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Abstract
Model validation methods have been widely used in engineering design to evaluate the accuracy and reliability of simulation
models with uncertain inputs. Most of the existing validation methods for aleatory and epistemic uncertainty are based on the
Bayesian theorem, which needs a vast number of data to update the posterior distribution of the model parameter. However, when
a single simulation is time-consuming, the required simulation cost for the validation of a simulation model may be unaffordable.
To overcome this difficulty, a new model validation framework based on parameter calibration under aleatory and epistemic
uncertainty is proposed. In the proposed method, a stochastic kriging model is constructed to predict the validity of the candidate
simulation model under different uncertainty input parameters. Then, an optimization problem is defined to calibrate the episte-
mic uncertainty parameters to minimize the discrepancy between the simulation model and the experimental model. K–S test
finally decides whether to accept or reject the calibrated simulation model. The performance of the proposed approach is
illustrated through a cantilever beam example and a turbine blade validation problem. Results show that the proposed framework
can identify the most appropriate parameters to calibrate the simulation model and provide a correct judgment about the validity
of the candidate model, which is useful for the validation of simulation models in practical engineering design.
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1 Introduction

Simulation modeling has become an important tool to analyze
or predict the behavior of physical systems, especially under
some specific scenarios where physical experiments cannot be
conducted (often due to limited design cost). However, there

are inevitably some differences between the simulation results
and experimental observations (Lü et al. 2018), which are
generally caused by the uncertainties that exist in the design,
manufacture, and experimental process, such as material prop-
erty, boundary conditions, and machining error (Hu and
Mahadevan 2017). To increase the confidence of the simula-
tion model, the validity of the simulation results should be
evaluated through the model validation process, which is to
determine whether or not a simulation model is an exact rep-
resentation of the real world within its intended application
(Sargent 2010). A simulation model should pass the model
validation process before it is further used for design and
optimization. Otherwise, it may lead to unreliability system
or even the failure of the design.

The uncertainty source in the model validation process can
be classified into aleatory uncertainty and epistemic uncertain-
ty. Aleatory uncertainty, also known as stochastic uncertainty,
is the inherent variability of an experimental system, such as
measurement error and manufacturing errors (Deng et al.
2018). It is often represented by probability theory with ran-
dom processes or variables (Jiang et al. 2018). When the sim-
ulation model only contains aleatory uncertainty parameters,
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the existing validation methods can be generally divided into
area metric-based methods (Shen et al. 2015; Xiong et al.
2009;Wang et al. 2018a; Ferson et al. 2008), classical hypoth-
esis testing-based methods (Chen et al. 2004), frequentist’s
metric-based methods (Moon et al. 2017), Bayes factor-
based methods (Rebba and Mahadevan 2006; Sankararaman
and Mahadevan 2015; Hu et al. 2018; Lee et al. 2019), and
model reliability metric-based methods (Moon et al. 2017; Ao
et al. 2017; Rebba and Mahadevan 2008). A comprehensive
comparison of the validation methods for aleatory uncertainty
can refer to ref. Ling and Mahadevan (2013). Epistemic un-
certainty is caused by the lack of knowledge about the phys-
ical system, for example, the sparse/imprecise data and model
form error. Epistemic uncertainty often exists in the form of
sparse data, interval or different type of distributions with
uncertain distribution parameters. When validating the
simulation model with epistemic uncertainty, Deng et al.
(2018) proposed to use the evidence theory to deal with sparse
data or interval data while Sankararaman and Mahadevan
(2011a) used a likelihood function to describe them. Wang
et al. (2018b) developed an interval fitting degree metric to
calibrate the distribution of epistemic parameters during the
model validation process. Other researches related to the val-
idation for epistemic uncertainty can refer to ref. Deng et al.
(2018) and Sankararaman and Mahadevan (2011b).

A more common situation in practical engineering design
is that both the aleatory and epistemic uncertainties exist in the
input parameters. In this case, the model validation is often
accompanied by parameter calibration, namely the epistemic
uncertainty parameters are calibrated at first, and then the
model validation metric is applied to the calibrated simulation
model (Lee et al. 2019). The existing calibration and valida-
tion framework can be generally classified into non-Bayesian
framework and Bayesian framework. For the first type of
validation framework, Youn et al. (2011) proposed a hierar-
chical model calibration framework, in which the calibration
planning (top-down) procedure is utilized to identify and char-
acterize the known and unknown variables, and a calibration
execution (bottom-up) procedure is used to calibrate the un-
known variables. The goal of the optimization problem used
in the calibration execution is maximizing the likelihood func-
tion. Jung et al. (2015) further refined the calibration process
into three steps, namely model calibration planning, model
variable characterization, and model calibration execution. A
modified area metric together with the hypothesis testis was
also proposed to validate the calibrated model. For the second
type of validation framework, Sankararaman and Mahadevan
(2015) used the Bayes’ theorem to calibrate the model param-
eter and Bayesian hypothesis testing to validate the updated
model. The application of the method was extended to the
system with multi-level models. Li and Mahadevan (2016)
also proposed a method to quantify the uncertainty from the
lower level models to the prediction of the system level.

Bayesian inference is used for model calibration and a
model reliability metric is utilized to evaluate the validity of
the simulation model. Mullins and Mahadevan (2016) de-
scribed the aleatory uncertainty with a Johnson distribution
and used Bayes’ theorem in the calibration process. The cal-
ibrated simulation model is validated with a modified model
reliability metric. Hu and Mahadevan (2017) proposed a
Bayesian network to aggregate different sources of uncertain-
ty, an adaptive Bayesian calibration method to reduce the
uncertainty, and a Bayesian hypothesis test method in model
validation. However, most of the existing validation frame-
works generally need to run the simulation multiple times to
accurately shape the distribution of the responses, which is
further used to check the validity of the simulation model in
parameter calibration. If the simulation model is computation-
ally expensive, this process requires a mass of computation
cost. What is more, if improperly prior distribution is assigned
in the Bayesian validation framework, the parameter calibra-
tion process may take a significant amount of iterations to
converge (Muehleisen and Bergerson 2016), which also re-
quires a large number of simulations.

To reduce the validation cost, a model validation frame-
work based on parameter calibration (MVBPC) is proposed in
this paper. In the proposed method, aleatory uncertainty pa-
rameters follow a known form of distributions, and the episte-
mic uncertainty parameters are expressed as interval parame-
ters, which is a common validation case (Mullins et al. 2016).
The epistemic uncertainty parameters are calibrated through
an optimization problem with a stochastic kriging model. The
calibrated simulation model is finally validated with the K–S
test. The performance of the proposed method is illustrated
through two engineering examples. Results show that the pro-
posed method can accurately calibrate the candidate model
with fewer simulations.

The remainder of the paper is organized as follows.
Section 2 gives the background of the stochastic kriging mod-
el and model validation metrics used in this study. Section 3
presents the detailed procedures of the proposed method. In
Section 4, the proposed method is compared with some vali-
dationmethods with a cantilever beam validation example and
a turbine blade validation problem, followed by a conclusion
and future work in Section 5.

2 Technical background

2.1 Area metric

The area metric was proposed by Ferson et al. (2008) to mea-
sure the difference of the cumulative distribution functions
(CDF) between the simulation responses and experimental
observations. The formula of area metric can be described as,
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d Fm; Feð Þ ¼ ∫þ∞
−∞ Fm yð Þ−Fe yð Þj jdy ð1Þ

where Fm(∙) is the CDF of the simulation responses, and Fe(∙)
is the empirical CDF of the experimental observations.

In (1), the integration results reflect the closeness between
the two distribution curves. A smaller value indicates less
discrepancy between the simulationmodel and the experimen-
tal one. In our method, this metric assesses the discrepancy
between the simulation responses under different combina-
tions of uncertainty parameters and the experimental results.
The area metric can also validate the simulation model on
multiple experimental combinations (or different validation
sites) to give an overall assessment of the whole design do-
main. It incorporates the information from different validation
points through the u-pooling procedure, which transforms the
responses from physical space to the probability space accord-
ing to the probability integral transform theorem (Li et al.
2014). For more details of this procedure, readers can refer
to ref. Ferson et al. (2008).

2.2 Stochastic kriging

Stochastic kriging is a commonly used interpolation-based
model to approximate the relationship between the controlla-
ble inputs and the corresponding stochastic simulation re-
sponses (Zou and Zhang 2018). Suppose that the design var-
iables are denoted by x = (x1,…, xd)

T, the prediction of sto-
chastic kriging by xð Þ can be described as,

by xð Þ ¼ f xð ÞTβþ Z xð Þ þM xð Þ ð2Þ
where f(xi)β is the regression part, which represents the gen-
eral trend of the response. f(x) is a vector of known basis
functions, and β is the vector of unknown regression coeffi-
cients. Z(xi) is a realization of zero mean stationary stochastic
process. It is often termed as “extrinsic uncertainty” (Ruan
et al. 2018). M(x) represents the zero mean sampling noise
at design point x. It is often called “intrinsic uncertainty”
(Chen et al. 2013).

The covariance of Z(x) between two points can be written
as,

Cov Z x1ð Þ; Z x2ð Þð Þ ¼ σ2R x1; x2ð Þ ð3Þ
where σ2 is the process variance of Z(X), and R(x1, x2) is the
spatial correlation function, which only depends on the
Euclidean distance between two sites x1 and x2. In this work,
the Gaussian correlation function is adopted,

R x1; x2ð Þ ¼ exp −θ x1−x2ð Þ2
� �

ð4Þ

where θ is a roughness parameter to control the variation of the
function value with the change of the distance between the

two points. The intrinsic variance M(xi) at a sample point xi
can be calculated by n replications,

M xið Þ ¼ 1

n−1
∑n

j¼1 y j xið Þ−y xið Þ
� �2

ð5Þ

where y xið Þ ¼ 1
n ∑

n
j¼1y j xið Þ, yj(xi) is the simulation response

of the jth replication.
The prediction of stochastic kriging at an untried point x∗

can be written as,

by x*
� � ¼ f T x*

� �
β þ ∑T

Z x*; �� �
∑Z þ ∑M½ �−1 y−Fβð Þ ð6Þ

where y≔ y x1ð Þ;…; y xkð Þð Þ T , F : (f(x1),…, f(xk))
T. ∑Z is the

covariance matrix of (Z(x1),…, Z(xk)), ∑M is the covariance
matrix of (M(x1),…,M(xk)), and ∑Z is a k × 1 vector whose
ith component is Cov(Z(x∗), Z(xi)).

The estimated mean square error (MSE) is

MSE by x*
� �� �

¼ ∑M x*; �� �
þ ∑T

Z x*; �� �
∑Z þ ∑M½ �−1∑M x*; �� � ð7Þ

For more details of stochastic kriging, e.g., the optimization
of hyper-parameters, readers can refer to ref. Ankenman et al.
(2010), Chen and Kim (2014), and Staum (2009).

2.3 Kolmogorov–Smirnov test

Kolmogorov–Smirnov (K–S) test is a nonparametric hypoth-
esis testing method proposed by Kolmogorov and Smirnov in
1930s. Peacock (1983) proposed a two-dimensional version
of it. The two-sample K–S test evaluates the difference be-
tween the CDFs of the distributions of the two sample data
vectors (Massey Jr 1951); thus, it can be used to check wheth-
er two one-dimensional distributions are different from each
other. In the two-sample K–S test, the null hypothesis H0 is
that the CDF with a specific distribution can accurately repre-
sent the empirical CDF (ECDF) of the given set of statistical
data (Gorguluarslan et al. 2017). While the alternative hypoth-
esis is that they are not sampled from the same distribution.
The K–S test checks the null hypothesis H1 by measuring the
maximum distance between the CDF curve FYm yð Þ and the
ECDF curve SYe yð Þ,
dKS ¼ max FYm yð Þ−SYe yð Þj j ð8Þ

Since dKS is a random variable, the CDF of dKS is related to
a significance level α as,

P dKS ≤dαKS
� � ¼ 1−α ð9Þ

For the significance level 1 −α, the critical value dαKS can
be directly obtained from a standardmathematical table for the
K–S test. The probability that dKS calculated from the given
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sample set smaller than dαKS is defined as the p value, which
can be used to test the null hypothesis. The p value can be
directly calculated from the Kolmogorov CDF at dKS since dKS
follows the Kolmogorov distribution (Marsaglia et al. 2003).
If the calculated p value is smaller than α, it means that the
null hypothesisH0 is rejected and the alternative hypothesis is
accepted. Otherwise, there is not enough evidence to reject the
null hypothesis, and the null hypothesis should be accepted.
An advantage of the K–S test is that the size of the two sample
sets is explicitly considered when calculating the statistic
quantity.

3 Proposed approach

3.1 Description of the parameter calibration problem

To develop a simulation model that can better represent the
physical model, the influences of the aleatory and epistemic
uncertainty parameters in the model input need to be consid-
ered separately (Mullins et al. 2016). Aleatory uncertainty
cannot be reduced by including more experimental data.
While epistemic uncertainty is caused by a lack of knowledge,
it can be calibrated with experimental observations before
conducting the model validation. It should be noted that the
epistemic uncertainty can be further classified into recognized
uncertainty and blind uncertainty according to the ref. Oh et al.
(2016). The epistemic uncertainty used in the model calibra-
tion process in this paper mainly refers to the first type, such as
modeling error caused by the assumptions in the modeling
process.

Suppose that the design variables are denoted by x, and the
aleatory uncertainty input parameters in the experimental
model are represented by Ae, while the aleatory and epistemic
uncertainty input parameters in the candidate simulation mode
are denoted by Am and Em, respectively. The true response
yt(x) of an engineering product can be approximated by the
experimental results (Oh et al. 2016),

yt xð Þ ¼ ye xð Þ þ εe ð10Þ
where ye(x) is the experimental results, and εe is the error
caused by the aleatory uncertainty parameters Ae. The true
response can be also approximated by the simulation response
by adjusting the epistemic parameters Em,

yt xð Þ ¼ ym x;Emð Þ þ eþ εm ð11Þ
where ym(x) is the simulation responses, e is the error caused
by epistemic uncertainty parameters Em, and εm is the error
caused by aleatory uncertainty parameters Am. Therefore, the
epistemic uncertainty parameters in the simulation model can
be calibrated by the experimental results, in which the errors
caused by different uncertainty parameters are considered.

The parameter calibration problem for epistemic uncertainty
in this paper can be formulated as,

min
Em

C ye xjAeð Þ; ym xjAm;Emð Þð Þ

s:t: Ae;Am;Em∈ Ω;Ψ;Ρð Þ

Em ¼ e1m;…; enem
� �

; eim∈U LEi
m;UE

i
m

� �

ð12Þ

where C(·) is the consistency metric used to reflect the close-
ness of the simulation responses and experimental results. A
smaller metric value indicates a more convincing simulation
model. ye(x|Ae) is the experimental result at the sample point
x that is influenced by the aleatory uncertainty, and ym(x|Am,
Em) is the simulation response at the sample point x that is
affected by both aleatory and epistemic uncertainty. Ω, Ψ,
and Ρ are the parameter space ofAe,Am, and Em, respectively.

LEm ¼ LE1
m;…; LEne

m

� �
and UEm ¼ UE1

m;…;UEne
m

� �
are

the lower and upper bound of the ne epistemic uncertainty
parameters, respectively. Therefore, the value of the objective
function in (12) is not deterministic, which leads the optimi-
zation problem difficult to be solved. The optimization prob-
lem with the uncertainty objective function can be trans-
formed into a deterministic one as suggested in ref. Qian
et al. (2016),

min
em

C ye xjAeð Þ; ym
�
x;Amjem

�� �

s:t: Ae;Am;Em∈ Ω;Ψ;Ρð Þ

em∈Em ¼ e1m;…; enem
� �

; eim∈U LEi
m;UE

i
m

� �

ð13Þ

where C(·) is still the transformed objective function used to
reflect the consistency of simulation results and experimental
results, and em is a sample from Em. Thus, the optimization
problem is to find the optimal combination of the epistemic
uncertainty parameters, which can minimize the discrepancy
between the simulation responses and experimental results.

To calculate the value of the objective function in (13), a
two-stage nested Monte Carlo simulation (MCS) is utilized to
propagate the uncertainty during the optimization. In each
iteration, the epistemic uncertainty parameter samples em are
generated in the outer loop, which is generally implemented
by the optimization algorithm. The aleatory uncertainty pa-
rameter samples Am are randomly generated from their distri-
bution intervals in the inner loop. The sample sets (Am, em) are
formed to propagate the uncertainty from the inputs to the
outputs of the simulation model. The distribution of the re-
sponse ym(x,Am| em) can be obtained by running the simula-
tion model multiple times. In this way, the consistency be-
tween the simulationmodel and the experimental model under
different epistemic uncertainty parameters can be calculated.
However, the computation burden of the nested MCS is
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obvious because the optimization algorithm generally gener-
ates hundreds of or even thousands of epistemic uncertainty
parameters for function evaluation before reaching its conver-
gence (An et al. 2018). If a single simulation is computation-
ally expensive, the parameter calibration for the candidate
simulation model may be unaffordable.

3.2 Proposed model validation framework

In this section, a new model validation framework based
on parameter calibration is proposed to solve the
computation-intensive optimization problem with the
two-stage nested MCS process. The main idea of the pro-
posed method is to construct a surrogate model to replace
the objective function in the optimization, which approx-
imates the relationship between different epistemic uncer-
tainty parameter em and the corresponding consistency
metric C(ye(x, Ae), ym(x, Am| em)). There are two advan-
tages of the proposed method over the two-stage nested
MCS optimization method, i.e., (1) the nested optimiza-
tion problem is transformed into a single-stage optimiza-
tion since the consistency metric under different epistemic
uncertainty parameters can be directly predicted.
Therefore, the complexity of the optimization problem is
reduced and the efficiency is improved. (2) The surrogate
model can be constructed by the limited number of sam-
ple points, and thus the required simulation cost is greatly
reduced.

The proposed parameter calibration process can be formu-
lated as,

min
em

bC emð Þ
s:t: em∈Em ¼ e1m;…; enem

� �
eim∈U LEi

m;UE
i
m

� � ð14Þ

where bC emð Þ is the prediction from the stochastic kriging
model. To obtain quantitative results about the difference be-
tween the distribution functions of the simulation responses
and experimental results, the area metric (Ferson et al. 2008) is
utilized as the consistency metric in the proposed method,
which can also be predicted by the surrogate model.

Even though using the surrogate model can reduce the
required simulation cost for solving the optimization problem,
it needs to run the simulation model multiple times with the
given uncertainty parameters during the uncertainty propaga-
tion process. Generally, it requires over 200 samples to obtain
a relatively smooth response distribution curve, which is still
computationally expensive. To further reduce the simulation
cost in the construction of the surrogate model, it is proposed
to propagate the uncertainty in the simulation model with a
relatively small number of simulations. For example, only 80
simulations are used to obtain the distribution of the

simulation responses ym(x,Am| em) in this study. Then, the
bootstrap method (Efron and Tibshirani 1997) is utilized to
resample the data set ym(x,Am| em) to get different sets of sim-
ulation responses. The bootstrapped simulation responses are
compared with the experimental results to estimate the uncer-
tainty of the consistency metric due to insufficient samples.
Stochastic kriging is selected as the surrogate model to
achieve higher model accuracy by considering the uncertainty
of the consistency metric. The advantage of using stochastic
kriging over the deterministic one will be illustrated on a can-
tilever beam example in Section 4.

After constructing the stochastic kriging model, the mini-
mum value of it can be obtained through solving the optimi-
zation problem in (14). The epistemic uncertainty parameters
corresponding to the optimal solution can minimize the dis-
crepancy between the simulation model and the experimental
model. However, using surrogate model will introduce addi-
tional uncertainty (Liu et al. 2016), which may result in a large
discrepancy between the calibrated parameters and their actual
values. To avoid accepting inaccurate simulation models after
validation, the calibrated simulation model runs multiple
times to generate the distribution of the responses. The K–S
test is applied to finally decide whether to accept or reject the
calibrated simulation model.

The flowchart of the proposed method is summarized in
Fig. 1. The details of each step are described as follows:

Step 1: Conduct physical experiments and collect the
experimental observations ye under the predefined exper-
iment allocation.

Step 2: Calculated the empirical CDF (ECDF) F
e
of the

experimental observations y
e
.

Step 3: Generate samples for the uncertainty parameters.
In the computational model, the model parameters
with epistemic uncertainty lie in the uncertainty intervals
[e

min
, e

max
], which are generally estimated from

empirical data or expert experience. This step generates
samples from the uncertainty intervals to construct the
stochastic kriging model. To increase the uniformity of
the distribution of sample under limited simulation bud-
get, the n initial samples em ¼ e1m; e

2
m;…; enm

� �
can be

generated through the uniform sampling (US) (Zhang and
Wang 1996) method or Latin hypercube sampling (LHS)
method (Helton and Davis 2003).
Step 4: For each sample of Em, run the simulation model
multiple times to get the distribution of the responses.
When finishing the simulation for all samples of Em, n
sets of data y1m; y

2
m;…; ynm

� �
will be obtained.

Step 5: For each data set yim i ¼ 1; 2;…; nð Þ, use the boot-
strap method on it for k times. Thus, a total number of n × k
sample sets Bij

m i ¼ 1; 2;…; n; j ¼ 1; 2; ::; kð Þ can be ob-
tained. In this work, k = 100 is used for all example points.
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Step 5: Calculate the cumulative distribution function for
the simulation responses yim and Bij

m. The corresponding

CDFs are denoted by Fi
my and Fij

mb, respectively.

Step 6:Compare the similarity between the distribution
curves of the simulation responses and experimental
results. Since the area metric can give a quantified re-
sult, it is chosen as the consistency metric in this paper.
The area metric can be expressed by the following for-
mula:

d ¼ ∫þ∞
−∞ Fmy−Fe

�� ��dy ð15Þ

where Fmy and Fe are the response distribution curves
from the simulations and experiments, respectively.
The area metric between the simulation responses yim
and Fe is denoted by dimy, and the area metric between

the bootstrapped samples yim and Bij
m is represented by

dijmb. The data set d
ij
mb (i = 1,2,…,n; j = 1, …, k) can be

reshaped into n data sets {d1 jmb;…; dnjmbg . The variance

Var1m;…;Varnm
� �

of the data sets {d1 jmb;…; dnjmbg can be
calculated.

Step 7: Construct the stochastic kriging model. The sto-
chastic kriging model is used to approximate the relation-
ship between different input parameters and the

corresponding area metric values. The stochastic kriging
model is constructed with the obtained data set

e1m; d
1
my;Var

1
m

� �n
;…; enm; d

n
my;Var

n
m

� �
g. Among them,

eim and Varim (i = 1, 2,…, n) are the input parameters,

while dimy is the output response.

Step 8: The genetic algorithm (GA) (Davis 1991) is used
to select the optimum uncertainty parameter. Specifically,
the optimization problem in (14) is solved to find the
minimum value of the surrogate model. The optimization
problem is a constrained optimization problem, which
can be described as,

min
em

bC emð Þ
s:t: emin

m ≤em≤emax
m

ð16Þ

where bC emð Þ is the prediction from the stochastic
kriging model. The obtained optimum solution e*m is uti-
lized as the calibrated parameter to update the simulation
model.

Step 9: Run the calibrated simulation model. Update
the simulation model with the calibrated parameter e*m, and
conduct the simulationmultiple times to get the responses y*m.
After it, calculate the CDF F*

m of the responses y*m.

Fig. 1 Flowchart of the proposed
parameter calibration and
validation framework
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Step 10: Run the experimental model and get the valida-
tion sample set yet. The CDF of the validation samples is
denoted by Fet.
Step 11:After obtaining the calibrated simulation model,
the validity of it needs to be evaluated through the vali-
dation process. The area metric acts as the consistency
metric in step 6 and gives a quantified result for construct-
ing the stochastic kriging model. If this metric continues
to be used to ultimately decide whether to accept the
calibrated simulation model, a threshold value needs to
be defined beforehand. However, in practical engineering
design, there is often very little information available for
the designers to choose this value. An inappropriate
threshold may have the risk of accepting inaccurate sim-

ulationmodels. Therefore, the distribution curves F*
m and

Fet are compared through the K–S test in this step. K–S
test is a hypothesis-based validation method and can
check whether the calibrated simulation responses and
the experimental observations are from the same distribu-
tion. What is more, the number of experiments is also
explicitly considered in the validation of the K–S test.
Step 12: Output the calibrated simulation model. If the
null hypothesis cannot be rejected in the K–S test, which
means that the distribution of the calibrated simulation

responses F*
m and the experimental observations Fet are

very close, the calibrated simulation is accepted and out-
put for future prediction or reliability design.
Step 13: Modify the simulation model. If the simulation
model is rejected, which means that adjusting the uncer-
tainty parameter is not enough to match the experiment
results, more sample points for constructing the stochastic
kriging model is needed. If it still does not work, further
modification about the simulation model is required, such
as changing the solving equation and adjusting the as-
sumptions in simulation model construction.

Compared with Kennedy and O’Hagan’s (KOH) Bayesian
calibration method (Kennedy and O’Hagan 2001), no as-
sumption about the distribution of aleatory uncertainty param-
eters is required in the proposedmethod. It avoids the problem
of selecting an improper prior distribution. It should be noted
that the proposed parameter calibration method is only appli-
cable to the case with a single validation site. When applying
the proposed method to the case with multiple validation sites,
the u-pooling procedure should be added into step 6, which
integrates the consistency metric at different validation sites
into a single distribution function through the probability in-
tegral transform theorem (Li et al. 2014). For more details of
this procedure, readers can refer to ref. Ferson et al. (2008). To
ensure the extrapolating of the simulationmodel to application
conditions under which experiments may not have been per-
formed, the validation set selected in step 10 should be

different from the samples used in the parameter calibration
process. The validation data is often chosen from different
design sites to given and overall assessment of the calibrated
simulation model.

4 Demonstration examples

The performance of the proposed method is illustrated
through two examples, including a cantilever beam example
and a turbine blade example. The cantilever beam example is
utilized to demonstrate the efficiency of the proposed method,
while the turbine blade validation problem is used to illustrate
the engineering applicability of the proposed method. For
comparison, two different parameter calibration methods are
also tested. The first one directly solves the optimization prob-
lem in (8) with the simulationmodel and it uses the areametric
as the consistency metric, so the first method is denoted by
direct optimization with area metric (DOAM) in this work.
The second method is proposed by Qian et al. (2016), and it
also solves the optimization problemwith the simulationmod-
el but uses theMahalanobis distance as the consistencymetric,
so the second method is denoted by direct optimization with
Mahalanobis distance (DOMD).

4.1 Cantilever beam validation example

The proposed method is applied to a cantilever beam valida-
tion problem at first. The simulation responses from a high-
fidelity simulation model are regarded as the experimental
results, which are solved with the Timoshenko beam theory
in ABAQUS. The geometry, load and boundary condition,
and mesh for the simulation model are plotted in Fig. 2 a, b,
and c respectively. One end of the beam is fixed, and the other
one is free. The upper surface of the beam is subject to a
uniformly distributed pressure P = 5 MPa. The height a and
width b of the beam are fixed at 10 mm in all simulations. The
length of the beam has aleatory uncertainty, which follows
normal distribution l~N(40, 0.42). The Young’s modulus and
Poisson’s ratio are EH = 3.5e4MPa and μ = 0.33, respectively.
The maximum deflection of the beam is the response to be
compared during the validation process. In this work,
ABAQUS 2018 is chosen as the simulation tool to calculate
the maximum deflection. The MATLAB 2017a is used to
change the length of the beam in the source file and call the
simulations repetitively.

The Euler-Bernoulli beam theory, which is a simplification
of the linear theory of elasticity, is the simulation model to be
validated in this example. The formula for predicting the
maximum deflection of the cantilever can be expressed as
(Bauchau and Craig 2009),
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δmax ¼ PL4

8EI
ð17Þ

where I is the inertia moment, and I = ab3/12. Compared with
the Timoshenko beam theory, the shear deformation effect is
ignored in the Euler-Bernoulli beam theory. The geometry
parameters a and b and the pressure P in the candidate model
are the same as the experimental model. The length of the
beam l has the same distribution as in the experimental model.
The Young’s modulus in the candidate model has epistemic
uncertainty, and the uncertainty distribution interval of it is
EL~U(30000 MPa, 40000 MPa).

4.1.1 Comparison between stochastic kriging and kriging
in model validation

Before validating the simulation model, a comparison is
made to illustrate why the stochastic kriging instead of
kriging is used in the proposed validation method. Six ep-
istemic uncertainty parameter samples E = {e1,…, e6} are
selected from the uncertainty distribution interval through
the Latin hypercube sampling method. The Euler-Bernoulli
simulation model is repeated 80 times at each of the six
sample points to obtain the distribution of the responses.
A total of 30 Timoshenko experimental results are applied
to validate the simulation model. Stochastic kriging and
kriging are constructed for parameter calibration, respec-
tively. For the stochastic kriging model, the responses of
each sample point are bootstrapped 100 times to estimate
the uncertainty of the consistency metric due to insufficient
samples. Additional 100 test samples are randomly gener-
ated from the uncertainty distribution interval EL to verify
the accuracy of the two surrogate models. At each test point,
the simulation model is repeated 10,000 times to obtain an
accurate distribution of the responses. The CDF curves of
the simulation responses and the experimental results are
compared with the area metric. The maximum absolute er-
ror (MAE) and rooted mean square error (RMSE) are re-
corded to measure the local and global accuracy of the

surrogate model respectively. These two metrics are formu-
lated as,

MAE ¼ max byi−yi��� ���� �
i ¼ 1; 2;…; nð Þ

RMSE ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
byi−yi� �2

r ð18Þ

where byi is the prediction from the stochastic kriging model
at the test point, yi is the true response, that is, the area
metric value calculated from the 10,000 repetition results
and 30 experimental results, and n is the number of test
points. This test problem is run 50 times to isolate the in-
fluence of the difference between simulation response sam-
ples, which is caused by the limited number of simulation
repetitions. The box plots of the results are shown in Fig. 3.
The top and bottom of the box represent the 25 and 75
percentiles of the results respectively. The line in the middle
of the box denotes the median (50 percentile) value of the
data. The distances between the top and bottom are the
interquartile range. The top and bottom extents of the whis-
kers are 1.5 times the interquartile range away from the top
or bottom of the box. The outliers are caused by different
seeds used for the aleatory uncertainty parameters during
the uncertainty propagation process.

It is obvious that the median value of the MAE and
RMSE from the stochastic kriging model is lower than
those from the kriging model, indicating that the stochastic
kriging is more accurate than kriging in both local and glob-
al performance. What is more, the length of the box of
stochastic kriging is smaller than kriging, namely the accu-
racy of the constructed stochastic kriging is less influence
by different sample sets. The difference between kriging
and stochastic kriging model can be interpreted that kriging
model is an interpolation model, and its performance is
easily to be influenced by the noise of the responses.
While stochastic kriging model considers not only the mean
of the responses but also the variance of them, therefore it
can achieve higher model accuracy and provide more robust
predictions. To check the convergence of the model

(a) Schematic plot of the cantilever 
beam

(b) Load and boundary 
condition

(c) Grid model

Fig. 2 The schematic plot, and simulation details of the cantilever beam. a Schematic plot of the cantilever beam. b Load and boundary condition. cGrid
model
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accuracy under the different number of simulation repeti-
tions, seven levels ranging from 40 to 10,000 are set. The
model construction process is also repeated 50 times on
each level. The comparison results are plotted in Fig. 4.
The model construction process is also repeated 50 times
on each level. The comparison results are plotted in Fig. 4.

It is obvious that the median values of MAE and RMSE
show similar tends, namely they gradually converge to a
fixed value as the number of repetitions increases. The var-
iation ranges of MAE and RMSE also reduce with more
repetition times. Especially when the repetition time is
1000, the median value of MAE and RMSE can be approx-
imately regarded as the true error of the surrogate model. It
can be inferred that the uncertainty of the calculated area
metric is reduced with more repetitions, which further en-
hances the robustness of the predictions from the stochastic
kriging model. It should be noted that increasing the num-
ber of repetitions cannot directly improve the local or global
performance of the surrogate model. To improve the model
accuracy, it is required to add more sample points of episte-
mic uncertainty parameters or adopted some adaptive sam-
pling methods (Qian et al. 2020; Ruan et al. 2020) to allo-
cate the location of sample points more reasonably when
building the surrogate model.

4.1.2 Validation with the proposed method

The proposedMVBPCmethod is applied to check the validity
of the simulation model in this section. Firstly, the experimen-
tal model is run 30 times to get the experimental observations.
Then, 6 samples of the Young’s modulus EL are generated
with the LHS from its uncertainty interval, and 80 responses
are predicted by (17) for each EL sample. The bootstrap meth-
od with 100 repetitions is applied to the response of every
sample point. After comparing each simulation response
curve and the experimental results, a stochastic kriging model
is constructed, as shown in Fig. 5 a. The variance predicted by
the stochastic kriging model (in the 1e-6 order of magnitude)
is very small comparedwith the responses (in the 1e-2 order of
magnitude) in this case. Thus, the prediction responses (name-
ly the area metric) and the corresponding prediction variance
of 20 test points, which are generated from the design domain,
are listed in Table 1. Then, the optimization problem in (16) is
utilized to find the minimum value of the constructed surro-
gate model. The calibrated material property corresponding to
the optimal solution is E∗ = 33119.439 MPa. In the final val-
idation procedure, the calibrated simulation model is run 80
times, while the experimental model is run for extra 20 times
to generate the data set for validation. The obtained simulation

(a) Comparison of MAE (b) Comparison of RMSE

Fig. 3 Performance comparison
of kriging and stochastic kriging.
a Comparison of MAE. b
Comparison of RMSE

(a) Comparison of MAE (b) Comparison of RMSE

Fig. 4 The p-box of area metric
under different number of
simulation repetitions. a
Comparison of MAE. b
Comparison of RMSE
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responses and the experimental results are plotted in Fig. 5 b.
It can be seen that the distribution function of the simulation
responses is very close to the experimental observations after
parameter calibration. The K–S test is applied to check the
consistency of the two distribution functions, and the p value
0.6679 is obtained. Thus, the calibrated simulation model
passed the validation, and it can furtherly be used for the
design process. Even if the experimental model and the can-
didate model have the same geometry in this problem, the
optimum value for the epistemic uncertainty parameter is not
the same as the true value due to different solving theory. The
calibration process in the proposed method tries to adjust the
epistemic uncertainty parameters to minimize the difference
between distribution functions of the simulation responses and
the experimental observations, rather than simply approaching
the true value in the experimental model.

The two parameter calibration methods, DOMD and
DOAM, are also applied to select the optimal value for the

epistemic uncertainty parameter. The obtained E∗ by DOMD
is 32,895.606MPa, and the obtained p value from the K–S test
is 0.4190. Thus, the calibrated simulation model is accepted.
While the optimal E∗ from DOAM is 33053.813 MPa, the
corresponding p value is 0.7540, and the calibrated simulation
model is also accepted by the K–S test. The CDF curves of
responses from the two calibrated simulation models are plot-
ted in Fig. 6. By adding a parameter calibration process before
finally deciding the validity of the simulation model, the re-
sponse of the simulationmodel can be transformed into a CDF
curve. Since the experimental results are also denoted by a
CDF curve, most existing model validation methods, such as
area metric or frequentist’s metrics, can be directly applied to
compare the consistency between the two curves. In addition,
the epistemic uncertainty parameters are already calibrated to
fixed values minimizing the discrepancy between the simula-
tion model and experimental model, and thus they can be
directly used for further design process. No trial and error is
required within their uncertainty distribution interval, which
also reduces the simulation cost to some extent.

The validation results of the three methods and the corre-
sponding number of simulations used are summarized in
Table 2.

From Table 1, it can be seen that (1) the p value of the
DOAM method is higher than DOMD methods, and thus
the calibrated simulation response with the DOAM method
is much closer to the experimental observations. The only
difference between these two metrics is the way that is used
to check the consistency between the simulation responses
and experimental observations: DOMD employs the
Mahalanobis distance metric, while DOAMuses the area met-
ric. Therefore, the reason can be inferred that the area metric
considers the distribution of the two curves, and calculates the
difference between their distribution functions. While

(a) Stochastic kriging model (b) Validation for the calibrated simulation model 

(MVPBC)

Fig. 5 Validation for a cantilever beam with the proposed method. a Stochastic kriging model. b Validation for the calibrated simulation model
(MVPBC)

Table 1 The prediction responses and prediction variances of 20 test
points

em Response Variance em Response Variance

0.0000 0.0581 7.21E-06 0.5263 0.0338 3.54E-06

0.0526 0.0479 6.58E-06 0.5789 0.0436 3.64E-06

0.1053 0.0368 7.01E-06 0.6316 0.0526 3.90E-06

0.1579 0.0259 5.79E-06 0.6842 0.0606 4.35E-06

0.2105 0.0168 4.57E-06 0.7368 0.0677 4.79E-06

0.2632 0.0107 4.13E-06 0.7895 0.0743 5.47E-06

0.3158 0.0085 3.80E-06 0.8421 0.0810 6.67E-06

0.3684 0.0104 3.32E-06 0.8947 0.0880 7.12E-06

0.4211 0.0159 3.11E-06 0.9474 0.0950 4.96E-06

0.4737 0.0242 3.32E-06 1.0000 0.1017 3.18E-06
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Mahalanobis distance only measures the covariance distance
between the two sample sets, it ignores the distribution infor-
mation of the response. Thus, the DOAM method is slightly
better than the DOMDmethod. (2) The difference between the
proposed MVBPC and DOAM method is whether the surro-
gate model is used or not. In the proposed MVPBC method,
even though using the surrogate model introduces extra un-
certainty sources in the validation process, the calibrated sim-
ulation model can still pass the K–S test. Furthermore, it saves
about 99.96% of the computational cost. In a word, the pro-
posed method can significantly reduce the simulation cost
while maintaining high calibration accuracy.

4.2 Turbine blade validation example

Turbine blades are an important component of aircraft en-
gines, and the service life of it directly influences the reliabil-
ity of the whole engine. However, the uncertainty in the ge-
ometry or material properties has a critical influence on the
reliability analysis of a turbine blade. It is necessary to con-
sider different sources of uncertainty at the same time when
judging the validity of a simulation model. In this section, the
engineering applicability of the proposed method is illustrated
through a turbine blade model validation problem. Specially,
the first natural frequency is selected as the responses to be
compared.

A parametric simulation model is selected as the experi-
mental model in this example, and the procedures of generat-
ing it are described below. To capture the uncertainty on the
geometry that is introduced by the manufacturing process, a
turbine blade specimen was manufactured first according to
the CAD model in Fig. 7 a. Then, the specimen was scanned
through a coordinate measurement machine (CMM) to cap-
ture geometry variation. The manufactured specimen and
CMM are shown in Fig. 7 b and c. The CAD model of the
turbine blade was discretized into 46 line segments, as shown
in Fig. 7 d, and about 340 points in each segment were
scanned with the CMM. Due to the small errors in the
manufacturing process, the coordinate of the measured data
differs slightly from the CAD model. The measured points
from all segments formed 46 curves, which can be used to
describe the geometric variation on the fabricated turbine
blade. Based on results from the 46 curves, a Solidworks
model of the manufactured turbine blade (denoted as the ini-
tial FE model) is generated as in Fig. 7 e.

To determine the material properties of the initial FE mod-
el, a vibration test is conducted on the manufactured turbine
blade, as shown in Fig. 8 a. The first natural frequency was
recorded in the experiment. The previously obtained
Solidworks model is imported to ABAQUS, and Young’s
modulus is adjusted in the simulation to match the result from
the experiment result. It was found that when Young’s

(a) Validation for the calibrated simulation model 

(DOMD)

(b) Validation for the calibrated simulation model 

(DOAM)

Fig. 6 Validation for a cantilever beamwith the DOMD andDOAMmethod. aValidation for the calibrated simulationmodel (DOMD). bValidation for
the calibrated simulation model (DOAM)

Table 2 Results comparison for three different parameter calibration methods

Calibrated parameter E* p value K–S test results Simulation times (calibration + validation)

MVBPC 33,119.439 0.6679 Accepted 560

DOMD 32,895.606 0.4190 Accepted 2,860,080

DOAM 33,053.813 0.7540 Accepted 1,236,080
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modulus of the material is set to E = 70,700 MPa and
Poisson’s ratio is set to μ = 0.33, the simulation results are
the closest to the experimental results. The comparison result
is plotted in Fig. 8 b. The simulation result is 6955 Hz, while
the experimental result is 6984.5 Hz. The error is less than 1%.
Therefore, the E value in this model is adopted in the follow-
ing simulations.

To study the spatial dependence of the spatial uncertainties
on the surface on the turbine blade, semivariogram analysis is
utilized. The coordinates of each point on the original CAD
model are the inputs, and the nominal values of the difference
between the original CAD data and the measured data are the
output. After constructing the semivariogram model,
Karhunen-Loeve (KL) expansion is selected to characterize

Fig. 7 Procedures for generating the FEA simulation model

(a) Vibration test
(b) Comparison between vibration test 

results and simulation responses

Fig. 8 Vibration test and the
results. a Vibration test. b
Comparison between vibration
test results and simulation
responses
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the mathematical model of the spatial variability, which is
parameterized by the correlation between different locations.
Based on the K-L expansion with a mean of 0 and the corre-
lated matrix that was created from the variogram analysis, a
serial of correlated random geometry can be generated. An
example of the variations on the surface of the FE model is
shown in Fig. 9. The details of the procedures for creating the
FE model with random geometry can be found in ref.
McKeand et al. (2018). The parametric simulation model with
geometry uncertainty (denoted as the fine-scale model) is
regarded as the experimental model in this paper. The uncer-
tainty coefficients in K-L expansion, which results in geomet-
ric variation on the surface of the model, are the aleatory input
parameters of the experimental model. Since the distribution
of the aleatory uncertainty of the model cannot simply be
described by any standard distributions, the proposed valida-
tion method can be used in this example. The previously ob-
tained material properties EH = 70,700MPa and μH = 0.33 are
applied to this model.

For the candidate simulation model, a coarse-scale model
from our previous work (McKeand et al. 2018) is constructed
to reduce the computational cost. The candidate model is cre-
ated with Bezier curves and meshed with the Delaunay
Triangulation method. The body of the turbine blade can be
divided into 5 sections according to similar variogram func-
tions in the variogram analysis. Thus, it was determined to
utilize 6 profiles that are defined by Bezier curves to form
the top and bottom profiles of these sections. The coefficients
of the Bezier curves have aleatory uncertainty, and the shape
of the coarse-scale model can be modified by adjusting the
value of these coefficients. To reduce the number of variables
in the design, scaling factors on the two directions (except the
height of the turbine blade) of the curves are used as the input
parameter instead of all of the Bezier curve polynomial coef-
ficients. By changing the scaling factor, the coefficients of the
Bezier curves will change automatically. For instance, if the
scaling factorΔ is 1, it will generate the same 6 curves as in the
initial FE model.When the scaling factor Δ changes to 1.2, the
coarse-scale geometry will be 72.8% larger than the volume of

the initial FE model. The scaling factor is selected as the
aleatory input parameter of the simulation model, and its dis-
tribution is obtained from our previous work (McKeand et al.
2018). A comparison of the simulation model with different
scaling factors is shown in Fig. 10. The Young’s modulus EL
and the the Poisson’s ratio μL of the coarse-scale model have
epistemic uncertainty, and the uncertainty interval for them
are EL~[68,000 MPa, 75,000 MPa] and μL~[0.3,0.4], respec-
tively. It takes about 5.5 min to run the fine-scale simulation
once, while it takes about 22 s to run the coarse-scale simula-
tion once on the computational platform with 3.31 GHz Intel
(R) Core(TM) i9-9820X CPU and 64 GB RAM.

In the validation of the candidate simulation model, 40
fine-scale models are generated first based on the K-L
expansion. EH and μH are applied to all of the simulation
models to get the distribution of the experimental obser-
vations. A total of 30 samples (EL, μL) are sampled with
the LHS sampling method from their uncertainty interval.
The coarse-scale simulation model runs 80 times at each
sample point. And the simulation responses at each sam-
ple point are bootstrapped 100 times to estimate the

Fig. 9 Example of the geometry
variation in the turbine blade FE
model

Fig. 10 Example of the candidate simulationmodel with different scaling
factors
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uncertainty of the area metric. The original responses are
plotted in Fig. 11 a. It can be seen that the variation range
of the experimental observations is much smaller than the
range of the simulation responses, and thus the input pa-
rameters of the simulation model have large uncertainty.
For the proposed validation method, a stochastic kriging
model is constructed with the 30 samples, as shown in
Fig. 11 b. The optimum value for the coarse-scale model
is E∗ = 73272.88 MPa and μ∗ = 0.3621, which are obtain-
ed by solving the optimization problem with the con-
structed surrogate model. Then, the coarse-scale model
with the calibrated material property E∗ and μ∗ is simu-
lated for the additional 200 times. The experimental mod-
el is also run for additional 15 times to obtain the exper-
imental observations for validation. The responses from
the calibrated simulation model and the experimental

model are plotted in Fig. 11 c. The p value in the K–S
test is 0.1533, which indicated that the null hypothesis is
accepted and the calibrated simulation model finally
passes the validation. Therefore, the proposed validation
method can accurately calibrate the epistemic uncertainty
parameters in the candidate simulation model with rela-
tively less simulation cost.

5 Conclusion

A new model validation method based on parameter cal-
ibration under aleatory and epistemic uncertainty is pro-
posed in this paper. In the proposed method, a stochastic
kriging model is constructed to reflect the validity of the
candidate simulation model under different parameter

(a) Simulation responses and experimental results for

validation
(b) Constructed stochastic kriging model

(c) Comparison of the results from the calibrated simulation 
model and the experimental model

Fig. 11 Parameter calibration and validation results for the turbine blade validation example. a Simulation responses and experimental results for
validation. b Constructed stochastic kriging model. c Comparison of the results from the calibrated simulation model and the experimental model
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allocations, which greatly reduces the required simulation
cost. An optimization problem is utilized to calibrate the
value for the parameter with epistemic uncertainty. K–S
test is employed to ultimately decide the acceptance of the
calibrated simulation model, which considers the number
of the samples when calculating the statistic quantity.

The effectiveness and merits of the proposed methods
are demonstrated through a cantilever beam example and a
turbine blade validation problem. Some desirable merits of
the proposed methods over the existing methods are shown
from the results. Firstly, the proposed method can accu-
rately calibrate the epistemic uncertainty parameters in
the candidate simulation model with relatively less simu-
lation cost. Secondly, increasing the number of sample
points improves the accuracy of the surrogate model, while
increasing the repetition times at each sample point im-
proves the robustness of the prediction performance.
Finally, to prevent the uncertainty of the surrogate model
which influences the validation results, the K–S test is ap-
plied to test the calibrated simulation model instead of
directly verifying the accuracy of the surrogate model.
Since using RMSE or MAE metric only indicates the glob-
al or maximum error of the surrogate model is within the
design limits, it cannot ensure the accuracy at the optimal
solution is acceptable.

There are also some limitations of the proposed meth-
od. Since constructing an accurate surrogate model in
high dimensional cases is difficult, the proposed method
is more suitable for the case that the number of the epi-
stemic uncertainty parameter is limited (generally not over
four). For the validation problems with a large number of
uncertainty parameters, combining the proposed valida-
tion framework with dimension reduction methods or hi-
erarchical calibration method as in ref. Youn et al. (2008,
2011) will be investigated as part of our future work.
What is more, using the K–S test to validate the calibrated
simulation model still has the risk of accepting unreliable
simulation models, especially when the design reliability
requirements are high, since this metric focuses more on
the center of the distribution instead of the tail of the
distribution. Therefore, how to choose the validation met-
rics for the calibrated model according to different design
requirements will be also considered for reliability-based
design optimization.
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