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Abstract
Multi-objective topology optimisation problems are often tackled by compromising the cost functions according to the
designer’s knowledge. Such an approach however has clear limitations and usually requires information which especially
at the preliminary design stage could be unavailable. This paper proposes an alternative multi-objective approach for
the generation of minimal Pareto sets in combination with density-based topology optimisation. Optimised solutions are
generated integrating a recently revised method for a posteriori articulation of preferences with the Method of Moving
Asymptotes. The methodology is first tested on an academic two-dimensional structure and eventually employed to
optimise a full-scale aerospace structure with the support of the commercial software Altair OptiStruct�. For the academic
benchmark, the optimised layouts with respect to static and dynamic objectives are visualised on the Pareto frontier and
reported with the corresponding density distribution. Results show a progressive and consistent transition between the two
extreme single-objective layouts and confirm that the minimum number of evaluations was required to fill the smart Pareto
front. The multi-objective strategy is then coupled with Altair OptiStruct and used to optimise a full-scale wing box, with
the clear purpose to fill a gap in multi-objective topology optimisation applied to the wing primary structure. The proposed
methodology proved that it can generate efficiently non-dominated optimised configurations, at a computational cost that is
mainly driven by the model complexity. This strategy is particularly indicated for the preliminary design phase, as it releases
the designer from the burden to assign preferences. Furthermore, the ease of integration into a commercial design tool makes
it available for industrial applications.

Keywords Multi-objective · Topology optimisation · SIMP method · Smart Normal Constraint method · Wing design

1 Introduction

Since the conception of the SIMP (Solid Isotropic Material
with Penalisation) method (Bendsøe 1989; Zhou and
Rozvany 1991; Mlejnek 1992), density-based topology
optimisation has been successfully applied to a wide variety
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of problems, including full-scale aerospace structures (Zhu
et al. 2016) and multi-physics applications (Deaton and
Grandhi 2014), becoming a generally accepted approach
both in the academia (Rozvany 2008) and for the
development of industrial software (Choi et al. 2016). As a
result, over the last decades, a considerable effort has been
devoted to extend the method’s capabilities to deal with the
increasing complexity introduced by the new challenges of
topology optimisation. Among them, the definition of novel
strategies for multi-objective problems.

Unlike the case of single-objective optimisation, in the
presence of many, usually conflicting, criteria, it is more
appropriate to generate a set of optimal solutions which
constitute the so-called Pareto set. Each of these solutions
represents a trade-off between the objectives. According to
Messac et al. (2003), an optimisation method can generate
an effective Pareto set if it is able to (1) produce points
which are evenly distributed in the design space; (2) identify
all the optimal solutions (necessary condition of optimality);
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(3) retain only non-dominated points (sufficient condition
of optimality); and finally, (4) be easily applicable. With
these criteria in mind, numerous algorithms have been
assessed. Metaheuristics, which are out of the scope of this
work, for multi-objective structural optimisation problems,
were reviewed by Zavala et al. (2014), while Marler and
Arora (2004) presented a survey of continuous non-linear
multi-objective methods.

In the latter, the authors introduced a classification of
these methods depending on how the decision maker is
required to express the relative importance or weight of each
cost function, usually referred to as designer’s preference.
Some methods require introducing these attributes before
performing the optimisation. For this reason, they are indi-
cated as methods with a priori articulation of preferences.
Both Compromise Programming (Chen et al. 1999) and
Physical Programming (Messac 1996) belong to this class.
A detailed analysis of each method is available at the refer-
enced articles. However, two aspects must be retained in this
context. Firstly, the ability to explore efficiently the design
space cannot be achieved by consistently changing the
weights. Secondly, the accuracy of the global utility func-
tion, the relationship embedding all preferences, depends on
information which at the early design stage could be limited
or unavailable.

In spite of these weaknesses, most of the literature
concerning multi-objective problems for SIMP topology
optimisation implement methods with a priori articulation
of preferences. Luo et al. (2006) combined compromise
programming with sequential convex programming method
to optimise a missile frame under multiple load cases,
considering compliance and eigenfrequency as objectives.
A single optimised structure was obtained by applying a
multilevel sequential approach consisting in the consecutive
optimisation of two single-objective problems. On the
same line, Hongwei et al. (2008) and Peng et al.
(2018) used the weighted sum method to optimise
respectively a vehicle frame under multiple load cases
and a connection structure with respect to compliance
and the first three eigenfrequencies. Zhang et al. (2018)
obtained an optimised wind turbine brake pad by applying
compromise programming in case of thermal and structural
cost functions. Due to the high geometrical complexity
associated, the authors of these works took advantage of
the commercial software Altair OptiStruct. Stanford and
Ifju (2009) also used compromise programming to perform
SIMP topology optimisation of the flexible wing of a
micro-aerial vehicle for aerodynamic objectives. Unlike
the previously cited applications, the authors were able to
produce a Pareto set by modifying the weights assigned to
each objective. Chen et al. (2010) and Marck et al. (2012)
also presented a set of optimised solutions implementing
the weighted sum method to optimise the layout of a heat

exchanger for structural and temperature-related criteria.
Similarly, Aulig et al. (2014) built a set of compromise
solutions for an automotive component under static and
crash loads. A slightly different approach is proposed
by Lin et al. (2010). In this case, the authors combined
physical programming and convex programming methods to
improve the design of compliant mechanisms with respect
to displacement and strain energy. Modifying the designer’s
priorities, they were able to produce a set of optimised
layouts.

To overcome the limitations deriving from the need
to assign a relative importance to each criterion, other
methods have been developed. Some of them do not
require the designer to express preferences before running
the optimisation. Rather, a palette of optimal solutions
is generated and proposed to the decision maker which
only at this point can choose among a set of best
alternatives. Marler and Arora (2004) refer to these methods
as a posteriori articulation of preferences or generate-
first-choose-later approaches. The normalised Normal
Constraint (NC) method (Messac et al. 2003) belongs to
this second group, and according to its authors it is able
to produce evenly spaced Pareto frontiers (Messac and
Mattson 2004), which are independent of the scale of the
individual objectives. Thus far, there is no application of
these methods to SIMP topology optimisation. Recently,
the NC method has been used in combination with the
bi-directional evolutionary structural optimisation (BESO)
method. Munk et al. (2017a) proposed an updated version of
the normal constraint method, modified to take advantage of
the BESO ability to handle multiple constraints. Compared
with the original method, this variant proved to be more
efficient producing well-distributed optimal solutions and
avoiding additional optimisation runs resulting in redundant
points. Following a similar approach, the updated version
is coupled with the Method of Moving Asymptotes (MMA)
(Svanberg 1987) to perform multi-objective SIMP topology
optimisation. The integration is first tested on a bi-
dimensional benchmark and later used to optimise the
internal structure of a full-scale wing. The rest of this
paper is organised as follows. Section 2 explains the
difference between the original NC method and the updated
version, outlining the integration with the MMA algorithm.
Section 3 is dedicated to the formulation of the optimisation
problem and its numerical implementation with the SIMP
method. In Section 4, the approach is applied to a bi-
dimensional academic benchmark and the corresponding
results are discussed. Section 5 first reviews the other works
concerning the application of single- and multi-objective
topology optimisations to the wing structural layout. Then,
it illustrates the implementation of the multi-objective
strategy, presented in this paper, with the commercial
software Altair OptiStruct. The optimised wing box layouts
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and the corresponding Pareto frontier are reported and
discussed. Concluding remarks are provided in Section 6.

2 The updated Smart Normal Constraint
method

Recently, Munk et al. (2017a) proposed to generate the
Pareto set for multi-objective BESO by implementing what
they called updated Smart Normal Constraint method,
abbreviated as updated-SNC or uSNC in the rest of this
paper.

The normalised Normal Constraint (NCC) method
introduced by Messac, Yahaya, and Mattson (2003) is a
variant of the original version proposed earlier by the same
authors (Ismail-Yahaya and Messac 2002). In the following
years, the method underwent a series of changes, first with
the introduction of the smart Pareto filter by Mattson et
al. (2004); later, Boyce and Mattson (2008) increased its
efficiency by discarding redundant points associated with
disjointed frontiers. Haddock et al. (2008) reformulated
the same filter in the form of additional linear constraints
through the introduction of the Practically Insignificant
Trade-off (PIT) region concept. Eventually, the evolution
into the smart Normal Constraint (SNC) method was
due to Hancock and Mattson (2013) which refined this
strategy embedding the smart Pareto filter directly into
the optimisation process and avoiding simulations resulting
in discarded points. The updated version suggested by
Munk et al. (2017a) differs from the SNC method for
the introduction of an additional normal constraint which
reduces the feasible design space for each iteration, as
illustrated in Fig. 1 for the case of a bi-objective problem.
The generic multi-objective optimisation problem (MOP)
can be formulated as:
⎧
⎪⎨

⎪⎩

min
x

μ(x) = (μ1(x), . . . , μm(x)) m ≥ 2

s.t . : g(x) ≤ 0
h(x) = 0

(1)

Being μ(x) the vector of objective functions, x the density
design vector, m the number of objectives, and g(x) and
h(x) the inequality and equality constraints, respectively.
The SNC method turns the original problem (1) into a
single-objective problem (SOP) subject to m − 1 additional
normal constraints (2).
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x

μ1(x)

s.t . : g(x) ≤ 0
h(x) = 0
Nj · (μ(x) − Ul) ≤ 0 j = 1, . . . , m − 1

(2)

If nap is the number of approximation points U defined on
the utopia line, the Pareto frontier is built by solving the
SOP associated with each of the approximation points. The

Fig. 1 Comparison of feasible design spaces for a given approximation
point Ul . The updated Smart Normal Constraint (updated-SNC)
method reduces the search area (grey stripes) with respect to the SNC
method (red-shaded area). As a result, the method’s overall efficiency
increases

choice of μ1(x) as objective of the SOP is arbitrary. The
normal vector is obtained by (3):

Nj = μm∗ − μj∗ j = 1, . . . , m − 1 (3)

where μj∗ is the j -th anchor point, obtained as solution of
the SOP with respect to the j -th objective. With reference to
Fig. 1, being m = 2, the only additional normal constraint
is defined on the approximation point Ul currently under
examination and produces the red-shaded feasible region.

By contrast, the updated-SNC version modifies the
search area, by introducing two normal constraints which
are defined on the points adjacent to the active approxima-
tion point Ul . The MOP in this case is converted into the
equivalent SOP in (4), with the search area filled with grey
stripes (Fig. 1).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x

μ1(x)

s.t . : g(x) ≤ 0
h(x) = 0
Nj · (μ(x) − Ul+1) ≤ 0 j = 1, . . . , m − 1
−Nj · (μ(x) − Ul−1) ≤ 0 j = 1, . . . , m − 1

(4)

The authors of the updated-SNC showed that the restricted
feasible region avoids the issue of generating redundant
points, a problem that affects the original version of the
SNC, increasing the overall efficiency of the method (Munk
et al. 2017a).
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2.1 Integration with theMMA

The solution of the SOP (4) presented by Munk et al.
(2017a) employs an iterative scheme where Lagrange
multipliers are updated upon satisfaction of the additional
normal constraints. This approach takes advantage of the
BESO ability to satisfy simultaneously multiple constraints.
For the SIMP method, a similar strategy would be possible
implementing the optimality criteria (Bendsøe 1995). This
heuristic scheme proved to be easily applicable and
extremely efficient when a single constraint on the material
resources is introduced. However, from (4), it is clear that
in this case the required approach has to deal with multiple
constraints. Although such an extension of the optimality
criteria has been suggested by Yin and Yang (2001), other
solutions, like the sequential linear programming (SLP)
and the Method of Moving Asymptotes (MMA) (Svanberg
1987), are largely employed in multi-constrained topology
optimisation problems due to their superior convergence
qualities. In this paper, the MMA method is used in
conjunction with SIMP topology optimisation.

The two normal constraints already defined in (4) can
be passed directly into the MMA algorithm in the form
of scalar products. Furthermore, as this method requires
gradient information both for the objectives and constraints,
also the derivatives in (5) must be provided.

Nj ·
(

d
dxe

μ(x)
)

j = 1, . . . , m − 1

−Nj ·
(

d
dxe

μ(x)
)

j = 1, . . . , m − 1
(5)

Where the subscript e indicates the element in the
discretisation. In order to guarantee that all quantities are of
the same order of magnitude, each objective is normalised
with respect to the extreme values obtained from the anchor
points previously calculated.

3 Problem formulation and sensitivity
analysis

A bi-objective problem for minimisation of structural
compliance (C) and maximisation of the fundamental
frequency (f1) is defined to test the updated-SNC in
combination with SIMP method (in the rest of the
paper indicated as uSNC-SIMP). Following the general
formulation in (1), the problem is reported in (6).
⎧
⎪⎨

⎪⎩

min
x

μ(x) = {C(x), −f1(x)}T
s.t . : xeve − V ∗

f ≤ 0 e = 1, . . . , NE

xmin ≤ xe ≤ 1

(6)

With V ∗
f the target volume fraction, ve volume of the

e-th finite element, NE the number of elements in the
discretisation, and xmin = 0.001 the minimum density.

Following the passages illustrated in Section (2), the initial
bi-objective problem is re-written as a SOP for compliance
minimisation, as showed in (7).
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x

C(x)

s.t . : xeve − V ∗
f ≤ 0 e = 1, . . . , NE

xmin ≤ xe ≤ 1
N1 · (μ(x) − Ul+1)

T ≤ 0
−N1 · (μ(x) − Ul−1)

T ≤ 0

(7)

For the bi-objective problem in (6), the derivatives in (5) can
be explicitly expressed as follows:

±N1 ·
(

dC

dxe

,
dω

dxe

)

e = 1, . . . , NE (8)

To calculate the derivatives of the two objective
functions, an interpolation scheme must be defined. The
basic version employed by SIMP method for stiffness and
material density in the case of isotropic material is reported
in (9)–(10), as also suggested by Huang et al. (2010).

ρ(x) = xqρ0 (9)

E(x) = xpE0 (10)

Being q = 1 for the material density and p ≥ 3 for the
elastic modulus, the values that guarantee an appropriate
penalisation for intermediate densities. A value of p = 3
will be used throughout the paper. The superscript “0” refers
to values of solid material.

3.1 Compliance sensitivity

Compliance sensitivity number can be easily derived
making use of the interpolation scheme enunciated in (10)
and under the hypothesis of design independent loads. In
(11), it is expressed for the single element.

dC

dxe

= −1

2
uT

e

∂[K]
∂xe

ue = −1

2
px

p−1
e uT

e [K0
e]ue (11)

where ue is the element displacement vector and [K0
e] the

element stiffness matrix for solid material. This expression
is used in (7) to calculate the objective’s derivative and in
(8) to obtain the first component of the normal constraint.

3.2 Eigenfrequency sensitivity

Mathematical derivation of the eigenfrequency sensitivity
number has been thoroughly obtained by Adhiakri (1999),
in a paper which also includes the contribution of damping.
The dynamic behavior of an undamped continuum structure
is described by the eigenvalue problem in (12).

([K] − ω2
n[M])φn = 0 (12)

With [K] and [M] the global stiffness and mass matrix, ωn

the angular frequency associated with the n-th eigenmode,
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and φn the corresponding eigenvector. These are related to
each other through the Rayleigh quotient below.

ω2
n = φT

n [K]φn

φT
n [M]φn

(13)

Differentiating (13) with respect to the element density xe,
the general expression for the eigenfrequency sensitivity in
(14) is obtained.

dωn

dxe

= 1

2ωnφ
T
en

[M]φen

[

φT
en

(
∂[K]
∂xe

− ω2
n

∂[M]
∂xe

)

φen

]

(14)

Assuming that the element eigenvector φen
is normalised

with respect to the mass matrix [M].
Similar to (11), derivatives of the stiffness and mass

matrices depend upon the interpolation scheme used
for the material density and the elastic modulus. In
contrast to the compliance minimisation, optimisation
involving eigenfrequencies presents two main issues. On
the one hand, localised eigenmodes occur in low-density
elements when their stiffness/mass ratio becomes too
small. Pedersen (2000) proposed a modified interpolation
scheme with a reduced penalisation factor for low-density
elements. Similarly, Huang et al. (2010) suggested a
novel interpolation scheme which converges to the basic
SIMP when xmin tends to 0. Frequency coalescence,
on the other hand, occurs when adjacent eigenvalues
which are originally separate converge to the same value
during the optimisation process, resulting in a duplicate
eigenfrequency. Bendsøe (1995) suggested to prevent it by
implementing a bounded formulation of the optimisation
problem. Both the first and second issues are addressed, for
the interested reader, in a paper by Du and Olhoff (2007).
With respect to the first issue, in this paper, the interpolation
scheme proposed by Huang and reported in (15) and (16)
has been adopted, with a value p = 3 as suggested by its
authors.

ρ(x) = xρ0 (15)

E(x) =
[

xmin − x
p
min

1 − x
p
min

(1 − xp) + xp

]

E0 (16)

It follows that the eigenfrequency sensitivity is defined
by (14) with the derivatives calculated according to the
modified interpolation scheme in (15) and (16). It is
employed in (8) to calculate the second component of the
normal constraint.

3.3 Sensitivity filtering

The existence of the solution to the problem in (2) is
guaranteed by implementing the original version of the
mesh-independent sensitivity filter (Sigmund 2007). It

modifies the sensitivity of each element with respect to the
neighbor elements located within a circular area defined
by the radius rmin. In this way, the discontinuous change
occurring between the element boundaries is smoothed over
the surrounding area. The filtered sensitivity for the generic
objective μ and the element “e” is defined in (17).

d̂μ

dxe

= 1

xe

∑
k Hk

∑

k

Hkxk

dμ

dxk

(17)

where xe represents the pseudo-density associated to the
central element and k is the index used to identify any
other element within the radius considered for the filtering
procedure {k| dist (e, k) ≤ rmin}. It follows that the weight
factor Hk is calculated as in (18).

Hk = rmin − dist (e, k) (18)

While the sensitivity filter has been proved to be an effective
strategy to achieve regularisation, it must be mentioned
that its purely heuristic character introduces an artificial
distortion of the optimised results.

4 Numerical implementation

The whole software framework consists of a set of Matlab
scripts which integrate SIMP topology optimisation, the
MMA algorithm, and the updated-SNC version.

The approach is first applied to the two-dimensional
benchmark taken from Proos et al. (2001) and also
reused for comparison by Munk et al. (2017a). It consists
in the simply supported structure of Fig. 2, loaded
symmetrically on the top edge. To remain coherent with
the cited papers, the bi-dimensional domain is discretised
into 80×50 quadrilateral elements with two translational

Fig. 2 Simply supported two-dimensional benchmark structure used
in two previous articles (Proos et al. 2001; Munk et al. 2017a). It has
a thickness t = 10 mm, and is discretised with 80 membrane elements
in x and 50 elements along y
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degrees of freedom per node, in x and y directions.
Despite its symmetry, the entire structure is solved because
some modes could be non-symmetric. Isotropic material
properties are assigned according to the following values,
ρ = 7 · 10−6 kg/mm3, E = 200 GPa, and ν = 0.3.
This structure was selected as a benchmark because the
optimised layout with respect to the fundamental frequency
preserves material where the load is applied, ensuring a
finite value of compliance. Furthermore, an analysis of the
baseline (full solid) structure shows that the fundamental
frequency f1 is unimodal and equal to 600.4 Hz (a value of
591.1 Hz is obtained from OptiStruct using shell elements
under the hypothesis of plane-stress).

4.1 Single-objective results

Single-objective results are presented as they identify the
anchor points of the smart Pareto set generated by the
implementation of the updated-SNC. It follows that they
are used as extreme configurations for the multi-objective
optimisation. They are obtained by solving problem (6)
separately for each objective. A target volume fraction
V ∗

f = 0.7 has been imposed.
In Fig. 3, the optimised layout for compliance minimisa-

tion is reported. The target volume of 70% of the original
material is satisfied. A value of C = 6.3 N mm is obtained
for compliance, while the fundamental frequency raised,
with respect to the baseline case, to f1 = 681.5 Hz.
Numerical results are in agreement with those provided by
OptiStruct, C = 6.4 N mm and f1 = 681.2 Hz. The opti-
mised layout for maximisation of the first eigenfrequency is
given in Fig. 4. The layout converged to a compliance value
C = 7.5 N mm with the fundamental frequency increased
to f1 = 715.3 Hz. Results, in this case, showed some dis-
crepancy with respect to those provided by OptiStruct (C =
7.9 N mm and f1 = 697.3 Hz). This difference is ascribed
to the interpolation scheme employed for the calculation of
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Fig. 3 Optimised layout for compliance minimisation. C = 6.3 N mm
and f1st = 681.5 Hz. Results from OS are C = 6.4 N mm and
f1st = 681.2 Hz
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Fig. 4 Optimised layout for frequency maximisation. C = 7.5 N mm
and f1st = 715.3 Hz. Results from OS are C = 7.9 N mm and
f1st = 697.3 Hz

the eigenfrequency sensitivities. The density distribution in
Fig. 4 is coherent with those from OptiStruct and reported
in the literature.

4.2 Multi-objective results

This section presents the multi-objective results, relative
to the bi-dimensional benchmark in Fig. 2, obtained with
the uSNC-SIMP approach proposed in this paper. The
authors of the updated-SNC demonstrated how the method
is superior to the SNC version in building minimal Pareto set
with evenly distributed and non-redundant points. Here, the
same features will be assessed against the results presented
in the two works used as references (Proos et al. 2001;
Munk et al. 2017a). Non-dimensional Pareto curves are
compared in Fig. 5. Overall, the Pareto frontier is correclty
intercepted. The uSNC method could find, in both cases,
more and better distributed solutions compared with the
global criterion method employed by Proos et al. (2001).
Restricting the comparison to the applications of the uSNC,
the results obtained in this paper show that some of the
optimal points slightly differ in the frequency or compliance
value. This difference can be ascribed, on the one hand,
to the ability of SIMP to define a wider design space
with respect to BESO, on the other, to the interpolation
scheme used to optimise the dynamic objective. The smart
Pareto set obtained by solving problem (7) is reported in
Fig. 6. For each point, the corresponding PIT region is
marked in red. As described in detail in the original paper
(Haddock et al. 2008), the PIT region is defined through
two parameters. The objective variation am denotes the
minimum significant change in the objective and was
here set at 5%. Its curvature κ , which controls the PIT
“sharpness”, was set to 0.4. Both values correspond to
those used in Munk et al. (2017a). With these settings, the
algorithm could identify ten non-dominated points. The fact
that they belong to a minimal Pareto set can be deduced
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Multicriterion(Proos)
uSNC-BESO (Munk)
uSNC-SIMP

Fig. 5 The non-dimensional Pareto frontier obtained for the case of
simply supported structure with the uSNC-SIMP approach (blue dots).
Results proposed for the same test case by two other authors are
compared. A set of points was obtained using the global criterion
method (in black), the other employing the uSNC-BESO. The utopia
point in this case is located at the top-left corner

by observing that no point falls inside the PIT region of
an adjacent solution. In its original implementation, with
the bi-directional evolutionary topology optimisation, for
the same test case, the same number of optimal points

was found. In addition, for the results discussed here, each
optimisation run was successful in identifying a point on
the Pareto frontier, confirming the ability of the updated-
SNC version to fill the Pareto front with the minimum
number of calculations. Figure 6 proves also that the entire
design space has been explored systematically as all PIT
regions are partially superimposed or in contact with each
other. This is further corroborated by the smooth and
consistent transition visible in the sequence of optimised
layout corresponding to each optimal point. The results
presented in Fig. 7 are obtained for a mesh grid of 80 × 50
elements, which corresponds to the mesh size of the works
used as reference. In order to verify if the generation
of the Pareto frontier can be somehow affected by the
mesh size, the optimisation was repeated for a coarser
mesh (40 × 25 elements) and a finer mesh (160 × 100
elements). In the case of the coarser mesh, the update SNC
identified eight optimal points; the corresponding optimised
layouts are reported in Fig. 8. In total, four single-objective
optimisation runs resulted in dominated solutions, which
suggests a difficulty for the method to compromise between
the different objective values when smaller changes in the
material layout are restricted by the mesh size. By contrast,
the finer mesh produced eleven optimised layouts (Fig. 9);
this time with no redundant calculations. The optimised
layouts overall confirm the trade-off solutions already found
with intermediate mesh size.

A minimal amount of grey material can be observed
in some of the layouts, based on the discreteness index
defined in (19). Although grey elements are not desired, the
SIMP algorithm produces final structures with some grey

Fig. 6 Dimensional minimal Pareto set obtained for the case of the simply supported structure (80 × 50 elements). Optimised solutions are
represented along with their PIT region, to demonstrate that the search produced an evenly distributed frontier
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Fig. 7 Optimised layouts corresponding to the points on the minimal Pareto set. Mesh 80 × 50 elements.D = (0.861, 0.968)

elements, which need to be removed by post-processing
(i.e., volume fraction filters). The structures of this
work have minimal grey elements, especially considering
multiple, competing objectives. The discreteness index D in
(19) (2017) is introduced to give a quantitative measure of
the amount of grey elements in the optimised layouts.

D =
∑

e xeve 0.9 ≤ xe ≤ 1
∑

e xeve

(19)

D = 1 indicates full black/white solution. The correspond-
ing ranges of discreteness index are reported in the figures’
captions in the form (Dmin, Dmax). If the grey elements
are removed, some topologies are very similar. Nonetheless,
including both designs in the Pareto front is considered rea-
sonable when comparing their respective objective values.
As it shows that minor difference between the topologies
produces a noticeable variation in the objectives, indicating
that small design changes can result in an appreciable effect
on performance. These results confirm the correct imple-
mentation of the method and lay the foundations for the
following application.

5 Application to the wing box layout

Multi-objective optimisation attracts great interest among
the aerospace community because in this field the presence
of multiple conflicting objectives and stringent constraints
accentuates the need of trade-off solutions. As a result,
the ability to choose among a limited number of optimised
designs appears to be crucial, especially at the preliminary
design stage.

5.1 Topology optimisation of the wing structure

Aerospace applications of topology optimisation have been
reviewed by Zhu et al. (2016), while more recently Munk
et al. (2012) emphasised on feasibility of the optimised lay-
out and its compliance with aviation regulations. Although
the number of publications in this area is growing con-
stantly, the attention here is restricted to those works
addressing the optimisation of the wing primary structure,
in a clear attempt to rethink the traditional spar-rib design
or, at least, to achieve some improvement in terms of weight
reduction and in-flight performance. The first example of

Fig. 8 Optimised layouts obtained for a coarser mesh. 40 × 25 elements. D = (0.956, 0.996)
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Fig. 9 Optimised layouts obtained for a finer mesh. 160 × 100 elements. D = (0.978, 0.993)

topology optimisation applied to the wing structural lay-
out (Balabanov and Haftka 1995) employed the ground
structure approach to solve the minimum compliance prob-
lem for the wing of a high-speed civil transport aircraft.
Results, limited to a component-level, outlined the layout
of the primary structure. On the opposite end of the res-
olution scale, Aage et al. (2017) obtained probably one
of the most impressive results. The authors of this study
performed SIMP topology optimisation of the Nasa Com-
mon Research Model (CRM) wing (Vassberg et al. 2008),
achieving a level of mesh refinement without precedents
for density-based topology optimisation. The interpretation
suggested the presence of curved ribs in the inboard wing,
a feature also observed in another similar study (Crescenti
et al. 2018). In between, a variety of approaches and bench-
marks have been presented. Maute and Reich (2006) inte-
grated SIMP topology optimisation into a multidisciplinary
framework to perform single-objective optimisation of quasi
three-dimensional adaptive wing sections. Although some
simplifications were introduced, the authors pointed out the
importance of a multidisciplinary approach to account for
the change in the structural response. A similar design was
employed byWalker et al. (2015) to find the minimum com-
pliance layout using Altair Optistruct. Eves et al. (2009) and
Oktay et al. (2014) went further, building a CFD topological
framework. The former improved the design of a blended
wing-body aircraft; the latter solved the minimum com-
pliance problem for a three-dimensional rectangular wing.
Munk et al. (2017b) presented a study where the dynamic
stability of a plate wing first, and the CRM wing later, was
optimised by maximising the largest frequency gap among

the first ten modes. Optimisation with respect to dynamic
stability was also investigated by Stanford and Beran (2011)
for a plate wing having different volume fractions and
sweep angles.

Other examples of topology optimisation applied to the
wing structural design adopt the Level Set method (Wang
et al. 2003; Allaire et al. 2004). Gomes and Suleman (2008)
maximised the aileron reversal speed of a wing torsion box
using Level-Set topology optimisation and re-designing the
upper skin. Brampton et al. (2012) and Dunning et al. (2014)
optimised the primary structure of a three-dimensional
full-scale wing with the Level-Set method, considering
structural compliance as response and modifying load cases
and volume fraction.

Unlike the works cited so far, only two papers relative
to multi-objective topology optimisation of the wing design
have been reviewed. Stanford and Ifju (2009) carried out
multi-objective topology optimisation of a membrane micro
air vehicle wing for aerodynamic objectives. Trade-off
solutions were constructed compromising two, out of three,
responses. Sleesongsom and Bureerat (2013) applied the
ground structure method in conjunction with a population-
based algorithm to perform topology and size optimisation
of an unswept, untapered wing box. The resulting Pareto
frontier was obtained for a combination of three aeroelastic
and structural objectives. Although this specific case does
not rely on a compromise method, it becomes unpractical
when applied to density-based topology optimisation with a
significantly higher number of design variables.

The reviewed articles highlight a deficiency in multi-
objective applications. While a significant effort has
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Fig. 10 Finite element model
for the CRM wing box in
HyperMesh

been made to integrate topology optimisation into a
multidisciplinary framework for aerodynamic coupling,
little effort has been made to integrate multi-objective
algorithms. In addition, because of the difficulty to handle
complex geometries, about half of the reviewed works
use simplified designs, consisting in two-dimensional or
tridimensional rectangular wings. In an attempt to overcome
these limitations and to demonstrate the superiority of a
multi-objective approach, the present work will be applied
to the bi-objective optimisation of the CRM wing box.

5.2 Software framework

The Altair package (2017) is employed in combination
with Matlab. HyperMesh� is used for the pre-processing
and OptiStruct for the structural optimisation. Different
from what was done in Section 4, Matlab is only used to
implement the uSNC method and to update the HyperMesh
input file containing the normal constraints. Once the
optimisation in OptiStruct converges, the objective vector
μ(x) is updated. Depending on whether the new point is
optimal or dominated, the Pareto frontier is also updated and
a new approximation point selected. The two neighbouring
points Ul−1 and Ul+1 are substituted in (20)–(21) to
start the new search. The jig-shape approach (Maute and
Allen 2004) is adopted for the optimisation; as a result,
aerodynamics and topology optimisation are not coupled.
This choice is justified as more attention here is paid to
the implementation of the method. The optimisation is
restricted to the bi-objective problem defined in (6) because
compliance (static) and frequency (dynamic) are conflicting
and vital considerations in aircraft wing design. The MOP
is transformed into the single-objective problem (7) with the
two additional conditions.

OptiStruct also offers the possibility of selecting among
three optimisation algorithms. The Method of Feasible

Design (MFD) is the default option; however, the Sequential
Linear Programming (SLP) method has been chosen as
it allows for the introduction of the equality constraint
associated with the volume fraction, which in this case is set
to V ∗

f = 0.5.

5.3Wing computational model

The geometry of the computational model is represented
by the wing box of the CRM model. Data are available
from Vassberg et al. (2008), with the exception of the spars
location that is assumed at 25% and 75% of the chord for
the front and rear spars, respectively. The model consists of
two components. The outer surface is treated as non-design
skin, coloured in blue in Fig. 10; this prevents the material
from being removed, preserving the original aerodynamic
shape and a sealed volume. The second component, grey-
coloured, is the internal region, subject to the material
redistribution. The non-design skin is discretised using
quadrilateral shell elements, to which was assigned a
thickness property of t = 1 mm. As a result, the skin
provides little contribution to the overall wing box stiffness.
The entire model was discretised using 1.6·105 elements and
1.2 · 105 degrees of freedom. A length control technique is
implemented in OptiStruct by defining a minimum member
size which according to the Altair User Guide is between
two and three times the average element size. The same
isotropic material properties are assigned both to the skin
and the internal volume, Young’s modulus E = 73 GPa,
density ρ = 2.7 · 10−6 kg/mm3 and Poisson coefficient ν =
0.3. The root section of the wing box is fully clamped (6-
dof constrained per node). The aerodynamic load is applied
in the form of a pressure distribution (Fig. 11) on the
upper surface only and was obtained for cruise conditions
Mach = 0.85, Re = 4 · 107 per reference chord and
a CL = 0.5. No concentrated loads are considered for

Fig. 11 Boundary conditions
applied to the wing model.
Aerodynamic pressure on the top
surface and clamped root section
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Fig. 12 Density contour plot
corresponding to a local
optimum for frequency
maximisation (top). Cut along
the span (bottom). Only
densities ρ ≥ 0.5 are visualised
to highlight the main features

this application. Static and a dynamic subcases are defined
in Hypermesh for compliance and fundamental frequency.
As the two normal constraints result in a combination of
both objectives, they are first introduced in the form of the
user-defined equations (20)–(21).
(
Ul−1(2) − f̄1

) + χ
(
C̄ − Ul−1(1)

) ≤ 0 (20)
(
f̄1 − Ul+1(2)

) + χ
(
Ul+1(1) − C̄

) ≤ 0 (21)

Where the bar symbol indicates that both compliance and
frequency are normalised with respect to their extreme
values, while χ is the ratio between the first and second
components of the normal vector defined in (3). The two
expressions are thus associated with the corresponding
responses and subcases and finally assigned to two
design constraints. Regular convergence in OptiStruct is
achieved when the convergence criteria are satisfied for two
consecutive iterations. The convergence criteria used here
are indicated as OBJTOL and CONTOL as defined by the
Altair User’s Guide (2017). OBJTOL checks the relative
change of the objective function between two consecutive
iterations, and it has been set at 10−3. CONTOL expresses
the percentage of constraint violation and is set equal to
0.1%. A third parameter, DELTOP, sets the move limits. It is
used by OptiStruct to define the upper and lower bounds of
the design variable changes during each iteration. Smaller
values usually lead to smoother convergence but a larger
number of iterations. DELTOP has been set at 0.1 for this
model.

5.4Wing box: multi-objective results

As for the academic two-dimensional structure, the two
anchor point solutions of the SOPs for compliance

minimisation and fundamental frequency maximisation
provide essential information to normalise the objectives
and to identify the boundaries of the entire design space.
The minimum compliance problem produced the optimised
layout reported in Fig. 16a, with Cmin = 2.964 · 107 N mm
and f1 = 2.404 Hz. The maximum fundamental frequency
resulted instead in the structure of Fig. 12, with C = 1.932 ·
108 N mm and a fundamental frequency fmax = 3.372 Hz.
This configuration was coherent with those found in two
previous studies (Stanford and Beran 2011; Munk et al.
2017b), Starting from these two anchor points, the other
optimised solutions found on the Pareto frontier resulted
in a compliance value of C ∈ (Cmin, 108 N mm), but
inconsistent frequency values f > fmax . As a result,
the anchor point for frequency maximisation became a
dominated solution. In order to explain this incongruence,
the frequency anchor point was further investigated. Its
compliance convergence history (blue curve in Fig. 13)
is compared with that of two other simulations. First,
the frequency maximisation problem was solved under
an additional constraint on the compliance value (C <

108 N mm) producing the red curve in Fig. 13. Such a
value was chosen as the threshold because all the optimised
solutions previously found stayed below this limit. Although
the starting point is the same as the blue curve (material
density is initialised by default at 0.6 in both cases), the
optimisation produced a new anchor point with a frequency
f1 = 4.975 Hz, which is higher than the previous one.
The corresponding layout is reported in Fig. 16h. For the
third comparison (green curve), instead of introducing an
empirical threshold for compliance, the material density was
initialised at 1.0 . As a result, the optimisation started from
a lower compliance value but without constraints it was
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Fig. 13 Compliance
convergence history for the
frequency maximisation.
Baseline solution (blue),
constrained optimisation
C < 108 N mm (red),
constrained optimisation with
move limit equal to 0.01 (cyan),
and baseline problem with
material density initialised at 1.0
(green)

potentially free to explore the design space. As expected,
convergence was slower but attained the same value as the
red curve. This comparison pointed out as by starting from
a less stiff structure (MatInit= 0.6) led the optimisation to
a local minimum of compliance, preventing the algorithm
from further increasing the fundamental frequency. Forcing
the solution towards lower compliance values or simply
moving the starting point far from this area allowed the
optimiser to find a non-dominated solution. Although all
curves attained regular convergence, they did not show
the expected flatness. To justify this fact, a fourth case
(cyan) has been reported in Fig. 13. It reproduces the
same case as the red curve (compliance-constrained) with
a reduced DELTOP parameter set at 0.01. The reduced
move limit clearly smoothes the convergence achieving

the same compliance value, but at the expenses of the
iteration number, 54 against the 14 of the red curve. Despite
its smoothness, the cyan curve presents a jump in the
final part, which is also recognisable in the other cases,
due to the continuation strategy automatically implemented
by OptiStruct to achieve better discrete results. Following
these considerations, the new anchor point for frequency
maximisation was employed for the generation of the
minimal optimal set, along with the minimum compliance
solution whose internal features are visible in Fig. 14.
The resulting Pareto frontier is reported in Fig. 15, where
each optimal solution is associated to the corresponding
PIT region (am = 5% and κ = 0.4) and the “datum”
point, full wing box with volume fraction set at 0.5, is
visualised for reference. Under the guide of the uSNC,

Fig. 14 Cut of the wing layout
optimised for minimum
compliance. Elements with
density ρ ≥ 0.5 are shown to
highlight the main features
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Fig. 15 Smart Pareto set generated the bi-objective optimisation problem for the CRM wing. The two anchor points plus six additional trade-off
solutions are reported along with the corresponding PIT regions, highlighted in red

OptiStruct was able to identify eight optimal solutions and
only in two cases the optimisation process resulted in a
dominated layout. This produced the two gaps between
points (c)–(d) and points (e)–(f) on the Pareto frontier. In
both cases, the dominated points were slightly in contact
with the PIT region of the neighbour point, suggesting
that an optimal solution could still be achieved by refining
the mesh or, alternatively, by setting a tighter convergence
threshold for the normal constraints. This explanation is
also supported by looking at the material distributions
in Fig. 16, where only density values x ≥ 0.5 are
reported to highlight the elements that contribute the most
to structural stiffness. For the minimum compliance layout
(a), material is distributed along the span to counteract the
bending effect induced by the aerodynamic load. On the
contrary, the maximum eigenfrequency design (h) tends to
remove material from the tip to avoid the “lumped mass”
effect which otherwise would decrease the fundamental
frequency. Interestingly, the progression between these
two configurations follows a smooth transition which also
guarantees a connected structure, in contrast to that shown
in Fig. 12. The absence of any rapid change in the structural
layout in correspondence of the gaps on the Pareto frontier
discards the possibility of a discontinuity in the distribution
of optimal solutions. The multi-objective optimisation is
performed on a desktop computer having 4 cores and the
CPU time for the generation of a new optimised layout in
OptiStruct takes between 6 and 8 min. For a bi-objective
problem, as the one solved in this study, the additional
constraints do not seem to affect the CPU time, which
is mainly driven by the model complexity. One could

expect, however, that in the case of many objectives the
benefits of the update may be outweighed by the increase in
computation required by the higher number of constraints.

6 Conclusions

This work presented a strategy to deal with multiple
objectives in SIMP topology optimisation, offering an
alternative to the most common compromise programming,
which is employed in almost the totality of the reviewed
literature. Starting from a recently revised version of the
Smart Normal Constraint method, the authors adapted
this new version to the Method of Moving Asymptotes,
which is universally recognised as an efficient and
reliable optimisation algorithm for density-based topology
optimisation. The optimisation strategy was first tested on
a two-dimensional academic test case for a bi-objective
problem, with a twofold purpose: to define a reference
for the industrial application and, above all, to obtain
a direct comparison with two previous works. The non-
dimensional Pareto frontier showed a strong agreement
with the results already available in the literature and full
coherence in terms of the method’s efficiency. It must be
noticed however that the high value of volume fraction used
for the 2D benchmark, to match the previous results, covers
the possible occurrence of multiple eigenfrequencies, so
further tests are necessary to provide exhaustive conclusions
on the method. Once the approach was proved for the 2D
structure, the same method was used on a real aerospace
application, consisting of the wing box of the CRM model.
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Fig. 16 Density contour plots
corresponding to the optimal
points on the minimal Pareto set.
A consistent transition can be
observed between the minimal
compliance design (a) and the
maximum fundamental
frequency configuration (h).
D = (0.66, 0.91)

In order to cope with the increased geometric complexity,
the SIMPmodule inMatlab was replaced by the commercial
software OptiStruct, showing how the methodology can be
promptly integrated into a professional engineering tool
for industrial design. Based on the information provided
by the uSNC-SIMP multi-objective approach, the solution
corresponding to a local minimum was discarded and the
search focused on an area where more points were found.
While the set of optimised results showed a consistent
evolution of the layouts and provided a new insight into the

design of the wing box internal structure, the absence of
detailed features in the internal optimised layout suggests
the need for the use of a finer mesh, here limited by
computational resources.
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