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Abstract
Polynomial chaos (PC) methods with Gauss-type quadrature formulae have been widely applied for robust design optimization.
During the robust optimization, gradient-based optimization algorithms are commonly employed, where the sensitivities of the
mean and variance of the output response with respect to design variables are calculated. For robust optimization with compu-
tationally expensive response functions, although the PC method can significantly reduce the computational cost, the direct
application of the classical finite difference method for the analysis of the design sensitivity is impractical with a limited
computational budget. Therefore, in this paper, a semi-analytical design sensitivity analysis method based on the PC method
is proposed, in which the sensitivity is directly derived based on the Gauss-type quadrature formula without additional function
evaluations. Comparative studies conducted on several mathematical examples and an aerodynamic robust optimization problem
revealed that the proposed method can reduce the computational cost of robust optimization to a certain extent with comparable
accuracy compared with the finite difference-based PC method.

Keywords Robust design optimization . Polynomial chaos . Gauss-type quadrature . Design sensitivity

Nomenclature
b Coefficients of polynomial chaos model
d Dimension of design variables
N Number of function evaluations
m Dimension of random parameters
E(•) Operation of calculation expectation
f(x) Objective function
g(x) Constraint function
p Order of polynomial chaos model
K Accuracy level of sparse grid
x Random design vector
x Random design variable
q Random parameter vector

q Random parameter variable
ω Gauss-type quadrature weight coefficient
y(x) Output response
μ Mean value
σ Standard deviation value
Φ Multi-dimensional orthogonal polynomial
φ One-dimensional orthogonal

polynomial basis function
DSA Design sensitivity analysis
FDM Finite difference method
FFNI Full factorial numerical integration
MCS Monte Carlo simulation
SGNI Sparse grid numerical integration

1 Introduction

The objective of robust design optimization is the optimiza-
tion of the product performance while minimizing the sensi-
tivity of the performance to uncertainties, which has been
widely applied to aerospace engineering (Xiong et al. 2015a;
Li et al. 2013; Wu et al. 2018), automobile engineering
(Zhang et al. 2007), and civil engineering (Cheng et al.
2016) fields. As is common knowledge, a key component of
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robust design optimization is the estimation of the mean and
variance of the output response, which can be achieved by the
use of a metamodel to replace the original output response
(Rehman et al. 2014; Janusevskis and Rodolphe 2013). An
alternative method involves the development of efficient un-
certainty propagation approaches, among which the polyno-
mial chaos (PC) method has been widely studied and applied,
as it provides a solid mathematical foundation and fast con-
vergence rate (Xiu and Karniadakis 2002). With the PC meth-
od, a random variable can be represented as a stochastic
metamodel, and the mean and variance of the random variable
can then be analytically obtained. Wu et al. (Wu et al. 2017)
and Dodson and Parks (Dodson and Parks 2015) respectively
applied the PC method to aerodynamic robust optimization
design. Suryawanshi and Ghosh employed the PC method to
analyze the aeroelastic stability problems on a rectangular
unswept cantilever wing model (Suryawanshi and Ghosh
2016). Xia et al. applied an adaptive PC method to quantify
the performance impact of flow and geometric uncertainties
for a turbine blade (Xia et al. 2019). Fisher et al., Xiong et al.,
and Wang et al. respectively applied the PC method to robust
trajectory optimization (Fisher and Bhattacharya 2011; Xiong
et al. 2015b; Wang et al. 2019a), to increase the robustness of
the planned trajectory in response to various disturbances that
is beneficial to closed-loop control. In addition to the aleatory
uncertainty, the PCmethodwas proposed for the realization of
robust design optimization under mixed (aleatory and episte-
mic) uncertainties, in which the evaluation method for the
robustness index under mixed uncertainties was presented
(Zhang and Serhat 2013; Zhang 2013). The focus of this study
was on PC-based robust optimization under the consideration
of aleatory uncertainties.

It is common knowledge that during the gradient-based
robust optimization process, the calculation of the design sen-
sitivity is required, i.e., the sensitivities of the first two statis-
tical moments (mean and standard deviation) of the output
response with respect to the design variables. The commonly
used method for sensitivity analysis is the finite difference
method (FDM). For robust optimization, although the PC
method can significantly reduce the computational cost when
compared with the traditional Monte Carlo simulation (MCS)
method for statistical moment calculations, a certain number
of additional function evaluations are required for the design
sensitivity analysis when employing the traditional FDM. In
addition, there is a significant increase in the number of func-
tion evaluations required for high-dimensional problems.
However, for practical engineering design problems, nonline-
ar, high-dimensional, and time-consuming high-fidelity sim-
ulation is typically required, such as the finite element analysis
(FEA) and the computational fluid dynamics (CFD).
Furthermore, the direct application of FDM to the analysis
of the design sensitivity during robust optimization is imprac-
tical with a limited computational budget.

Design sensitivity analysis has been previously investigated
in relation to robust design optimization (Keshavarzzadeh et al.
2016; Keshavarzzadeh et al. 2017; Kumar et al. 2018; Miranda
et al. 2016; Du and Leifsson 2019; Rumpfkeil 2013) and
reliability-based design optimization (Keshavarzzadeh et al.
2016; Keshavarzzadeh et al. 2017; Cho et al. 2016; Lee et al.
2011a; Lee et al. 2011b), for the improvement of the efficiency
and accuracy of design. The studies conducted by Cho et al.,
Lee et al., and Choi et al. in refs. (Cho et al. 2016; Lee et al.
2011a; Lee et al. 2011b) were focused on reliability-based de-
sign optimization, in which theMCSmethodwas employed for
reliability analysis, and the design sensitivity of the probability
of failure was derived using a first-order score function.
Rumpfkeil developed a gradient-based robust optimization al-
gorithm based on kriging, in which the design sensitivity was
derived analytically based on the kriging metamodel
(Rumpfkeil 2013). For PC-based design optimization under
uncertainties, several studies have been conducted to develop
design sensitivity approaches to save computational cost
(Keshavarzzadeh et al. 2016; Keshavarzzadeh et al. 2017;
Kumar et al. 2018; Miranda et al. 2016; Du and Leifsson
2019). In these works, the PC method was applied for uncer-
tainty quantification and the design sensitivity was derived
based on the PC model by using the adjoint method.
However, it is limited to systems with known governing equa-
tions, and user familiarity with the physical system mechanism
is required, given that the sensitivity information from adjoint
method is utilized. In practical engineering, oftentimes the re-
sponse models in optimization design are computationally ex-
pensive black-box-type response functions, such as the CFD/
FEA simulation model that has been calibrated by specialists,
and the complex coupled multidisciplinary car or flight vehicle
system involving various simulation models from different dis-
ciplines, and it is difficult or even impossible to derive the
governing equation of the entire system. Therefore, the
abovementioned design sensitivity method for PC-based de-
s ign op t imiza t i on unde r unce r t a in t i e s in r e f s .
(Keshavarzzadeh et al. 2016; Keshavarzzadeh et al. 2017;
Kumar et al. 2018; Miranda et al. 2016; Du and Leifsson
2019) may be difficult to apply in this case.

For the construction of the PC model for the statistical
moment estimation, a commonly used method for the calcu-
lation of the PC coefficients is the least square estimation
method (Ghisu and Shahpar 2017; Ghisu and Shahpar
2018). An alternative method is the Galerkin projection meth-
od (Xiu and Karniadakis 2003), in which the PC coefficients
are calculated using a series of Gaussian-type quadrature for-
mulae, such as the full factorial numerical integration (Lee
et al. 2009; Lee et al. 2008) and sparse grid numerical integra-
tion (Xiong et al. 2010). The Gaussian quadrature is formu-
lated as a weighted summation of the function response values
on several Gaussian quadrature nodes, which provides a po-
tential method for the calculation of the design sensitivity of
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statistical moments. Therefore, in this study, a semi-analytic
design sensitivity analysis method was developed for the PC-
based robust optimization, for the reduction of the computa-
tional cost. The design sensitivities of the first two statistical
moments with respect to the design variables are directly de-
rived based on the Gaussian quadrature formula employed for
the statistical moment estimation within the PC method by
using the chain rule in conjunction with the FDM strategy,
instead of referring to several additional function evaluations,
as is the case with the direct FDM.Moreover, when compared
with the existing approach by Keshavarzzadeh et al., the pro-
posed method can be more conveniently applied to systems
with black-box-type response functions (Keshavarzzadeh
et al. 2016; Keshavarzzadeh et al. 2017).

The remainder of this paper is organized as follows. In
Section 2, the Gaussian quadrature-based PC method is briefly
reviewed. In Section 3, the proposed semi-analytic design sensi-
tivity analysis method is described in detail. Section 4 presents
comparative studies on the robust optimization of several math-
ematical examples, in addition to an airfoil aerodynamic optimi-
zation problem, for the verification of the effectiveness of the
proposed method. The conclusion is then presented in Section 5.

2 Review of Gaussian quadrature-based PC
method in robust optimization

In this study, given that the probability-based robust optimization
with random uncertainty was considered, a typical and widely
applied robust design optimization problem that can be classified
as “sensitivity robustness approach” (Beyer and Sendhoff 2007)
was addressed, which can be expressed as follows:

Find μx1 ;⋯;μxd

Min F xð Þ ¼ w1
μ f x; qð Þ

μ*
f

þ w2
σ f x; qð Þ

σ*
f

s:t: Gi xð Þ ¼ μgi
x; qð Þ−k*σgi x; qð Þ≥0 i ¼ 1;⋯; ncð Þ

μL
x j
< μx j

< μU
x j

j ¼ 1;⋯; dð Þ

ð1Þ

where x = [x1,⋯, xd] is the random design vector with mean
values of μx1 ;⋯;μxd ; q = [q1,⋯, qm] is the random parameter

vector; μ and σrepresent the mean and standard deviation of the
variable, respectively; the subscripts f and g denote the objective
and constraint functions corresponding to the original determin-
istic optimization problem, respectively; k* is a constant
employed in robust optimization to ensure the robustness of
optimal solution that is typically set as k* = 3; μ*

f and σ*
f are

the constant scaling factors specified by users to scaleμf and σf to
the same magnitude that is beneficial to find the optimum; and
w1 w2 are weight coefficients defined by the users with some
preferences or a priori assumptions.

Figure 1 presents the flowchart of the PC-based robust
design optimization using the gradient-based optimization

algorithm. During each optimization iteration, the mean and
standard deviation values of the original objective f(x) and
constraint functions gi(x) (μf,σf, μgi

, and σgi ) are calculated

using the PC method at the current design point. Moreover,
the procedure can be briefly expressed as follows, by using the
response function y = g(x) for illustration.

Step 1: represent the output response y as a pth-order PC
model with respect to the random design variables x and ran-
dom parameters q using the generalized PC method (Xiu and
Karniadakis 2003). Here, p represents the maximum order of
the polynomial terms (Φi(ξ), i = 0, ⋯, P) in the PC model.

y≈ ∑
P

i¼0
biΦi ξð Þ ð2Þ

where ξ = [ξ1,⋯, ξd, ξd + 1,⋯, ξd +m] represents the standard
random vector transformed from the original random vector
X = [x1,⋯, xd, q1,⋯, qm] based on their distribution informa-
tion (Xiu and Karniadakis 2002); the number of polynomial
terms is P + 1 = (p + d +m)!/(d +m)!/p! = (p +D)!/D!/p! with

D as the sum of the dimensions of x and q; and Φi ξð Þ ¼ ∏
D

k¼1

φk
i ξkð Þ is the product of the one-dimensional orthogonal poly-

nomial basis function (φk
i ξkð Þ ) that corresponds to the stan-

dard random variable in each dimension.
Step 2: calculate the PC coefficient bi(i = 0,⋯, P).
Using the Galerkin projection method, the two sides of Eq.

(2) are projected onto each orthogonal polynomial Φi(ξ).
Then, each PC coefficient is calculated as follows using the
orthogonality of the orthogonal polynomials.

bi ¼ E yΦi ξð Þ½ �=E Φi ξð ÞΦi ξð Þ½ �; i ¼ 0; 1;⋯;Pð Þ ð3Þ
where E[·] indicates the expectation.

The computational cost of Eq. (3) is mainly due to the
calculation of the numerator, which can be carried out using
a Gaussian quadrature-type numerical integration method
such as the commonly used full factorial numerical integration
(FFNI) (Lee et al. 2009; Lee et al. 2008) for lower-
dimensional problems, or sparse grid numerical integration
(SGNI) for higher-dimensional problems (Ghisu and
Shahpar 2017). With FFNI, the numerator can be calculated
using a direct full tensor product Gaussian quadrature formu-
la, as expressed below.

E yΦi ξð Þ½ � ¼ ∑
j1¼1

m1

ω1: j1⋯ ∑
jD¼1

mD

ωD: jDy x1: j1 ;⋯; xD: jD
� �

Φi ξð Þ ð4Þ

where ωj. k and xj. k are the kth weight and one-dimensional
node for the jth input random variable of X = [x1,⋯, xd, q1,
⋯, qm], respectively; mj represents the corresponding number
of nodes; and the value of ξ employed in Φi(ξ) is calculated
by transforming from the d-dimensional node
x1: j1 ;⋯; xD: jD
� �

based on the distribution information of X.
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With SGNI, the D-dimensional sparse grid nodes with an
accuracy level K are first obtained using a special tensor prod-
uct operation, as follows:

UK
D ¼ ∪

Kþ1≤ ij j≤Q
Ui1

1⊗Ui2
1⊗⋯⊗UiD

1 ð5Þ

where i1, i2, ⋯, iD determines the number of nodes in each
dimension mj(j = 1,⋯,D), |i| = i1 + i2 +⋯ + iD, Q = K +D;
andUK

D represents the collection of sparse grids, i.e., the com-
bination of all the multi-dimensional nodes produced by a
certain number of direct smaller-size tensor products.

For each combination {i1,⋯, iD} that satisfies K + 1 ≤ |i| ≤
Q, the direct full tensor product is used to generate D-dimen-
sional nodes. Based on Eq. (5), a total of N D-dimensional
nodes {x1,⋯xk,⋯, xN} can be obtained, and the weight co-

efficient for xk ¼ xk1: j1 ;⋯; xkD: jD

h i
is calculated as follows:

ωk ¼ −1ð ÞQ− ij j D−1
Q− ij j

� �
ω1: j1 ⋯ ωD: jD

� � ð6Þ

where ω1: j1 ⋯ ωD: jD denotes the product of the one-
dimensional weights.

Thus, E[yΦi(ξ)] can be calculated as follows:

E yΦi ξð Þ½ � ¼ ∑
N

k¼1
ωk y xkð ÞΦi ξð Þð Þ ð7Þ

Step 3:when the PC coefficients are obtained, estimate the
first two statistical moments of the random output response y.

μy ¼ E y½ � ¼ ∑
P

i¼0
biE Φi ξð Þ½ � ¼ b0 ð8Þ

σy
2 ¼ E y2

� �
−E y½ �2 ¼ E ∑

P

i¼0
biΦi ξð Þ

� �2
" #

¼ ∑
P

i¼1
bi2E Φi

2 ξð Þ� � ð9Þ

3 Proposed semi-analytical design sensitivity
analysis method based on PC

As shown in Fig. 1, in addition to the statistical moment cal-

culation, the design sensitivity ( dFdμx j
, dGi
dμx j

, j = 1, ⋯, d) should

also be obtained. To reduce the computational cost, a semi-
analytical design sensitivity analysis method based on PC was
developed. Based on Eqs. (8), (9), and (3), the design sensi-
tivity of the mean (μy) and standard deviation (σy) of the
output response with respect to the design variable μx j

can

be calculated as follows.

dμy

dμx j

¼ db0
dμx j

¼ d E yΦ0 ξð Þ½ �=E Φ0
2 ξð Þ� �� �

dμx j

ð10Þ

dσy

dμx j

¼
d ∑

P

i¼1
bi2E Φi

2 ξð Þ� �� �1=2

dμx j

¼ ∑
P

i¼1
bi2E Φi

2 ξð Þ� �� �−1=2

∑
P

i¼1
biE Φi

2 ξð Þ� � dbi
dμx j

 !

¼ ∑
P

i¼1

E yΦi ξð Þ½ �2
E Φi

2 ξð Þ� �
 !−1=2

∑
P

i¼1

E yΦi ξð Þ½ �
E Φi

2 ξð Þ� � dE yΦi ξð Þ½ �
dμx j

 !

ð11Þ

Fig. 1 Flowchart of the PC-based
robust optimization with gradient-
based optimization algorithm
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Equations (10) and (11) can be further expressed as the
following equations:

dμy

dμx j

¼ 1

E Φ0
2 ξð Þ� � ∑

i j¼1

m j ∂E yΦ0 ξð Þ½ �
∂x j:i j

dx j:i j
dμx j

þ ∑
i j¼1

m j ∂E yΦ0 ξð Þ½ �
∂ω j:i j

dω j:i j

dμx j

 !

ð12Þ

dσy

dμx j

¼ ∑
P

i¼1

E yΦi ξð Þ½ �2
E Φi

2 ξð Þ� �
 !−1=2

∑
P

i¼1

E yΦi ξð Þ½ �
E Φi

2 ξð Þ� � ∑
i j¼1

m j ∂E yΦi ξð Þ½ �
∂x j:i j

dx j:i j
dμx j

þ ∑
i j¼1

m j ∂E yΦ0 ξð Þ½ �
∂ω j:i j

dω j:i j

dμx j

 ! !

ð13Þ
where x j:i j and ω j:i j are the node and weight coefficients in the
jth dimension, respectively, which correspond to the random
variable xj.

In Eqs. (12) and (13), given that the value of the weight
ω j:i j is only determined by the number of nodes mj and distri-

bution of xj,
dω j:i j

dμx j
¼ 0. Moreover, given that the nodes x j:i j

i j ¼ 1;⋯;mj
� �

in each dimension are centered around the

mean μx j
with fixed spacing,

dx j:i j

dμx j
= 1. Therefore, the critical

task is the calculation of the partial derivative ∂E yΦi ξð Þ½ �
∂x j:i j

.

3.1 Design sensitivity analysis method based on PC-
FFNI

When FFNI is used for the PC coefficient calculation based on

Eq. (4), the partial derivatives ∂E yΦi ξð Þ½ �
∂x j:i j

in Eqs. (12) and (13)

can be expressed as follows.

∂E yΦi ξð Þ½ �
∂x j:i j

¼ ∑
i1¼1

m1

ω1:i1⋯ ∑
i j−1¼1

m j−1

ω j−1:i j−1 ∑
i jþ1¼1

m jþ1

ω jþ1:i jþ1⋯

�⋯ ∑
iD¼1

mD

ωD:iD
∂y x1:i1 ;⋯; xD:iDð Þ

∂x j:i j
⋅ω j:i j

� Φi ξð Þ ð14Þ

The partial derivative with respect to the node in Eq. (14)
can be approximately calculated based on the data (nodes)
employed for the previous statistical moment estimation using
the finite difference strategy, without the requirement of addi-
tional function evaluations. Using the two-dimensional node
as an example for illustration, it is assumed that the one-
dimensional nodes are located from left to right in each di-
mension by their sequence numbers (i.e., the subscripts).
Based on the three-point Lagrange interpolation polynomial,
the partial derivative at any location can be calculated
using the forward, center, and backward difference
methods as follows.

Three adjacent nodes l1, l2, and l3 with their corresponding
function response values g1, g2, and g3 are selected, based on
which two approximate partial derivatives r1 ¼ g2−g1

l2−l1 and r2

¼ g3−g2
l3−l2 that correspond to nodes l

0
1 ¼ l1þl2

2 and l
0
2 ¼ l2þl3

2 , re-

spectively, can be obtained. The partial derivatives ra at any
location la can then be approximately calculated using the
Lagrange linear interpolation polynomial (Abramowitz et al.
1966), as follows:

ra ¼ la−l
0
2

l
0
1−l

0
2

r1 þ la−l
0
1

l
0
2−l

0
1

r2 ð15Þ

According to the locations of nodes l1, l2, and l3, there are
three possible cases with respect to the calculation of Eq. (15).

Case 1: when ij = 1(j = 1,⋯, d), as shown in Fig. 2a, let
l1 = xj.1,l2 = xj.2,l3 = xj.3, and la = l1. The partial derivative can
be approximated by the forward difference method based on
Eq. (15), as follows.

∂y x1:i1 ;⋯; xD:iDð Þ
∂x j:i j

¼
l1−

l2 þ l3
2

l1 þ l2
2

−
l2 þ l3

2

⋅
g2−g1
l2−l1

þ
l1−

l1 þ l2
2

l2 þ l3
2

−
l1 þ l2

2

⋅
g3−g2
l3−l2

¼ l1−l2 þ l1−l3
l1−l3

⋅
g2−g1
l2−l1

þ l1−l2
l3−l1

⋅
g3−g2
l3−l2

¼ 2h1 þ h2
h1 þ h2

⋅
g2−g1
h1

þ l1−l2
h1 þ h2

⋅
g3−g2
h2

¼ g3−g1
h1 þ h2

−
g3−g2
h2

þ g2−g1
h1

ð16Þ

Case 2: when ij =mj, as shown in Fig. 2b, let
l1 ¼ x j:i j−2,l2 ¼ x j:i j−1, l3 ¼ x j:i j , and la = l3. Similar to the

derivation of Eq. (16), the partial derivative can be approxi-
mated using the backward difference method as follows.

∂y x1:i1 ;⋯; xD:iDð Þ
∂x j:i j

¼ g3−g1
h1 þ h2

þ g3−g2
h2

−
g2−g1
h1

ð17Þ

Case 3: when ij ≠ 1 and ij ≠mj, as shown in Fig. 2c, let
l1 ¼ x j:i j−1,l2 ¼ x j:i j , l3 ¼ x j:i jþ1, and la = l2. The partial de-

rivative can be approximated using the central difference
method as follows.

∂y x1:i1 ;⋯; xD:iDð Þ
∂x j:i j

¼ −
g3−g1
h1 þ h2

þ g3−g2
h2

þ g2−g1
h1

ð18Þ

In Eqs. (16)–(18), h1 = l2 − l1, h2 = l3 − l2, and

g1 ¼ y x1:i1 ;⋯; x j:1;⋯; xD:iD
� �

g2 ¼ y x1:i1 ;⋯; x j:2;⋯; xD:iD
� �

g3 ¼ y x1:i1 ;⋯; x j:3;⋯; xD:iD
� � ð19Þ

For higher-dimensional cases (D ≥ 3), the partial derivative
can be easily derived for each dimension using the
abovementioned methods. To apply the proposed design
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sensitivity analysis method, the number of one-dimensional
nodes for each dimension is required to be mj ≥ 3. This re-
quirement is satisfied for practical problems using the PC
method with FFNI. It should be noted that the design sensi-
tivity obtained by the proposed method is theoretically inac-
curate when the performance function g(x) is highly nonline-
ar. However, the local sensitivity requires calculation within a
very small design region; thus, the error induced by the
Lagrange linear interpolation is not excessively large, as ver-
ified in the comparative studies on robust optimization, which
are presented further in this paper.

3.2 Design sensitivity analysis method for PC-SGNI

When SGNI is employed for the PC coefficient calculation,
the partial derivatives in Eqs. (12) and (13) can be calculated
as follows, based on Eq. (7).

∂E yΦ0 ξð Þ½ �
∂x j:i j

¼ ∑
i1;i2;⋯;iD∈Ω

−1ð ÞQ− ij j D−1
Q− ij j

� �

∑
i1¼1

m1

ω1: j1⋯ ∑
iD¼1

mD

ωD: jD
∂y x1:i1 ;⋯; xD:iDð Þ

∂x j:i j
⋅Φi ξð Þ

� �
ð20Þ

where Ω represents the collection of all the multi-index com-
binations {i1,⋯, iD} that satisfy K + 1 ≤ |i| ≤Q; and x j:i j and
ω j:i j are the node and weight coefficients in the jth dimension,

respectively, which correspond to one small-size direct full
tensor product.

The partial derivative with respect to the node in Eq. (20)
can be calculated in the same manner as the FFNI. However,
given that SGNI employs the special tensor product, which is
a combination of certain small-size direct full tensor products,
for the removal of several unimportant integration nodes, the
number of one-dimensional nodes for each dimension in the
small-size full tensor product may be mj = 1, 2, ⋯, which
cannot satisfy mj ≥ 3. Therefore, minor modifications should
be made. Using the two-dimensional node with K = 2 as an
example for illustration, five groups of small-size full tensor
products were generated using SGNI (see Fig. 3). The partial
derivative with respect to xj can be calculated with respect to
the following two cases.

Case 1: when there are one or two nodes present in the jth
dimension xj for a given group, as illustrated in Fig. 3 (Case 1).
The partial derivative cannot be calculated in this case. Several
additional nodes based on the original response function are
employed for the calculation of the partial derivative, and the
induced number of function evaluations is large, especially for
higher-dimensional problems. Therefore, the response values
of the added nodes are approximately calculated by the PC
model, to reduce the computational cost. The partial derivative
is then calculated in the same manner as that of FFNI present-
ed above. Given that the PC method is a metamodel in the
stochastic domain, such an approximation of the original func-
tion response on a few nodes during the design sensitivity
analysis calculation would definitely induce some error espe-
cially when nonlinear terms with higher polynomial order are
involved in the response function. However, such error can be
reduced to some extent by increasing the order of PC model.
Here, the added nodes are selected as the Gaussian quadrature
nodes to ensure a high accuracy.

Case 2: when there is a minimum of three nodes in the jth
dimension, as shown in Fig. 3 (Case 2). The calculation pro-
cedure of the partial derivative is the same as that of the FFNI.

Fig. 3 Calculation of partial derivatives with SGNI nodes
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Fig. 2 Calculation of partial derivatives with FFNI nodes
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Compared with FFNI, the application of SGNI to design
sensitivity analysis by the proposed method would clearly
save the number of functional calls and relieve the curse of
dimensionality, which however would reduce the accuracy.
As fewer sample points are employed, the accuracy of PC
model by SGNI is reduced, which would further reduce the
accuracy of statistical moment calculation of output response
as well as output response prediction, and finally decrease the
accuracy of design sensitivity analysis.

For certain larger-scale problems with very high-
dimensional random inputs, adaptive methods have been de-
veloped by removing several unimportant orthogonal polyno-
mials from the full PCmodel, or by the adaptive collocation of
the integration nodes during the calculation of the PC coeffi-
cients for the reduction of the computational cost (Blatman
and Sudret 2011; Perkó et al. 2014; Lucor and Karniadakis
2004). In this case, the design sensitivity is calculated using
the developed PC model in the same manner without any
modifications. In this paper, the Gaussian-type quadrature for-
mula was employed for constructing PCmodel. However, due
to its high flexibility and low computational cost, the least
square estimation method is increasingly applied to the PC
method for uncertainty propagation and robust optimization.
Therefore, it is necessary to implement a design sensitivity
analysis for the least square estimation-based PC method for
robust optimization in future work.

4 Comparative studies

To demonstrate the effectiveness of the proposed semi-
analytical design sensitivity analysis method, the evaluation
of the design sensitivity of two mathematical examples is pre-
sented in Section 4.1, followed by the robust optimization of
three mathematical examples using the proposed design sen-
sitivitymethod in Section 4.2. The order of the PCmodels was
set as p = 2, the number of one-dimensional Gaussian

quadrature nodes for the FFNI was set as m = 3, and the accu-
racy level for the SGNI was set as K = 2. Based on the data
employed for the statistical moment estimation using the PC
method, the design sensitivity was derived for the PC model
using the proposed semi-analytical DSA method (denoted by
DSA-PC). The traditional finite difference method (FDM) in
conjunction with the PC method was also employed for com-
parison (denoted by FDM-PC), in which the PC method was
used for the statistical moment calculation, and the FDM for
the sensitivity analysis, by carrying out uncertainty propaga-
tion (UP) with the PC method at two points adjacent to the
current design point. For the FDM, to ensure the accuracy as
much as possible, the central difference method was used to
calculate the design sensitivity at xj in Section 4.1.

∂y xð Þ
∂x j

¼ y x1;⋯; x j þΔ;⋯; xd
� �

−y x1;⋯; x j−Δ;⋯; xd
� �

2Δ

ð21Þ

The step size clearly has a substantial impact on the calcu-
lated partial derivative. Therefore, before calculating design
sensitivity, a step convergence test that calculates design sen-
sitivities with different step sizes was conducted, based on
which a suitable step size was selected for each example in
Section 4.1; while for robust optimization in Sections 4.2 and
4.3, as the optimization toolbox in MATLAB was employed,
Δ and the finite difference method (central/back/forward-dif-
ference) were automatically assigned by the optimization al-
gorithm in MATLAB. The design sensitivity was simulta-
neously calculated by the FDM based on the estimated statis-
tical moments with the MCS (denoted by FDM-MCS), for
which the MCS was employed for the statistical moment es-
timation, and the FDM for the sensitivity analysis, by carrying
out UP with MCS at two points adjacent to the current design
point. The results generated by FDM-MCS were employed as
the reference values. The total number of function calls (N)
required by the moment estimation and design sensitivity
analysis was compared. The sequential quadratic

Fig. 4 Convergence test for FDM-MCS with different number of sample points
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programming (SQP) provided in MATLAB was employed as
the optimization algorithm considering its high efficiency and
good performance. As SQP is a gradient-based optimization
algorithm, a local optimal solution may be obtained if a poor
initial point is provided. Therefore, as is commonly done in
practice, optimization with different starting points is tested to
obtain the optimal solutions, among which the best feasible
one is selected as the final optimal solution.

4.1 Design sensitivity analysis of mathematical
examples

A two-dimensional problem with normal distributed random
inputs was first tested:

g x1; x2ð Þ ¼ x1−3ð Þ2 þ x2 þ 1ð Þ2 þ 5
x1∼N 4; 1ð Þ; x2∼N 5; 0:25ð Þ ð22Þ

The FFNI was employed to calculate the PC coefficients.
The convergence test for MCS with different number of sam-
ple points (n) was firstly done for this example to determine a
suitable number of sample points (n), and the 95% confidence
interval that was estimated by running 20 times the MCS was
calculated. The results of the convergence test were shown in
Fig. 4. It was found that when n = 107, the confidence interval
was very small and the mean and standard deviation tended to
be constants, indicating that the results are accurate enough
and very close to the real values. Therefore, to ensure the
effectiveness of comparison, MCS with n = 107 were

conducted to estimate statistical moments for FDM-MCS.
For all the rest mathematical examples (Sections 4.1 and
4.2), the same convergence test was also done for FDM-
MCS to determine a suitable n for MCS firstly. For space
limit, the results of the convergence test for the rest examples
were not shown. The step size was set asΔ = 10−4 considering
accuracy after the step convergence test.

The results obtained by the three approaches (DSA-PC,
FDM-PC, FDM-MCS) were shown in Table 1. The proposed
DSA-PC method was found to generally produce the same
results as the FDM-PC, which were similar to those generated
by the FDM-MCS. However, the DSA-PC required signifi-
cantly fewer function calls than FDM-PC (9 vs. 36), as it
carried out no additional function calls to calculate the design
sensitivity.

A higher-dimensional problem (d = 10) with normal dis-
tributed random inputs was then tested to verify the effective-
ness of the proposed method in a higher-dimensional design
sensitivity analysis. The step size was set as Δ = 10−4.

f x1;⋯; x10ð Þ ¼ x1 þ x2 þ x3ð Þ2 þ 3x43 þ 4 x5 � x6ð Þ
5 x7 þ x8ð Þ x9 þ x10ð Þ

x1∼N 3; 4ð Þ; x2∼N 4; 1ð Þ; x3∼N 5; 4ð Þ; x4∼N 4; 4ð Þ; x5∼N 3; 1ð Þ
x6∼N 6; 1ð Þ; x7∼N 8; 4ð Þ; x8∼N 6; 4ð Þ; x9∼N 9; 1ð Þ; x10∼N 10; 4ð Þ

ð23Þ

For the DSA-PC and FDM-PC, the PC coefficients were
calculated by SGNI, given that the dimension was relatively
high. Similarly, for FDM-MCS, the number of sample points

Table 2 Results of sensitivity analysis for Example 2

Sensitivity DSA-
PC

FDM-
PC

FDM-
MCS

Sensitivity DSA-
PC

FDM-
PC

FDM-
MCS

dμg=dμx1 0.0192 0.0192 0.0192 dσg=dμx1 0.0023 0.0024 0.0022

dμg=dμx2 0.0192 0.0192 0.0192 dσg=dμx2 0.0023 0.0024 0.0022

dμg=dμx3 0.0192 0.0192 0.0192 dσg=dμx3 0.0023 0.0024 0.0022

dμg=dμx4 0.1305 0.1437 0.1457 dσg=dμx4 0.1060 0.1264 0.1278

dμg=dμx5 0.0192 0.0192 0.0192 dσg=dμx5 0.0016 0.0017 0.0017

dμg=dμx6 0.0096 0.0096 0.0096 dσg=dμx6 0.0011 0.0011 0.0012

dμg=dμx7 − 0.0343 − 0.0353 − 0.0358 dσg=dμx7 − 0.0301 − 0.0325 − 0.0366
dμg=dμx8 − 0.0343 − 0.0353 − 0.0358 dσg=dμx8 − 0.0301 − 0.0325 − 0.0366
dμg=dμx9 − 0.0241 − 0.0243 − 0.0243 dσg=dμx9 − 0.0190 − 0.0206 − 0.0207
dμg=dμx10 − 0.0241 − 0.0243 − 0.0243 dσg=dμx10 − 0.0190 − 0.0206 − 0.0207

Table 1 Results of sensitivity
analysis for Example 1 dμg=dμx1 dμg=dμx2 dσg=dμx1 dσg=dμx2

DSA-PC 2.0000 12.0000 0.6163 0.9244

FDM-PC 2.0000 12.0000 0.6163 0.9244

FDM-MCS 2.0021 12.0056 0.6180 0.9276
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ofMCSwas set as n = 107 by the convergence test. The results
obtained by DSA-PC, FDM-PC, and FDM-MCS were shown
in Table 2. The proposed DSA-PC method was found to ba-
sically produce very similar results to the FDM-PC, and the
results of both methods were similar to those of the FDM-
MCS. However, the FDM-PC generally exhibited a slightly
higher accuracy than the DSA-PC. This can be attributed to
the use of SGNI for the calculation of the PC coefficients for
the DSA-PC, in which several response values were approx-
imated by the PC method instead of referring to the original
response function, to reduce the computational cost. Thus, a
degree of error was presented into the design sensitivity anal-
ysis, which only had a slight influence, given that the approx-
imation by the PC was relatively accurate. However, the de-
sign sensitivity with respect to x4 produced by the DSA-PC
was clearly less accurate than that of the FDM-MCS; the dif-
ference of DSA-PC relative to FDM-PC is up to 15.43%. This
is because the response function was more nonlinear with
respect to x4, and the PC model with order p = 2 would pro-
duce relatively large error on response prediction, which
would induce large error on sensitivity calculation for x4 when
SGNI is employed. The FDM-PC exhibited a higher accuracy
than the DSA-PC, but the DSA-PC required a significant low-
er number of function calls (231 vs. 4620) due to the employ-
ment of the proposed design sensitivity method. To reduce
such error, the order of PC model is increased from p = 2 to
p = 3 and the design sensitivities were calculated again. As the
errors of sensitivities with respect to x4 were relatively large
with p = 2, here only results with respect to x4 are shown:
dμg=dμx4 = 0.1419, dσg=dμx4 = 0.1197. Cleary, with the

increase of PC order, the accuracy of design sensitivity by
the proposed DSA-PC method is improved. The results from
the two examples demonstrate the accuracy and effectiveness
of the proposed semi-analytical design sensitivity method.

4.2 Robust optimization of mathematical examples

4.2.1 Example 1

Min
μx1

;μx2

F ¼ σ f

15
s:t: G ¼ μg−3σg ≥0

1≤μx1 ≤10; 1≤μx2 ≤10

where f x1; x2ð Þ ¼ x1−4ð Þ3 þ x1−3ð Þ4 þ x2−5ð Þ2 þ 10

g ¼ x1 þ x2−6:45

ð24Þ

The two random design variables x1 and x2 were assumed
to be normally distributed with the standard deviation as σ =
0.4. The robust optimization was carried out using the DSA-
PC, FDM-PC, and FDM-MCS (with n = 107 for MCS); and
FFNI was employed to calculate the PC coefficients. In opti-
mization, the starting point was set as x0 = [3.0, 5.0]. Once
optimization is completed, the confirmed results (Fc and Gc)
were obtained by substituting the obtained optimal design
variables into the original functions (f and g), respectively,
using the MCS method (n = 107) with the consideration of
the same uncertainties. The optimal design variables, the con-
firmed results, and the total number of function calls of the
three methods were presented in Table 3.

Table 3 Optimization results of
Example 1 DSA-

PC
FDM-
PC

FDM-MCS

μ*
x1 3.4447 3.4044 3.3582

μ*
x2 4.9995 5.0004 5.0037

Fc 0.07774 0.07617 0.07559

Gc 0.2968 0.2580 0.2149

F 0.07772 0.07618 /

G 0.2971 0.2577 /

N (a/b) 117/117 162/162 6.8e8/6.8e8

a/b: a represents the number of calls to f, and b represents the number of calls to g

Table 4 Distribution parameters
for input random variable and
parameters

Random var. and para. Distribution Mean Standard deviation

x1 Normal μx1 0:02� μx1

x2 Normal μx2 0:02� μx2

ρ Normal 1 0.2

Q Normal 8 0.2

S Normal 10.5 0.25
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As can be seen from Table 3, the three methods obtained
feasible optimal solutions with the satisfied constraint G.
Moreover, the optimal design variables (μ*

x1;μ
*
x2 ), in addition

to the confirmed objectives of the FDM-PC and DSA-PC,
were slightly different. However, they were very similar to
those generated by the FDM-MCS. As the value of constraint
G = μg − 3σg ≥ 0 depends on μg, and the magnitude order of
the constraint function G is small (10−1), a small difference in
μ*
x1 or μ*

x2 would induce relatively large difference in Gc

(FDM-MCS: 0.2149; DSA-PC: 0.2968; FDM-PC = 0.2580).
Therefore, the error ofGc seems substantially high. To reduce
such error, a higher PC order for constraint function g can be
employed. However, for practical optimization problems, it is
required to find an effective design solution that is feasible
(i.e. satisfies the constraints), and it is the optimal design so-
lution that is cared about by users, not the exact values of
constraints (only need to be feasible). Moreover, the total
number of function calls (N) during optimization was reduced
by 27.8% using the proposed DSA-PC method when com-
pared with the FDM-PC.

4.2.2 Example 2

Min
μx1

;μx2

F ¼ 0:5
μ f

10
þ 0:5

σ f

2

s:t: G1 ¼ μg1
−3σg1 ≥0

G2 ¼ μg2
−3σg2 ≥0

0:2≤μx1 ≤20; 0:1≤μx2 ≤1:6

where f x1; x2ð Þ ¼ ρx1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x22

p
g1 ¼ x1x2−

0:06Qx1x2ffiffiffiffiffi
65

p
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x22

p
� 8x1 þ 1ð Þ≥0

g2 ¼ x1x2−
0:06Qx1x2ffiffiffiffiffi

65
p

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x22

p
� 8x1−1ð Þ≥0

ð25Þ

The distribution parameters of the random variables and
random parameters are shown in Table 4. The robust design
optimization was carried out using the DSA-PC, FDM-PC,
and FDM-MCS (n = 107 for MCS). The FFNI was employed
to calculate the PC coefficients for the moment estimation. In
optimization, the starting point was set as x0 = [3.0, 0.1].

Table 5 presents the optimization results, in which Fc, Gc
1,

andGc
2 represent the results confirmed using the MCSmethod

(n = 107). As can be seen from Table 5, the results obtained by
the FDM-PC and DSA-PC were approximately equal, which
were in good agreement with those obtained by the FDM-
MCS.Moreover, when compared with the FDM-PC, the func-
tion evaluations of the original objective f and constraints g for
the DSA-PC were both reduced by 38.9%. The proposed
DSA-PC method can significantly reduce the computational
cost while maintaining an adequate accuracy of design
sensitivity.

4.2.3 Example 3

Min
μx1

;;…;μx8

F ¼ 1:5μ f þ 0:4σ f

s:t: G1 ¼ μg1
−3σg1 ≥0

where f x1;…; x8ð Þ ¼ x1−5ð Þ
2

þ x2−4ð Þ
3

−3
� �2

þ x3−3ð Þ4

þ x3 þ x4−4ð Þ2 þ x5−4ð Þ2 þ 4x6−6ð Þ4

þ x7−7ð Þ2 þ x8−8ð Þ2

g ¼ 2þ x3 þ x4−4ð Þ x1 þ x2−14ð Þ

ð26Þ

Table 5 Optimization results of Example 2

DSA-
PC

FDM-PC FDM-MCS

μ*
x1 0.2000 0.2000 0.2000

μ*
x2 0.1000 0.1000 0.1005

Fc 0.02015 0.02015 0.02015

Gc
1 0.01803 0.01803 0.01813

Gc
2 0.01825 0.01825 0.01834

F 0.02015 0.02015 /

G1 0.01803 0.01803 /

G2 0.01825 0.01825 /

N(a/b) 297/891 486/1458 5.5e8/5.5e8

a/b: a represents the number of f calls, and b represents the number of g1
or g2 calls

Table 6 Distribution parameters of input random variable

Random
var.
and para.

Range
of
μx1, …, 8

Distribution Mean/A Std/B

x1 [1, 10] Normal μx1 0.016

x2 [2, 10] Normal μx2 0:1� μx2

x3 [1, 10] Uniform μx3 þ 0:1 μx3−0:1
x4 [1, 8] Normal μx4 0.15

x5 [1, 6] Uniform μx5 þ 0:15 μx5−0:15
x6 [1, 7] Uniform μx6 þ 0:2 μx6−0:2
x7 [5, 15] Normal μx7 0.04

x8 [6, 14] Uniform μx8 þ 0:05 μx8−0:05
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The distribution parameters of the random variables are
shown in Table 6, in which “Range” represents the design
region of the design variable during optimization; “Std” de-
notes the standard deviation of the distribution; and A and B
represent the upper and lower limits of the uniform distributed
random design variable, respectively. The robust design opti-
mization was carried out using the DSA-PC, FDM-PC, and
FDM-MCS (n = 107 for MCS). Considering that it was a rel-
atively high-dimensional problem, SGNI was employed to
calculate the PC coefficients for the moment estimation. In
optimization, the starting point was set as x0 = [8.0, 4.0, 2.0,
1.0, 3.0, 1.0, 5.0, 6.0].

As can be seen from the optimization results shown in
Table 7, the optimal solutions obtained by the FDM-PC and
DSA-PC were very similar, but the FDM-PC exhibited a
slightly higher accuracy than the DSA-PC. This can be attrib-
uted to the use of additional nodes based on the approximation
of PC model, for the calculation of a sensitivity term, which
introduces a degree of error into the final design sensitivity.
Such error does not have large impact on the optimal solution
of this example when p = 2, even if the highest order of the
response functions is 4, demonstrating the effectiveness of
approximation with PC for high-dimensional problems in
the DSA-PC. However, when compared with the FDM-PC,
the DSA-PC reduced the required number of function evalu-
ations of the original objective f and constraint g by 43.0%.

The proposed DSA-PC method can significantly reduce the
computational cost while maintaining an adequate accuracy of
design sensitivity.

Further, to investigate the impact of sensitivity estimation
error induced by Lagrange linear interpolation on the optimi-
zation convergence speed, the evolutions of the objective
function (F) for the proposed DSA-PC and the FDM-MCS
during the optimization process for the three examples above
were shown in Figs. 5, 6, and 7, respectively. Three notewor-
thy observations were made.

Firstly, it was found that with the increase of iteration num-
ber, the values of F for both methods (DSA-PC and FDM-
MCS) for the three examples were generally decreased rapid-
ly, and remained almost unchanged at the end of optimization,
indicating that the optimal solutions were convergent.
Meanwhile, the values of F produced by both approaches
were close to each other, especially for Example 2.
Generally, only slightly more (1 or 3) iteration numbers were
required by DSA-PC.

Secondly, compared with Example 1 and Example 2, more
iterations were required for Example 3. The interpretation is as
follows. Example 3 was relatively a high-dimensional (d = 8)
problem; and meanwhile, the SGNI technique was employed
for calculating the PC coefficients, and the response values of
some added nodes were approximately calculated by the PC
model, inducing another source of error in sensitivity

Table 7 Optimization results of Example 3

DSA-PC FDM-PC FDM-MCS

μx1 ;μx2 ; μx3 ;μx4 ; μx5 ;μx6 ; μx7 ;μx8 10.0000, 5.4793, 3.0101, 1.0000,
4.0007, 1.5009, 7.0005, 8.0019

10.0000, 5.4631, 2.9998, 1.0002,
4.0000, 1.5000, 7.0000, 8.0000

10.0000, 5.4567, 3.0000, 1.0000,
4.0000, 1.5000, 7.0000, 8.0000

FC 0.2769 0.2764 0.2764

GC 1.2538 1.2470 1.2498

F 0.2703 0.2696 /

G 1.2449 1.2469 /

N(a/b) 7497/2205 13,158/3870 1.76e9/1.76e9

a/b: a represents the number of f calls, and b represents the number of g calls

 
Fig. 5 Evolution of F during optimization (Example 1) Fig. 6 Evolution of F during optimization (Example 2)
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calculation. However, from Fig. 7, it was noticed that F of the
proposed DSA-PC method rapidly approached to the optimal
solution.

Thirdly, it was also noticed that the difference in F
during the whole iteration process produced by both
methods for Example 1 was the largest, which was rel-
atively large even at the initial starting design point.
The interpretation is that for Example 1, the response
function f(x1, x2) is relatively more nonlinear and the
standard deviation of design variable is relatively large
(σ=0.4, 8% ~ 12% of the mean value), and thus relative-
ly large errors would be induced in the statistical mo-
ment calculation using 2-order PC and further in sensi-
tivity analysis. However, from the optimal results shown
in Table 3, it was found that the results produced by
DSA-PC were close to that of FDM-MCS, which fur-
ther demonstrated the high accuracy of sensitivity
estimation.

All these observations indicated that the sensitivity estima-
tion error induced by Lagrange linear interpolation of the pro-
posed DSA-PC method had a very small impact on the opti-
mization convergence, which was attributed to the high accu-
racy of sensitivity estimation.

4.3 Airfoil robust optimization design

The proposed DSA-PC method was applied to an airfoil
robust optimization problem, and the NACA0012 airfoil
was considered the baseline (Wang et al. 2019b). The
objective was the determination of the optimal geomet-
ric parameters of the airfoil, to maximize the lift-drag
ratio of the airfoil subject to the thickness constraint of
the airfoil. The nominal flow condition considered cor-
responds to the angle of attack α = 1.55°, Mach number
Ma = 0.70 and Reynolds number Re = 9e6. It is a typical
flight Reynolds number of a commercial aircraft. The
B-spline curve (Wang and Liu 2016) with eight control
points was employed for the shape parameterization of
the airfoil, where the horizontal locations of the eight
control points were fixed as l = [0.2, 0.4, 0.6, 0.8, 0.8,
0.6, 0.4, and 0.2] and the vertical locations were free to
move, as shown in Fig. 8. The original airfoil was con-
sidered the baseline with the vertical locations of the
eight control points as zbaseline = [0.0574, 0.0580,
0.0456, 0.0262, − 0.0262, − 0.0456, − 0.0580, and −
0.0574]. The vertical locations of the eight control
points were considered design variables x = [x1,⋯, x8].

Clearly, from the physical mechanism, Re and α
have large impacts on the result of CFD simulation.
Generally, only one category of fluid viscosity is inves-
tigated in a study, and it is impossible to study the
impacts of all the different kinematic viscosities.
Therefore, as for the impact of Re, we mainly consid-
ered the influence of Ma. For robust optimization, all
the design variables xi(i = 1,…, 8) were assumed to be
uncertain considering the manufacturing error and in
accordance with the normal distribution, with the stan-
dard deviation as σxi ¼ 0:0015. Meanwhile, Ma and α
were assumed to follow uniform distribution with vari-
ations ±0.1 and ±0.5° around their nominal values (α =
1.55, Ma = 0.70), respectively. The airfoil robust optimi-
zation was formulated as follows.

Fig. 7 Evolution of F during optimization (Example 3)

Fig. 8 Airfoil parametric modeling

Table 8 Grid convergence test on the baseline airfoil

Grid density Lift-to-drag ratio

Far field Airfoil boundary

80 160 21.6941

100 200 24.7979

120 240 26.5889

150 300 28.6412

180 360 28.8166
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Min
μx1

;…;μx8

F ¼ −μ f þ 3σ f

s:t: G ¼ μTw
≥0:1

μxi þ 3σxi ≤0:005

μxi−3σxi ≥−0:005

−0:005≤μxi ≤0:005

ð27Þ

where μTw
is the mean value of the maximum relative

thickness Tw.
Computational fluid dynamics (CFD) was employed for

the aerodynamic analysis, to obtain the lift and drag. In addi-
tion, the mesh was generated using the CFD pre-processor
Gambit software. During the aerodynamic analysis, the k-
omega two-equation turbulent model was employed, and
Fluent 17.0 was used as the CFD solver. In order to verify
the accuracy of the result of CFD simulation, the grid conver-
gence test was firstly performed on the baseline airfoil at the
nominal flow condition (α = 1.55°, = 0.70, and Re = 9e6) and
the results were shown in Table 8. From Table 8, it was ob-
served that when the grid density was increased to some value
(far field: 150; airfoil boundary: 300), the lift-drag ratio
remained almost unchanged. Thus, the number of nodes in
the grid far field was set as 150, whereas the number of airfoil
boundary nodes was set as 300 in CFD simulation of this
study.

Then, the lift (Cl) and drag (Cd) coefficients of the baseline
NACA 0012 for the nominal flow condition (α = 1.55°, =
0.70 and Re = 9e6) calculated by CFD were compared with
the experimental data from Harris’s test in the Langley 8-Foot
Transonic Pressure Tunnel (Harris 1981), which were shown
in Table 9. It was noticed that the CFD results were very close
to the experimental data, validating the effectiveness of CFD
analysis in this work.

Robust optimization was carried out using the DSA-PC
and FDM-PC, and the deterministic optimization (DO) was
carried out without considering any uncertainties for compar-
ison. Moreover, SGNI with an accuracy level of K = 2 was
employed for the PC coefficient calculation. ForμTw

, given
that it did not require a computationally complex CFD analy-
sis, it was directly obtained using the MCS method.

The optimal airfoil geometries generated using the DSA-
PC, FDM-PC, and DO were shown in Fig. 9. It was observed

that when compared with the original airfoil, the airfoils opti-
mized using the deterministic optimization (DO) and robust
optimization (RO) methods were both more bent, and the
curvatures of the upper wings were increased, especially for
the one produced by DO, which increased the airflow speed.
Therefore, the air pressure of the upper wing decreased after
optimization, resulting in an increase in the lift coefficient. In
addition, the thickness of the leading edge of the optimized
airfoils was obviously reduced compared with the original
baseline one, which would weaken the shock wave area, and
thus reduce the drag coefficient. Finally, an increase in lift-
drag ratio was obtained through optimization. Furthermore,
the airfoil generated from the robust optimization using the
DSA-PC was almost overlapped to that of the FDM-PC.
These results demonstrate the effectiveness of the proposed
DSA-PC method.

The static pressure contours were shown in Fig. 10. As can
be seen from the figure, when compared with the baseline
airfoil, the static pressures of the upper surfaces of the airfoils
generated by the RO and DO methods were smaller (the area
in blue increased after optimization); whereas the static pres-
sures of the lower surface were larger (the area in green in-
creased after optimization). This indicates an increase in the
differential pressure between the upper and lower surfaces;
thus, there would be an increase in the lift of the airfoil after
optimization. Moreover, the static pressure cloud produced by
the DSA-PC was very similar to that of the FDM-PC. These
results further demonstrate the effectiveness of the proposed
DSA-PC method.

The pressure coefficients of the upper and lower surfaces of
the airfoil were illustrated in Fig. 11. It could be noticed that
compared with the baseline airfoil, the upper surface pressure
coefficients of all the optimized airfoils were decreased, while
the lower surface pressure coefficients were increased.
Meanwhile, the gap between the lower and upper surfaces
was increased after optimization, which was the largest for
DO. These results indicate that the pressure difference

Fig. 9 Optimized and baseline airfoils

Table 9 Comparison of CFD results and experimental data

Experiment Simulation Relative error

Cl 0.241 0.235 2.49%

Cd 0.0079 0.0082 3.78%
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between the upper and lower surfaces is increased, resulting in
an increase in lift after optimization.

The evolution of the objective function (F) during the op-
timization process was shown in Fig. 12. As the computation-
al cost using MCS-PC (MCS was directly employed for sta-
tistical moment calculation) was relatively large, it was not
tested for this example and only FDM-PC was compared. It
was found that with the increase of iteration number, the
values of objective function F of both methods (DSA-PC
and FDM-PC) were generally decreased, and remained almost
unchanged at the end of the optimization, indicating that the
optimal results were convergent. Meanwhile, the values of F
produced by DSA-PC and FDM-PC were similar to each oth-
er, and slightly more iterations were required by DSA-PC.

These observations showed great agreements with those of
the mathematical examples in Section 4.2. For DSA-PC,
SGNI was used as it was relatively a high-dimensional prob-
lem, in which PC was employed to approximate the response
values of some added nodes, and thus more or less errors
would be induced. Therefore, a larger iteration number of
DSA-PCwas required. However, such approximation basical-
ly did not have any impact on the obtained performance of the
airfoil.

The optimal results of the different methods are shown in
Table 10, in whichN represents the function evaluations of the
CFD for the calculation of the lift-drag ratio during optimiza-
tion. From Table 10, several noteworthy observations can be
made. First, both RO and DO increased the lift-drag ratio of

Fig. 10 Static pressure clouds for: (a) baseline of NACA0012, (b) optimized result of deterministic optimization, (c) optimized result of robust
optimization with FDM-PC, (d) optimal result of robust optimization with DSA-PC
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the airfoil (μf) by optimization and satisfied the thickness con-
straint. This was consistent to the results shown in Figs. 6, 7,
and 8, that the lift was increased and the drag was decreased
after optimization. Second, the obtained lift-drag ratio (μf) of
the DO was larger than those of the two ROs; whereas the

standard deviation (σf) of the two ROs were significantly
smaller, thus exhibiting better robustness with respect to un-
certainties. This was consistent with the scenario of robust
optimization. Third, the airfoil thickness of the leading edge
of the two ROs and DO was obviously reduced compared
with that of the original baseline airfoil, and it was decreased
more for ROs, which could result in a decrease in the drag
coefficient. This perfectly corresponded to the drag

Fig. 11 Pressure coefficient along the upper and lower airfoil surfaces for: (a) baseline of NACA0012, (b) optimal result of deterministic optimization, c)
optimized result of robust optimization with FDM-PC, (d) optimized result of robust optimization with DSA-PC

Fig. 12 Evolution of objective function during optimization

Table 10 Optimal results of the airfoil

Baseline DSA-PC FDM-PC DO

μf 22.6946 30.0980 29.6915 34.7129

σf 9.3782 4.3419 4.0594 7.6719

μCl 2.3977e-1 3.0683e-1 3.0349e-1 3.8403e-1

μCd 1.1598e-2 1.0537e-2 1.0507e-2 1.1367e-2

μTw
0.1045 0.1020 0.1020 0.1027

N / 15,246 26,103 315
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valueμCdthat it was decreased after optimization. In conclu-
sion, the results provided in Figs. 9, 10, 11, and 12 and
Table 10 suggested that the increase in the lift-drag ratio for
DO was mainly ascribed to the increase in lift, while it was
mainly ascribed to the decrease in drag for ROs. Fourth, the
results of the proposed DSA-PC were similar to those of the
FDM-PC, whereas the DSA-PC significantly reduced the
computational cost (N) by approximately 41.6% due to the
employment of the semi-analytical design sensitivity analysis
method. All these results presented above demonstrate the
effectiveness of the proposed DSA-PC method.

In addition, optimization was also done considering only
uncertainties from design variables, of which the optimized
airfoils were shown in Fig. 13. It was found that the airfoils
generated by DO and ROs did not exhibit clear difference,
indicating that the uncertainty in airfoil geometry has small
impact on the lift-to-drag ratio. According to all the optimal
results provided, we can conclude that Ma and α have large
impact on the airfoil performance, which should be taken into
account during the airfoil design.

5 Conclusion

In this paper, to reduce the computational cost of the calcula-
tion of the local design sensitivity during robust design opti-
mization with computationally expensive response functions
and difficulty in applying the adjoint method, a semi-
analytical sensitivity method is proposed based on the PC
method in conjunction with the Gaussian quadrature formu-
lae. With the proposed method, the local design sensitivity
during the optimization iteration is directly derived in the PC
model using the nodes for the statistical moment calculation,
instead of employing many additional function evaluations.
Several mathematical examples and an aerodynamic robust
optimization problem were used to demonstrate the effective-
ness of the proposed design sensitivity analysis method. The
results proved that the proposed method can lead to satisfac-
tory design sensitivities and optimal solutions that are close to

those produced by the traditional finite difference method,
while clearly reduce the computational cost of robust optimi-
zation. For input random dimension within 10, the proposed
method can save up to 43.0% functional calls. The higher of
the random input dimension, the more obvious of the compu-
tational saving. For problems with highly nonlinear response
functions, the proposedmethodwith a low PC order may yield
evident errors, which however can be reduced by increasing
the PC order. Future work will be focused on developing a
design sensitivity analysis approach for the least square
estimation-based PC method for robust optimization.
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