assumed to be known a priori. When the costs
of HF and LF simulations are not previously known in
simulation-based design optimization, an initial ratio can be
estimated. During the sequential sampling process, the cost
ratio can be updated on the fly once the simulations are run
and actual costs become available. Thus, the acquisition func-
tion can be adjusted adaptively. Nevertheless, the overall sam-
pling cost proposed in (19) to evaluate the performance of
MFBO approaches requires further study for its fairness in
comparisons.

Scalability has been a major issue for Kriging-based
metamodeling. The number of samples increases exponential-
ly as the dimension of the searching space increases.
Approaches such as batch parallelization (Tran et al. 2019a,
2019b) and sparse Gaussian process (Mclntire et al. 2016;
Zhang et al. 2019) have been applied in Bayesian optimization
to alleviate the dimensionality challenge of Kriging. Yet much
work of Bayesian optimization for high-dimensional prob-
lems remains.
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