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Abstract

Considering the high computational cost caused by solving multi-objective optimization (MOO) problems, an efficient multi-
objective optimization method based on the adaptive approximation model is developed. Firstly, the Latin hypercube design
(LHD) is employed for obtaining the initial sample points. Secondly, initial approximation models of objective functions and
constraints are established by using the radial basis function (RBF). For ensuring the accuracy of the approximation models, the
reverse shape parameter analysis method (RSPAM) is proposed to obtain improved approximation models. Thirdly, the micro
multi-objective genetic algorithm (UMOGA) is adopted to solve the Pareto optimal set and the local-densifying approximation
method is also applied to strengthen the ability of solving accurate Pareto optimal sets. Finally, the effectiveness and practicability
of the proposed method is demonstrated by two numerical examples and two engineering examples.

Keywords Multi-objective optimization - Reverse shape parameter analysis method - Local-densifying approximation method -

Adaptive approximation model

1 Introduction

The multi-objective optimization (MOO) problems widely ex-
ist in engineering design (Zarchi and Attaran 2019; Tian et al.
2018; Wang et al. 2011; Jaouadi et al. 2020), and a large
number of optimization schemes have been provided by dif-
ferent MOO methods. A series of prominent work in this filed
has been carried out and reported. Omkar et al. (2011) pro-
posed a vector evaluated artificial bee colony (VEABC) algo-
rithm to deal with the multi-objective design optimization of
the laminated composite components. Bui et al. (2019) sug-
gested a multi-objective optimization method based on the
mixed integer linear programming (MILP) to determine
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trade-off between conflicting operation objectives of wind
farm systems. Posteljnik et al. (2016) proposed a multi-
objective optimization method for the wind turbine structure
by adopting the particle swarm (PSO) algorithm. In the
abovementioned works, the multi-objective optimization
problems are mostly formulated by explicit mathematical ex-
pressions. However, the objective functions and constraints
are usually black-box functions for most MOO problems,
which are evaluated by complex simulation model with high
computational costs and poor efficiency (Liu et al. 2015,
2017a, b; Hu et al. 2020). Therefore, an efficient method for
solving the MOO problems should be developed.

To achieve better efficiency of the existing MOO method
in dealing with the complex engineering problems, many
scholars use the approximation model instead of the actual
numerical simulation model such as Kriging (Choi et al.
2018), radial basis function (RBF) (Liew et al. 2004), and
support vector regression (Lu and Roychowdhury 2008).
Furthermore, a series of optimization methods based on the
approximation model are further developed, which are exten-
sively utilized in the optimal design of complex engineering
problems. Kiani and Yildiz (2016) adopted the radial basis
function to optimize the crashworthiness and NVH of the
vehicle. Bu et al. (2018) employed the adaptive Kriging model
to optimize the physical properties of the flywheel motor.
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Manshadi and Jamalinasab (2017) used response surface
model to optimize the flap shape of unmanned aerial vehicle.
In the reliability analysis (Liu et al. 2019a, 2020; Peng et al.
2018), the approximation model is also commonly used. Liu
et al. (2019b) applied the radial basis function to perform the
reliability analysis of complex structures. Zhang et al. (2017)
adopted the response surface to evaluate the time-dependent
reliability of uncertain structures. In order to further improve
the accuracy of multi-objective optimization algorithm, the
adaptive approximation model which contains updating man-
agement frameworks is also employed for the MOO prob-
lems. Yang et al. (2002) solved the multi-objective optimiza-
tion problem of the [-beam structure by adopting the adaptive
approximation models which are sequentially updated during
the iterative optimization process. Fang et al. (2014) employed
the multi-objective particle swarm optimization (MOPSO) al-
gorithm for the crashworthiness design by using the adaptive
approximation models, in which sequential sampling points
are generated over the design space and the Kriging models
are refitted in an iterative fashion. Jang et al. (2009) proposed
an adaptive approximation framework and a convergence cri-
terion of the adaptive approximation model to perform the
multi-objective optimization for the full stochastic fatigue de-
sign problem. In the above works, the approximation model is
widely used to solve engineering problems, but it is only the
engineering application of approximation model and the
method of constructing approximation model is not detailed
discussed. Considering the accuracy of approximation model
directly affects the optimization results of engineering prob-
lems, hence the method of constructing approximation model
should be further researched.

In recent years, many studies have been proposed on how
to achieve better efficiency and accuracy of the approximation
models. Wang et al. (Wang et al. 2001; Wang 2003) devel-
oped the inherited Latin hypercube sampling (LHS) approach
to strengthen the prediction ability and stability of the adaptive
response surface. Cheng et al. (2015) proposed a trust region
peak tracking sampling approach to enhance the ability of
approximation model when dealing with the high-
dimensional problems. Garud et al. (2017) suggested a united
sampling criterion to enhance the overall accuracy of the glob-
al optimum in the approximation-based problems. As men-
tioned above works, the accuracy of approximation model is
improved effectively based on the selection and layout of
samples. It is noteworthy that the shape parameters of the
approximation model, nonlinearity of objective functions,
and constraints also affect the accuracy of the approximation
model besides the samples. Although some scholars
(Stolbunov and Nair 2018; Fasshauer and Zhang 2007,
Long et al. 2016; Lee et al. 2008; Koupaei et al. 2018; Sarra
and Sturgill 2009; Fornberg and Piret 2008) have studied the
selection methods of the shape parameters in the constructing
approximation model process, these methods determine the

@ Springer

shape parameters by samples and use the same shape param-
eters to construct approximation models of different nonlinear
optimization objective functions and constraints, which will
inevitably cause the error of approximation model.
Considering the existence of different nonlinear optimization
objective functions and constraints, therefore, the shape pa-
rameters should be determined according to specific optimi-
zation objective functions and constraints rather than only
according to samples. Meanwhile, the prediction ability of
the approximation model cannot be guaranteed by the con-
struction of the primary approximation model. Therefore, fur-
ther studies for updating approximation model are necessary.
This method should determine the location and direction of
the distribution samples through the model management tech-
nology, so as to continuously update the samples and modify
the approximation model until the accuracy requirements are
reached. Hence, for promoting the MOO method into practical
applications, the high-efficiency MOO methods with approx-
imation model need to be developed.

For the above reasons, an efficient MOO method based on
the adaptive approximation model is developed and applied to
the practical engineering applications in this paper. The frame
of this paper is organized as follows: the MOO problem and
the related definitions are first introduced in Section 2. Then,
an efficient MOO method based on the adaptive approxima-
tion model is detailed and discussed in Section 3. In Section 4,
two numerical examples and two engineering examples are
investigated to demonstrate the effectiveness of the present
method. Finally, some conclusions are summarized in
Section 5.

2 Statement of the multi-objective
optimization problem

A typical description of multi-objective optimization (MOO)
problem is as follows:

min fiIX), 1=1,2,....a (1)
st. h,(X)=0,u=1,...,b

g, (X)<0,v=1,...,c

X=WX,Xg X)) d=1,...n

where X = (X}, Xy, ..., X,)" stands for the n-dimensional
vector which consists of design variables. f; (X) denotes the
objective function. %, (X) and g, (X) represent the equality
constraint and the inequality constraint, respectively. During
the process of solving the abovementioned multi-objective
problems, a series of feasible solutions can be solved. X,
and X, are individual solutions in the feasible set {2g, namely,
Xe, Xy € (2. If the objectives corresponding to the solution X
are partially superior to the objectives corresponding to the
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Table 1  Different basis functions
No. Name Basis function Shape parameter
1 Gaussian e e
2 Cubic i +e) €
—1
3 Inverse multiquadric (P +e%)> €
4 Logistic 1/(1+¢€™") €
. .. . . - N
solution X, it is defined that the solution X, dominates the FX) =3 wih(r) (2)
i=1

solution X, written as X, < Xy,. If the objectives correspond-

ing to the solution X are all superior to the objectives corre-
sponding to the solution X, it is defined that the solution X,
strongly dominates the solution X, written as X¢ < Xy. If
X™ € Qg and there is no X € 2g dominating X*, the solution
X" is defined as the Pareto optimal solution or non-dominated
solution of the multi-objective optimization problem.

The Pareto optimal solutions in the feasible set ()g are con-
sidered to be equally important unless further information is
provided from the decision-maker. These Pareto optimal so-
lutions are defined as the Pareto optimal set or non-dominated
set. The Pareto optimal set converge into a curve in the feasi-
ble design space which is defined as the Pareto optimal fron-
tier. The aim of the multi-objective optimization algorithm is
to find the Pareto optimal set to form the Pareto frontier.
However, the challenge to the most MOO problems is that
the objective functions and constraints are usually implicitly
functions, which are evaluated by complex simulation model
with high computational costs and low efficiency. Therefore, a
multi-objective optimization method with high efficiency
should be developed.

3 The multi-objective optimization method
based on the adaptive approximation model

As mentioned above, during the process of solving multi-
objective optimization problems, complex function evalua-
tions may cause a high computational cost and low efficiency.
Thus, an efficient MOO method based on the adaptive ap-
proximation model will be developed and discussed in the
following contents.

3.1 Radial basis function (RBF)

Radial basis function is a linear combination of radial func-
tions with respect to the Euclidean distance between the pre-
dict points and the sample points (Amouzgar and Stromberg
2017; Zhang et al. 2020), which can be used to approximate
complex simulation model or black-box function. The RBF
can be defined as:

where 7(X) denotes the response value of approximate func-
tion. N is the number of samples which are generated by the
experimental design such as the Latin hypercube design
(LHD) (Park 1994; Joseph et al. 2015; Husslage et al. 2011).
w; represents the coefficient of the linear combinations. /(r;) is
the basis function, and r; = [IX — X,llis the Euclidean distance
between the predict point and the samples.

When N samples are obtained, the corresponding RBF
model can be expressed as:

f=hw (3)

where f denotes the N-dimensional response vector of sam-
ples. w is the coefficient vector. h represents N x N dimension-
al matrix, which is described as follows:

(11X =X ) h([[X1 =X |])
h = N . N (4)
A(IXv=Xal)) - A(IXy =Xy )
And the coefficient vector w can be calculated by Eq. (5):
w=h'f (5)

When the coefficient vector w obtained is substituted into
Eq. (2), the approximation model based on RBF is finally
constructed. It is noteworthy that the prediction accuracy of
the approximation model is significantly affected by the se-
lection of the basic function which is listed in Table 1.

Due to the strong applicability of Gaussian function and its
wide application in approximation models, the Gaussian func-
tion is chosen for a representative of the basis functions in this
paper. The Gaussian function is expressed as follows:

h(r) = e r = | X=X (6)

where € denotes the shape parameter. In the process of con-
structing approximation model, there is usually no obvious
formula to describe the intrinsic connections between the
shape parameter and the sample points. Moreover, the accu-
racy of approximation model will be directly affected by the
setting of shape parameters. Thus, it is necessary to develop a
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Fig. 1 Flowchart of the MOO
method based on the adaptive
approximation model

> Computing the response values

Actual
simulation model

Setd, s=1
Sampling by the LHD

v

£(X)> b, (X) and g, (X)

v

Obtaining the optimal shape parameter by
RSPAM

v

Constructing approximation models
Obtaining the approximate MOO problem |«mm=—— s: =5+]
Eq.(12) i

Solving Eq.(12) by tMOGA
Obtaining ],<’>(x(')), i (x ), and 22(x¥)
at optimal solution X

v

Computing the response values

more effective method for setting shape parameter to ensure
the prediction ability and accuracy of the approximation
model.

3.2 Reverse shape parameter analysis method
(RSPAM)

According to the construction principle of the above approx-
imation model, the approximation response value at the sam-
ple is equal to the actual response value. However, there is a
certain error of the approximation model at the predict point.
When the initial samples are fixed, the error is related to the
selected basis function and its shape parameters. Therefore, a
reverse shape parameter analysis method based on the RBF is

@ Springer

f,“’(x(‘)), h:")(x(f))’ and gf.” (x(l))

max * = Add {X(z)}

{ £ ( x(‘))}

is the optimum

developed in this section. Based on this method, the accuracy
and efficiency of the approximation models will be greatly
enhanced. The following is discussed in detail.

Table 2 The shape parameters under different M values (numerical
example A)

M value Shape parameter (¢)
SiX) F(X) 21X £2(X)
M=4 0.4248 0.3968 0.2363 0.0127
M=5 0.0984 0.0783 0.2593 0.5904
M=6 0.0799 0.1552 0.4607 0.3150
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Table 3 The count of samples in

Local-densified samples

Total samples Maximum error (%)

the iterative process and the M value Iterative step
corresponding maximum error
(numerical example A) M=4 Step 1
Step 2
Step 3
M=5 Step 1
M=6 Step 1

S O = N O

50 13.74%
52 10.25%
53 4.65%
50 3.00%
50 7.97%

Firstly, N samples Qx = {X, ..., X, ..., Xp},/=1,2, .., N
containing the key point X; are given by Latin hypercube
design (LHD). Meanwhile, M adjacent sample points

Oy = {x’f XK .,xﬁ},pzl,z, oo Mand Qyc Oy,

X
near the key point X; are used for constructing the mini RBF:

(7)

M 2
o)y = 3 XD,
P=

In Eq. (7), the coefficient vector w= (wy, ..., wyy) Tand the
shape parameter ¢ are two unknown variables which need to
be solved. Based on Eq. (5), the coefficient vector w = (wq,
..., wy) " can be expressed as Eq. (8):

T<h()xf:Xf|) h(IXf:Xﬁl))l<fT§f)>
(XXl )\ ()

Secondly, substituting the key point X; into the above mini
RBF Eg. (7) and assuming that the approximate function val-
ue]‘(X j) at the key point X is equal to the actual valuef (X)),
namely:

f(X) =1(X))
= 3 n([xxE]) o= IR, )
p=1 p=1

T

= (A(IXXT]) - XX ) 20w i)

Then, the equation for solving the shape parameter can be
obtained by substituting Eq. (8) into Eq. (9) as follows:

w= Wi, ...,wy) = :
A([IXEXE]])
(8)
Fig. 2 The iterative process and 10 8
optimization results under M =4 O Approximation model a O Approximation model
numerical example A 7
( p ) 8 O Actual model . O Actual model
T | o g 6 o
g =
59 o 3
£ o Step 1 = 5 3 Step 2
2 4 g %
.- Q
B 4
131 o O -2,
o 3 By %
% 75 100 125 150 %0 60 80 100 120 140
Objective function 1 Objective function 1
9
8 @ O Approximation model
o 7 O Actual model
§ . &
£ 6
E
= 5 Step 3
:) °® g ?
S 4
2 S o
o3 Fpa o
2
%0 70 920 110 130

Objective function 1
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7
o O Approximation model

6 O Actual model

N
o

£s
° Step 1
2
o
£ 4 Qu 5
3
=
o

3 e

%5 85 115 145

Objective function 1

Fig. 3 The iterative process and optimization results under M =5
(numerical example A)

(X)) =7 (X))

= (h(XXE]) - A ) )0,
= () = n(ixxid))

(XEXED) - n(XEXED (e

RXEXE) o m(IXEXE]) ) \r(xE)

(10)

Based on the above analysis, only one unknown variable of
shape parameter ¢ is included, which can be solved by Eq.
(10). It is worth noting that a key point and its adjacent sam-
ples can be used to obtain a corresponding shape parameter
value by solving Eq. (10). Hence, taking N samples
Ox=1{X}, ... X, ..., Xpn},j=1,2,..., Nas key points in turn,
Ncorresponding shape parameters Q.= {cy,...,€, ..., en},
j=1,2, ..., Ncan be obtained by solving the above steps. In
this paper, these shape parameters ). = {ey, ..., €}, ..., €y} are
called “candidate shape parameters.”

107
O Approximation model
o 8 8 O Actual model
g o
- o
Q L
é 6 Step 1
2
4 °
£ ®a
S} oy m
2,
% 75 100 125 150

Objective function 1

Fig. 4 The iterative process and optimization results under M =6
(numerical example A)
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Table 4  The shape parameters based on different methods (numerical
example A)

Method Shape parameter (¢)

SiX) SX) g1X) £(X)
RSPAM (M =5) 0.0984 0.0783 0.2593 0.5904
Long’s method 1.0460 1.0460 1.0460 1.0460
Koupaei’s method 0.0010 0.1230 0.0010 0.0010

Thirdly, N candidate shape parameters .= {cy, ..., €,
...,en} are used to construct N test approximation models,
respectively, and the error analysis is also performed for every
test approximation model. The candidate shape parameter
with the minimum error is identified as the optimal shape
parameter for constructing the approximation model. The de-
tailed process is as follows:

The samples Qx = {X, ..., X, ..., Xy}are divided into two
parts according to the sample number. The first half of the
samples {Xj, ..., Xy} are used as the “the construction

points,” and the second half of the samples {Xg IR TR XN}

2
are chosen as the “the test points.” The construction points are
combined with each candidate shape parameter ¢; to construct
corresponding approximation model, and the test points are
adopted to evaluate the prediction ability of the approximation
model through the error criterion o; defined by Eq. (11).

% S X)—f~(X))
[:%4»1 f(Xt)
UI: N ’ ]:1727 '5N7t
2
N
=5 +1.N (11)

wheref'(X,) denotes the actual value at the test point and 7(X,)
represents the approximate value of the function at the test
point. After all the errors corresponding to candidate shape
parameters are obtained, the shape parameter with the mini-
mum error is chosen for the optimal shape parameter.

Finally, the samples Qx = {X{, ..., Xy} are combined with
the optimal shape parameter to construct the final approxima-
tion model.

3.3 Local-densifying approximation method

When the approximation models of objective functions and its
corresponding constraints are constructed based on the RBF,
the MOO problem in Eq. (1) becomes the following approx-
imate MOO problem:
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Table 5 The count of samples in

Local-densified samples Total samples Maximum error (%)

the iterative process and the Method Iterative step
corresponding maximum error
(numerical example A) RSPAM (M =5) Step 1
Koupaei’s method Step 1
Long’s method Step 1
Step 2
Step 3
Step 4

0 50 3.00%
0 50 6.46%
0 50 28.90%
4 54 19.04%
2 56 30.58%
3 59 8.80%

min £/(X),0 = 1,2, ....as.65,(X) = 0,

=1,...,bg,(X)<0,v=1,...,¢X

= (X1, Xg,... X)) d=1,....n (12)
where f,(X), £,(X), and g,(X) represent approximation
models of the objective function, the equality constraint, and
the inequality constraint, which are explicit functions with
respect to the design vector X.

For the approximation MOO problem in Eq. (12), the
Pareto optimal set of objective functions and their correspond-
ing constraint function values are primarily concerned.
Considering the accuracy of the abovementioned approximate
models depend largely on the samples in the experimental
design space, hence, it is necessary to arrange the samples

more reasonably so that the limited samples are more

distributed near the region where the Pareto optimal set are
found. When the prediction ability and accuracy of the ap-
proximation model are ensured in the local area where the
Pareto optimal set are found, more reliable optimization re-
sults can be obtained.

For these reasons, the local-densifying approximation
method is applied to enhance the local precision of approxi-
mation models in the Pareto optimal set, which is the main
mechanism of the adaptive approximation model. The local-
densifying approximation method is an updating strategy of
sampling method which concentrates limited sample re-
sources to the local regions we concerned, namely, more sam-
ples are expected to be densified into the local regions where
the Pareto optimal set are found. In the local-densifying ap-
proximation method, the Pareto optimal set are obtained and
evaluated in each iteration step. According to the approxima-
tion values at the optimal Pareto set, the approximation

Fig. 5 The iterative process and 10 10
optimization results based on the O Approximation model O Approximation model
Long’s method (numerical 8 O Actual model o8 O Actual model
(] =]
example A) : o . § @
g 6 @B 2 6 o
Z Step 1 e o Step 2
4 k3]
£ 4 - 2 4
131 o )
% o u] o oo @ go
o ) o o © oo
2 2
0n n n n n n s
25 50 75 100 125 150 175 35 50 75 100 125 150 175
Objective function 1 Objective function 1
10 10
O Approximation model O Approximation model
a8 O Actual model o 8 O Actual model
=]
2 g @
g 8 2
5 6 g 6 o
s = Step 3 & o Step 4
B P o Ou P
3 4 o,Pm £ 4
-2, (o] b
S ° @ 2 @8 ogm
2 ofo  ®© )
Q 0
50 100 150 200 40 65 920 115 140

Objective function 1

Objective function 1
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8
m]
7 fo) O Approximation model
O Actual model

a6
=
S
£ 5 B Step 1
=
(]
2 %
5 4 W g
g -]

3 Tl

% 75 100 125 150
Objective function 1

Fig. 6 The iterative process and optimization results based on the
Koupaei’s method (numerical example A)

models are updated by adding local-densified samples to the
sample space for next iteration until the stop criteria are satis-
fied. Therefore, it ensures that the approximation models have
small approximate errors in the Pareto optimal set and the
result can be more reliable.

3.4 Computational procedure

In this method, the micro multi-objective genetic algorithm
(MMOGA) (Liu et al. 2012) is applied to solve the MOO
problem in Eq. (12) due to the utMOGA has an outstanding
performance in searching the Pareto optimal set. The compu-
tational procedure of the proposed MOO method is given in
Fig. 1 and the details are outlined as:

(1) Sampling in the design vector space by the LHD. Set the
allowable error § and initial iteration step s=1.

(2) According to the above initial samples, computing the
actual response values of the objective function f(X)and
constraints /,(X) and g,(X) evaluated by the actual sim-
ulation model.

(3) Obtaining the optimal shape parameter by using Reverse
shape parameter analysis method.

(4) Constructing approximation models of the objective
function and constraints and obtaining the approximate
MOO problem as Eq. (12).

Fig. 7 The structure of I-beam

Table 6 The shape

parameters under Myvalue  Shape parameter (¢)

different M values

(numerical example B) HX) LX) 2X)
M=4 0.6657 0.3412 0.1448
M=5 0.3874 0.1196 0.2969
M=6 0.4258 0.3817 0.4296

(5) Solving the approximate MOO problem Eq. (12) by
uMOGA and obtaining the Pareto optimal set of the

approximation objective function {7;5) (X(Z)) } z=1,

2, ..., t, where ?§S> (X<Z>) stands for the zth Pareto solu-
tion of the Pareto optimal set in step s; Similarly, their
corresponding approximation constraint function values

F};ff) (X?) and g\ (X?) at optimal solution X© also can
be obtained.
(6) Based on the simulation model, computing the actual

response values of the objective function { f;s) (X©@) },

z=1,2, ..., t, and their corresponding actual constraint
function values h§f> (X(Z)) and g (X(Z)).
(7) Calculating the maximum error A,

Apax = max{A }, z=1,2,...,¢t

A, = max f;‘c)(x(:))i} ‘
| ﬁ“(x@) ]

A9 (X ‘

20 (X9) g, (X©)
hf;")(x(”) | gm(x) |

If A ax <6, then {f ES) (X(Z)) } andz=1,2, ..., tare deter-

mined as the final solution and the iteration terminates.
Otherwise, updating the approximation models by adding
the optimal set {X©} with error more than § to the sample
space. Set s =5+ 1 and move to step (4).

4 Numerical examples and discussion
In this section, the accuracy of optimization results and the

efficiency of the algorithm are tested by two numerical exam-
ples. Meanwhile, the proposed method is also performed to

v X

—
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Table 7 The count of samples in

the iterative process and the M value

Iterative step

Local-densified samples

Total samples Maximum error (%)

corresponding maximum error
(numerical example B) M=4 Step 1
Step 2
Step 3
Step 1
Step 2
Step 1
Step 2

Step 3

N RO = O LB WO

50 38.30%
53 16.96%
58 6.60%
50 11.96%
51 7.22%
50 18.15%
54 13.29%
56 7.24%

demonstrate its practical engineering applicability through
two actual engineering examples.

4.1 Numerical example A

In the numerical example A, a two-objective optimization
problem with two constraints is as follows:

n}(infl(X) =-X1X2 + X3X4/2 £, (X)
= 2X 1 X2 /X3 43X X4/ X35..2,(X)
= 102X =X, /X5 4+ X4<0g,(X)
= 65-X, + X, /X4—5X3<0X

where £1(X) and /5(X) represent the objective function 1 and
the objective function 2, respectively. g;(X) and g»(X) are the
inequality constraints. The X stands for the design vector. The
allowable error § is set to 0.1. The uMOGA and local-
densifying approximation method are also applied to solve
the Pareto optimal set. The preset parameters for the
UMOGA are as follows: the maximum generation is 200,
the population size is 5.0, and the probability of crossover is
0.5. To analyze the influence of the shape parameters for the
optimization results, the abovementioned problem is investi-
gated for two cases.

4.1.1 The influence of the number of adjacent sample points

In this case, the influence of the number of adjacent sample
points M on the optimization results is discussed. Meanwhile,

= (X1, X2, X3,X4)7,10<X |, X5, X3, X4<20 (13) the local-densifying approximation method is adopted to im-
prove the accuracy of Pareto optimal set. The fifty initial
Fig. 8 The iterative process and 600 600 .
optimization results under M = 4 -~ O Approximation model O Approximation model
(numerical example B) 5 500 O Actual model ‘E 500 g| O Actual model
)
< ~
2 400 o g B
- = 400[ O gn
£ 300 oo " o | Ster! E o Step 2
g ° o m ERETTECY
£ 200 4 O oy
g ° 2 ﬁqb
2 100 5 200 @
o
= =
3 lne
0 0.005  0.01 0.015 0.02 0.005 0.01 0.015 0.02
The vertical deflection (cm) The vertical deflection (cm)
600
O Approximation model
Ng 500 O Actual model
5 &
§ 400 a
g 8 Step 3
S 300 C’%F
g 200 o o
[}
=
=
lnl'\
0.005 0.01 0.015 0.02

The vertical deflection (cm)
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Fig. 9 The iterative process and 6007
optimization results under M =5
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samples are generated by the LHD and the number of adjacent
sample points M is varied between 4 and 6 in steps of 1. The
proposed RSPAM is used to solve the shape parameters of the
RBFs, and the corresponding approximation models of the
objective functions and constraints are constructed based on
the initial samples and these shape parameters. The obtained
shape parameters of the approximation models under different
M values are listed in Table 2, and the iterative process with
optimization results are presented in Figs. 2, 3, and 4.
Simultaneously, the numbers of samples in the iterative pro-
cess and the corresponding maximum error are detailed in
Table 3.

According to Fig. 2, when M = 4, the maximum error of the
functions at the Pareto optimal set is 13.74% in step 1. The
iterative process indicates that the prediction ability of the

0.01

0.015 0.02 0.01 0.014

The vertical deflection (cm)

0.018

approximation model is improved through adding local-
densified samples to the sample space, and in step 3, the cor-
responding maximal error of the objective functions and con-
straint functions is found to be 4.65%. The result implies that
the Pareto optimal set satisfying the allowable error are ob-
tained by three iterative steps. While the number of adjacent
sample points M is set to M =5 and M =6, the final Pareto
optimal set satisfying the allowable error are obtained by one
iterative step which are presented in Figs. 3 and 4. The corre-
sponding maximum errors are 3.0% and 7.97%, respectively.
According to the above computational results, when M =4,
more iterative steps are needed to obtain the final Pareto opti-
mal set because the insufficient sample information is avail-
able to solve shape parameters. Meanwhile, the maximum
error of M =6 is more than that of M =5 because the ill-
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Table 8 The shape parameters based on different methods (numerical
example B)

Method Shape parameter (<)

SHX) SX) gX)
RSPAM (M =5) 0.3874 0.1196 0.2969
Long’s method 0.8132 0.8132 0.8132
Koupaei’s method 0.3520 0.0010 0.3100

conditioned matrix appears many times in the solving process
of shape parameters. It is obvious that the selection of the
number of adjacent sample points M will directly affect the
ability of the algorithm to obtain the expected optimization
results. According to the above optimization results, when
the number of adjacent sample points M is varied between 4
and 6, five adjacent sample points (M = 5) will be helpful to
improve the accuracy of optimization results and the efficien-
cy of the algorithm in this representative case.

4.1.2 The computational efficiency and optimization accuracy

This case is the verification of the proposed MOO method in
the computational efficiency and optimization accuracy. The
RSPAM is compared with Long’s method (Long et al. 2016)
and Koupaei’s method (Koupaei et al. 2018) for calculating
the shape parameters of the RBFs. In the proposed RSPAM,
five adjacent sample points (M = 5) could be recommended to
solve the optimal shape parameter according to the above
optimization results. In the Long’s method, the formula of
solving shape parameters ¢, is expressed as:

e, = ((max(X)-min(X))/N)" (14)

where (max(X)—min(X)) represents the longest distance in
the sample points. N and n stand for the number of sample
points and the dimension of design variables, respectively.

In Koupaei’s method, the shape parameter €, can be solved
by the following optimization problem:

min RMS (e) = \/l i (X)) —f (X, ex) ’ (15)

W =

where RMS(e,) represents the root mean square (RMS) error
with respect to the shape parameter ¢;. fX;) and 7(Xi JEk)
denote the actual function and approximate function, respec-
tively. X;, i=1, ..., w is the test point, and w stands for the
number of the test points. The number of initial samples is 50,
and the proposed RSPAM (M =5), Long’s method, and
Koupaei’s method are used to solve the shape parameters of
the RBFs as listed in Table 4, respectively. Then, the corre-
sponding approximation models of the objective functions
and constraint are constructed based on these samples and
shape parameters.

The iterative process and optimization results under the
methods of Long and Koupaei are shown in Figs. 5 and 6.
The count of samples in the iterative process and the corre-
sponding maximum error are detailed in Table 5. It is obvious
that the proposed method and Koupaei’s method can obtain
the Pareto optimal set satisfying the allowable error in step 1.
The corresponding maximum errors of the Pareto optimal set
are 3.0% and 6.46%, respectively. However, the errors of the
Pareto optimal set in step 1 are not less than allowable error
10% by using the Long’s method. The corresponding maxi-
mal error of the objective functions and constraint functions is
found to be 28.90%, which suggests the approximation
models are relatively coarse by using the methods of the
Long’s method. Through adding local-densified samples to
the sample space in the iterative process, the maximum error
is 8.80% in step 4 for the Long’s method, which demonstrates
the optimization results have reached the allowable error re-
quirement after 4 steps. The optimization results show that the
Pareto optimal set obtained by the proposed MOO method in
step 1 are obviously better than that obtained by the methods
of Koupaei and Long. The results also indicate that the

Table 9 The count of samples in

the iterative process and the Method

Iterative step

Local-densified samples Total samples Maximum error (%)

corresponding maximum error
(numerical example B) RSPAM (M =5) Step 1
Step 2
Step 1
Step 2
Step 3
Step 1
Step 2
Step 3
Step 4

Step 5

Koupaei’s method

Long’s method

0 50 11.96%
1 51 7.22%

0 50 25.86%
2 52 10.43%
2 54 6.59%

0 50 66.49%
2 52 77.26%
2 54 46.50%
2 56 55.53%
1 57 22.26%
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optimal shape parameters obtained by the RSPAM could en-
sure the accuracy of the approximation model at the initial
step.

From the calculation results of three different
methods, the proposed method could obtain the optimal
solutions more efficiently. This is because the Koupaei’s
method mainly focuses on the minimum RMS and ig-
nores the internal relationship of the initial sample
points. Simultaneously, the Long’s method only solve
the shape parameters through the number of sample
points and design variables, which uses the same shape
parameters to construct approximation models, namely,
the characteristics of the nonlinear objective functions
and constraints are not considered in the Long’s method.
However, the proposed method solves the corresponding
shape parameters for different nonlinear objective func-
tions and constraints based on the internal relation of the
initial sample points, namely, the different shape

@ Springer
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parameters are used to construct the approximation
models of the nonlinear objective functions and con-
straints than only the number of sample points and de-
sign variables are considered.

4.2 Numerical example B

An optimization design problem of I-beam is illustrated in
Fig. 7. The length L of the I-beam is 200 cm. Two loads are
applied to the I-beam as shown in the Fig. 7, which are P =
600kN and Q = 50kN, respectively. The Young’s modulus of
the I-beam is £'=200GPa. The above MOO problem can be
defined as minimizing the cross-sectional area and vertical
deflection of the [-beam under the constraint of principal stress
below the allowable stress o = 6 kN/cm?. The parameters of
the I-beam are considered as the design variables which
areX;,X>,X3, andX,. Therefore, the above MOO problem is
formulated as:



An efficient multi-objective optimization method based on the adaptive approximation model of the radial... 1397
Fig. 12 The iterative process and 450¢ . 5507 .
L @& | O Approximation model O Approximation model
optimization results based on the . ® &
Koupaei’s method (numerical “g O Actual model QEL 450 % O Actual model
example B) S 3500 . g o
= <
= = o Step 2
5 % Step 1 g 350
% om 3
2 2500 SD < a
5 o 2 (™Y
2 Ooh S 250¢ Ty
5 S oo
2 © o m =
= 150 150
.005 0.01 0.015 0.02 0.005 0.01 0.015
The vertical deflection (cm) The vertical deflection (cm)
550 —
@ O Approximation model
% O Actual model
5 450
g )
= Step 3
g 350
E @
£ 250 T o
®
=
18.%05 0.01 0.015 0.02
The vertical deflection (cm)
in (/1 (X).f>(X)) 16 maximum generation is 200, the population size is 5.0, and
min N o . . .
x ! : (16) the probability of crossover is 0.5, respectively. To discuss the
J1(X) = 2X0X4 +X5(X1-2X) influence of the shape parameters for the optimization results,
£5(X) = PL* 5000 the abovementioned MOO problem is investigated for two
4 48EL 1 3.1y s Xi-X4\? cases
EX}(X[*ZXA‘) +EX2X4+2X2X4 T *
180000.X . . .
s.t.g(X) = - 5 4.2.1 The influence of the number of adjacent sample points
X3(X1=2X4)" 42X X4 [4X] + 3X (X 1-2X4)]

15000 , 6
(X1—2X4)X3 +2X4X3 ~

X = (X1,X2,X3,X4)770cm<X, <90cm, 40cm<X,<60cm, 0.5cm
<X3<2cm, lecm<X4<3cm

where f1(X) and £(X) represent the cross-sectional area and
vertical deflection of the I-beam, respectively. g(X) is the
principal stress. In the optimization process, the allowable
error J is set to 0.1. The Pareto optimal set is found by using
the uMOGA and local-densifying approximation method.
The parameters for uMOGA are preset as follows: the

Pinion Large Gear

Radius r

Thickness ¢

Fig. 13 The structure of gear

In this case, the shape parameters of the RBFs are solved by
the proposed RSPAM and the accuracy of Pareto optimal set
is ensured by using the local-densifying approximation meth-
od. The number of adjacent sample points M is set to 4, 5, and
6, respectively. The shape parameters under different M
values are presented in Table 6 and the iterative process with
optimization results are displayed in Figs. 8, 9, and 10. For
better illustration of the influence on the optimization results
under different number of adjacent sample points M, the count
of samples in the iterative process and the maximum error in
each step are detailed in Table 7.

In step 1, the approximation models are constructed by
using 50 initial samples which are generated by the LHD.
The corresponding maximal error of the objective functions
and constraint functions are found to be 38.30%, 11.96%, and
18.15% under three different number of adjacent sample
points, respectively. The results indicate that the local-
densifying approximation method has to be employed for
strengthening the accuracy of approximation models. In step
2, The Pareto optimal set with 5 adjacent sample points has
reached the allowable error requirement and the maximal error
of the objective functions and constraints is found to be
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Table 10 The count of samples in

the iterative process and the Iterative step

Local-densified samples

Total samples Maximum error (%)

corresponding maximum error

(engineering example A) Step 1 0
Step 2
Step 3 4

30 75.25%
34 47.54%
38 8.61%

7.22%. However, the Pareto optimal set of the other two ad-
jacent sample points still fails to meet the allowable error
requirement. Through adding local-densified samples to the
sample space, both M =4 and M = 6 reach the allowable error
requirements in step 3. The corresponding maximum error is
6.60% and 7.24%, respectively.

According to the above results, the accuracy and efficiency
of the optimization are greatly influenced by the number of
adjacent sample points M. Generally, the accuracy of optimi-
zation results will be relatively low when the fewer adjacent
sample points are used to solve Eq. (10). When more adjacent
sample points are selected, the accuracy of optimization re-
sults may be improved but ill-conditioned matrices may ap-
pear in the process of solving Eq. (10) which will lead to the
failure of solution and low efficiency. In the above cases, M =
4 to 6 are investigated and the optimization results demon-
strate that the accuracy and efficiency of the proposed method
can be well satisfied when M =5. It is noteworthy that the
number of adjacent sample points M could also be determined
by a trade-off between the accuracy and efficiency from the
operator. Meanwhile, more cases of different M values have
been included in the future work.

4.2.2 The computational efficiency and optimization accuracy

The reverse shape parameter analysis method (RSPAM, M =
5), Long’s method, and Koupaei’s method are used again to
solve the shape parameters of the RBFs, respectively. The

Table 11 The Pareto solutions satisfying the requirement (engineering
example A)

No. t w r P(MPa) V(mm®)

1 5.267 31.031 40.571 283.457 74,220.779
2 5.267 31.956 42.741 272.891 77,730.862
3 5.618 31.485 41.961 270.593 81,274.061
4 5.618 31.954 42.742 259.994 82,916.882
5 6.204 31.074 42742 246.701 89,541.361
6 6.077 33.235 41.229 227.000 91,261.305
7 6.193 34.824 42.351 208.663 97,653.196
8 5.896 45.606 42977 140.869 117,003.927
9 5.490 71.861 40.547 61.060 162,229.604
10 5.352 77.733 41.251 58.053 169,960.726
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shape parameters obtained by the different methods are listed
in Table 8. Based on these shape parameters and the initial
samples, the corresponding approximation models of the ob-
jective functions and constraints are constructed. The other
preset parameters keep unchanged. The iterative process and
optimization results under the methods of Long and Koupaei
are presented in Figs. 11 and 12. Meanwhile, the count of
samples in the iterative process and the corresponding maxi-
mum error are detailed in Table 9.

Based on the above optimization results, the maximal
error of the objective functions and constraint functions
based on the proposed method is 11.96% in step 1, which
is very close to the allowable error value. It indicates that
the optimal shape parameters obtained by the RSPAM
could ensure the accuracy of the approximation model at
the beginning of iteration. With the increasing of sample
points by employing local-densifying approximation
method, the Pareto optimal set satisfying the allowable
error are obtained by the proposed MOO method in step
2 and the corresponding maximal error of the objective
functions and constraint functions is found to be 7.22%,
which is obviously better than other methods. While the
errors of the other methods are not less than the allowable
error 10% in step 2, which shows that the methods of
Long and Koupaei need more iterative steps to obtain
the Pareto optimal set for meeting the accuracy require-
ments. By using the local-densifying approximation meth-
od, the maximal error of the objective functions and con-
straint functions for the Koupaei’s method is 6.59% in
step 3, which indicates the optimization results have
reached the allowable error requirement after 3 steps.
However, the corresponding maximal error based on the
Long’s method is 22.26% in step 5, which demonstrates
the Pareto optimal set still fail to meet the allowable error
requirement. This is because the Long’s method only con-
sider the influence of the number of sample points and
design variables, so that the shape parameters of three
approximation models /(X), f,(X), and g(X) are the
same. It induces the accuracy of the approximation
models needs to be improved by more iterative steps,
while the RSPAM fully considers the influence of differ-
ent objective functions and constraints based on the inter-
nal relation of the initial sample points, and the corre-
sponding approximation models are constructed by using
the different shape parameters. Therefore, the proposed
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method could get more accurate approximation model and
solve the optimal solutions more quickly than other two
methods.

4.3 Engineering example A

Gear transmission is one of the most common drive forms of
mechanical transmission system. The gear transmission struc-
ture will directly affect the transmission efficiency of mechan-
ical system. Hence, the proposed method is used to design a
practical gear transmission structure. As shown in Fig. 13, the
numerical model of the gear transmission structure is con-
structed, which consists of main gear and pinion.
Minimizing the spokes volume and the bending stress of the
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Fig. 15 The forearm structure of the bucket wheel stacker-reclaimer
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main gear are two objectives for this design problem. During
the transmission process, the spoke thickness ¢, spoke width
W, and spoke radius » will play important roles in the bending
stress of the main gear. Thus, the spoke thickness ¢, spoke
width W, and spoke radius » are considered as the design
variables. The other parameters in the gear system are as fol-
lows: the modulus of the gear is m =4, the diameter of pinion
is 108 mm, the diameter of gear is 324 mm, the material of the
gear is 45# steel, the permissible bending stress is
325.08 MPa, the torque of pinion gear is 7=286500 N -
mm, and the periphery force of the tooth surface is F;=
5305.5 N. The optimization problem can be described as
follows:

min

min (P(t, W, r), v(t, W, r)> Smm</<10mm, 20mm<W

(17)

<80mm, 40mm<r<65mm

where P(t, W, r) stands for the bending stress of the main gear
and V(¢, W, r) is the spoke volume.

In the optimization process, the allowable error J is set to
0.1. The uMOGA and local-densifying approximation meth-
od are also used to solve the Pareto optimal set. The preset
parameters for tMOGA are as follows: the maximum gener-
ation is 200, and the population size and the probability of
crossover are 5.0 and 0.5. The approximation models of func-
tions P(t, W, r) and V(¢, W, r)are constructed by using 30 initial
samples which are generated by the LHD. Based on the
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Table 12 The count of samples in

the iterative process and the Iterative step

Local-densified samples

Total samples Maximum error (%)

corresponding maximum error
(engineering example B) Step 1

Step 2

30 7.35%
32 1.08%

proposed RSPAM (M =5), the optimal shape parameters are
solved for the approximation models, which are 0.5344 and

0.1827 for the approximation models P(z, W,r) and

V(t, W, r), respectively. Under the help of the proposed meth-
od, the iterative process is displayed in Fig. 14 and the count
of samples in the iterative steps are detailed in Table 10. It can
be found in step 1, the Pareto optimal set of approximate

functionsP(¢, W, r) and V(z, W,r) are far from the actual
function P(¢, W, r) and V(z, W, r), which obviously shows that
the approximation models are not accurate enough. Through
the local-densifying approximation method for three iterative
steps, the maximal error of the objective functions has been
reduced to 8.61%, which indicates the Pareto optimal sets
have satisfied the allowable error. Hence, ten solutions are
chosen from the Pareto solutions given in Table 11. The en-
gineers will select the No.10 solution if the bending stress of
the main gear is the primary concern. Alternatively, if more
attention to the spoke volume is paid, the No.1 solution would
be considered.

4.4 Engineering example B

The forearm structure is one of the most important parts of the
bucket wheel stacker-reclaimer. When the bucket wheel
stacker-reclaimer is in operation, the 9600-kg bucket wheel
is installed at the front end of the forearm structure. To en-
hance the safety performance of forearm structure, and reduce
the weight to satisfy the requirements of lightweight design,

Table 13 The Pareto solutions satisfying the requirement (engineering
example B)

No. X X X3 Xy P(MPa)  M(kg)
1 10.286 12476  13.714  13.810  154.65 16,185
2 8.476 9.810 8.095 11.905  178.97 12,760
3 10.286  9.429 8.857 14.000  156.50 14,532
4 8.381 10.000  8.667 12286  175.04 12,989
5 8.286 11.143  8.000 13333 166.48 13,116
6 11.429  10.095  9.333 13714 156.02 15,318
7 9.048 8.286 10.571 13.714  160.24 14,139
8 11.048  8.476 13.524 13,619 15495 16,147
9 8.762 9.619 8.667 13.333 164.98 13,444
10 8.571 11.810 8571 13.714 16235 13,608
11 9.714 10.190  8.286 13.333  163.09 13,935
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the proposed MOO method is performed for optimizing the
forearm design. The numerical model of the forearm structure
is displayed in Fig. 15. In this optimization design problem,
the maximum stress and the weight of the forearm structure
are adopted as two optimization objectives. The maximum
displacement of the forearm structure in the vertical direction
is considered as the constraint. Four thickness parameters of
the forearm structure are identified as the design variables.
The material properties of the forearm structure are as follows:
the density is 7.85g/cm’, the Young’s modulus is 200Gpa, the
Poisson’s ratio is 0.2, and the permissible maximum stress is
230 MPa. Therefore, the optimization design problem can be
described as follows:

min (P(X), M(X)) s.t.D(X) <25mmX
= (X17X2,X37X4)T8mm§X17X2,X3,X4§14mm (18)

where P(X) stands for the maximum stress of the forearm
structure and M(X) is the total weight of the forearm. D(X)
is the maximum displacement of the forearm in the vertical
direction. X stands for the design vector: X; represents the
thickness of the girder web, X; is the thickness of the diagonal
beam, Xj3 is the thickness of the flange plate on the cross beam,
and Xjstands for the thickness of the flange plate on the girder.

In the optimization process, the allowable error d is set to
0.05. The uMOGA and local-densifying approximation meth-
od are also used to solve the Pareto optimal set. The preset
parameters for tMOGA are as follows: the maximum gener-
ation is 200, and the population size and the probability of
crossover are 5.0 and 0.5. The approximation models of the
objective functions P(X) and M(X) and constraint D(X)are
constructed by using thirty initial samples which are generated
by the LHD. Based on the proposed RSPAM (M =5), The
optimal shape parameters of approximation models IB(X),
M(X), and D(X) are obtained by RSPAM, which are
0.1020, 0.1295, and 0.6390, respectively. The corresponding
approximation models are constructed based on these samples
and shape parameters. Under the help of the present method,
the iterative process and the optimization results are illustrated
in Fig. 16 and the count of samples in iterative steps are given
in Table 12. Summing up the above results, the final Pareto
optimal set satisfying the allowable error can be obtained in
step 2, in which the maximal error of the objective functions
and constraints is 1.08%. Therefore, eleven solutions are
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obtained as listed in Table 13. The engineer’s different atten-
tion to the optimization objectives will determine the choice of
the Pareto solution. If the maximum stress of the forearm
structure is the primary concern, the No.1 solution could be
selected; if the minimal weight of the forearm structure is the
most important, the No.2 solution could be selected.
Depending on the optimization results, the engineers could
choose the appropriate optimization solution to ensure the
safety of the forearm structure.

5 Conclusion

This paper provides an efficient multi-objective optimization
(MOO) method based on the adaptive approximation model.
In this method, the approximation models based on radial
basis function (RBF) is used to instead of the actual objective
functions and constraint functions of the MOO problem. For
improving the prediction ability and accuracy of the approxi-
mation model, the reverse shape parameter analysis method
(RSPAM) is proposed. By using the RSPAM, the equation for
calculating the shape parameter is established based on initial
samples and the optimal shape parameter is solved according
to the error criterion. Compared to the traditional approxima-
tion model technology, the optimal shape parameter can be
obtained effectively without additional sampling, which effec-
tively reduces the model error caused by the operator’s expe-
rience. Moreover, the local-densifying approximation method
is employed to densify more samples into the local area where
the Pareto optimal set of objective functions and their corre-
sponding constraint functions. Because the prediction ability
and accuracy of approximation model in local area we con-
cerned is guaranteed, the Pareto optimal set can be further
improved. The computational results of two numerical exam-
ples demonstrate the outstanding performance of the proposed
method in solving the optimization solutions. This method is
also performed for the optimization design problems of the
gear transmission structure and the forearm of the bucket
wheel stacker-reclaimer. The satisfactory optimization results
further demonstrate the suitability of the proposed method in

practical applications. It is noteworthy that the accurate opti-
mization results are ensured by the RSPAM and local-
densifying approximation method. Additionally, when the
high-dimensional and strong simulation models are involved,
the more initial samples should be adopted to construct the
RBF approximation model and more local-densifying itera-
tions should be processed to obtain the accurate optimization
solutions. Hence, how to greatly improve the abovementioned
problems for better efficiency has been included in our future
work.
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