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Abstract
During design optimization, a smooth description of the geometry is important, especially for problems that are sensitive to 
the way interfaces are resolved, e.g., wave propagation or fluid-structure interaction. A level set description of the boundary, 
when combined with an enriched finite element formulation, offers a smoother description of the design than traditional 
density-based methods. However, existing enriched methods have drawbacks, including ill-conditioning and difficulties in 
prescribing essential boundary conditions. In this work, we introduce a new enriched topology optimization methodology 
that overcomes the aforementioned drawbacks; boundaries are resolved accurately by means of the Interface-enriched Gen-
eralized Finite Element Method (IGFEM), coupled to a level set function constructed by radial basis functions. The enriched 
method used in this new approach to topology optimization has the same level of accuracy in the analysis as the standard 
finite element method with matching meshes, but without the need for remeshing. We derive the analytical sensitivities and 
we discuss the behavior of the optimization process in detail. We establish that IGFEM-based level set topology optimization 
generates correct topologies for well-known compliance minimization problems.

Keywords Enriched finite element methods · Level sets · Topology optimization · XFEM/GFEM · IGFEM

1 Introduction

The use of enriched finite element methods in topology opti-
mization approaches is not new; the eXtended/Generalized 
Finite Element Method (X/GFEM) (Oden et al. 1998; Moës 
et al. 1999; Moës et al. 2003; Belytschko et al. 2009; Aragón 
et al. 2010), for example, has been explored in this context. 
However, the Interface-enriched Generalized Finite Element 
Method (IGFEM) has been shown to have many advantages 
over X/GFEM (Soghrati et al. 2012a; van den Boom et al. 
2019a). In this work, we extend IGFEM to be used in a level 
set–based topology optimization framework.

Topology optimization, first introduced by Bendsøe and 
Kikuchi (1988), has been widely used to obtain designs that 
are optimized for a certain functionality, e.g., minimum 
compliance. In the commonly used density-based methods, 
a continuous design variable that represents a material den-
sity is assigned to each element in the discretization. The 
design is pushed towards a black and white design by means 
of an interpolation function, e.g., the Solid Isotropic Mate-
rial with Penalization (SIMP) (Bendsøe 1989), that disfavors 
intermediate density values (also referred to as gray values). 
A filter is then required to prevent checkerboard-like density 
patterns, and to impose a minimum feature size. However, 
due to the filter, gray values are introduced. Density-based 
topology optimization is straightforward to implement and 
widely available in both research and commercial software. 
However, because the topology is described by a density 
field on a (usually) structured mesh, material interfaces 
not only contain gray values but also suffer from pixeliza-
tion or staircasing—staggered boundaries that follow the 
finite element mesh. Although a post-processing step can 
be performed to smoothen the final design, the analysis dur-
ing optimization is still based on gray density fields and a 
staircased representation. This may be detrimental to the 
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approximate solution’s accuracy, especially in cases that are 
sensitive to the boundary description, such as flow prob-
lems (Villanueva and Maute 2017). Furthermore, because 
the location of the material boundary is not well defined, it is 
difficult to track the evolving boundary during optimization, 
for example to impose contact constraints.

The aforementioned drawbacks could be alleviated by the 
use of geometry-fitted discretization methods, which have 
been widely used in shape optimization (Staten et al. 2012). 
In these methods, the location of the material interface is 
known throughout the optimization, and the analysis mesh 
is modified to completely eliminate the pixelization and gray 
values. Mesh-morphing methods such as the deformable 
simplex method (Misztal and Baerentzen 2012; Christiansen 
et al. 2014; Christiansen et al. 2015; Zhou et al. 2018), level 
set–based mesh evolution (Allaire et al. 2014), anisotropic 
elements (Jensen 2016), and r-refinement (Yamasaki et al. 
2017) have been demonstrated for topology optimization. 
Nevertheless, adapting the mesh in every design iteration 
remains a challenge. Not only is it an extra computational 
step, the changing discretization also introduces another 
complication in the optimization procedure because design 
variables need to be mapped to the new discretization (van 
Dijk et al. 2013).

A more elegant option is to define material interfaces 
independently from the finite element discretization, e.g., 
implicitly by means of the zero-contour of a level set func-
tion. In level set methods, the material boundary is moved 
by evolving the level set function, and new holes can be 
nucleated by means of topological derivatives (Amstutz 
and Andrä 2006). Although the required mapping between 
the geometry and the discretization mesh can be done 
with an Ersatz method using material density interpola-
tion (Allaire et al. 2004), this again introduces gray values 
and staircasing into the analysis. Similarly, NURBS-based 
topology optimization using the Finite Cell Method (FCM) 
(Gao et al. 2019) provides a higher resolution boundary 
description, that is however still staircased. Alternatively, 
there are methods that allow for a one-to-one mapping 
of the topology to the analysis mesh, resulting in a non-
pixelized boundary description. These methods combine 
the advantages of clearly defined material interfaces 
with the benefits of a fixed discretization mesh used in 
density-based methods. In the literature, level set–based 
topology optimization has been established using for the 
analysis CutFEM (Villanueva and Maute 2017; Burman 
et al. 2018), where the basis functions are restricted to the 
physical domain, and X/GFEM (Belytschko et al. 2003; 
Villanueva and Maute 2014; Liu et al. 2016), where the 
approximation space is enriched.

In enriched finite element methods such as X/GFEM, the 
standard finite element space is augmented by enrichment 

functions that account for a priori knowledge of the discon-
tinuity of the field or its gradient at cracks or material inter-
faces, respectively. Although X/GFEM has been shown to 
be advantageous in many applications, e.g., fluid–structure 
interaction (Mayer et al. 2010) and fracture mechanics (Fries 
and Belytschko 2010), the method has also weaknesses: 
degrees of freedom (DOFs) corresponding to original mesh 
nodes do not automatically retain their physical meaning, 
and non-zero essential boundary conditions mostly have to 
be prescribed weakly. Moreover, X/GFEM may result in 
ill-conditioned matrices, in which case Stable Generalized 
FEM (SGFEM) (Babuška and Banerjee 2012; Gupta et al. 
2013; Kergrene et al. 2016) or advanced preconditioning 
schemes (Lang et al. 2014) are needed. Furthermore, the 
approximation of stresses can be highly overestimated near 
material boundaries (Van Miegroet and Duysinx 2007; Noël 
and Duysinx 2017; Sharma and Maute 2018). Finally, as the 
enriched functions are associated with original mesh nodes, 
the accuracy of the approximation may degrade in blending 
elements, i.e., elements that do not have all nodes enriched 
(Fries 2008).

The Interface-enriched General Finite Element Method 
(IGFEM) (Soghrati et al. 2012a) was first introduced as a 
simplified generalized FEM to solve problems with weak 
discontinuities, i.e., where the gradient field is discon-
tinuous. The method overcomes most issues of X/GFEM 
for this kind of problems: In IGFEM, enriched nodes are 
placed along interfaces, and enrichment functions are non-
zero only in cut elements, i.e., elements that are intersected 
by a discontinuity. Furthermore, enrichment functions are 
exactly zero at original mesh nodes. Therefore, original mesh 
nodes retain their physical meaning and essential boundary 
conditions can be enforced directly on non-matching edges 
(Cuba-Ramos et al. 2015; Aragón and Simone 2017; van 
den Boom et al. 2019a). It was shown that IGFEM is opti-
mally convergent under mesh refinement for problems with-
out singularities (Soghrati et al. 2012a, 2012b). Moreover, 
IGFEM is stable by means of scaling enrichment functions 
or a simple diagonal preconditioner (van den Boom et al. 
2019a; Aragón et al. 2020), meaning it has the same condi-
tion number as standard FEM. The method has been applied 
to the modeling of fiber-reinforced composites (Soghrati 
and Geubelle 2012b), multi-scale damage evolution in het-
erogeneous adhesives (Aragón et al. 2013), microvascular 
materials with active cooling (Soghrati et al. 2012a, 2012b 
and 2012c, 2013), and the transverse failure of composite 
laminates (Zhang et al. 2019b; Shakiba et al. 2019). IGFEM 
was later developed into the Hierarchical Interface-enriched 
Finite Element Method (HIFEM) (Soghrati 2014) that allows 
for intersecting discontinuities, and into the Discontinuity-
Enriched Finite Element Method (DE-FEM) (Aragón and 
Simone 2017), which provides a unified formulation for 
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both strong and weak discontinuities (i.e., discontinuities 
in the field and its gradient, respectively). DE-FEM, which 
inherits the same advantages of IGFEM over X/GFEM, has 
successfully been applied to problems in fracture mechanics 
(Aragón and Simone 2017; Zhang et al. 2019a) and ficti-
tious domain or immersed boundary problems with strongly 
enforced essential boundary conditions (van den Boom et al. 
2019a). A drawback of IGFEM is that quadratic enrichment 
functions are needed when the method is applied to back-
ground meshes composed of bilinear quadrangular elements 
(Aragón et al. 2020). Another disadvantage of IGFEM, which 
is also shared by X/GFEM, is that it may yield inaccurate 
field gradients depending on how the enriched finite element 
space is constructed (Soghrati et al. 2017; Nagarajan and 
Soghrati 2018). Depending on the aspect ratio of integra-
tion elements, stresses may be overestimated, and the issue 
is more prominent near material interfaces. This is not an 
issue along Dirichlet boundaries, where a smooth reaction 
field can be recovered (van den Boom et al. 2019a; 2019b), 
nor along traction-free cracks where stresses are negligible 
(Zhang et al. 2019a).

In the context of optimization, IGFEM has been explored 
for NURBS-based shape optimization (Najafi et al. 2017), 
the shape optimization of microvascular channels (Tan and 
Geubelle 2017) and their combined shape and network topol-
ogy optimization (Pejman et al. 2019), the optimization of 
microvascular panels for nanosatellites (Tan et al. 2018a), 
and optimal cooling of batteries (Tan et al. 2018b). Neverthe-
less, IGFEM has not yet been used for continuum topology 
optimization. In this paper, we show topology optimization 
based on a level set function, parametrized with Radial Basis 
Functions (RBFs) (Wendland 1995; Wang and Wang 2006), 
in combination with IGFEM. We demonstrate the method 
on benchmark compliance problems. The sensitivities are 
derived and the method is compared with density-based topol-
ogy optimization and to the level set–based Ersatz method. It 
should be noted that no significant performance improvement 
is expected for these cases, as they are not sensitive to the 
way the boundaries are discretized. Cases that would benefit 
from our approach to topology optimization compared with 
density-based methods—and which may be shared among 
other methods that provide clearly defined interfaces—include 
those where the location of the boundary has to be known 
throughout the entire optimization. Examples include contact, 
problems where boundary conditions need to be enforced on 
evolving boundaries, or problems where an accurate boundary 
description is fundamental for resolving the fields at interfaces, 
such as fluid–structure interaction or wave scattering prob-
lems. Although no significant improvement in performance is 
expected for the compliance minimization cases in this paper, 
they should be seen as the necessary proof of concept before 
considering more complex cases.

2  Formulation

2.1  IGFEM‑based analysis

In this work, we focus on elastostatics and heat conduction 
problems on solid domains, as represented in Fig. 1. A 
design domain 𝛺 ⊂ ℝ

d is referenced by a Cartesian coor-
dinate system spanned by base vectors 

{
ei
}d

i=1
 . This 

domain is decomposed into a solid material domain and a 
void domain, denoted by Ωm and Ωv, respectively, such 
that the domain closure is � = �m ∪�v , and Ωm ∩Ωv = 
∅. The boundary of the design domain, �� ≡ � = � ⧵� , 
is subjected to essential (Dirichlet) boundary conditions 
on ΓD, and to natural (Neumann) boundary conditions on 
ΓN, such that � = �

D
∪ �

N
 and ΓD ∩ΓN = ∅. The material 

boundary, �m =
(
�m ∩�v

)
⧵ �  , is defined implicitly by 

a level set function, �(x) = 0 , that is a function of the spa-
tial coordinate x.

For any iteration in the elastostatic optimization pro-
cedure, the boundary value problem is solved with pre-
scribed displacements ū ∶ 𝛤D

→ ℝ
d , prescribed tractions 

t̄ ∶ 𝛤N
→ ℝ

d , and body forces bi defined as the restriction 
of b to domain Ωi as bi ≡ b|�i

∶ �i → ℝ
d, wherei = m, v . 

Similarly, we denote the field ui as the restriction of u 
to domain Ωi, i.e., ui ≡ u|�i

 . Note that here the field is 
defined on both material and void domains. However, 

nm

n

e 1

e 2

N

m

v

m

D

xj

xk

0 0

Fig. 1  Mathematical representation of a topology optimization design 
domain Ω. Essential and natural boundary conditions are prescribed 
on the part of the boundary denoted ΓD and ΓN, respectively. The 
material domain is referred to as Ωm, while the void region is denoted 
Ωv. The inset shows the discretization with a material interface, 
defined by the zero-contour of the level set function ϕ, that is non-
matching to the mesh. Original mesh nodes and enriched nodes are 
denoted with black circles ∙ and ∘ white circles, respectively
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following the techniques described in van den Boom et al. 
(2019a), it is also possible to completely remove the void 
regions from the analysis.

We define the vector-valued function space:

where L2(�) is the space of square-integrable functions and 
H

1(�i) is the first-order Sobolev space. In this work we only 
focus on problems with homogeneous Dirichlet boundary 
conditions. For problems with non-homogeneous essential 
boundary conditions, the reader is referred to Aragón and 
Simone (2017). The weak form of the elastostatics bound-
ary value problem can be written as: Find u ∈ V0 such that:

where the bilinear and linear forms can be written as:

and 

respectively, where the stress tensor �i ≡ �|�i
 follows 

Hooke’s law for linear elastic materials, σi = Ci : εi, and Ci 
is the elasticity tensor. Small strain theory is used for the 
strain tensor, i.e., �(u) = 1

2
(�u + �u⊺).

For heat conduction, the variational problem is:

where trial and weight function are taken from the space 
V0 =

{
v∈L

2(�), v|�i
∈ H

1(�i), v|�D
i
= 0, i = m, v

}
 . For a 

prescribed temperature u ∶ �D
→ ℝ , prescribed heat flux 

q ∶ �N
→ ℝ , heat source fi ∶ �i → ℝ , and conductivity ten-

sor �i ≡ �|�i
→ ℝ

d ×ℝ
d , the bilinear and linear forms for 

each iteration in heat compliance problems are given by:

and 

It is worth noting that interface conditions that satisfy con-
tinuity of the field and its tractions (or fluxes) do not appear 
explicitly in (3) or in (6) because they drop out due to the 
weight function v (or v) being continuous along the interface.

The design domain is discretized without prior knowledge 
of the topology as �

h
=
⋃

i∈�E
ei , where ei is the i th finite 

(1)
V0 =

{
v ∈

[
L
2(�)

]d
, v|�i

∈
[
H

1(�i)
]d
,

v|�D
i
= 0, i = m, v

}
,

(2)B(u, v) = L(v) ∀v ∈ V0,

(3)B(u, v) =
∑

i=m,v

∫
�i
�i
�
vi
�
∶ �i

�
ui
�
d�,

(4)L(v) =
∑

i=m,v

∫
𝛺i
vi ⋅ bid𝛺 + ∫

𝛤Nvi ⋅ t̄d𝛤 ,

(5)B(u, v) = L(v) ∀v ∈ V0,

(6)B(u, v) =
∑

i=m,v

∫
�i
∇vi ⋅

�
�i ⋅ ∇ui

�
d�

(7)L(v) =
∑

i=m,v

∫
𝛺i
vifid𝛺 + ∫

𝛤Nviq̄d𝛤 .

element and ιE is the index set corresponding to all elements 
in the original mesh. Similarly, we define the mesh nodes {
xj
}
j∈�h

 , where ιh is an index set corresponding to all the 
original nodes of the mesh. A partition of unity is defined by 
standard Lagrange shape functions Nj, associated to the 
mesh nodes. The result is a mesh that is non-matching to 
material boundaries. The level set function, whose zero con-
tour defines the interface between void and material, is then 
evaluated on the same mesh. This is done for efficiency, as 
the mapping needs to be computed only once, and results in 
discrete nodal level set values. New enriched nodes are 
placed at the intersection between element edges and the 
zero contour of the level set. As illustrated in Fig. 1, the 
locations of these enriched nodes, denoted xn, are found by 
linear interpolation between two nodes of the original mesh. 
Given two mesh nodes xj and xk with intersecting supports 
(i.e., supp

(
Nj

)
∩ supp

(
Nk

)
≠ � ) and level set values of dif-

ferent signs (i.e., 𝜙
(
xj
)
𝜙
(
xk
)
< 0 ), the enriched node is 

found as:

where we adopt the notation �j ≡ �
(
xj
)
 . The material inter-

face Γm is defined as the piece-wise linear representation of 
the zero contour of the level set function, discretized with 
enriched nodes 

{
xn
}
n∈�w

 , where ιw is the index set corre-
sponding to all enriched nodes. Elements that are intersected 
by Γm, indexed by the index set ιc, are then subdivided into 
integration elements by means of a constrained Delaunay 
algorithm. The index set referring to all integration elements 
is denoted ιe. The complexity of finding intersections and 
creating integration elements is O

(||�E||
)
 , where |⋅| denotes set 

cardinality, since each element has to be processed only once 
per iteration.

Following a Bubnov-Galerkin procedure, the result-
ing finite dimensional problem is then solved by choosing 
trial and weight functions from the same enriched finite 
element space. The IGFEM approximation can then be 
written as:

for elastostatics, or 

for heat conduction problems. The first term in (9) and (10) 
corresponds to the standard finite element approximation, 

(8)xn = xj −
�j

�k − �j

(
xk − xj

)
,

(9)
uh(x) =

∑
i∈�h

Ni(x)Ui

⏟⏞⏞⏞⏟⏞⏞⏞⏟
standard FEM

+
∑
i∈�w

�i(x)�i

⏟⏞⏞⏞⏟⏞⏞⏞⏟
enrichment

,

(10)
uh(x) =

∑
i∈�h

Ni(x)Ui

⏟⏞⏞⏞⏟⏞⏞⏞⏟
standard FEM

+
∑
i∈�w

�i(x)�i

⏟⏞⏞⏞⏟⏞⏞⏞⏟
enrichment

,
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with shape functions Ni(x) and corresponding standard 
degrees of freedom Ui (or Ui), and the second term refers 
to the enrichment, characterized by enrichment functions 
�i(x) and associated enriched DOFs αi (or αi). Enrichment 
functions ψi can be conveniently constructed from Lagrange 
shape functions of integration elements, as illustrated in 
Fig. 2, while the underlying partition of unity shape func-
tions are kept intact.

Subsequently, the local stiffness matrix ke and force vec-
tor fe are obtained numerically; elements that are not inter-
sected follow standard FEM procedures. An isoparametric 
procedure is used in integration elements to obtain the local 
arrays. Figure 3 shows a schematic of a triangular integration 
element (shaded) within an original cut element—the par-
ent element—in global coordinates. The reference triangular 
domains for both integration and parent elements are also 
shown. Each reference domain shows the master coordinate 
associated to a given global coordinate x. In elastostatics 
(heat conductivity follows an analogous procedure), ke and 
fe are computed on each integration element’s reference tri-
angle ◺ as:

where � = [�N1 �N2 … �Nn ��1 … ��m], 
and D is the constitutive matrix. The parental shape func-
tions vector N and enrichment functions ψ are stacked 
together. Note that je is the determinant Jacobian of the 
isoparamatric mapping of the integration element. The 
isoparametric mapping is a standard procedure in FEM; 
however, as the steps are important for the derivation of the 
sensitivities in Section 2.3.1, it is explained in more detail 
in Appendix B. The differential operator Δ is defined as:

ψ ψ

(11)

for elastostatics in 2-D and 3-D, respectively, and 

for heat conductivity in 2-D and 3-D, respectively. The 
derivatives in global coordinates are computed from the 
derivatives in local coordinates as

for standard and enriched shape functions, respectively, 
where J is the Jacobian of the intersected original element, 
and Je is the Jacobian of the integration element.

In this work, we are concerned with linear triangular 
elements, for which a single integration point in standard 
and integration elements is sufficient. The discrete system 
of linear equations KU = F is finally obtained through 
standard procedures, where:

where �A =
(
�E ⧵ �c

)
∪ �e and denotes the standard finite 

element assembly operator.
For a more detailed description on IGFEM, the reader 

is referred to Soghrati et al. (2012a).

2.1.1  Relation to X/GFEM

IGFEM is closely related to X/GFEM: The general X/GFEM 
approximation can be written as:

where enrichment functions Eij are associated to general-
ized DOFs Ûij—the latter assigned to nodes of the mesh. 
While the X/GFEM approximation uses partition of unity 
shape functions to localize the effect of enrichment func-
tions, in IGFEM this is not necessary because enrichment 
functions are local to cut elements by construction. In addi-
tion, enriched nodes in IGFEM are collocated along the dis-
continuities, resulting in less DOFs than required by (16).

It is worth noting, however, that IGFEM is not only 
closely related to X/GFEM, it can actually be derived from it 

(12)

� ≡

�
𝜕

𝜕x
0

𝜕

𝜕y

0
𝜕

𝜕y

𝜕

𝜕x

�⊤

,

� ≡

⎡
⎢⎢⎢⎣

𝜕

𝜕x
0 0 0

𝜕

𝜕z

𝜕

𝜕y

0
𝜕

𝜕y
0

𝜕

𝜕z
0

𝜕

𝜕x

0 0
𝜕

𝜕z

𝜕

𝜕y

𝜕

𝜕x
0

⎤
⎥⎥⎥⎦

⊤

,

(13)� ≡
[

𝜕

𝜕x

𝜕

𝜕y

]⊤
,� ≡

[
𝜕

𝜕x

𝜕

𝜕y

𝜕

𝜕z

]⊤
,

(14)�xNi
= �−1 ��Ni

, �x�i
= �−1

e
∇��i

(15)

(16)
uh(x) =

∑
i∈𝜄h

Ni(x)Ui

���������
standard FEM

+
∑
i∈𝜄h

Ni(x)
∑
j∈𝜄g

Eij(x)Ûij

���������������������������
enrichment

,

ψ

Fig. 2  Schematic representation of enrichment function ψi corre-
sponding to enriched DOFs αi, where enriched nodes are shown with 
∘ symbols. This enrichment function is constructed from standard 
Lagrange shape functions in integration elements
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by means of a proper choice of enrichment functions Eij and 
by clustering enriched DOFs (Duarte et al. 2006). Appen-
dix A shows this with a simple 1-D example.

IGFEM has several benefits over X/GFEM: 

• Enrichment functions in IGFEM are local by construc-
tion, i.e., they are non-zero only in elements cut by the 
interface and exactly zero elsewhere. Therefore, IGFEM 
has no issues with blending elements, which is an issue 
for X/GFEM for some choices of enrichment functions 
(Fries 2008);

• In IGFEM, the enrichment functions vanish at the nodes 
of background elements. Therefore, the original mesh 
node conserves the Kronecker property, and the DOFs 
associated to these nodes maintain their physical inter-
pretation;

• In X/GFEM, prescribing non-zero Dirichlet boundary 
conditions is usually done weakly by means of penalty, 
Lagrange, or Nitsche methods (Cuba-Ramos et al. 2015). 
In IGFEM, on the contrary, these boundary conditions 
can be prescribed strongly, both on original nodes and, 
by means of a multipoint constraint, on enriched edges 
(Aragón and Simone 2017; van den Boom et al. 2019a);

• Smooth traction profiles can be recovered when Dirichlet 
boundary conditions are prescribed on enriched edges 
(Cuba-Ramos et al. 2015; van den Boom et al. 2019a; 
2019b). This is currently not possible in X/GFEM even 
with stabilization techniques (Haslinger and Renard 
2009);

• IGFEM is stable, i.e., the condition number of the sys-
tem matrix grows as O

(
h−2

)
 , which is the same order as 

that of standard FEM. This is accomplished by means of 
a proper scaling of enrichment functions or by using a 
simple diagonal preconditioner (Aragón et al. 2020);

• The computer implementation is simpler: data structures 
of standard FEM can be reused to store enriched DOFs, 
post-processing is required for enriched DOFs only, and 
no special treatment of Dirichlet boundary conditions is 
needed (Aragón and Simone 2017).

2.2  Radial basis functions

Although it is possible to directly use the level set values ϕj 
on original nodes of the finite element mesh as design vari-
ables, we choose to use compactly supported radial basis 
functions for the level set parametrization for a number of 
reasons (Wang and Wang 2006): 

 (i) RBFs give control over the complexity of the designs, 
and as such, they act similarly to a filter in density-
based topology optimization;

 (ii) By decoupling the finite element analysis mesh from 
the RBF grid, the design space can be restricted with-
out deteriorating the finite element approximation. 
This can be used to mitigate approximation error 
discretizations that are too coarse; and

 (iii) By tuning the radius of support of RBFs, we can 
ensure that the influence of each design variable 
extends over multiple elements. This allows the opti-
mizer to move the boundary further and therefore 
converge faster, while using fewer design variables. 
This effect is similar to that of a filter radius in stand-
ard density-based topology optimization.

Figure 4 illustrates a compactly supported RBF i (Wend-
land 1995) described by:

where the radius ri is defined as:

and rs is the radius of support. In (18), ‖⋅‖ denotes the 
Euclidian norm, and xi is the center coordinates correspond-
ing to RBF i.

The scalar-valued level set function �(x) is found as a 
summation of every non-zero RBF i, scaled with its cor-
responding design variable si:

(17)�i
(
ri
)
=
(
1 − ri

)4(
4ri + 1

)
,

(18)r
i

(
x, x

i

)
=

‖‖x − x
i
‖‖

rs

Fig. 3  Schematic of an integra-
tion element (shaded), whose 
local arrays are obtained by 
using an isoparametric map-
ping. Integration points in 
integration elements (ξe) and 
parent elements (ξp) are mapped 
to global coordinate x 1

x2

x e,1

e,2

p,1

p,2

reference

integration

element

reference

parent

element

x

e p
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where ιs is the index set corresponding to all design vari-
ables, and:

is a vector of design variables, with lower and upper bounds 
− 1 and 1 that prevent the level set from becoming too steep. 
Finally, evaluating this function at the original nodes of the 
finite element mesh results in the level set vector:

where  is a matrix that needs to be computed only once, 
as the original mesh nodes do not move throughout the 
optimization.

2.3  Optimization

The optimization problem is chosen as a minimization of 
the compliance C with respect to the design variables s 
that scale the RBFs. It needs to be emphasized that com-
pliance minimization is merely a demonstrator problem, 
and the method is not limited to it. The minimization 
problem is subject to equilibrium and to a volume con-
straint Vc. This problem can be written as:

(19)�(x) = �(x)⊺s =
∑
i∈�s

�i(x)si,

(20)s ∈ D =
{
s|s ∈ ℝ

|�s|,−1 ≤ si ≤ 1
}

(21)� = �⊺s,

(22)

s⋆ = argmin
s∈D

C = U⊺KU,

subject to KU = F,

V𝛺m
≤ Vc.

The Method of Moving Asymptotes (MMA) (Svanberg 
1987), a method commonly used in density-based topol-
ogy optimization, is employed to solve this optimization 
problem.

2.3.1  Sensitivity analysis

The compliance minimization problem is self-adjoint 
(Bendsøe and Sigmund 2004), resulting in the sensitivity 
of the compliance C with respect to the design variables 
s as:

Applying the chain rule, the sensitivity of the compliance 
C with respect to design variable si can be written at the 
level of integration elements in terms of the nodal level set 
values ϕj:

In (24), a summation is done over all the nodes in the index 
set ιi which contains all the original mesh nodes that are in 
the support of the RBF corresponding to design variable si. 
Then, a summation is done over ιj, which refers to the index 
set of all integration elements e in the support of original 
mesh node j, i.e., the region where the original shape func-
tion Nj is nonzero. Lastly, a summation is done over the 
index set ιn, which contains all the enriched nodes n in inte-
gration element e. The location of these enriched nodes is 
denoted xn. Note that a number of terms can be identified 
in the sensitivity formulation: the derivatives of nodal level 
set values with respect to the design variables, ∂ϕj/∂si, the 
design velocities ∂xn/∂ϕj, and the sensitivity of the element 
stiffness matrix and force vector with respect to the location 
of the n th enriched node, ∂ke/∂xn and ∂fe/∂xn, respectively.

First, the sensitivity of the nodal level set values with 
respect to the design variables is simply computed by tak-
ing the derivative of (21) with respect to s as:

The design velocities ∂xn/∂ϕj also remain straightforward as 
they are computed by taking the derivative of (8) as:

Note that the enriched nodes remain on the element edges of 
the finite element mesh, and thus the direction of the design 
velocity is known a priori.

(23)
�C

�s
= −U⊺ �K

�s
U + 2U⊺ �F

�s
.

(24)

�C

�si
=

∑
j∈�i

∑
e∈�j

∑
n∈�n

�
−u

⊺

e
�ke

�xn

�xn

��j

ue

+2u
⊺

e
�f e

�xn

�xn

��j

�
��j

�si
.

(25)
��

�s
= �⊺.

(26)
�xn

��j

= −
�k(

�j − �k

)2
(
xj − xk

)
.

−1

1 1

1
0

1

x1
x2

Fig. 4  Compactly supported RBF given by (17) with coordinates 
x = [00]⊺ and radius of influence rs = 1
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More involved is the sensitivity of the e th integration 
element stiffness matrix ke with respect to the location of 
enriched node n, which can be computed on the reference 
domain as:

where � = [�N1 �N2 … �Nn ��1 … ��m], as 
defined in Section 2.1. In this work, a single integration point 
is used for numerical quadrature, with �e =

[
1∕3, 1∕3

]
 and wg 

= 1/2. Recall that the material within each integration element 
remains constant, and therefore ∂D/∂xn = 0. The first term in 
(27) contains the sensitivity of the Jacobian determinant, and 
represents the effect of the changing integration element area; 
the second and third terms contain the sensitivity of the ele-
ment B matrix, and represent the effect of the changing shape 
and enrichment functions. The latter is computed as:

Observe that only the enriched part of the formulation has an 
influence, as for linear elements the background shape func-
tion derivatives are constant throughout the integration ele-
ment, and do not change with enriched node location, and thus 

The Jacobian of the parent element is not influenced by the 
enriched node location either (∂J/∂xn = 0). Similarly to (29), 
the enrichment functions are constant throughout the inte-
gration element, so that:

Appendix C describes how to compute the derivative of the 
Jacobian inverse and determinant, �J−1

e
∕�xn and ∂je/∂xn, 

respectively, by straightforward differentiation.
Finally, the sensitivity of the design-dependent force 

vector fe is evaluated. Due to the IGFEM discretization, 
enriched nodes whose support is subjected to a line or 
body load contribute to the force vector, implying that the 
derivatives of the force vector are nonzero for cases with 
line loads or body forces. Similarly to the sensitivity of 
the element stiffness matrix, each integral in the sensitiv-
ity of the element force vector consists of two terms: one 
related to the Jacobian derivative, and another containing 
the function derivatives:

(27)

(28)
��

��n
=
[
� � … �

���l

��n
…

���m

��n

]
.

xNi

n
=

0
J−1

n
ξNi + J−1

0
ξNi

n
= 0,

∆∆
∆∆

∆∆

(29)

xψi

n
=

J−1
e

n
ξψi + J−1

e

0
ξψi

n
,

∆∆
∆∆

∆∆

(30)

In the second term of the integrals, only the parent shape 
functions have a contribution. This is because enrichment 
functions in reference coordinates are not influenced by 
the enriched node in global coordinates, i.e., ∂ψ/∂xn = 0. 
However, as the mapping to the parent reference domain is 
influenced by the enriched node location, ∂N/∂xn is nonzero, 
and can be evaluated as:

where A−1
p

 is the inverse isoparametric mapping that maps 
global coordinates to the local master coordinate system of 
the parent element as explained in Appendix B.

Although the sensitivity analysis seems involved, the 
partial derivatives are relatively straightforward to com-
pute on local arrays.

3  Numerical examples

The enriched method outlined above is demonstrated on 
a number of classical compliance optimization problems. 
The results generated by this approach are compared with 
those generated by open source optimization codes, and 
the influence of the design discretization is investigated. A 
3-D compliance optimization case and a heat sink problem 
are also considered. It should be noted that no holes can 
be nucleated in the method presented in this paper. There-
fore, initial designs containing a relatively large number of 
holes are used for the numerical examples. However, the 
method could be extended to also nucleate holes by means 
of topological derivatives (Amstutz and Andrä 2006).

In this section, no units are specified; therefore, any 
consistent unit system can be assumed. For the MMA opti-
mizer (Svanberg 1987), the following settings are used 
unless otherwise specified: 

• The lower and upper bounds on the design variables si 
are given by − 1 and 1, as defined in the design variable 
space in (20)

• The move limit used by MMA is set to 0.01;
• A value of 10 is used for the Lagrange multiplier on 

the auxiliary variables in the MMA sub-problem that 
controls how aggressively the constraints are enforced.

(31)

(32)
�N

�xn
=

�N

��p

��p

�x

�x

�xn
=

�N

��p
A−1
p

�xe

�xn
Ne,
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3.1  Numerical verification of the sensitivities

The analytically computed sensitivities ∂C/∂si are checked 
against central finite differences C′

i
 for a small test problem 

as illustrated in Fig. 5. This test problem consists of a beam 
of size 2L × L that is clamped on the left, and subjected to a 
downward force |||t

||| = 1 on the bottom right. The material 
phase of this beam has Young’s modulus E1 = 1. We con-
sider the initial design with three holes, as shown in Fig. 5, 
with Young’s modulus E2 =  10− 6. The problem is solved on 
a symmetric mesh of 12 × 6 × 2 triangles. The RBFs are 
defined on a 13 × 7 grid, and have a radius of 0.15L.

The relative differences of the non-zero design variable 
sensitivities are computed as:

and illustrated in Fig. 6 for different finite different step sizes 
Δsi. For a step size of Δsi =  10− 5, the relative difference is 
minimized and takes a value of δ ≈ 5 ×  10− 6.

(33)�i =
C�
i
− �C∕�si

�C∕�si
,

3.2  Cantilever beam

Our approach to enriched level set–based topology optimi-
zation is compared with the following open source codes: 
(i) the 99-line SIMP-based code by Sigmund (2001); (ii) an 
88-line code for parameterized level set optimization using 
radial-basis functions and density mapping, proposed by Wei 
et al. (2018); and (iii) a code for discrete level set topology 
optimization with topological derivatives by Challis (2010).

The optimization problem for this comparison is the 
widely used cantilever beam problem, as illustrated in Fig. 7. 
It consists of a 2L × L rectangular domain that is clamped 
on the left and subjected to a downward point load t̄ in the 
middle of the right side. We set L equal to 1, the volume con-
straint to 55% of the design domain volume, and use ||t̄|| = 1 . 
The material domain Ωm is assigned a Young’s modulus E1 
= 1, whereas the void domain Ωv has Young’s modulus E2 
=  10− 6. Both domains have a Poisson ratio ν1 = ν2 = 0.3. 
Note that it is also possible to give the void regions a stiff-
ness of exactly zero by removing DOFs (van den Boom et al. 
2019a). However, this would entail extra overhead, and to 
ensure a fair comparison with the other models; in this work, 
it is chosen to use a small value for the void stiffness.

Figure 7 shows the initial design that is used for the 
IGFEM-based optimization, which is the same as that used 
in the paper describing the 88-line code (Wei et al. 2018). 
The other two codes do not require an initial design, as they 
are able to nucleate holes. The optimization problem is 
solved on meshes defined on rectangular grids of 21 × 11, 41 
× 21, 61 × 31, 81 × 41, and 101 × 51 nodes. Our proposed 
method makes use of triangular meshes, whereas the other 
methods use quadrilateral meshes. The RBF mesh used in 
the IGFEM-based solutions is the same as the analysis mesh, 
and a radius of influence of rs =

√
2 ⋅ a is used, where a is 

the distance between two RBFs.
The results for each code are illustrated in Fig. 8. For 

all methods, the design becomes more detailed when the 

Fig. 5  Test problem for the finite difference check of the analytical sen-
sitivities. The relative differences δi as per (33) are illustrated in Fig. 6
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Fig. 6  Relative difference δi between the analytically computed sen-
sitivities for node i and central finite differences, as a function of the 
step size Δsi

L

2L

E 1

E 2

Fig. 7  Problem description and initial design for the cantilever beam 
example in Section  3.2. The domain is clamped on the left and a 
downward force is applied in the middle of the right side
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mesh resolution is increased. Furthermore, the topologies 
obtained by each method are roughly the same. It is observed 
that the resulting designs are similar to those given by the 
code of Wei et al., especially for the finer meshes. Indeed, 
our proposed method yields results that have clearly defined 
(black and white) non-staircased boundaries. It should be 
noted, however, that the coarsest IGFEM result shows jagged 
boundaries. This zigzagging effect reduces with mesh refine-
ment and is investigated in detail in Section 4.2. Figure 9a 

shows the convergence behavior of the different codes for the 
finest mesh. It is observed that our method leads to the low-
est objective function value, which again is similar to that 
obtained by the code by Wei et al., while initially converging 
faster in the volume fraction.

Figure 9b shows the final compliance as a function of 
the number of DOFs. Initially, the different methods all 
find lower compliance values as the mesh is refined, but the 
method by Wei et al. and our method find slightly higher 

IGFEM SIMP (Sigmund 2001)
Density mapping
(Wei et al. 2018)

Discrete level set
(Challis 2010)

21 × 11

41 × 21

61 × 31

81 × 41

101 × 51

Fig. 8  Final designs for a cantilever beam obtained by the proposed method and the other methods considered in this study, shown in the col-
umns. The rows show designs obtained on meshes defined on grids of 21 × 11, 41 × 21, 61 × 31, 81 × 41, and 101 × 51 nodes, respectively
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Fig. 9  Results of the cantilever beam problem for the different methods considered in Section 3.2; a shows the compliance and volume ratio con-
vergence during optimization, b illustrates the final compliance as a function of the number of DOFs
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values for the finest mesh sizes. This may be explained by 
the optimizer converging to a local optimum. For each mesh 
size, the proposed method finds the lowest compliance value 
at the cost of adding some enriched DOFs.

3.3  MBB beam

The influence of the number of radial basis functions is 
investigated on the well-known MBB beam1, which is illus-
trated in Fig. 10. The optimization problem consists of a 3L 
× L domain with symmetry conditions on the left. On the 
bottom right corner, the domain is simply supported, and a 
downward force t̄ is applied on the top left corner. As in the 
previous example, the volume constraint is set to 55% of the 
volume of the total design domain. The initial design is also 
indicated in Fig. 10, and the same material properties as in 
the previous example are used.

This optimization problem is solved on a triangular analy-
sis mesh defined on a grid of 151 × 51 nodes, using a discre-
tization of the design space consisting of 61 × 21, 91 × 31, 
121 × 41, and 151 × 51 radial basis functions, so that only 
for the finest design space discretization, both resolutions 
match, and an RBF is assigned to every node in the analysis 
mesh. The support radius rs is changed together with the 
design grid so that the overlap of RBFs is the same in each 
case: rs =

√
2 ⋅ a , where a is again the distance between two 

RBFs.
Figure 11 shows the optimized designs. As expected, the 

level of detail in the design can be controlled by the RBF 

discretization. However, it is noted that in the finest RBF 
mesh, artifacts appear on the design boundary. This behav-
ior will be further analyzed in Section 4.2. In Fig. 12a, the 
convergence behavior of the different RBF meshes is shown. 
Although the coarsest RBF mesh shows some initial oscilla-
tions, the overall convergence behavior is similar in all cases. 
Moreover, as shown in Fig. 12b, the compliance no longer 
significantly improves for the finest RBF discretization.

3.4  3‑D cantilever beam

To show that the method is not restricted to 2-D, a 3-D can-
tilever beam example is also considered. The material prop-
erties are the same as those of previous examples. The size 
of this cantilever beam is 2L × L × 0.5L, and a structured 
mesh with 40 × 20 × 10 × 6 tetrahedral elements is used to 
discretize the model. The design space is discretized using a 
grid of 21 × 11 × 6 RBFs, with rs =

√
2 ⋅ a . Figure 13 shows 

L

3L

E2

E2

Fig. 10  Problem description and initial design for the MBB beam 
example in Section 3.3. Symmetry conditions are applied on the left 
of the domain, and the bottom-right corner is simply supported. A 
downward force is applied at the top-left side on the domain, in the 
middle of the beam

Fig. 11  Influence of the RBF mesh on the final design. Using symme-
try conditions, only half of the MBB-beam is considered in the opti-
mization. For each optimization, a structured mesh consisting of 150 
× 50 × 2 triangular finite elements is used. From top to bottom, final 
designs are shown obtained with design meshes consisting of 61 × 
21, 91 × 31, 121 × 41, and 151 × 51 RBFs

1 The original Messerschmitt-Bölkow-Blohm (MBB) beam problem, 
as introduced by Olhoff et  al. (1991), also specified that the upper 
and lower surfaces have to remain planar, in addition to a maximum 
allowable deflection and maximum stress. Over the years a more free 
interpretation of the problem formulation has become commonplace.
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the initial design, along with the boundary conditions; the 
right surface is clamped, and a distributed line load with 
||t̄|| = 0.2 per unit length is applied on the bottom-left edge. 
The move limit for MMA in this example is set to 0.001 
to prevent the optimizer from moving the boundaries too 
fast, as only a small number of RBFs is used with a large rs 
compared with the analysis mesh. The objective function is 
again the structural compliance, and the volume constraint 
is set to 40% of the total design domain.

Figure 14a displays the optimized design; the correspond-
ing convergence plot is shown in Fig. 14b, where it can be 

seen that the volume satisfied the constraint, and the objec-
tive function converges smoothly.

3.5  Heat sink

Lastly, we consider a heat compliance minimization prob-
lem, illustrated in Fig. 15. In this two-material problem, a 
highly conductive material (κ1 = 1) is distributed within an 
L × L square domain with a lower conductivity (κ2 = 0.01). 
The bottom-right corner of the domain has a heat sink, with 
u = 0, whereas the domain edges are adiabatic boundaries, 
i.e., q̄ = 0 . The entire domain is subjected to uniform heat 
source f = 1. The problem is solved on a 41 × 41 node analy-
sis mesh, using 31 × 31 RBFs with rs =

√
2 ⋅ a.

As this problem considers a case with a body load, the 
load vector also contains enriched degrees of freedom that 
depend on the locations of the enriched nodes. Therefore, 
the right-hand side is design dependent, i.e., ∂F/∂s≠0, even 
though the body load is constant throughout the entire 
domain.

The results of this optimization problem are shown in 
Fig. 16. In the optimized design, narrow features can be 
distinguished that follow the edges of original elements in 
the background mesh. This is an effect caused by how the 
intersections are detected, and is investigated in more detail 
in Section 4.1. The convergence plot shows that, although 
there are initially some oscillations in both the objective 
and constraint (also investigated further in Section 4.1), they 
converge in the end.
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Fig. 12  Subfigure a shows the convergence of the compliance C and volume fraction V�m
∕V� of the MBB beam using different discretizations of 

the design space; b shows the final compliance of the MBB beam as a function of the number of design variables

Fig. 13  Initial design of the 3-D example with a schematic illustra-
tion of the boundary conditions: the right side is fixed and a vertical 
downward line load is applied on the bottom-left edge
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4  Discussion

4.1  Oscillations: the level set discretization

Oscillations in the objective functions are visible in the con-
vergence of the heat sink problem in Fig. 16, and in the 
coarsest RBF mesh of the MBB beam in Fig. 12. As these 
oscillations might point to inaccurate modeling or sensitivi-
ties, the phenomenon is discussed here in more detail.

Recall that intersections between the zero contour of the 
level set function and element edges are found using a linear 
interpolation of nodal level set values. Because the level set 
function is discretized, no intersections can be found if two 
adjacent nodes have the same sign, as (8) does not hold for 
ϕjϕk ≥ 0. This effect is illustrated in Fig. 17. On the left, the 

zero contour of a level set function is shown in red, which 
defines a design shown in white/gray. The white arrows indi-
cate the movement of the material boundary during the next 
design update. On the right, the updated level set contour is 
shown in red. As the level set values ϕj and ϕk on the two 
adjacent original nodes xj and xk now have the same sign, the 
two intersections between them, shown as cannot be found.

The sudden disconnection of the structure due to the level 
set discretization is a discontinuous event that cannot be cap-
tured by the sensitivity information. Therefore, as soon as 
such discontinuous event occurs, the sensitivities and the 
modeling deviate, and oscillations may occur.

This problem can be alleviated by using a smaller move 
limit, as was done in the 3-D MBB example. Another 
approach that could mitigate this issue is to evaluate the 
parametrized level set function on a finer grid, so that mul-
tiple intersections are found on an element edge. However, 
the procedure that creates integration elements would also 
need to allow for these more complex intersections. It should 
be noted that neither of these methods completely eliminates 
the problem of discontinuous events. Rather, the methods 
alleviate the problem by limiting their chance of occurrence. 
On the contrary, the use of a length scale control could elim-
inate this issue completely by enforcing material and void 
features to be larger than the element size. Besides eliminat-
ing the issue of numerical oscillations, length scale control 
can also ensure the mesh is sufficiently fine with respect to 
the design’s features to properly describe its physical behav-
ior. Methods for length scale control in parametrized level 
set methods have recently been proposed (Dunning 2018; 
Jansen 2019).

A related observation can be made in the zigzagged fea-
tures in the heat sink design of Fig. 16. As illustrated in 
Fig. 18, this pattern occurs when the optimizer tries to make 
a narrow diagonal feature in the opposite direction of the 
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Fig. 14  Optimized design for the 3-D cantilever beam optimization example (a), and the convergence of the compliance C and volume fraction 
V�m

∕V� (b)
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=
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Fig. 15  Problem description and initial design for the heat sink. A 
fixed temperature is applied to the bottom right corner, and a uniform 
heat source is applied throughout the entire square domain
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Fig. 17  Structure disconnecting 
due to level set discretization. 
White arrows (left) indicate 
the update of the level set in 
the next iteration (right), where 
the narrowest part of the zero 
contour lies within a single 
element, and the nodal level set 
values ϕj and ϕk have the same 
sign. The two intersections 
shown as are thus not found, 
and the structure disconnects

k

j

Fig. 18  Illustration of the 
zigzagged pattern that appears 
in Fig. 16. When a narrow 
diagonal line is desired in 
the opposite direction of the 
diagonal lines of the mesh, the 
problem illustrated in Fig. 17 
results in a disconnected line, 
as shown on the left. Instead, 
the optimizer will create narrow 
features along element edges, as 
illustrated on the right
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Fig. 16  Subfigure a shows the optimized design of the heat sink problem, where narrow features are created along the edges of the original mesh 
element. The convergence plot in b shows initially some small oscillations that can be prevented by the use of a smaller move limit
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mesh diagonals. The red intersections cannot be detected; 
therefore, the structure is disconnected. As a result, the opti-
mizer can only create diagonal narrow features by zigzag-
ging them along element edges, as illustrated in Fig. 18 on 
the right.

4.2  Zigzagging: approximation error

In the final designs of some of the numerical examples, zig-
zagging of the edges occurred where the zero contour of 
the level set function is not perfectly smooth, as detailed 
in Fig. 19. To investigate the cause of this artifact, the test 
problem of a clamped beam loaded axially shown in Fig. 20 
was investigated. The compliance was computed for a vary-
ing zigzagging angle β while keeping the material volume 
constant.

The results in Fig. 21 show that the minimum compliance 
is not found at β = 0, as one would expect, but instead it is 
found at a negative value of β. Furthermore, the compliance 
is not symmetric with respect to β = 0 due to the asym-
metry of the analysis mesh. The cause of this zigzagging is 
an approximation error, as the mesh is too coarse to accu-
rately describe the deformations and stresses in the structure, 
similarly to the effect described for nodal design variables in 

Braibant and Fleury (1984). This effect can be resolved by 
reducing the design space with respect to the analysis mesh, 
for example with the use of RBFs, or by increasing the ele-
ment order. Furthermore, as the non-smoothness is confined 
to a single layer of background elements, mesh refinement 
makes the issue less pronounced.

5  Summary and conclusions

In this work we introduced a new enriched topology optimi-
zation approach based on the IGFEM. The technique yields 
non-pixelized black and white designs that do not require 
any post-processing. We have derived an analytic expression 
for the sensitivities for compliance minimization problems in 
elastostatics and heat conduction, and have shown that they 
can be computed with relatively low computational effort. 
Furthermore, the method was compared with a number of 
open source topology optimization codes, based on SIMP, 
the Ersatz approach, and discrete level sets. The influence of 
decoupling the design discretization from the analysis mesh 
was investigated using the classical MBB beam optimization 
problem. A 3-D cantilever beam and a heat sink problem 
were also demonstrated. The convergence behavior was pro-
vided for each numerical example. Any numerical artifacts, 
such as approximation errors and discretization errors of 
the level set, as discussed in Section 4, can be mitigated by 
means of suitable move limits and radial basis functions, 
where the latter serve as a sort of filter because they can 
control the design complexity.

A number of conclusions can be drawn from this work: 

• The combination of IGFEM with the level set topology 
optimization based on RBFs results in crisp bounda-
ries in both the design representation and the modeling. 
Because the RBF mesh and analysis mesh are completely 
decoupled, the resolution of the design and the modeling 
can be chosen independently, as is the case in any para-

Fig. 19  Detail of zigzagging that might occur when the design space 
is not reduced with respect to the FE mesh

Fig. 20  Schematic for the zigzagging approximation error. A beam 
with zigzagging angle β is clamped on the left, while a concentrated 
axial loading is applied on the right. The angle β is varied without 
changing the material volume, and the compliance is evaluated

0
1.3

1.35

C

Fig. 21  The compliance of the test case, illustrated in Fig.  20, as a 
function of the zigzagging angle β. The compliance for this coarse 
test case is non-symmetric with respect to 0
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metrized level set optimization. In addition, the radial 
basis functions help in reducing numerical artifacts, 
as they act like a black-and-white filter. Lastly, as the 
RBFs may extend over multiple elements, they allow the 
boundary to move further and the optimizer to converge 
faster;

• As only one intersection can be detected per element 
edge, due to the mapping of the level set to the origi-
nal mesh nodes, features smaller than a single element 
might not be described correctly. As discussed in Sec-
tion 4.1, this may lead to oscillations in the conver-
gence. Using a finer grid for evaluating the level sets, 
more intersection may be found, allowing for narrower 
features. However, this will require a more involved 
procedure for creating integration elements. Similarly, 
the method may be extended to be used on quadrilateral 
elements, which also requires more involved integra-
tion element procedures. Furthermore, for quadrilateral 
elements, higher order enrichment functions are needed 
(Aragón et al. 2020);

• Due to approximation error, numerical artifacts may 
occur that may be exploited by the optimizer when the 
RBF mesh is too fine with respect to the analysis mesh. 
Another known issue in IGFEM and other enriched 
methods, which may be exploited by the optimizer, is 
the fact that the computation of stresses near material 
interfaces may yield inaccurate results (Soghrati et al. 
2017; Nagarajan and Soghrati 2018);

• In this work, we chose to model the void together with 
the material domain for a number of reasons, including 
ease of implementation, and ease of comparing with 
other methods. However, we could have chosen to com-
pletely remove the void from the analysis (van den Boom 
et al. 2019a), which would reduce computation times and 
eliminate the artificial stiffness in the void.

Compared with the commonly used density-based meth-
ods, our proposed approach does not introduce staircasing 
nor gray values. The location of the boundary is therefore 
known throughout the entire optimization, and no post-pro-
cessing of the design is required. However, additional com-
plexity is introduced in the creation of integration elements. 
Furthermore, the extra enriched nodes slightly increase the 
size of system matrices, which is an effect that diminishes 
with mesh refinement. Lastly, in density-based methods 
for linear elasticity, the local element arrays can simply be 
scaled with the density, and need to be computed only once. 
In our approach, local arrays for integration elements have 
to be computed at every iteration.

In an optimization context, IGFEM has a number of 
advantages: 

 (i) The IGFEM formulation provides a natural distinc-
tion between original mesh nodes, which are sta-
tionary and on which the level set is evaluated, and 
enriched nodes, which define the material bound-
ary and are allowed to move during optimization. 
Enriched DOFs are directly related to the discontinu-
ity in the gradient of the field;

 (ii) As the background mesh does not change during 
optimization, the mapping of the design variables to 
nodal level set values has to be computed only once; 
and

 (iii) As the location of enriched nodes is known to remain 
on the background element edges, and the enriched 
node location is computed as a linear interpolation 
between background mesh nodes, the direction of the 
design velocities is known a priori. This simplifies 
the sensitivity computations;

Regarding the benefits of IGFEM with respect to X/
GFEM, in addition to those regarding the analysis phase 
described in Section 2.1.1, item (i) above must also be 
added. In X/GFEM, the distinction is less clear, as enrich-
ments are associated to nodes of the background mesh.

As mentioned in Section 1, the benefits of using an 
enriched formulation are expected to be more pronounced 
for problems that rely heavily on an accurate boundary 
description, such as fluid-structure interaction and wave 
scattering. In fact, the optimization of the latter is the sub-
ject of an incoming publication.

Appendix A: Derivation of IGFEM from X/
GFEM

Here, we derive the IGFEM formulation from the X/
GFEM approximation for a single 1-D linear finite element 
with nodes x1 and x2 that contain a weak discontinuity at 
xn. For this element, the X/GFEM approximation can be 
written as:

where Ei denotes the enrichment functions and Ûi are 
the generalized DOFs. In order to derive the IGFEM for-
mulation, the key is to select appropriate enrichment func-
tions Ei. We use scaled heaviside enrichments, as shown 
in Fig. 22.

(33)
uh(x) =

2∑
i=1

Ni(x)Ui

���������
std. FEM

+

2∑
i=1

Ni(x)Ei(x)Ûi

�����������������
enrichment

,
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By clustering DOFs, i.e., Û1 = Û2 = 𝛼 , we reduce the 
number of enriched DOFs (Duarte et al. 2006). The enrich-
ment term is then given by:

where H is the heaviside function and the constants c1 
= 1/(1 − w) and c2 = 1/w, with w = xn∕

(
x2 − x1

)
 , yield a 

C0–continuous function that attains a maximum value of one 
regardless of the discontinuity location within the element.

The final approximation is therefore:

which is equivalent to the IGFEM approximation for a 
1-D bar containing a weak discontinuity. Similar considera-
tions can be made for higher dimensional problems.

(34)

2∑
i=1

NiEiÛi =
�
N1E1 + N2E2

�
𝛼,

=
�
N1c1H

�
x − xn

�
+ N2c2H

�
xn − x

��
���������������������������������������������������

𝜓

𝛼

(35)uh(x) =

2∑
i=1

Ni(x)Ui + ��,

Appendix B: Isoparametric mapping 
of integration elements

In order to make this manuscript self-contained, here we 
describe the isoparametric mapping and numerical integra-
tion of an IGFEM integration element, as explained in more 
detail in Section 2.1 and illustrated in Fig. 3.

The integration element’s stiffness matrix ke can be com-
puted in terms of the reference integration element as:

with � = [�N1 �N2 … �Nn ��1 … ��m], 
and the element force vector fe is computed in terms of the 
reference integration element as:

A global coordinate x, in terms of the isoparametric map-
pings of the integration and parent elements, can be written 
as:

where Ne are the linear Lagrange shape functions asso-
ciated to the nodes of the integration element, with global 
coordinates xe. Similarly, N are the shape functions associ-
ated to the parent’s nodes with global coordinates xp.

The Jacobians of these mappings and their determinants 
are computed as:

and 

respectively, where xe contains the integration element 
nodes and xp contains the parent element nodes.

Numerical integration is performed in the reference inte-
gration element by means of Gauss quadrature. Using (38), it 
is straightforward to map the Gauss integration point’s refer-
ence coordinates ξe to its corresponding global coordinates 
x. The inverse mapping from x to the location in the parent 
reference coordinate system ξp is more involved. For a 2-D 
triangular element, the procedure can be written as:

(36)

(37)

(38)x = x⊺
e
Ne(�e) = x⊺

p
N(�p),

(39)Je =
�x

��e
= x

⊺

e
�Ne(�e)

��e
, je = det

(
Je
)
,

(40)J =
�x

��p
= x

⊺

p

�N(�p)

��p
, j = det (J),

x1 xn x2

1

x

Ni (x)

Ei (x)

Ei (x)

N1
N2

x1 xn x2

1

1
1 − w

1
w

x

c1 H (x − xn )
c2 H (xn − x )
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1

x

Ni

=
i

E iNii

Fig. 22  Construction of IGFEM enrichment function from X/GFEM 
formulation
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Inverting this isoparametric mapping leads to the follow-
ing equation for the integration point in parent coordinates ξp

Appendix C: Derivatives of the Jacobian 
inverse and determinant

In the sensitivity computation discussed in Section 2.3.1, 
the derivative of the Jacobian inverse and determinant are 
required. According to Jacobi’s formula (Magnus and Neu-
decker 2007), the derivative of the determinant of a matrix 
can be computed as the trace of the adjugate of the matrix 
( adj

(
Je
)
= jeJ

−⊺
e

 ), multiplied by the derivative of the matrix. 
For the Jacobian determinant je, the derivative can thus be 
computed as:

The sensitivity of the Jacobian inverse can be computed 
by realizing that JeJ

−1
e

= I:

and solving for �J−1
e
∕�xn:

For both (43) and (45), the sensitivity of the Jacobian 
is required; as the Jacobian of the integration element is 
computed as Je = x

⊺

e�Ne∕��e , it can be computed as:

where ∂xe/∂xn is simply a selection array consisting 
of zeros except for a one on the entries of interest for 
enriched node n.

(41)

x =

�
xi,1 xj,1 xk,1
xi,2 xj,2 xk,2

�⎡
⎢⎢⎣

1 − �1 − �2
�1
�2

⎤
⎥⎥⎦

x =

�
xi,1 + �1(xj,1 − xi,1) + �2(xk,1 − xi,1)

xi,2 + �1(xj,2 − xi,2) + �2(xk,2 − xi,2)

�
,

x−

�
xi,1
xi,2

�
=

�
xj,1 − xi,1 xk,1 − xi,1
xj,2 − xi,2 xk,2 − xi,2

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A

�
�1
�2

�

(42)�p =

[
�1
�2

]
= A−1x − A−1

[
xi,1
xi,2

]
.

(43)
�je

�xn
= Tr

(
adj

(
Je
)�Je
�xn

)
,

(44)
�JeJ

−1
e

�xn
=

�Je

�xn
J−1
e

+ Je
�J−1

e

�xn
=

�I

�xn
= 0,

(45)
�J−1

e

�xn
= −J−1

e

�Je

�xn
J−1
e
.

(46)
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