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Abstract
In recent years, the field of additive manufacturing (AM), often referred to as 3D printing, has seen tremendous growth
and radically changed the means by which we describe valid 3D models for production. In particular, it is now conceivable
to produce composite structures consisting of smoothly varying oriented anisotropic constitutive materials. In the present
work, we propose a sensitivity driven method for the generation of transverse isotropic fiber reinforced structures having
smooth spatially varying orientations. Our approach builds upon finite element analysis (FEA) and density-based topology
optimization (TO). The local material orientations are formulated as design variables in a stiffness maximization problem,
and solved with a non-convex gradient-based optimization scheme. Length-scale control is achieved through the use of filters
for regularization. We demonstrate the ability of the proposed approach to handle large-scale 3D problems with synchronous
optimization of material densities and orientations yielding millions of design variables on multiple load case scenarios. The
method is shown to be compatible with compliant mechanism optimization as well as local volume constraints. Finally, the
approach is extended with an additional design variable dictating the ratio of anisotropy for each element, thereby delegating
the choice of material type to the optimization scheme.

Keywords Topology optimization · Finite element analysis · Mathematical programming ·
Anisotropic constitutive material · Smooth fiber orientations · Additive manufacturing

1 Introduction

In the present work, we explore the use of anisotropic
constitutive materials within the context of topology
optimization. The choice of wording is purposefully broad
as we aim at proposing a fairly general approach for
design optimization considering local material orientations
alongside with the topology.

Section 1 presents the motivation toward the optimization
of structures using anisotropic materials and reviews
existing approaches. Section 2 describes the mathematical
model chosen to represent and simulate designs containing
the given material models. In Section 3 we address the
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numerical optimization schemes developed for tailoring
material orientation layouts in the context of topology
optimization. Finally, Section 4 is dedicated to various
numerical experiments, analyzing the results of the present
approach and its applicability to industrial design scenarios.

1.1 Motivation

Bakelite was the first artificial fiber reinforced plastic and
was synthesized in 1907. However, composite materials
have been a staple of mechanical engineering for centuries
prior to that. Naturally occurring materials like wood
have long been used in construction, specifically for their
anisotropic properties granted by continuous fibers. Today,
composite materials like reinforced concrete, plywood or
fiberglass are commonly used in a wide variety of industrial
applications. Advanced synthetic anisotropic materials
perform routinely on aircraft and spacecraft in demanding
environments.

Producing components consisting of composite materials
is typically challenging and multiple manufacturing pro-
cesses have been developed to tackle this challenge (Gao

Structural and Multidisciplinary Optimization (2020) 62:3105–3126

/ Published online: 11 July 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02657-6&domain=pdf
mailto: martinpierre.schmidt@insa-rouen.fr


M.-P. Schmidt et al.

2018; Kabir et al. 2020). Figure 1 shows examples of such
processes with emphasis on the use of continuous fiber
reinforcements.

We observe a rapid progress of additive manufactur-
ing capabilities which already enables the production of
structures with spatially varying fiber orientations. The
local orientation of fibers in a given manufacturing process
directly affect the anisotropic material properties. In turn,
these properties play a major role in the physical perfor-
mance and characteristics of the manufactured designs. It
is worth noting that whether it is in a single component
and/or in a subcomponent assembled in a full structure, the
anisotropic behavior of the material can affect a wide variety
of physical phenomena, e.g., total mass, stiffness, strength,
stability, robustness, dynamics, heat conduction, acoustics,
and electromagnetics.

We aim at devising a method for material orientation
optimization compatible with industrial requirements in
order to leverage the recent progress in AM technologies for
composite materials. Consequently, we will be addressing
2D and 3D structural optimization with the aim of keeping
the core of the material orientation formulation agnostic of
the physical phenomenon driving the optimization. In other
words the material orientations will affect the behavior of
the structure, but the orientation formulation itself should be
compatible with stiffness, heat conduction, or other physical
phenomena without any fundamental modifications.

In the following, we numerically optimize orientation
fields knowing that manufacturing processes are for the

most part not yet capable of producing such objects with
fiber orientations freely varying in 3D. There are however
existing approaches for additive manufacturing of frame
structures departing from the classical 2D layer-by-layer
paradigm (Huang et al. 2016) where 3D orientation of
fibers could be considered. It is then reasonable to expect
that more general purpose manufacturing capabilities for
oriented fibered materials will become a reality in the future,
at which point the industry would want to benefit from
it immediately without having to wait for the engineering
design tools to be available. Moreover, a separate class
of approaches consider the optimization of material 3D
orientations as a first step before projection of fine-scale
anisotropic microstructures either in a high resolution
density field (Groen and Sigmund 2018; Allaire et al.
2019) or as a conformal lattice structure (Wu et al. 2019).
This class of methods can already allow the fabrication of
objects with truly 3D anisotropic meta-material of varying
orientations and also rely on the optimization of smooth
material orientation fields.

We will be addressing smoothly oriented fiber reinforce-
ment and therefore focus on transverse isotropic material
properties in 2D and 3D, respectively. Another consequence
of optimizing fiber orientation is that the regularity and con-
tinuity of the material orientation field will be paramount to
ensure the validity of the generated structures for industrial
applications. Thus, a major part of this work is dedicated to
the regularization techniques and length-scale control. We
also require the ability to handle multiple load cases. This

Fig. 1 Examples of manufacturing processes applying continuous fiber composites. (a) Filament deposition-based additive manufacturing using
continuous fibers fused with a thermoplastic polymer matrix. (b) Continuous fiber winding. (c) Continuous fiber tape laying (Gao 2018).
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requirement is one of the main motivators for the use of sen-
sitivity driven numerical optimization schemes. Indeed, it is
known that under a single load case, the optimal orientations
of an orthotropic material for elastic stiffness are given by
the principal stresses (Pedersen 1989). However, this state-
ment is no longer valid under multiple load cases since the
stress and strain tensors have different values for each load
case. Considering that industrial design specifications are
seldom restricted to a single load case but instead com-
monly include several loading scenarios applied for various
physics, then it is natural to express the material orientation
as a numerical optimization problem.

1.2 Context

Topology optimization is a general form of structural
optimization whose history can be traced back to seminal
work from Martin Philip Bendsøe in the 1980s (Bendsøe
1983, 1988, 1989) as a material distribution problem in a
so-called design space. Nowadays, topology optimization
has developed in many different directions with the most
common methods known as “density-based,” “level-set,”
“topological derivatives,” “phase field” and “evolutionary”
approaches (Sigmund and Maute 2013; Bendsøe and
Sigmund 2003). The present work extends the density-
based method known as the Solid Isotropic Material
with Penalization (SIMP) approach (Bendsøe and Sigmund
1999).

This approach describes the effective Young modulus Y

of an element E in the design space � as a function of the
element density ρE penalized by an exponent γ yielding

Y (ρE) = Ymin + ρ
γ

E (Y0 − Ymin) , 0 < Ymin � Y0 (1)

The design problem is formulated as an optimization of the
design variables ρ under constraints as follows

arg min
ρ

J (ρ) = f T u

s.t . K(ρ)u = f

0 ≤ ρE ≤ 1, ∀E ∈ �

Gtot (ρ) = 1

G�
tot · v�

∑

E∈�

(ρEvE) − 1 ≤ 0

(2)

with the objective function J defined as the total strain
energy, the state equation depending on the stiffness
matrix K of the design, u and f respectively the nodal
displacement and force vectors, and Gtot the total volume
constraint depending on the elements volumes vE .

For ensuring a well-posed optimization problem, it is
necessary to apply a control on the length scale of the
density field (Dı́az and Sigmund 1995). This is commonly
achieved through the use of filters (Sigmund and Petersson
1998; Sigmund and Maute 2012).

1.3 Existing work and approaches

The use of spatially varying fiber orientations promises
gains in structural stiffness that could be leveraged in the
field of mechanical and material engineering. Nevertheless,
the manufacturing capabilities for continuous fiber printing
are still in their infancy. Consequently, there seem to
be a lack of approaches for general purpose sensitivity-
based topology optimization methods enforcing smooth
fiber orientations.

The original work by Bendsøe and Kikuchi (1988)
optimized orthotropic material distribution and orientation
using the homogenization method. This early work did
not produce solid/void designs nor included length-scale
control on the densities or regularization on the material
orientations. As reviewed by Bendsøe and Sigmund (2003),
subsequent work applied this approach to 2D and 3D
applications. These methods generally focus on a multiscale
representation where the final geometry is projected at a fine
scale (Groen and Sigmund 2018).

The method proposed by Safonov (2019) is another
example of approach aiming at generating structures consti-
tuted of orthotropic material through topology optimization.
This approach is limited to single load cases and runs a tradi-
tional density-based topology optimization. At each design
update the orthotropic material is aligned with the principal
directions of stress obtained by evaluating the stress tensor
of each element.

The principal stress directions naturally exhibit smooth
transitions and alignment for material orientations, and are
trivially extended to 3D optimization problems. However,
the limitation of working exclusively with single load
case problems is too restrictive for industrial applications.
Similarly, relying exclusively on a unique stress tensor for
material orientation excludes working with other problem
formulation such as strength, dynamics or multiphysics.

Liu and Yu (2017) propose a level set-based approach for
concurrent optimization of topology and in-plane deposition
path orientation. The local orthotropic behavior of the
material is modeled according to studies of typical in-plane
raster, in-plane transverse and build direction properties in
layer-based 3D printing. The deposition paths are defined
by consecutive isolevels of the level set representation and
can thus be seen as analogous to offsets of the boundary.

Fernandez et al. (2019) propose a method focused
on enforcing the manufacturing constraints of a specific
printing process into the fiber orientation optimization.
Especially, they target the Direct Ink Writing process which
builds the object layer by layer by filling each slice with an
extruded mixture of thermoset resin and short carbon fibers.
Since the short fibers tend to settle in a direction aligned
with the printing path, they aim at devising a path generation
algorithm fulfilling constraints like the absence of paths
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overlaps, orientation and spacing regularity, and low path
curvature. To that effect, they opt for paths obtained as level
sets of a given function and then link these isolevel curves
together yielding a single continuous extruder path. The
approach operates on a predetermined 2D design topology
and smoothly deforms an initial hatching pattern to produce
optimized printing paths (Fig. 2).

The method proposed by Nomura et al. (2015) and Lee
et al. (2018) offers a promising alternative to the fiber ori-
entation problem. This work aims at devising a topology
optimization scheme where both the density and orientation
of material are optimized simultaneously. To do so, a vector
parameterization is used to encompass both variables at the
same time, where the vector direction represents the fiber
orientation and the vector magnitude encodes for the mate-
rial density. Consequently, the fiber orientations become
part of the design variables. They also propose an exten-
sion to this process were the orientations are discretized
in uniform patches through isoparametric projection.

The main advantage of this approach is that the design
variables in vector space exhibit fairly few local minima
during the numerical optimization. On the other hand, this
approach has not been applied to 3D fiber orientation
and the tight coupling of the density and orientation
parameters makes the method less versatile when working
with other additional design variables or physics due to their
interdependence.

Recent work by Jiang et al. (2019) presents an approach
for topology optimization with densities and fiber orienta-
tions as separate design variables. It demonstrates handling
2D and very low-resolution 3D problems but the fiber ori-
entation are still constrained to a XY-plane (Fig. 3) and have
no length-scale control. The thesis (Jiang 2017) also shows
an example with two symmetric load cases.

This last approach is the closest to what we will propose
in the present. However, we also aim at tackling the
previously mentioned issues. Specifically, the proposed
method aims at fulfilling the following criteria:

– Local material orientation varying in 2D or 3D
– Smooth variation of material fiber orientation

– Sensitivity-based orientation optimization
– Multiple load cases optimization scenarios
– Scalability to high resolution meshes
– Separate design variables for density and orientation
– Synchronous or asynchronous optimization of density

and orientation

2Mathematical modeling

This section describes the mathematical model chosen
for the physical simulation using finite element analysis.
We first specify the properties of the material through
its constitutive law. Then, we describe the transformation
matrices allowing the variation of material orientation on
an element-based level. Finally, we show some numerical
experiments to validate the model and study the effect of
combined density topology optimization with differentiable
non-uniform material orientations.

2.1 Constitutive law

Section 1.2 described the numerical model commonly
used for isotropic density-based topology optimization.
Therefore the present section presents the constitutive
material law as well as the process allowing local material
orientation variation throughout the design domain.

An orthotropic material for 3D is defined according to
its three orthogonal principal directions. Thus, the material
needs nine physical properties to be fully described. These
physical constants are the three principal Young moduli Y1,
Y2 and Y3 corresponding to the stiffness along each principal
direction, the three Poisson ratios ν12, ν13 and ν23, and
the three shear moduli μ12, μ13 and μ23. For a complete
description of the material, the three other Poisson ratios
ν21, ν31 and ν32 can be deduced from these nine physical
constants by symmetry.

Given the strain vector [ε] and stress vector [σ ], the
constitutive law in stiffness form is formulated as

[σ ] = C[ε] (3)

Fig. 2 (a) Illustration of the level sets of an arbitrary function defining curved, evenly spaced paths with no overlap. (b) Diagram of a simple
loading scenario. (c) Level sets linked as a single manufacturable printing path (Fernandez et al. 2019)
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Fig. 3 Visualization of the first 3 layers of a 6 layer cantilever design with optimized material orientation displayed as a short white segment for
each element (Jiang et al. 2019)

where C is the inverse of the constitutive matrix defined in
compliance form as follows:

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Y1

−ν21

Y2

−ν31

Y3
0 0 0

−ν12

Y1

1

Y2

−ν32

Y3
0 0 0

−ν13

Y1

−ν23

Y2

1

Y3
0 0 0

0 0 0
1

2μ12
0 0

0 0 0 0
1

2μ13
0

0 0 0 0 0
1

2μ23

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

(4)

with the factor 2 applied to the shear coefficients resulting
from the difference between shear strain and engineering
shear strain. Transverse isotropic material for the represen-
tation of fibers is modeled by using the same properties for
two of the three principal directions.

2.2 Material orientation as design variables

We now choose a representation to express the orientation
for each element. For our purpose in 3D, we use a form
of spherical coordinate system based on two angles α and
θ referred to as the azimuth and elevation, respectively as
shown in Fig. 4. Since we are only interested in orientation,
the radius component of spherical coordinates is irrelevant
and omitted here.

Note that the angle α rotates in the YZ plane. Moreover
θ is negative as it approaches the X+ semi-axis and positive
as it approaches the X− semi-axis. The reason for these
unconventional choices is purely due to computational and
implementation considerations. Indeed, this formulations
facilitates the use of the same code for 2D and 3D problems
while minimizing the RAM fragmentation of the data arrays
being stored in X-major Z-minor ordering.

Given the right set of bounds and disregarding the
radius component, one can easily transform between these
spherical coordinates and classical Cartesian coordinates
using the following relations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x = − sin(θ)

y = cos(θ) ∗ cos(α) ⇐⇒
{

α = arctan2(z, y)

θ = − arcsin(x)

z = cos(θ) ∗ sin(α)

(5)

In certain circumstances, a vector description of the fiber
orientation will be more practical. Thus depending on the
situation, we will use these relations to swap for the most
appropriate coordinate system.

We now devise a series of transformations T applied to
the constitutive law matrix C in order to rotate it for both
angles α and θ . Thus, we define the rotated matrix RE for
any given element E in the design domain � as

RE(αE, θE) = Tα(αE)Tθ (θE)CT T
θ (θE)T T

α (αE) (6)

Fig. 4 Diagram of spherical coordinates notations used for the
definition of material orientation with two angle variables α and θ
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The 6 × 6 matrices Tα(αE) is written as

Tα(αE) =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 c2

α s2
α 0 0 −2cαsα

0 s2
α c2

α 0 0 2cαsα
0 0 0 cα −sα 0
0 0 0 s c 0
0 cαsα −cαsα 0 0 c2

α − s2
α

⎤

⎥⎥⎥⎥⎥⎥⎦

with

{
cα = cos(αE)

sα = sin(αE)

(7)

Similarly Tθ (θE) is written as

Tθ (θE) =

⎡

⎢⎢⎢⎢⎢⎢⎣

c2
θ s2

θ 0 −2cθ sθ 0 0
s2
θ c2

θ 0 2cθ sθ 0 0
0 0 1 0 0 0

cθ sθ −cθ sθ 0 c2
θ − s2

θ 0 0
0 0 0 0 cθ −sθ
0 0 0 0 sθ cθ

⎤

⎥⎥⎥⎥⎥⎥⎦

with

{
cθ = cos(θE)

sθ = sin(θE)

(8)

Since the material orientations are carried by these
rotation matrices, and in order to clarify the notations
without any loss of generality, we will now assume that
the base material before rotation has its three principal
directions aligned with the X, Y and Z-axes. Consequently
the nine physical constants will be denoted Yx , Yy , Yz, νxy ,
νxz, νyz, μxy , μxz, μyz. For the purpose of the following
numerical experiments, we define the three sets of physical
constants each defining a different material.

(9)

The material Mat1 exhibit isotropic properties whereas
the materials Mat2 and Mat3 exhibit transverse isotropic
properties having their stiffest direction aligned with the Y
axis. Specifically, Mat2 and Mat3 have their first principal
direction 5 and 25 times stiffer than their second principal
direction. In this work focusing of the optimization of fibers
with smooth orientations, the stiffest direction corresponds
to the fiber direction, whereas the lower stiffness in the
transverse plane corresponds to the “matrix” material.

2.3 Element stiffness matrix

Having defined the fiber orientation transformations, we
can combine these orientation fields with the previously
described density field. Therefore, for any given element
E in the design domain �, we can assemble the element

stiffness matrix KE of dimensions 24 × 24 as a function
of the element density ρE and the element orientation
(αE, θE). Recalling that γ is the penalization exponent of
the density-based topology optimization, we define KE as

KE(ρE, αE,θE) = ρ
γ

EK0
E(αE, θE)

ρmin ≤ ρE ≤ 1, ∀E ∈ �

−π ≤ αE ≤ π, ∀E ∈ �

−π/2 ≤ θE ≤ π/2, ∀E ∈ �

(10)

We are using 8-node regular hexahedral elements in
3D. Consequently, we compute the element stiffness matrix
through Gaussian integration using classical linear shape
functions. The matrix K0

E can be assembled as the following

K0
E =

∫∫∫
BT

ERE(αE, θE)BEd� (11)

where BE is the 6 × 24 matrix defined as

BE = [BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7] (12)

with the eight sub matrices BEi the containing the element
shape functions for the three axes NEi,x , NEi,y and NEi,z as

BEi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

NEi,x 0 0

0 NEi,y 0

0 0 NEi,z

NEi,y NEi,x 0

NEi,z 0 NEi,x

0 NEi,z NEi,y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Having the element stiffness matrix defined means that
for a given set of density and orientation fields ρ, α and θ

we can aggregate all the coefficients into the global stiffness
matrix K using

K(ρ, α, θ) =
∧

E∈�

KE(ρE, αE, θE) (14)

then write the state equation as an equality constraint in the
optimization formulation similarly to (2).

2.4 General orthotropic material

Note that the optimization of a general orthotropic material
with 3 different Young moduli would involve an additional
angle variable to allow rotation in the transverse plane. This
additional angle would be modeled with transformation
matrices in the same manner as for the α and θ fields.
Furthermore, the gradients used in the optimization of this
third orientation variable would also be obtained via adjoint
sensitivity analysis as shown in the next section. Similarily,
the regularization scheme described later would be applied
on tensors of rank-2 instead of rank-1.
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3 Optimization

The previous section presented the mathematical model for
simulating the elastic deformation of structures consisting
of non-uniformly oriented transverse isotropic constitutive
material. The aim of the present section is to leverage
this model by developing a numerical optimization scheme
responsible for the automated optimization of the material
orientations throughout the design domain. Initially we
develop the computation of the derivatives allowing the
use of sensitivity-based optimization methods. Afterwards,
we evaluate the behavior of the optimization scheme
through several numerical experiments. Lastly, we discuss
the purpose and impact of regularization and filtering of
design variables as an important approach for obtaining a
smoothly varying material orientation field.

3.1 Sensitivity analysis

The derivatives of the compliance objective function J with
respect to the design variables ρ, α and θ can be obtained
by adjoint sensitivity analysis.

∂J

∂ρE

= −γρ
γ−1
E uE

T K0
EuE, ∀E ∈ �

∂J

∂αE

= −ρ
γ

EuE
T ∂K0

E

∂αE

uE, ∀E ∈ �

∂J

∂θE

= −ρ
γ

EuE
T ∂K0

E

∂θE

uE, ∀E ∈ �

(15)

with γ the penalization term defined in (1). In order to
obtain the partial derivatives of K0

E with respect to αE we
differentiate (11) as follows

∂K0
E

∂αE

=
∫∫∫

BT
E

∂RE(αE, θE)

∂αE

BEd�

∂RE

∂αE

= ∂Tα

∂αE

TθCT T
θ T T

α+TαTθCT T
θ

∂T T
α

∂αE

(16)

Similarly, the partial derivatives of K0
E with respect to θE

are obtained as

∂K0
E

∂θE

=
∫∫∫

BT
E

∂RE(αE, θE)

∂θE

BEd�

∂RE

∂θE

= Tα

(
∂Tθ

∂θE

CT T
θ + TθC

∂T T
θ

∂θE

)
T T

α

(17)

Finally, we calculate the derivatives of the transformation
matrix Tα with respect to the design variables αE . This
is achieved by differentiating the matrix defined in (7) as
follows

∂Tα

∂αE

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 −2cαsα 2cαsα 0 0 −2(c2
α − s2

α)

0 2cαsα −2cαsα 0 0 2(c2
α − s2

α)

0 0 0 −sα −cα 0

0 0 0 cα −sα 0

0 c2
α − s2

α s2
α − c2

α 0 0 −4cαsα

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

Similarly, we obtain the derivative of Tθ with respect to the
design variables θE by differentiating (8) as follows and Tθ

as

∂Tθ

∂θE

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2cθ sθ 2cθ sθ 0 −2(c2
θ − s2

θ ) 0 0

2cθ sθ −2cθ sθ 0 2(c2
θ − s2

θ ) 0 0

0 0 0 0 0 0

c2
θ − s2

θ s2
θ − c2

θ 0 −4cθ sθ 0 0

0 0 0 0 −sθ −cθ

0 0 0 0 cθ −sθ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The implementation of a gradient-based numerical
optimization scheme also requires the gradients of the
constraint Gtot with respect to the design variables ρ, α and
θ . Recalling the definition of the constraint Gtot as

Gtot (ρ) = 1

G�
tot · v�

∑

E∈�

(ρEvE) − 1 ≤ 0 (20)

it is clear that this constraint is independent of the material
orientation variables. This makes intuitive sense considering
that the mass of the structure should be the same regardless
of the orientation of the material within it. This lets us write
the required gradients as

∂Gtot

∂ρE

= vE

G�
tot · v�

, ∀E ∈ �

∂Gtot

∂αE

= 0, ∀E ∈ �

∂Gtot

∂θE

= 0, ∀E ∈ �

(21)
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3.2 Design variable update scheme

Having introduced the orientation design variables in the
problem, we obtain the following optimization formulation

arg min
ρ,α,θ

Jsm(ρ, α, θ) =
(

∑

i∈LC

(
fi

T ui

)n
)1/n

s.t . Ki(ρ, α, θ)ui = fi, ∀i ∈ LC

ρmin ≤ ρE ≤ 1, ∀E ∈ �

− π ≤ αE ≤ π, ∀E ∈ �

− π/2 ≤ θE ≤ π/2, ∀E ∈ �

Gtot (ρ) = 1

G�
tot · v�

∑

E∈�

(ρEvE) − 1 ≤ 0

(22)

with Jsm the objective function, one equality constraint
in the form of the state equation, three box constraints
specifying the lower and upper bounds for the optimization
variable fields ρ, α and θ , and one inequality constraint on
the total material volume fraction. Note, we use a n-norm
aggregation method to combine the respective compliance
of each load case i ∈ LC into the differentiable soft max
function Jsm.

We can now formulate a gradient-based optimization
scheme to iteratively update the design variables. The
design variables for density and orientation have been
purposefully formulated to be separate, thus allowing
executing their update synchronously or asynchronously.
We can use the Method of Moving Asymptotes optimization
scheme (MMA) introduced by Svanberg (1987). The
advantage is that this approach will also handle bounds and
convergence rates for all the considered design variables.
The MMA algorithm is also known to be robust and reliable
even when working with optimization formulations having
multiple non-linear constraints.

However, it is worth noting that the design variables for
material orientations are independent of the mass constraint
in this optimization problem formulation. Consequently, the
use of a simpler optimization scheme is worth considering
to study the convergence behavior. For this first set of
numerical experiments we use a modified implementation
of the gradient descent update scheme. For stability the
gradients of both optimization variables are rescaled and
a numerical damping factor ζ is added. Moreover, we
introduce move limits mα and mθ which act as a restriction
to the maximum amplitude of change for a design variable
in a given update step. The update scheme then becomes

αE ←min

(
max

(
αE− ζ

Jsm

∂Jsm

∂αE

, αE−mα

)
, αE+mα

)

θE ←min

(
max

(
θE− ζ

Jsm

∂Jsm

∂θE

, θE−mθ

)
, θE+mθ

)
(23)

Note, contrary to the update rule of the density variables
ρ, no explicit bounds are needed to maintain the orientation
variables α and θ in the range specified by (22) due to the
π -periodicity of the orientation.

3.3 Numerical experiments

The present formulation allows modeling 2D or 3D
transverse isotropic material fields parameterized by their
local densities and orientations. This section is dedicated
to the execution of numerical experiments highlighting the
capabilities and shortcomings of the method. Then, we
propose improvements to the update scheme for handling
design variable initialization and non-convexity of the
optimization problem.

Throughout this article, we will visualize material
orientation fields in 2D and 3D. This is accomplished
by representing these orientations as short color-coded
segments inside each voxel. In order to help with
visualization, the coloration of each segment is chosen
by converting the absolute magnitudes of the X, Y , and
Z components of the vector field directly into the R,
G, and B color components as follows: (R; G; B) =
(|X|; |Y |; |Z|). For example, the 3D vector [0; 0; 1] will be
displayed as blue, whereas the 3D vector [−0.7; 0; 0.7] will
be purple.

3.3.1 Orientation regularization

Optimizing both density and orientation field on a 2D
cantilever scenario yields results as shown in Fig. 5(a) using
the material properties Mat2 from (9). The overall shape
resembles a typical cantilever optimized solution using
density field optimization. However the material orientation
field shows irregularities and 90◦ misalignments due to
the non-convexity of the optimization problem which will
be discussed in the next section. In order to improve the
regularity of the material orientation field we introduce a
minimum length scale where the angle design variable fields
α and θ are filtered throughout the optimization process
yielding results as shown in Fig. 5b.

The filtering process should not be executed as a simple
convolution on both scalar fields α and θ separately for two
reasons. Firstly, such convolution would not properly handle
the periodicity of the orientation variables. Secondly, both
angles are strongly interdependent in the definition of the
rotated constitutive material RE(αE, θE), and thus cannot
be treated as separate entities.

Consequently, the filtering is a modified version for
vector parameterization based upon the method introduced
in Bruns and Tortorelli (2001) and Bourdin (2001). Using
the relationship described in (5), each couple (αE; θE) is
transformed into vector space as a single unit vector φE
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Fig. 5 Cantilever design obtained using synchronous optimization of the material density and orientation fields on a 48 × 30 mesh. The designs
(a) and (b) are obtained without and with filtering using a radius of 1.5 voxels, respectively

for each element E in �. The proposed regularization filter
yields the smoothed vector field φ̃ as follows

φ̃E =
∑

e∈ω

(
vewE,eφ̂e

)

∑
e∈ω

(
vewE,e

) , ∀E ∈ �

where φ̂e =
{

−φe if φE · φe ≤ 0

φe otherwise

(24)

with the weighted mask wE,e defined as a linearly decaying
function of radius R on the neighboring elements e in the
set ω and their positions x as follows

wE,e = R − ‖xE − xe‖ (25)

After filtering the orientation variables in vector space,
the field φ̃ is the transformed back into spherical coordinates
to provide the regularized angle fields updating α and θ for
the next optimization iteration. Figure 6 plots the evaluated
compliance for the first 60 optimization iterations leading to
the designs shown in Fig. 5.

As expected, the material orientation regularization
improves the vector field continuity leading to smoothly

changing fiber paths. We also note that filtering helps
reaching results with significantly lower compliance by
reducing sudden changes of material direction between
elements. The filtering of orientation variables allows
controlling the length scale of the vector field, analogously
to the regularization of the density variables through
filtering and will be discussed in Section 4.4. Consequently,
this filtering of design variables prevents the solution to fall
in noisy local minima early in the optimization process.

3.3.2 Orientation initialization

The following numerical experiment is a 2D bridge
optimization scenario with five distinct load cases. The
purpose of the present test is to evaluate the behavior of the
optimization workflow with respect to the initial orientation
vector field. Figure 7 shows the side-by-side comparison of
the optimized structure obtained when the initial fibers are
aligned vertically or horizontally in the 2D bridge scenario.

We observe from the two designs that the optimization
workflow presented here displays a high degree of
dependence upon the initial material orientation field. This

Fig. 6 Compliance evaluated at
each iteration of the design
optimization resulting in the two
designs shown in Fig. 5

3113



M.-P. Schmidt et al.

Fig. 7 Comparison of the optimized density and fiber orientation fields on a 64 × 40 mesh obtained using initial fibers aligned vertically (a) or
horizontally (b) in the 2D bridge scenario with 5 load cases

can be explained as a feedback loop happening in the early
iterations of the topology optimization. If the fibers are
initially all set in a given direction, then the optimization
scheme will preferentially adjust the density field in order
to produce beams along the length of these fibers due to
the higher stiffness of this direction. Similarly, if the density
field mostly describes beams along a certain direction, then
the fiber orientations will be directed to align with this same
direction in order to give a higher stiffness to the beam. This
feedback effect between the design variables ρ and (α; θ)

during their simultaneous optimization is the reason why the
designs in Fig. 7 exhibit a structural layout mostly oriented
along the initial orientations.

This effect is suppressed by providing an initial orien-
tation field without any preferential direction, i.e., with a
random orientation for each element. The convergence his-
tory of three 2D bridge designs with different initialization
strategies is shown in Fig. 8.

We observe that for this specific optimization scenario,
the vertical direction is an excellent initial guess for the
orientation field, yielding an initial and final compliance
more than 2.5 times lower than the initial guess using
horizontal direction. On the other hand, knowledge of
such appropriate initial guess is impossible for general
applications with arbitrary optimization scenarios.

Synchronous optimization of the material density and
orientation using a random initial orientation field yields
designs with less uniform fiber directions. Moreover,
running multiple separate topology optimizations of the
same problem starting from different random material
orientation fields reveals that, while the designs differ, they
exhibit similar overall shape and compliances. This will
be demonstrated in Section 4.5. As a result, the random
initialization, achieving a final compliance almost as low,
appears to be a valid initialization strategy for general
purpose setup aiming at reducing dependence to initial
material orientations.

3.3.3 Non-convexity

As observed in the previous sections, optimized designs
involving local material orientations often contain regions
with seemingly sub-optimal alignment. This difficulty
encountered by the optimization scheme is the result of the
non-convexity of the objective function when considering
anisotropic materials. By definition, an element with
orthotropic material in tension or compression will have
multiple orthogonal minima corresponding to each principal
directions of the material. In order to illustrate how this non-
convexity affects optimization problems with more design
variables, we use the test case illustrated in Fig. 9 where a
2D plate is fixed on one edge and a uniform load is applied
at the opposite edge.

The design space is divided into two regions describing
adjacent horizontal patches. Each region of the two regions
has its material orientation defined by one uniform angle
and we evaluate the design compliance for each pair of
values. Figure 10 shows the design responses as a surface
parameterized by the two design variables, each changing
from 0◦ to 360◦ independently.

First we observe that the design responses exhibit the
expected 180◦-periodicity, therefore all angles values given
below will be considered mod 180◦. Secondly, we observe
that in the tension load case the design response has
a local minimum when the two angles take values of
(0◦; 90◦), (90◦; 0◦) and (90◦; 90◦) and the global minimum
for (0◦; 0◦). The number of local minima in the design
response increases exponentially with the number of design
variables. Thirdly, the shear load case exhibits multiple
equivalent local minima with a material orientation of 36◦
and 144◦. Note that formulating an optimization problem
with multiple load cases can further worsen the situation.
To illustrate this point, we consider the three aggregation
strategies sum, max and soft max to formulate the objective
function considering both the tension and shear load cases.
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Fig. 8 Convergence history for three variants of the 2D bridge design obtained with various strategies of initial material orientations

Figure 11 shows the design responses with respect to the two
design variables under these different aggregation strategies.

The sum aggregation results in the overall smoothest
design response. Nevertheless, industrial scenarios often
require using so-called MinMax formulation which priori-
tizes the worst case scenario, i.e., minimize the maximum
compliance (or maximum displacement, stress, etc.). The
max function is notoriously non-differentiable, as seen in
Fig. 11, which explains the use of the soft max aggrega-
tion strategy as an alternative. Regardless of the number
of design variables, load cases and choice of aggregation
function, the orientation of any anisotropic material is a
fundamentally non-convex optimization problem.

This issue is circumvented by modifying the update rule
to introduce a continuation scheme and a global optimum
search strategy similar to the simulated annealing process.
The iterative optimization scheme is then a hybrid process
controlled by two components. The search direction is
defined by the gradient of the objective function, similarly

to a classical gradient descent algorithm. The step size
along that direction is conditioned by initially large and
progressively decreasing move limits mα and mθ . In our
experiments, the move limits mα and mθ start at 45◦ and
decay exponentially at a rate of 0.9 at each optimization
iteration. The term ζ in (23) allows introducing an artificial
“energy” thereby preventing the solution to settle in a
local minimum early in the optimization iterations. In later
examples this strategy is also employed for the MMA
optimization scheme by applying the same continuation
scheme and the ζ term on the design sensitivities. The
global convergence of this modified scheme is discussed in
Section 4.5.

4 Results and analysis

The previous sections described a mathematical model and
numerical optimization framework for generating structures

Fig. 9 Load case of a 2D plate
fixed at the bottom edge and
subjected to a uniform tension
load (a) and shear load (b) at the
opposite edge

3115



M.-P. Schmidt et al.

Fig. 10 Plot of the design responses for a 2D plate submitted to
tension and shear deformation with respect to two material orientation
variables defining the fiber direction of two adjacent sets of elements

with oriented orthotropic material. Especially, we discussed
the need for a regularization scheme on the orientation
field providing length-scale control. We also studied the
dependency of the optimization scheme to initial conditions

Fig. 11 Design responses for a 2D plate submitted to both tension and shear load cases using different aggregation function strategies

as well as the non-convexity of the underlying design
response functions. Therefore, the present section uses
the components described so far in various scenarios and
analyze the results to numerically validate the proposed
method.

4.1 Simple 3D test case

As a first test we use a simple 3D scenario with 3 loads
involving the synchronous optimization of both material
density field ρ and orientation fields (α; θ). We will use
the Mat2 material properties from (9), subject to a total
volume constraint set to 10% of the design space volume.
The initial design variables are given by a uniform density
field with random 3D material orientations. The structure
is optimized according to the final numerical optimization
scheme described in the previous section yielding the result
shown in Fig. 12.

Even with a purely random initial orientation field,
the convergence plot shows that most elements have their
material aligend with the orientation of tension after the
second iteration. We recall that segments in red, green and
blue correspond to material orientations aligned with the
X, Y and Z axes, respectively. After 5 to 10 optimization
iterations, the initial drop in compliance is done and the
remaining iterations only cause minor adjustments to the
design variables. In this second phase of the optimization,
the tight move limits combined with the regularization
scheme ensure that the final design exhibits a well-defined
topology with smoothly varying material orientations.

4.2 Performance of isotropic and transverse
isotropic materials

To follow-up on the previous result, we aim at quanti-
fying the efficiency of using a material with optimized
orientations compared with a classical isotropic material.
Anisotropic and isotropic materials cannot be directly com-
pared as they are fundamentally different in performance
and cost. However, we observe that most metals are by
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Fig. 12 Optimization convergence a logarithmic scale of the objective
function of a simple 3D structure with oriented fibers. Both densities
and material directions are optimized at each iteration for a volume

fraction constraint of 10% on a 32 × 32 × 32 mesh. The state of the
design variables is visualized at iteration 0, 2, 10 and 40, respectively

nature polycrystalline structures with very small grains each
having anisotropic mechanical properties but the random
arrangement of these grains makes the material exhibit
isotropic behavior on large scales.

Consequently, we can imagine a fair comparison where
we generate two structures consisting of the same transverse
isotropic material. The first structure has random material
orientations and only the density field is optimized, thus
exhibiting pseudo-isotropic properties. The second structure
starts with the same random material orientations but both
orientation and density fields are optimized.

We use a 2D cantilever load case on a 512 ×
256 grid resolution with a total volume constraint of
40%. A sufficiently high mesh resolution and total
volume constraint are necessary to allow the averaging
effect of random orientations leading to pseudo-isotropic
macroscopic properties. The outcome of this comparison is
summarized in Fig. 13 showing the compliance history over

the optimization iterations for these two structures using the
material properties Mat2 and Mat3, respectively.

We observe that all four designs exhibit a typical smooth
convergence curve. As expected, the design with optimized
element orientations achieve a much lower final compliance
after convergence than its pseudo-isotropic counterpart for
both Mat2 and Mat3 materials. Specifically these structures
are 2.9 and 6.5 times stiffer with optimized material
orientations under the specified load, respectively.

In addition, we can also see the computational efficiency
of the proposed numerical optimization method compared
with the classical SIMP approach. Firstly, by allowing the
modification of material orientations we introduce a new
set of design variables in the formulation. Nevertheless,
numerical experiments showed that in practice the number
of optimization iterations required to achieve convergence
stays generally the same. Secondly, the introduction of an
anisotropic material in the system matrix tends to increase

Fig. 13 Comparison of the
convergence history of a
pseudo-isotropic model with
optimized density field and a
transverse isotropic model with
optimized density field and
material orientations on a
logarithmic scale
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its condition number proportionally to the ratio of Young
moduli between the principal directions of that material.
As a consequence, when solving the state equation for
the displacements, the iterative solver does apply a larger
number of iterations to sufficiently reduce the solution’s
residual error even if the number of unknowns stays
unchanged. Finally, the material orientation potentially
changing for each element at each optimization step means
that the elemental stiffness matrices cannot be computed
in advance for the voxel mesh, thereby making the system
matrix assembly more costly.

4.3 Large-scale optimization

The proposed numerical optimization framework is com-
patible and stable with high resolution structural design
problems. We set up a test scenario illustrated in Fig. 14,

where the design domain is a cube with all corners being
fully clamped. Multiple different load cases are generated
in the form of point-forces each with a random position,
direction and magnitude.

On this test scenario, we generate three optimization
problems with different mesh resolutions and number
of load cases. All three problems are conducted as a
synchronous optimization of the density and material
orientation fields with a constraint on the total volume
fraction of 10% and using the material Mat2. Solving
the state equation for each load case is done using
a single NVIDIA Quadro RTX6000 GPU. The rest of
the optimization workflow, including the design variables
update using the hybrid gradient-based simulated annealing
optimization procedure, is executed on a 20 Cores 2.40GHz
Intel Xeon Gold6148 CPU. The problem specifications and
achieved runtimes are summarized in the following.

(26)

The 3 structures are shown in Fig. 15 as isosurfaces on
the density fields and the highest resolution example is
displayed as a vector field in Fig. 16.

At the end of the design optimization, the sub-structures
consist mainly of beams and hub connections forming an
intricate geometrical network. These geometrical features
are characteristic of 3D topology optimization scenarios
with multiple load cases. Close examination of the material
orientation vector field shows smooth transitions near
junctions. In particular, the regularization of both density
and orientations result in a structure having a geometric
surface without sharp corners and with continuous internal
material directions. However, it is also clear that at this
resolution, the visualization of 3D scalar and vector fields
is difficult. Consequently, we also display the final structure
as a transparent volume render and as streamlines in Fig. 17.

The streamlines are calculated using the 4th-order
Runge-Kutta integrator generally referred to as the RK4
method (Runge 1895; Kutta 1901; Tan and Chen 2012).
The local truncation error is on the order of O(h5) and
the total accumulated error is on the order of O(h4)

where h is the integration step size. This is a simple yet
effective visualization technique to study the smoothness
of the material orientation field. Indeed, streamlines are
widely used for the visualization of Computational Fluid
Dynamics (CFD) results because they allow quickly

locating and estimating certain phenomena like field
continuity, oscillations, divergence and curl. Thus, the
generation of streamlines helps verifying the quality of the
fiber orientations in our 3D topology optimization results.

In the present numerical test, we used the sum
aggregation strategy to produce the differentiable objective
function. The convergence history of all eight individual

Fig. 14 Test case for high resolution topology optimization using a
cube design domain having all its corners fully clamped and multiple
randomly generated load cases
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Fig. 15 Isosurfaces of the
density fields for the three
optimized structures on meshes
with resolution 643 (a), 1283 (b)
and 1603 (c)

compliances for the 160 × 160 × 160 grid mesh is shown in
Fig. 18.

We observe that the optimization traces a typical conver-
gence behavior for compliance with a sharp drop in the first
few iterations followed small design variable adjustments in
the following optimization iterations. However, it is worth
noting that the compliances for this specific case are low-
est around the 15th iteration and slightly increases in the
subsequent iterations. This seemingly unintuitive outcome
is a result of the regularization scheme used in the optimiza-
tion workflow for the material orientations. Indeed, while
the measured compliance at the 15th iteration is low, the
design variable fields ρ and (α; θ) still show irregularities
and intermediate densities. These irregularities are however
corrected in the subsequent optimization iteration, yielding
a satisfying design after the 40th to 50th iterations with a
well a defined topology and smooth material orientations.
This observation was supported by the visualization of the
numerical results as continuous streamlines.

4.4 Mesh independence

Mesh independence is a known challenge in topology opti-
mization and many studies have discussed how approaches
like filters, projections schemes, morphology operators or
perimeter control can reduce the dependence of the opti-
mized density field to the finite element mesh and especially
to the element sizes. This section shows how the regular-
ization scheme applied on the material orientation field in
(24) allows controlling its length scale in a similar manner.
Figure 19 shows multiple variants of a 2D cantilever design
and displays the behavior of the fiber paths in a curved
regions for different mesh sizes and filter radii.

As expected, we observe that the fiber path curvature is
tied to the radius of the regularization filter. Consequently,
by keeping the filter radius consistent with the mesh
resolution, we prevent the optimization scheme from
creating tighter fiber turns by exploiting the smaller element
sizes.

Fig. 16 Material orientation
vector field for the optimized
160 × 160 × 160 grid mesh
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Fig. 17 Transparent volume render and streamlines computed for the
optimized 160 × 160 × 160 grid mesh

4.5 Global convergence

Even for the simplest density-based compliance topology
optimization, the solution space is known to be non-
convex when applying multiple load cases, penalization,
discretization or restrictions in the design space. Moreover,
as shown by the Mitchell truss structure (Michell 1904)
for optimal layout in continuum space (i.e., infinite number
of members), the optimal result of a simple discrete
cantilever problem will necessarily be tied to the underlying
mesh topology and resolution. Nevertheless, despite the
absence of theoretical guarantees, the general consensus is
that initializing all densities to “gray” material combined
with length-scale control is usually enough to prevent the
optimization to fall in a poor local minimum.

Fig. 18 Compliances of 8 load cases on a logarithmic scale evaluated at each iteration during the generation of the optimized 160 × 160 × 160
grid mesh with a 10% volume fraction constraint, and visualization of the corresponding streamlines at iteration 0, 5, 10 and 120, respectively

In Section 3.3.3 we show that introducing material ori-
entation as design variables increases the non-convexity of
the solution space. Consequently, the proposed optimization
scheme applies a continuation scheme to induce initially
large and progressively decreasing changes in the material
orientation design variables. Our empirical experiments on
various test scenarios showed that combining random ini-
tial orientations and length-scale control allows this process
to consistently converge to optimized designs of the same
quality in approximately 40 and 25 optimization iterations
in 2D and 3D, respectively. Figure 20 shows the compli-
ance history of nine optimized variants of the 3D cantilever
scenario with different initial orientations.

We observe that the convergence rate is similar for all
designs, and despite the differences in initial compliance,
the final compliance are within a few percent of each other.
Oscillations in the first optimization iterations are caused by
the initially large move limits in our continuation scheme.
Equation (27) reports the final compliances for the nine
designs:

(27)

This empirical experiment shows that fully random initial
orientations led to both the lowest final compliance and
lowest variations in final compliance. Tests using other
optimization scenarios (multiple load cases in 2D and
3D) led to the same numerical findings and we conclude
that the proposed optimization scheme successfully avoids
poor quality local minima despite the non-convexity of the
solution space.
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Fig. 19 Mesh dependence
experiments on a 2D cantilever.
Five designs are optimized with
different mesh resolutions and
filter sizes (in number of
elements). Examples (a), (c) and
(d) show mesh independence
due to consistent filter radius
relative to the mesh resolution.
Examples (b) and (d) show mesh
dependence as only the mesh
resolution increases

4.6 Industrial design scenario

We apply the proposed approach to the optimization of a
mechanical part from an industrial design problem. The
chosen scenario is the General Electric (GE) jet engine
bracket challenge announced on the GrabCAD Community
website in 2013 (GrabCAD 2013). This design problem
involves multiple load cases applied on a restricted design
space. The structure with synchronous optimization of
density and orientation fields is shown in Fig. 21.

We enforce 6 prescribed regions around the bolt and
load rings. Such functional regions are considered in the
analysis and their material orientations are optimized.
Moreover, using the signed distance field to the input
design space, specific bounds are placed on the density

variables to perfectly follow the shape of the input design
space while also allowing a seamless connection with the
optimized structural regions. The design domain consists of
2.7M hexahedral elements yielding 8.1M design variables.
The final material orientation field after 60 optimization
iterations is displayed in Fig. 22.

The streamlines displayed on the bracket design are
calculated with the RK4 method and color coded based on
their local angular velocity. This display allows immediately
locating the locations with fiber paths of highest curvature.
The highest streamline curvatures are detected near the
boundary of the input design space. This is expected as the
density field has to follow the predefined outer shape of
the corner. Nevertheless the material orientation field is still
tied to the length-scale control applied by the regularization

Fig. 20 Compliance history on a
logarithmic scale of nine
optimized variants of the 3D
cantilever scenario on a
30×60×30 mesh with different
initial orientations. Xinit, Yinit
and Zinit correspond to initial
orientations aligned with the X,
Y and Z axes, respectively.
RandXY, RandXZ and RandYZ
correspond to random initial
orientations in the XY, XZ and
YZ planes, respectively. Rand0,
Rand1 and Rand2 correspond to
purely random initial
orientations in 3D
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Fig. 21 Isosurface of the optimized bracket design in the design space

scheme. Consequently, the streamlines trace smooth paths
even in those regions.

4.7 Compliant mechanisms

Compliant mechanism design is a type of optimization
problem where optimal material orientation may not be
aligned with local stress tensors regardless of the number

Fig. 22 Optimized GE bracket
model with smoothly varying
material orientation displayed as
streamlines colored by their
angular velocity

of load cases. Therefore, we apply the proposed method on
the force inverter problem (Sigmund 1997). Both material
density and orientations are optimized simultaneously and
the resulting design is shown in Fig. 23.

During the optimization, we observe oscillations of
the material orientations in the narrow hinge regions due
to the concentrated strain. However, the combination of
regularization and continuation scheme on the move limits
stabilize the convergence and yield a smooth final material
orientation field.

4.8 Compatibility with porosity constraint

As mentioned in the introduction, one of the goals of
the proposed method is to provide the ability of optimiz-
ing material with spatially varying directions, while also
maintaining the orientation design variables separate in the
formulation. The motivation behind this requirement is to
facilitate the combination of this method with other exten-
sions to the traditional topology optimization approach.
In this section we combine the present formulation with
a constraint controlling a local volume leading to porosity
in the final structural layout (Wu et al. 2018; Schmidt et al.
2019).
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Fig. 23 Optimized material
orientation field of a compliant
force inverter design on a
100 × 100 mesh

Both the material orientation design variables and
porosity constraint are compatible allowing us to formulate
the new optimization formulation as

arg min
ρ,α,θ

Jsm(ρ, α, θ) =
(

∑

i∈LC

(
fi

T ui

)n
)1/n

s.t . Ki(ρ, α, θ)ui = fi ∀i ∈ LC

ρmin ≤ ρE ≤ 1, ∀E ∈ �

− π ≤ αE ≤ π, ∀E ∈ �

− π/2 ≤ θE ≤ π/2, ∀E ∈ �

Gtot (ρ) = 1

G�
tot · |�|

∑

E∈�

ρE − 1 ≤ 0

Gdyn(ρ) =
(

1

|�|
∑

E∈�

ρE
p

G
� p
dyn,E

)1/p

− 1 ≤ 0

(28)

with the aggregated objective function Jsm parameterized
by the material density field ρ and orientation field (α; θ),
and the porosity constraint Gdyn(ρ). The partial derivatives
of the additional porosity constraint with respect to the
material orientation variables are trivially derived as

∂Gdyn

∂αE

= ∂Gdyn

∂θE

= 0, ∀E ∈ � (29)

since the local density ρE is independent of material
orientation. Using this formulation, we execute a topology
optimization of a 2D bridge model with 3 load cases and
obtain the result shown in Fig. 24.

Due to the effect of the porosity constraint, the
number of geometrical sub-components in the structure is
increased. This introduces more junction points throughout
the density field layout. In addition, the scenario is
2D meaning that the material orientation problem is
particularly challenging as there is no straightforward
way to handle the multiple crossing points without out-
of-plane orientations. Nevertheless, the final optimized
structure contains smoothly varying fiber orientations. This

demonstrates the compatibility of the proposed material
orientation optimization workflow with other constraints.

4.9 Varying ratios of anisotropy

Previously, we observed that certain beam-like geometrical
features have clearly defined optimal fiber orientations.
Conversely, regions like the junction of multiple beams
would sometimes prove to be more challenging with
respect to the continuity of their material orientations. This
observation is a direct consequence of the fact that the
most appropriate material in such regions would often be
isotropic due to the multiaxial stress state at these locations.
Therefore, we develop an extension to the numerical
optimization scheme by introducing a new design variable
τE parameterizing the ratio of anisotropy of each element E

in the design domain �. We thereby reformulate C in (6) as
an interpolation between Caniso and Ciso, the constitutive
laws for two sets of material properties with transverse
isotropic and isotropic behaviors, respectively. Similarly
to the traditional SIMP topology optimization workflow,
intermediate values for the ratio of anisotropy τ would
complicate physical interpretation. Therefore, we introduce
a penalization exponent q = 3 which yields the elemental
constitutive law as a function of τ as

CE(τ ) = (
τ

q
ECaniso + (1 − τE)qCiso

)
(30)

We then write the optimization problem formulation as

arg min
ρ,α,θ ,τ

Jsm(ρ, α, θ , τ ) =
(

∑

i∈LC

(
fi

T ui

)n
)1/n

s.t . Ki(ρ, α, θ , τ )ui = fi, ∀i ∈ LC

ρmin ≤ ρE ≤ 1, ∀E ∈ �

− π ≤ αE ≤ π, ∀E ∈ �

− π/2 ≤ θE ≤ π/2, ∀E ∈ �

0 ≤ τE ≤ 1, ∀E ∈ �

Gtot (ρ) = 1

G�
tot · |�|

∑

E∈�

ρE − 1 ≤ 0

(31)
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Fig. 24 Optimized bridge
structure combining oriented
material and porosity constraint
on a 240 × 160 mesh. The
boundary conditions consist of
two fully clamped regions in the
lower left and right corners and
three load cases shown in red at
the top

The derivatives of the objective function and constraint with
respect to the design variables are the same as before with
the exception of the following additional terms

∂CE

∂τE

= q
(
τ

q−1
E Caniso − (1 − τE)q−1Ciso

)

∂Gtot

∂τE

= 0
(32)

Then we can run a topology optimization using all four
design variable fields ρ, α, θ and τ . Note that we need
to choose reasonable values for Caniso and Ciso to create
a compromise between isotropic and transverse isotropic
material. In this numerical experiment we use the materials
Mat1 and Mat2 of (9). The materials Mat1 was chosen
to be similar to the effective pseudo-isotropic behavior of
Mat2 on a high resolution mesh with random local fiber
orientations. Moreover, we introduce length-scale control of
the design variable field τ using a smoothing filter. Using
this formulation, we optimize a 2D bridge model with three
load cases and a 3D cantilever model as shown in Fig. 25.

We observe that the optimization procedure predomi-
nantly applied transverse isotropic material throughout the
design domain, except for junctions between beam mem-
bers where isotropic material was deemed more efficient
for optimal stiffness. This numerical experiment shows that
density, orientation and type of material (in the form of
a variable ratio of anisotropy) are optimized simultane-
ously using the proposed formulation. Moreover this result
is in accordance with the initial statement of this section:
The optimization scheme generates structures consisting
of transverse isotropic beam members under with uniaxial
stress in compression or tension connected by isotropic hubs
under multiaxial stress.

5 Conclusion

The present work addresses topology optimization using
orientation of transverse isotropic material as addi-
tional design variables. We developed a sensitivity-based

Fig. 25 Optimized designs with
spatially varying ratio of
anisotropy. A 2D bridge design
with 3 load cases on a 240 × 160
mesh (a) and a 3D cantilever
design on a 120 × 60 × 60 mesh
(b). The material orientation
field is shown on the left and the
ratio of anisotropy field is
shown on the right where
transverse isotropic and
isotropic materials are colored
in green and red, respectively
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procedure for full-3D material orientation optimization con-
sidering multiple load cases. The issue of orientation field
continuity is discussed and a regularization filter is pro-
posed to enforce a minimum length scale in the orientation
field thereby controlling path curvature. We analyze the
non-convexity of the solution space and propose a hybrid
gradient-based simulated annealing optimization approach
which successfully avoids poor quality local minima. The
proposed method is applied on large-scale optimization
problems with millions of design variables and multiple
load cases yielding topologically optimized structures with
smooth fiber orientations in approximately 50 optimiza-
tion iterations. We also demonstrate the compatibility of
this approach with compliant mechanism optimization as
well as the local volume constraints recently introduced in
the literature. Finally, we extend this formulation with yet
another design variable allowing the optimization scheme
to choose between isotropic or transverse isotropic material
for each element of the design domain. Here it is shown
that the topology optimization automatically produces geo-
metrical networks of transverse isotropic beams connected
by isotropic hubs. Further work will involve expanding
the types of constitutive material laws considered. We also
intend to explore methods relying on the projection of
fine-scale anisotropic microstructures onto the optimized
orientation field.
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