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Abstract
We use topological derivatives to obtain fiber-reinforced structural designs with non-periodic continuous fibers optimally
arranged in specific patterns. The distribution of anisotropic fiber material within isotropic matrix material is determined for
given volume fractions of void and material as well as fiber and matrix simultaneously, for maximum stiffness. In this three-
phase material distribution approach, we generate a Pareto surface of stiffness and two volume fractions by adjusting the
level-set plane in the topological sensitivity field. For this, we utilize topological derivatives for interchanging (i) isotropic
material and void; (ii) fiber material and void; and (iii) isotropic and fiber materials, during iterative optimization. While the
isotropic topological derivative is well known, the latter two required modification of the anisotropic topological derivative.
Furthermore, we used the polar form of the topological derivative to determine the optimal orientation of the fiber at every
point. Thus, in the discretized finite element model, we get element-wise optimal fiber orientation in the portions where
fiber is present. Using these discrete sets of orientations, we extract continuous fibers as streamlines of the vector field. We
show that continuous fibers are aligned with the principal stress directions as first reported by Pedersen. Three categories
of examples are presented: (i) embedding fiber everywhere in the isotropic matrix without voids; (ii) selectively embedding
fiber for a given volume fraction of the fiber without voids; and (iii) including voids for given volume fractions of fiber and
matrix materials. We also present an example with multiple load cases. Additionally, in view of practical implementation of
laying up or 3D-printing of fibers within the matrix material, we simplify the dense arrangement of fibers by evenly spacing
them while retaining their specific patterns.

Keywords Topological derivatives · Fiber-reinforced structural design · Non-periodic continuous fibers · Pareto surface ·
Anisotropic topological derivative · Polar form · Multiple load-cases

1 Introduction

Topology optimization, with its beginning in
homogenization-based parameterization (Bendsoe and
Kikuchi 1988), is a well-established method for design-
ing structures made of a single isotropic material using
power-law material interpolation techniques (e.g., Bendsoe
and Sigmund 2003; Stolpe and Svanberg 2001). Optimal-
ity criteria method (Bendsoe and Sigmund 2003), method
of moving asymptotes (Svanberg 1987), level-set method
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(Wang et al. 2003), phase-field technique (Wang and Zhou
2004), etc., are some of the widely used methods for
topology optimization today. Extension of these methods
to the design of stiff structures (Wang and Wang 2004;
Zou and Saitou 2017) and compliant mechanisms (Yin and
Ananthasuresh 2001) with multiple isotropic materials is
also reported. As explained next, topology optimization
with anisotropic materials (fiber-reinforced structures, in
particular) has also been extensively investigated. These
techniques use a two-phase material (void and anisotropic
material) approach. In the present study, we describe a
three-phase approach to topology optimization of composite
structures comprising optimally oriented continuous fibers
patterned in an isotropic material. That is, the optimized
structure consists of voids, only isotropic material, and
isotropic material embedded with optimally oriented fibers.
We first review analytical and computational approaches
used to obtain optimal fiber orientations.

Structural and Multidisciplinary Optimization (2021) 63:703–720

/ Published online: 6 October 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02721-1&domain=pdf
mailto: suresh@iisc.ac.in


A. Desai et al.

1.1 Analytically derived fiber orientation

In a pioneering study, Pedersen (1989, 1990, 1991)
analytically derived conditions for optimal orientation of
orthotropic materials. He gave closed-form expressions
where the orientation depends on a non-dimensional
parameter and the ratio of principal strains. His work
also stated that principal stress and principal strain
directions coincide for optimal designs. Thus, one can
define orientations along the maximum principal strain
direction for materials with low shear stiffness to achieve
the global extremum. In another work (Bendsoe et al. 1994),
properties of general material were optimized analytically
to obtain orthotropic material following principal strain
directions. The analytical investigation of parameters for
optimal laminate design subjected to single and multiple
loads was reported in Hammer et al. (1997). The stress-
and strain-based approaches were compared in Cheng
et al. (1994) and Gea and Luo (2004) for obtaining
optimal orientation of orthotropic material. As an alternative
to energy-based formulations, analytical sensitivity with
respect to orientation variables was derived in Majak and
Hannus (2003) subjected to Hill and Tsai-Wu failure criteria
to study material failure.

1.2 Numerically computed fiber orientations

In later years, gradient-based optimization emerged as the
primary approach for determining orientation of fibers in com-
posites. Level-set modeling was used to optimize evenly
spaced continuous fiber paths in (Brampton et al. 2015)
where slope of the level-set function decides material orien-
tation for every element in the finite element discretization.
Similarly, a level-set model-based topology optimization of
thermally active composites was presented in Maute et al.
(2015). In this work, the spatial arrangement of shape mem-
ory polymers within a matrix was obtained for a target
deformed shape of the composite, which could be printed
directly without any post-processing of the obtained design.
Alternatively, optimal orientation of fibers is determined
from a limited set of discrete fiber angles (Kiyono et al.
2017). In this, a normal distribution function was proposed
to assign one variable at a point to select an optimized angle
among several discrete candidate angles. In another exam-
ple, both orientation and size of the fibers were optimized
for the stiffest orthotropic membrane structures (Klarbring
et al. 2019). Laminated composites were designed for opti-
mal orientations wherein each layer had a different objective
(Petrovic et al. 2018). Furthermore, material orientations of
large-scale composite shell structures were studied in Mura-
matsu and Shimoda (2019) where sensitivity with respect
to the orientation variables was applied as a virtual heat
source while the structural compliance was minimized. In

Shen and Branscomb (2020), orientation of anisotropic
materials was optimized using gradient-based mathematical
programming.

1.3 Topology optimization using anisotropic
materials with optimal orientations

Gradient-based numerical techniques were adopted for
optimizing the topology and fiber orientations concurrently
(Bruyneel and Fleury 2002; Setoodeh et al. 2005). Fictitious
material density (as is common in topology optimization),
fiber density, and fiber orientation were considered as
design variables (Thomsen 1992). It is reported that
conventional continuous fiber angle optimization (CFAO),
where the solution is highly dependent on initial fiber
configuration, falls in the local minimum (Stegmann
and Lund 2005). As an alternative, Discrete Material
Optimization (DMO) was proposed in Stegmann and
Lund (2005), where the material model was formulated
by combining multiple elasticity tensors incorporating
different orientation variables, which are further penalized
to force the solution to arrive at a single angle for each
element. A composite model subjected to multiple load
cases was optimized in Zhou and Li (2006) to enable the
material orientation to follow principal stress directions.
The optimization approach proposed in Nomura et al.
(2014) offers continuous design with orientation pertaining
to both continuous and discrete sets of angles. It improves
local minimum issue inherent to CFAO because the evolving
design is independent of previous iterative design. It was
shown in Zhou et al. (2018) that fiber orientation aligns with
the direction of a segment in multi-component topology
optimization.

In view of additive manufacturing of composite struc-
tures, the effect of build direction on the resulting material
anisotropy was examined in Chiu et al. (2018) using a
parametric study. Build direction, topology, and fiber ori-
entation were simultaneously considered in Chandrasekhar
et al. (2019). Toward developing practically useful designs,
Safonov A.A. (2019) and Nomura et al. (2018) presented 3D
topologies with optimally oriented fibers. In particular, ten-
sor field variables were used to optimize fiber orientations.
Additionally, simultaneous optimization of the topology and
material microstructure was done in Yan et al. (2019).

All the aforementioned works are concerned with
topology optimization of only anisotropic material with
either optimally oriented fiber or microstructure. In contrast
to these two-phase approaches (i.e., void and anisotropic
material), a three-phase approach was proposed in Lee et al.
(2018), wherein fiber fraction was considered along with
material fraction in a given design space. Such a composite
structure could be characterized as functionally graded
because fiber is present in a fraction of the structure with
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voids and that too with variable fiber density. The approach
taken in Lee et al. (2018) was sequential in the sense
that three steps were followed, beginning with the design
of isotropic-material matrix with voids, and then inserting
fiber selectively, followed by optimally orienting the fiber.
Our work utilizes topological derivative and combines all
three steps into one by simultaneously interchanging three
phases, namely, isotropic matrix material, fiber-reinforced
orthotropic material, and voids, as illustrated in Fig. 1.
The next part of this section briefly introduces topological
derivative and its applicability in topology optimization.

1.4 Topological derivative

Topological derivative is the closed form analytical expres-
sion that quantifies the sensitivity of a given performance
functional with respect to an infinitesimal domain per-
turbation (Novotny and Sokolowski 2013). Consider an
unperturbed (reference) domain� that is perturbed by intro-

ducing a finite size circular inclusion Bε, centered at x̂

with radius ε. The topological derivative is mathematically
computed as:

T D(x̂) = lim
ε→0

ψε(�) − ψ(�)

f (ε)
(1)

In the above equation, T D(x̂) is the first-order topological
derivative, ψε(�) and ψ(�) are the performance measures
of the perturbed and unperturbed domains, respectively, and
f (ε) is the positive first-order correction factor such that
when ε → 0, f (ε) vanishes.

The topological derivative has been successfully applied
in determining optimal topology of structures. The analyt-
ical derivative is computed for the homogenous isotropic
and anisotropic domains, where voids are created in order
to obtain the optimal topology for a given volume fraction
(Bonnet and Delgado 2013; Giusti et al. 2016). One can
also insert anisotropic inclusions into the already existing
isotropic domain while achieving the specified objective.

Fig. 1 Graphical illustration of topological-derivative-based design
algorithm for extracting fiber-reinforced structural design: a Initial
isotropic matrix with specified boundary conditions. The desired fiber
fraction and void fraction are given by FF ∗ and V F ∗ respectively.
b Design algorithm to replace isotropic matrix with optimally ori-
ented fiber inclusions for desired FF ∗ while void fraction V F is held
constant. It utilizes topological derivatives for interchanging matrix
(isotropic) and fiber material, i.e., T DI→F and T DF→I . c Design
algorithm to create voids in the material for desired V F ∗ while fiber

fraction FF is held constant. It utilizes topological derivatives for
interchanging matrix material and void, i.e., T DI→V and T DV →I as
well as fiber material and void T DF→V and T DV →F . d Pareto design
surface which compares mean compliance of the structure with void
and fiber fractions as displayed in the projected Pareto curves. e Three-
phase material distribution and fiber orientation for specified V F ∗ and
FF ∗. f Fiber-reinforced structure with evenly spaced continuous fiber
trajectories
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This method is not only computationally efficient but also
offers Pareto front of the optimal design for the performance
functional and volume of the material used (Suresh 2010;
Mirzendehdel and Suresh 2015). The optimal solution for
multimaterial isotropic model wherein level-set-based topo-
logical derivative representation is generalized for multiple
isotropic materials is reported in Gangl (2020) and Onco
and Giusti (2020).

1.5 Scope of the work

In the present study, we use topological derivatives to
obtain optimal material distribution and orientation of fibers
within the matrix and voids, simultaneously. We mod-
ify anisotropic topological derivative to replace isotropic
matrix with fiber inclusions and then determine Pareto-
optimal three-phase material distribution using topological-
derivative-based design algorithm. The optimal fiber ori-
entation is achieved by computing anisotropic topological
derivative in the polar coordinate system. This comprehen-
sive multi-phase study offers Pareto surface which encapsu-
lates stiff fiber-reinforced designs at various void and fiber
fractions. Additionally, the resulting orientation vector field
is further processed to achieve evenly spaced continuous
fiber trajectories along which the long fiber strands can be
laid.

The procedure of obtaining fiber-reinforced structural
design is illustrated in Fig. 1. As shown in the figure, we
consider a structure with homogeneous isotropic material
(Fig. 1a) to begin with. For the purpose of illustration,
the structure is fixed at one edge and a point load is
applied at the center of the opposite edge. We analyze
the discretized finite element model of the structure and
generate the topological sensitivity field for incorporating
fiber inclusions at optimal locations in the matrix. This
requires two topological derivatives T DI→F and T DF→I

to interchange isotropic matrix with fiber material as
shown in (Fig. 1b). The void fraction, V F , is held
constant during this procedure of material replacement
and reorientation using transformed topological derivative.
Once we reach the desired fiber fraction incrementally

toward FF ∗, the resulting material distribution is called
by the second loop where voids are created while fiber
fraction FF is held constant, as shown in (Fig. 1c). In
this void-creation step, we use four topological derivatives
to create voids in the matrix material T DI→V , voids
in the fiber material T DF→V , adding matrix material
to voids T DV →I and adding anisotropic fiber material
back to voids T DV →F . This procedure is incrementally
repeated to cover the desired range of void and fiber
fractions resulting in the development of Pareto surface
in (Fig. 1d) where we compare mean compliance with
respective volume fraction of voids and fiber. The optimal
material distribution and fiber orientation is presented
in (Fig. 1e). The material and orientation information
is further processed in data visualization software to
create uniformly spaced fiber paths as illustrated in
(Fig. 1f).

The paper is organized as follows: The problem
statement is defined in Section 2 where the sets of
governing equation and boundary conditions for reference
and perturbed domains, respectively, are explained. In
Section 3, the analytical derivatives required to compute
topological sensitivity are encapsulated. Section 4 is
devoted to the implementation of topological derivatives to
obtain optimal topologies in fiber-reinforced composites.
The Pareto optimality conditions are presented and element-
wise optimal fiber orientations are obtained using the
polar form of the topological derivative. Several numerical
examples with different loading and boundary conditions
are demonstrated in Section 5. The last section offers
an approach of generating continuous fiber paths. It
provides an insight into the manufacturability of the
resulting topology, which in turn leads to non-periodic fiber
arrangement following specific patterns.

2 Problem statement

In this section, we present the mathematical statement of
the elasticity problem. The initial unperturbed domain is
fully isotropic as shown in Fig. 2a. The displacement field u

Fig. 2 Domain representation for topological derivative
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for the unperturbed domain solves the following variational
problem:

u ∈ U(�) :
∫

�

σ (u)·ε(η) =
∫

�N

q̄ ·η, ∀η ∈ U(�) (2)

where, q̄ is the traction applied at �N , u is the displacement,
and η is perturbation in the displacement. The term
ε(η) represents the engineering strain expressed in Voigt
notation, i.e.:

ε(η) =
⎡
⎣ εxx

εyy

γxy

⎤
⎦ =

⎡
⎣ ∂ηx/∂x

∂ηy/∂y

∂ηx/∂y + ∂ηy/∂x

⎤
⎦ (3)

with ηx and ηy being the components of perturbed displace-
ment η. The stress vector σ (u) in (2) is related to ε(u) by:

σ (u) = Cε(u) (4)

Here, C is the constitutive relation for isotropic material
expressed in matrix (Voigt notation). The space U(�) is
defined as U(�) := {

φ ∈ H 1(� : R2) : φ|�D
= 0

}
, with

�D is the part of the boundary ∂�, where displacement is
prescribed. The performance functional ψ(�), which is the
strain energy associated to the system, is given by:

ψ(�) = 1

2

∫
�

σ (u) · ε(u) (5)

Next, the domain in Fig. 2a is perturbed by introducing a
circular inclusion of finite size with a different constitutive
matrix C∗ shown in Fig. 2b, such that the displacement of
the perturbed domain is obtained by solving the following
variational form:

uε ∈ U(�) :
∫

�

σ ε(uε)·ε(ηε) =
∫

�N

q̄ ·ηε, ∀ηε ∈ U(�)

(6)

with � := (�\Bε) ∪ Bε. The stress vector is given by
σ ε(uε) = Cε(x)ε(uε) with Cε(x) defined as:

Cε(x) =
{

C if x ∈ �\Bε

C∗ if x ∈ Bε

(7)

where C∗ is the constitutive matrix of inclusion. If the
inclusion is void, then C∗ = γC, γ denotes the contrast
parameter that mimics void. For the anisotropic fiber
inclusions, we need to replace C∗ with the constitutive
matrix pertaining to the anisotropy that represents the fiber
material. The performance functional for the perturbed
domain is given by:

ψε(�) = 1

2

∫
�

σ ε(uε) · ε(uε) (8)

By using (1), (5), and (8), one can obtain the topological
derivative for the elastic system; see for instance, Novotny
and Sokolowski (2013). In the next section, we have

encapsulated all the topological derivatives required to
obtain the topology of the fiber-reinforced composite.

3 Topological derivative evaluation

In this section, we present the topological derivatives for
exchanging: (i) isotropic matrix material to voids (I → V );
(ii) voids to isotropic matrix material (V → I ); (iii) fiber
material to voids (F → V ); (iv) voids to fiber material
(V → F ); (v) matrix to fiber material (I → F ); and (vi)
fiber to matrix material (F → I ).

3.1 Topological derivative for isotropic� void phase

According to Novotny and Sokolowski (2013), the analyti-
cal expressions of topological derivatives for interchanging
isotropic matrix material and void are given by:

T DI→V (x̂) = 2

1 + ν
σ (x̂) · ε(x̂) − 1 − 3ν

2(1 − ν2)

×(σxx(x̂) + σyy(x̂))(εxx(x̂) + εyy(x̂)) (9a)

T DV →I (x̂) = − 2

3 − ν
σ (x̂) · ε(x̂) − 1 − 3ν

2(1 + ν)(3 − ν)

×(σxx(x̂) + σyy(x̂))(εxx(x̂) + εyy(x̂)) (9b)

Here, we denote σ (u(x̂)) and ε(u(x̂)) by σ (x̂) and ε(x̂),
respectively, for the sake of convenience.

3.2 Topological derivative for fiber� void phase

The topological derivative in anisotropic elasticity derived
in Bonnet and Delgado (2013) and Giusti et al. (2016)
uses the polarization tensor for anisotropic inclusions. We
utilize this fourth order polarization tensor in second order
using standard subscript notations to evaluate topological
derivative for interchanging fiber material and voids, which
is given by

T DF�V (x̂) = 1 − γ

2γ

(
γ I + T γ

)
σ (x̂) · ε(x̂) (10)

Here, I is the identity matrix of order 3 while T γ in
the matrix notation, determines the stress-state inside the
inclusion Bε, see for instance, Giusti et al. (2016). We
substitute γ → 0 and γ → ∞ in (10) to obtain T DF→V

and T DV →F , respectively.

3.3 Topological derivative for isotropic� fiber
phase

In order to determine topological derivatives for inserting
anisotropic fiber inclusions in the isotropic matrix, the
polarization tensors in anisotropic elasticity requires a
modification. We express the fourth order anisotropic
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polarization tensor (Giusti et al. 2016) in second order
matrix notation as follows:

P = 1

2
�C(x̂)

(
C−1(x̂) + C∗−1

(x̂)T (x̂)
)

(11)

Here, �C = C − C∗ and the matrix T is computed as

T = −AS, S = I − C∗C−1 (12)

where A is the matrix of order 3 × 3, obtained by using
complex variable method for anisotropic elasticity. In this,
the stress and displacement fields inside the inclusion are
expressed in terms of complex potentials and a system of
equations is obtained to solveA by incorporating prescribed
boundary conditions, as explained in Giusti et al. (2016).
The constitutive matrix C is denoted as CI for the isotropic
phase, and C∗ as CF for the anisotropic fiber phase.
Thus, the topological derivatives for interchanging isotropic
matrix and fiber inclusions are given by:

T DI→F (x̂) = P IF σ (x̂) · ε(x̂), with

P IF = 1

2

(
CI − CF

)(
C−1

I + C−1
F T IF

)
(13a)

T DF→I (x̂) = P FIσ (x̂) · ε(x̂), with

P FI = 1

2

(
CF − CI

)(
C−1

F + C−1
I T FI

)
(13b)

In the preceding equations, T IF and T FI are different as
they are dependent on CI and CF .

Polar form of anisotropic topological derivative In order
to determine optimal fiber angle for each element in the
discretized finite element model, we compute anisotropic
topological derivative in polar coordinates. This is done
by transforming the stiffness matrix of anisotropic material
using the following relation:

C̄ = T −1
1 CT 2 (14)

where the transformation matrices T 1 and T 2 are given by:

T 1 =
⎡
⎣ m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2

⎤
⎦ and

T 2 =
⎡
⎣ m2 n2 mn

n2 m2 −mn

−2mn 2mn m2 − n2

⎤
⎦ (15)

with m = cos θ and n = sin θ where θ is the orientation
of the fiber with respect to the reference coordinate system.
Once the stiffness matrix is obtained as a function of
θ , the polarization tensors P IF and P FI in (13a) and
(13b), respectively, are expressed in terms of the orientation
variable leading to the evaluation of minimum transformed
topological derivative:

min
θ

T D(θ) = P ∗(θ)σ (x̂) · ε(x̂) (16)

Here, P ∗ is either P IF or P FI for interchanging fiber and
matrix material. Similarly, topological derivative in (10) for

interchanging fiber material and void can be written in polar
form using (16). The transformed topological derivative
in (16) is computed for different values of θ . And then
material orientation for which the topological derivative
is the lowest is chosen as the optimal orientation for the
particular element.

4 Solutionmethod

In this section, we explain the algorithm that guides us to the
optimal topology of fiber-reinforced composite structures.
The topological derivatives mentioned in Section 3 are
utilized to obtain the optimal structural design and the
fiber angle is determined for each element by computing
the anisotropic topological derivative in polar form. The
continuous fibers are generated in the form of streamlines
by visualizing the obtained data of element-wise fiber
angles in the form of a vector field. The method of
determining Pareto-optimal isotropic designs as explained
in Suresh (2010) is exploited in our work, where the set
of all the evolving topologies satisfy validity and Pareto-
optimality conditions. In this section, we will explain two
algorithms where algorithm 1 offers optimal replacement
of partial/full volume of isotropic matrix with anisotropic
inclusions thereby maximizing the stiffness of the structure.
The second algorithm provides optimal fiber-reinforced
topology which constitutes only isotropic matrix, optimally
oriented fibers within the matrix and voids. In both the
algorithms, we compute fiber angles pertaining to elements
with anisotropic material property. Such element-wise fiber
angles help us generate continuous fibers.

4.1 Algorithm 1

This algorithm is the extension of the design methodology
adopted in Suresh (2010) where the optimal distribution
of isotropic material and void is determined. Here, we
address the solution method for optimal replacement of
isotropic matrix material with anisotropic fiber inclusions.
The algorithm to extract fiber-reinforced structural design
without voids is shown in Fig. 3 and the details of the steps
are as follows:

0. We initialize our design by setting matrix volume �m

equal to the design space D which means that the fiber
fraction (FF ) in the matrix is 0. The initial design is
fully isotropic with angle set to 0 and the fraction of
matrix material to be replaced with fiber inclusions is
set to �FF = 0.05.

1. Finite element analysis is carried over the matrix
volume �m and the polar topological sensitivity field
is computed using (16). We use Gaussian filter to
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Fig. 3 Algorithm 1: To
determine Pareto-optimal
fiber-reinforced structural
design without voids

smoothen the sensitivity field and also store mean
compliance J in this step.

2. We check whether the desired volume fraction of fiber
inclusions in the matrix FF ∗ has attained or not.

3. If the condition in Step 2 is not satisfied, then we move
to the next material replacement step by modifying FF .

4. Next, we compute the level-set value τ by adjusting
the level-set plane in the topological sensitivity field. In
this step, bisection method is adopted to obtain level-
set value between the maximum and minimum values
of field and a fixed point iteration scheme is used to
arrive at a design such that the fiber volume �f is equal
to FF . The area of isotropic matrix below the level-set
plane is replaced by fiber inclusions, as illustrated in
Fig. 4a.

5. We follow step 1 to perform finite element analysis
and obtain filtered topological sensitivity field for the
composite volume �τ = �m ∪ �f .

6. The Pareto optimality condition for interchanging
matrix and fiber material is given by:

min(T DI→F ) + min(T DF→I ) ≥ 0 (17)

If the condition follows, we move to step 2. If not, then
we move to step 4 and search for the Pareto optimal
design at the same fiber fraction.

7. If the condition in step 2 is satisfied, then we extract
the topology in the form of iso-surface and optimal
orientations as illustrated in Fig. 4b.

Fig. 4 Topological-derivative-
based level-set visualization for
two-phase material distribution
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Fig. 5 An approach to arrive at three-phase material distribution and
orientation

8. This material distribution with optimal orientation of
fiber material requires further processing to determine
continuous fiber trajectories.

Algorithm 1 determines optimal distribution of fiber and
matrix materials which can be visualized while designing
composite structures, e.g., the design of fan blades in
aircraft engines, where fiber-reinforced composite materials
are predominantly used. The critical parameters like weight,
efficiency, and clearances are optimized by varying the
orientation of fibers in the composite structure. During
the manufacturing phase, these optimal orientations of the
fibers in the matrix are realized through the state-of-the-art
additive manufacturing techniques.

Fig. 6 Algorithm 2: To
determine Pareto optimal
fiber-reinforced structural
design with voids

4.2 Algorithm 2

We use an approach for obtaining three-phase material
distribution of only matrix, fibers embedded within the
matrix, and voids in the design space, as illustrated in Fig. 5.
As shown in the figure, we optimally add fiber inclusions
in the matrix for desired value of fiber fraction (FF ∗)
while void fraction (V F ) is held constant. Once we arrive
at FF ∗, voids are created at constant fiber fraction (FF ).
Since the voids may add or remove some material from
the fibers, thereby changing the fiber fraction in the matrix,
we again distribute them in the resulting topology to retain
FF ∗ while simultaneously maintaining V F ∗. Alternatively,
one can also interchange between FF ∗ and V F ∗ to first
create voids in the matrix material followed by insertion
of fibers. In this paper, we intend to create voids in the
composite structure for which the algorithm is designed to
obtain optimal distribution of material and void as well as
fiber or no fiber where there is material. It consists of two
loops where the first loop maintains the fiber fraction in the
material while void fraction is held constant and the second
loop creates optimal locations of voids with fiber fraction
held constant. The steps in the algorithm, as illustrated in
Fig. 6, are as follows:

0. We start with an initial isotropic domain �m which is
equal to the design space D. The void fraction V F ,
fiber fraction FF , and orientation set to 0. The fraction
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of isotropic matrix to be replaced by fiber material
is set as �FF = 0.05 and the volume fraction of
voids to be created in the material domain is given by
�V F = 0.05.

1. We carry finite element analysis over �m and filtered
topological sensitivity field is evaluated using (16) to
interchange between matrix and fibers.

2. We check whether we have attained the desired fiber
fraction FF ∗.

3. If not, then we move to next material replacement step
by modifying fiber fraction FF .

4. Now, we compute the level-set value τ1 in the
sensitivity field by adjusting the level-set plane, as
explained in algorithm 1. The motive is to arrive at
fiber volume �f equal to FF . The area below the
level-set plane is replaced by fiber material, as shown
in Fig. 7a.

5. We perform finite element analysis on�τ1 = �m∪�f

and evaluate the corresponding topological sensitivity
field as we did in Step 1.

6. The Pareto optimality condition for replacing isotropic
matrix by fiber inclusions is given by:

min(T DI→F ) + min(T DF→I ) ≥ 0 (18)

If the condition in step 6 follows, then we move to step
2; otherwise, we go to step 4.

7. If the condition in step 2 follows, then we check for
the void fraction in the design space to attain desired
value V F ∗.

8. If not, then we move to next void creation step by
modifying V F .

9. We compute level-set value τ2 by bisection method
and adjust the level-set plane such that the volume
occupied by voids �v is equal to V F . The area below
the level-set plane is the region with optimal void
locations, as illustrated in Fig. 7b.

10. We perform finite element analysis over �τ2 =
�m ∪ �f ∪ �v and compute composite topological
derivatives using (9) and (16) for interchanging matrix
and voids as well as fiber and voids, respectively.

11. We check the Pareto optimality condition for creation
of voids which is given by:

min(T DM→V ) + min(T DV →M) ≥ 0 (19)

Here, M represents matrix material or fiber. If the
condition does not follows, we move to step 9. If yes,
then we go to step 2 for redistributing fibers in the
design such that we arrive at FF ∗ while maintaining
V F .

12. We need to check whether steps 2 and 7 follow
simultaneously. If yes, then we extract the resulting
iso-surface and the optimized orientations.

13. This three-phase material distribution with opti-
mally oriented fibers requires further processing to
determine continuous fiber trajectories (explained in
Section 6).

In this three-phase topology optimization procedure, we
develop a Pareto surface for designs for different void and
fiber fractions.

5 Numerical examples

In this section, we present various fiber-reinforced struc-
tures designed for maximum stiffness. In the first part of
this section, we utilize algorithm 1 to obtain Pareto optimal
homogeneous distribution of matrix material (isotropic) and
fiber material (orthotropic) for desired volume fraction of
fiber and matrix. In this process, we also present optimal
orientation of fiber in each orthotropic element of the finite
element mesh. We discuss three examples of cantilever
with different loading conditions and their respective Pareto
curves. The second part of this section will present optimal

Fig. 7 Topological-derivative-
based level-set visualization for
three-phase material distribution
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fiber orientations for multiple load cases. In the third part
of this section, we will utilize algorithm 2 to present three-
phase structural topology for a given void fraction in the
material and fiber fraction in matrix.

In all the examples, we have considered the following
material properties:

1. For isotropic matrix, we have E = 1.0 GPa (Young’s
modulus) and ν = 0.3 (Poisson’s ratio).

2. For fiber inclusions, we consider orthotropic constitu-
tive properties with Ex = 4.0 GPa (Young’s modulus in
longitudinal direction), Ey = 2.0 GPa (Young’s modu-
lus in transverse direction), νxy = 0.3, (Poisson’s ratio),
and G = 0.7 GPa (shear modulus).

3. The contrast parameter to mimic void is taken as
γ = 1.0 × 10−4. In addition, we consider plane
stress assumption for all the loading conditions and
the domain is discretized into 60 × 30 bilinear quad
elements.

5.1 Fiber-reinforced structural designswithout voids

The first example is that of a cantilever with load case-
1 shown in Fig. 8a. We use algorithm 1 to determine
Pareto optimal distribution of fiber and matrix materials at
different fiber fractions (FF ) and demonstrate the same
through a Pareto curve shown in Fig. 8b. The black and gray
colors represent fiber and matrix materials, respectively.
We consider the fiber elements in the finite element model
and compute topological derivative in polar coordinates
for different values of θ , using (16) where fiber angle
corresponding to minimum topological derivative value
offers optimal orientation for the particular element. The

orientation field for a given fiber fraction, say FF ∗ = 0.6,
is illustrated in Fig. 9a. Note that there will be a slight
deviation in the Pareto curves for oriented and non-oriented
topological derivatives as shown in Fig. 9b.

One can generate element-wise fiber orientations at
any fiber fraction by following a similar procedure.
Furthermore, we obtained principal stress direction for the
mentioned load case using COMSOL Multiphysics and we
observe that the resulting orientation field for completely
orthotropic structure is in agreement with principal stress
directions, as illustrated in Fig. 10. The red and blue
arrows represent tensile and compressive nature of stresses
respectively in Fig. 10b.

The second loading case of cantilever is shown in
Fig. 11a for which the Pareto optimal material distribution
is shown in Fig. 11b. The vector field of orientations at
FF ∗ = 0.6 for this specific load case is shown in Fig. 12a
and the deviation in the value of mean compliance for the
polar topological derivative is identified in the Pareto curve
as shown in Fig. 12b. Next, we perform a regular check of
resulting orientations with principal stress directions, which
is presented in Fig. 13

The third loading case of the cantilever is shown in
Fig. 14a where we are applying uniformly distributed load.

In this case, we compute optimal orientations for fully
orthotropic material in the domain, i.e., with FF ∗ = 1
and compare these with the one reported by Pedersen
(1991) in Fig. 14b. In the work, the author states that the
orientations for orthotropic material should follow principal
stress directions (Pedersen 1989). Thus, we observe in our
case that the orientation field agrees with the direction of
principal stresses, as illustrated in Fig. 15.

(a) Cantilever with load case-1 (load at center
of right edge)
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(b) Pareto curve for load case-1

Fig. 8 Pareto optimal material distribution for load case-1
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(a) Optimal element-wise orientation at = 0.6 for load
case-1 with normalized colormap
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(b) Pareto curve with and without oriented topological derivative
for load case-1

Fig. 9 Optimal orientation at given fiber fraction and deviation in the Pareto curves for load case 1

(a) Optimal fiber orientation at = 1 for load case-1 with nor-
malized colormap

(b) Principal stress directions for load case-1

Fig. 10 Optimal fiber orientations in agreement with principal stress directions for load case 1

(a) Cantilever with load case-2 (load at end of
right edge)
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(b) Pareto curve for load case-2

Fig. 11 Pareto optimal material distribution for load case 2
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(a) Optimal element-wise fiber orientation at = 0.6 for
load case-2 with normalized colormap
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(b) Pareto curve with and without oriented topological derivative
for load case-2

Fig. 12 Optimal orientation at given fiber fraction and deviation in the Pareto curves for load case 2

(a) Optimal fiber orientation at = 1 for load case-2 with nor-
malized colormap

(b) Principal stress directions for load case-2

Fig. 13 Optimal fiber orientations in agreement with principal stress directions for load case 2

(a) Cantilever with load case-3 (uniformly dis-
tributed load on top edge)

(b) Optimal orthotropic orientations reported by Pedersen

Fig. 14 Benchmark result on orientation of orthotropic fibers reported by Pedersen (1991) for distributed load case
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(a) Optimal fiber orientation at = 1 for load case-3 (b) Principal stress directions for load case-3

Fig. 15 Comparison with the results by Pedersen for load case 3

5.2 Fiber-reinforced structure for multiple load case

We investigate the optimal fiber orientations in the
cantilever subjected to multiple loads. The point loads
are as shown in Fig. 16a. In this case, we individually
compute topological derivative field corresponding to two
loads using (16) and generate a sensitivity field with the
minimum value of the topological derivative. This idea of
taking the minimum value of derivative provides stiffest
composite structure and the resulting vector field of optimal
fiber angles is then obtained as shown in Fig. 16b. Here, we
have depicted the element-wise fiber angles corresponding
to both the loads. If the optimal fiber angles pertaining to
both the loads are equal, they are represented by a single red
line, whereas intersecting red and blue lines depict that the
angles are unequal corresponding to both the loads.

5.3 Fiber-reinforced structural design with voids
(a three-phase topology)

In this three-phase design approach, we use algorithm 2 to
arrive at Pareto optimal material distribution to incorporate
matrix, fiber, and voids. We first take an initial matrix
which constitutes isotropic material for the cantilever with
load case 1. The topological sensitivity field for this initial

design is computed using (16) to optimally place fiber
material while void fraction is held constant. Once, we
reach the desired value of fiber fraction FF ∗, we intend to
create voids by keeping fiber fraction constant. The material
sensitivity field is generated by evaluating topological
derivatives in (9) and (16) to create void locations. This
iterative process of simultaneously distributing matrix, fiber,
and voids in the design space eventually offers three-phase
optimized topology for various fiber and void fractions.

We check for the three-phase design to satisfy Pareto
optimality conditions in (17) and (18). Once, this Pareto
optimal material distribution is determined, we also plot
the orientation field for the resulting topology. The three-
phase material distribution is illustrated in Fig. 17a and the
resulting orientation field is shown in Fig. 17b. The material
distribution and orientation for load case 2 (end load) are
presented in Fig. 17c and d respectively.

The fiber-reinforced structural design with optimal
orientation of fibers can be obtained for the range of fiber
and void fractions thereby providing a Pareto surface of
stiffness and volume fraction of void and material as well
as fiber and matrix as shown in Fig. 18. In the next section,
we present the fiber trajectories for all the designs that we
have obtained, along which the continuous fiber strands can
be laid.

(a) Cantilever subjected to multiple loads (b) Element-wise fiber angles at = 1 (fully orthotropic struc-
ture)

Fig. 16 Orientation field in multiple load case
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Fig. 17 Optimal material
distribution and orientations of
fiber-reinforced structure for
two load cases

6 Continuous fiber trajectories

The two- and three-phase optimal material distributions are
achieved for several loading conditions, using topological-
derivative-based design algorithm. The polar form of
anisotropic topological derivative provided us the optimal
fiber orientation of all the elements in the finite element
model. In view of embedding fibers within the matrix,
element-wise fiber orientation is not amenable for manu-
facturing or 3D printing. This points to a need to develop

continuous fiber tracks such that the long fibers can be laid
along them. In this section, we explain the procedure for
obtaining long and evenly spaced continuous fibers.

Long fibers are generated with the help of stream2
function in MATLAB. This function requires the vector
field of the domain and the starting points of the streamlines
(or fibers) as inputs and returns the data points of the fibers
paths as output. The optimal element-wise orientations are
visualized in the form of vector field and the starting points
are obtained from the center of the elements. Therefore, the

- Fiber Fraction in Material Volume

- Matrix Fraction in Material Volume

- Void Fraction

- 0.3, - 0.14, - 0.56

- 0.3, - 0.385, - 0.315

- 0.55, - 0.45

- 0.1, - 0.315, - 0.585

Fig. 18 Pareto surface of stiffness and two volume fractions for center load on the right edge
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number of starting points (and hence the number of fibers)
will be same as the number of elements. While it generates
long fibers as per the obtained orientations, such density of
fibers can impose heavy manufacturing constraints since it
is difficult to lay large number of fibers in a small volume
of the domain. Hence, there is a need to space the fibers
uniformly such that they lie within the print tolerance of the
machine. The following steps are followed to achieve the
evenly spaced long fibers:

1. The domain is divided into smaller domains. The size
of the smaller domains can be varied depending on the
allowable range of spacing between the fibers.

2. The set of smaller domains through which each fiber
passes is identified; to ensure appropriate spacing
between the fibers, a constraint of allowing only one
fiber to pass through the smaller domain is enforced.

3. Among the entire density of fibers, each fiber is
prioritized based on a metric which is calculated using
the following expression:

�n
i=1αiσi (20)

where αi is the arc length of fiber inside the smaller
domain i, σi is the largest absolute value of the principal
stress in i, and n is the number of smaller domains
through which the fiber passes. This metric tries to
capture the contribution of a fiber for improving the
stiffness by giving priority to those domains which
have higher principal stress values. Therefore, the fiber
which has the highest value of this metric is plotted
first and hence dominates the smaller domain after the
constraint mentioned in step 2 is enforced.

4. Once the priority of laying fibers is set, the redundant
fibers must be removed. This is achieved by eliminating
the starting points of the fibers which lie within the
print tolerance (or spacing between the fibers). Hence,
the fibers are plotted sequentially so that they terminate
either at the boundary or an element where there is fiber
already present, as presented in Fig. 19.

This procedure of obtaining long fibers does not necessarily
provide fiber continuity as there are uneven breaks in the

fiber paths which may not comply with the print tolerance
associated with the minimum length for laying fibers. This
drawback is overcome using data visualization software,
ParaView, for obtaining continuous fiber trajectories. The
element-wise fiber orientation for all the loading cases can
be visualized in the form of a vector field. The evenly spaced
fibers are obtained using “Evenly Spaced Streamlines 2D”
filter in ParaView, as illustrated in Fig. 20. Long fiber
paths in multiple load cases are obtained using Tecplot, as
depicted in Fig. 20d. The simplified fiber arrangement is
achieved while retaining non-periodic and specific pattern
of the fiber.

7 Closure

In this paper, we present stiffest composite designs with
and without voids by using topological derivatives. The
Pareto optimal distribution of matrix material (isotropic),
fiber material (orthotropic), and voids is achieved for a given
void fraction in material and fiber fraction in matrix. The
intent of this study is to obtain fiber-reinforced structures
with evenly spaced continuous fibers. We also developed
a Pareto surface of structural stiffness with two volume
fractions, namely void and fiber fractions.

Simultaneously varying void and fiber fractions using six
topological derivatives in a level-set methodology is a key
feature of the technique presented in this paper. Using the
polar form of the topological derivative enabled choosing
the optimum fiber angle effortlessly. Unlike some previous
works, here optimal fiber angle can assume any value
rather than from the predetermined discrete set. The optimal
orientations for uniformly distributed load are in agreement
with the results from the literature. We also observed that
the optimal orientations agree with the principal stress
directions in all the design examples.

We implemented an algorithm to incorporate only matrix
material, fibers embedded within matrix material, and voids
in a given design space for two loading conditions. The fiber
fraction and void fraction are controlled simultaneously
which lead to optimal distribution of the three phases. The

(a) Example 1 with point load at center of right edge (b) Example 2 with point load at end of right edge

Fig. 19 Uniformly spaced continuous fibers for two load cases
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Fig. 20 Evenly spaced
continuous fibers for all the load
cases

(a) Example 1 with point load at center of right edge (b) Example 2 with point load at end of right edge

(c) Example 3 with uniformly distributed load at top
edge

(d) Example 4 with multiple load cases

(e)Fiber-reinforced structure with voids for point load
at center of right edge

(f)Fiber-reinforced structure with voids for point load
at end of right edge

orientations are determined for the resulting multimaterial
distribution by representing topological derivative in polar
coordinates. These set of orientations provide continuous
fiber paths along which the long fiber strands can be
laid. We evenly space the continuous fibers such that the
manufacturability constraints are satisfied while retaining
their non-periodic and specific pattern. The simplification of
the dense fiber arrangement led to a question on how much
we have lost or gained in terms of structural stiffness. The
evaluation of mean compliance is non-trivial as elements in
the finite element grid possess anisotropic fibers embedded
within the isotropic matrix, which requires a different
constitutive model to address the issue. The proposed
methodology in this paper is applicable to the work in
Amstutz and Novotny (2010) and Sales et al. (2015), to
obtain fiber orientations and trajectories of Kirchhoff and
Reissner/Mindlin plates.
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