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Abstract
In this work, an adaptive T-spline finite cell method is developed for structural shape optimization based on the finite
cell method (FCM). This method has the advantage of using local T-mesh refinement on the uniform B-mesh to ensure a
good computing accuracy in the shape optimization process. To do this, we first carry out a pre-analysis of the structure
using a uniform coarse mesh with relatively low computational effort. Then, cells for local refinements are identified by
adopting the stress gradient criterion. Subsequently, an adaptive quadtree-based refinement scheme is employed to generate
the adaptive T-mesh which preserves the linear independence of the corresponding T-spline shape functions. Finally, the
shape optimization framework is correspondingly established, and the proposed adaptive refinement scheme is validated by
numerical examples. Its efficiency is fully demonstrated by shape optimization procedures of mechanical structures.

Keywords Shape optimization · T-spline · FCM · Stress gradient · Adaptive local refinement

1 Introduction

In the traditional finite element method (Reddy 1993;
Yang 1986; Zienkiewicz et al. 2005), the physical domain
is discretized into a finite element mesh that should
be conformal to the geometry boundary, as shown in
Fig. 1a. For a complex structure, according to the
common experience, over 80% of the effort is generally
devoted to converting the CAD model into a proper finite
element model (Cottrell et al. 2009). The reduction of the
discretization effort is therefore of particular significance to
favor the design phase of products. In order to alleviate the
burden of the mesh discretization, several attractive methods
have been developed: the meshless method (Belytschko
et al. 1996; Idelsohn et al. 2003; Rassineux et al. 2003;

Responsible Editor: Anton Evgrafov

� Weihong Zhang
zhangwh@nwpu.edu.cn

� Liang Meng
liang.meng@nwpu.edu.cn

1 State IJR Center of Aerospace Design and Additive
Manufacturing, School of Mechanical Engineering,
Northwestern Polytechnical University, Xi’an 710072,
Shaanxi, China

Wang and Liu 2002; Yagawa and Yamada 1996; Zhou and
Zou 2008) by which the discretization is made in terms of
nodes without nodes connectivities, as illustrated in Fig. 1b;
the iso-geometric analysis (IGA) that uses the same high-
order NURBS as shape functions for both the solution
approximation and the representation of the geometric
model (Ghasemi et al. 2017; Hughes et al. 2005; Wang et
al. 2017; Xu et al. 2019); the fixed mesh method by which
the physical model is embedded into a structured fictitious
domain discretized by an Eulerian grid (Codina et al. 2017;
Garcia-Ruiz and Steven 2005; Peskin 2017; Sanders and
Puso 2019).

The finite cell method (FCM), considered as a kind of
fixed mesh method, has drawn great attention in the last
decade due to the alleviation of the tedious meshing process
(Joulaian and Düster 2013; Parvizian et al. 2007; Schillinger
and Ruess 2015). Meanwhile, high-order continuity of
stress field is achieved thanks to the employment of
B-spline shape functions. This method has been firstly
applied to both shape and topology optimization (Cai et
al. 2014; Meng et al. 2020; Zhang et al. 2015, 2017;
Tang and Meng et al. 2019; Tie et al. 2020). Later, it
has been successfully extended to solve axis-symmetric
problems involving centrifugal force (Meng et al. 2016).
It is noticed that, during the shape optimization procedure,
the computing accuracy needs to be ensured along with the
shape variation (Grindeanu et al. 1999; Meng et al. 2014;
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Wang et al. 2010, 2016, 2018; Xia et al. 2012). As such,
a considerable number of DOFs are required to achieve
an accurate result. Alternatively, the corresponding B-mesh
needs to be adequately fine such that the smallest feature
of the structure is generally discretized into several finite
cells. However, superfluous knots may be introduced due
to the uniformity of the B-mesh and this is particularly
computationally expensive, as shown in Fig. 1c. As a result,
the concept of hierarchical B-splines (HB) was introduced
to deal with the local refinement (Forsey and Bartels
1988). Later, the truncated hierarchical B-splines (THB)
were further developed to recover the loss of the partition
of unity (PU) of the hierarchical B-splines (Giannelli
et al. 2012). Local adaptive mesh refinement relying
on HB-splines or THB-splines has been implemented
(Schillinger et al. 2010; Schillinger et al. 2012; Garau and
Vázquez 2018). Nevertheless, according to N. Nguyen-
Thanh et al. (2011), for the HB, some additional constraint
equations are required which may increase the complexity
and implementation error. Moreover, the refinement still
propagates to introduce the overlaps which may obstruct
the calculating efficiency as stated in Kuru, Gokturk, et al.
(2014).

Unlike B-splines, T-splines allow the presence of T-
junction points, with which local refinements can be
implemented naturally (Sederberg et al. 2003, 2004). Up
to now, T-spline has been developed for modeling in commer-
cial software such as Maya and Rhino (2019). As demon-
strated in Fig. 2, a complex head model constructed with
T-splines takes 74% fewer control points than the one with
B-splines modeling. To benefit from this, the concept of
T-splines was introduced to replace the B-spline shape func-
tions in the standard IGA (Bazilevs et al. 2010; Dörfel et al.
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Fig. 1 Discretization models using different methods

Fig. 2 Aman head modeled by B-spline (the left one with 4712 control
points) and T-spline (the right one with only 1109 control points)
(Sederberg et al. 2004)

2010; Nguyen-Thanh et al. 2011; Schillinger et al. 2012; da
Veiga et al. 2011). The analysis is consequently carried out
with fewer DOFs while still obtaining reliable results.

In the current work, the T-spline shape functions are
introduced to the FCM to locally insert a group of knots into
a coarse B-mesh. The merit of the approach is that the DOFs
are no longer increased uniformly. Rather, only those in the
critical regions will be added where needed. Inspired by the
adaptive FEM (Ainsworth and Senior 1998), the norm of
the stress gradient is analytically calculated to identify the
cells with sharp stress changes, for which a proper T-mesh
refinement is developed. The linear independence, despite
being unnecessary for CAD modeling, is imperative in the
construction of shape functions for analysis, as described in
Li et al. (2012). In this work, the quadtree-based refinement
strategy, developed in Bazilevs et al. (2010), has been
adopted to meet this requirement. By the above measures,
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the analysis and optimization can be conducted using the
T-mesh with a considerable improvement both in accuracy
and efficiency.

The remainder of this paper is organized as follows. In
Section 2, a brief review of B-spline FCM is presented,
and the development of T-spline FCM is displayed.
Section 3 explains the T-mesh generation, accompanied by
the local refinement scheme based on the stress gradient.
Additionally, two examples are analyzed to show the
validity and efficiency of the proposed local refinement
strategy. The optimization framework with T-spline FCM
is illustrated in Section 4. In Section 5, the proposed
method is validated on several structural shape optimization
examples. The comparison study with B-spline FCM fully
demonstrates the efficiency of the proposed method. Finally,
the conclusions are drawn out in Section 6.

2 T-spline finite cell method

For the ease of understanding, we start with a concise introduc-
tion of B-spline before the presentation of T-spline FCM.

2.1 B-spline shape functions: a brief description

The univariate B-spline shape functions Ni,p(ξ) are formed
on a non-decreasing sequence of knots called a knot vector
I = {

ξ1, ξ2, ... , ξN+p+1
}
, where N is the number of

control points and p denotes the degree of the shape
function. m = N + p + 1 is the number of knots. The
B-spline shape functions are defined by the Cox-de Boor
recursion formulas (Piegl and Tiller 2012)

⎧
⎪⎪⎨

⎪⎪⎩

Ni,0 (ξ) =
{
1, if ξi ≤ ξ < ξi+1

0, else

Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ) + ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ)

(1)

where we define 0
0 = 0. Given a knot vector I =

{0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}, Fig. 3 illustrates
all the univariate cubic B-spline shape functions. Upon the
construction of B-spline shape functions, the state field in
1D FCM, e.g., displacement field, is then approximated by
interpolation of the state variables U = {u1, u2, ... , uN }T
that are associated with the control points in the physical
space

u =
N∑

i=1

Ni,p(ξ)ui . (2)

In particular, once the knot vector is defined, according
to the references (Greville et al. 1969; Farin et al. 1993; Li
et al. 2011), the corresponding control points in the physical
domain are determined through the Greville abscissae
method. Note that a linear projection is defined for the
determination of an arbitrary point in the physical domain
from the intrinsic coordinate in the parametric space

x = xini + ξ(xend − xini) = xini + ξ lx (3)

where xini and xend denote the lower and upper bounds of
the embedded domain and lx is the length of the embedded
domain.

As underlined in Cai et al. (2014), this interpolation
is of high-order continuity and can be used to accurately
calculate the derivative of the state field across the interfaces
of finite cells.

For high-dimensional problems, a tensor product of
univariate B-splines, i.e., multi-variate B-spline shape
functions are needed. For the sake of simplicity, consider
here a two-dimensional case, shape functions are therefore
given by

Bi,j (ξ, η) = Ni,p1(ξ)Nj,p2(η) (4)

where p1 and p2 indicate the degrees of the shape function
in the respective direction. Note that the degree of the bi-
variate B-spline shape function is omitted in the notation of
B. Figure 4a presents a 2D B-mesh which is based on two

Fig. 3 Univariate cubic B-spline
shape functions defined on I =
{0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
with N = 7 and p = 3
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Fig. 4 a A uniform B-mesh with the influenced domain marked in gray based on knot vectors I1 = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1} and
I2 = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1} with N1 = 7 and N2 = 8. b A bivariate B-spline shape function

knot vectors I1 = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1} and
I2 = {0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1}. One of the
representative bivariate B-spline shape functions B5,4(ξ, η)

with p1 = 2 and p2 = 3 is shown in Fig. 4b.
As evidently observed in (2), the accuracy of the

interpolation based on B-spline shape functions is closely
related to the number of control points N . This can,
however, induce a significant increase of knots if a certain
part of the structure needs to be refined due to the accuracy
concern. For example, suppose that a more accurate analysis
result is demanded for the physical domain corresponding
to the gray zone shown in Fig. 5a, extra knots should be
inserted. To do this, 13 knots are introduced into the B-
mesh due to its requirement for uniformity, as illustrated in
Fig. 5b. For more complex problems, the resulting increase
of the DOFs can be unaffordable.

2.2 Construction of T-spline shape functions

T-spline is, in essence, an extension of B-spline. It
will degenerate into B-spline if no T-junction points are
included. To refine the gray region in Fig. 5, only 5 knots
are inserted into the initial mesh using local refinement,
as shown in Fig. 6a. Considering the presence of the T-
junction knots, the knot mesh is called a T-mesh. In view

(a) (b)

Fig. 5 Knot distribution with a initial B-mesh and b refined B-mesh.
The dark gray cell is the refined one, with the initial knots before
refinement denoted by black and the ones introduced by refinement by
green

of fewer control points associated with the T-mesh, it is
therefore suggested that the T-spline FCM is able to reduce
the computing complexity significantly.

As observed in Fig. 6a, the T-mesh has a local feature and
is not as uniform as the B-mesh. In general case, the knots in
a T-mesh are classified into three groups: the general knots,
the T-junction knots, and the inserted ones, as marked by ①,
②, and ③ in Fig. 6a.

Referring to Bazilevs et al. (2010), the constructions of
T-spline shape functions for odd degree and even degree are
different. In the following, the odd-degree one is adopted
to show the implementation process. All vertices in the T-
mesh are firstly numbered in an orderly manner, from 1 to
N . For each vertex in the T-mesh, an anchor is then defined
as in Bazilevs et al. (2010) to infer local knot vectors on
which a local T-spline shape function is defined. Practically,
in the horizontal direction, a ray is shot to the right side
starting from the current anchor, and the local knot vector
shall collect the first (p1 + 1)/2 intersection points with the
T-mesh. Then, a ray travels to the left side to obtain another
(p1 + 1)/2 intersections. Including the anchor itself, the
ordered p1 + 2 intersections constitute the horizontal local
knot vector ξ i = {

ξi,1, ξi,2, · · · , ξi,p1+2
}
. In particular,

when the number of intersections is less than (p1 + 1)/2,
it means that the ray reaches the boundary of the T-mesh.
In this case, the last intersection point will be repeated until
the number of the current intersections equals (p1 + 1)/2.
In a similar manner, the corresponding local knot vector
ηi = {

ηi,1, ηi,2, · · · , ηi,p2+2
}
in the vertical direction can

be formed.
According to (1), both univariate T-spline shape func-

tions Mi,p1(ξ) and Mi,p2(η) can be constructed based on the
local knot vectors ξ i and ηi . The multiplication of these two
related univariate functions leads to

Si(ξ, η) = Mi,p1(ξ)Mi,p2(η). (5)

which can be employed for the approximation of the
displacement field.

To ensure the capacity of describing the rigid displace-
ment, the partition of unity for the shape functions is
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Fig. 6 a The classification of the
knots in T-mesh. b–d Univariate
T-spline shape functions (blue
and red lines) in two directions
and corresponding influenced
domains (gray regions). A dot
refers to an existing knot in
T-mesh and a square denotes a
fictitious one. The asterisk
represents the anchor of the
local knot vectors
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necessary, as described in Zienkiewicz et al. (2005). To this
end, each T-spline shape function is normalized

Ti(ξ, η) = Si(ξ, η)
∑N

j=1 Sj (ξ, η)
. (6)

The displacement field is finally approximated by the
constructed T-spline shape functions

u =
N∑

i=1

Ti(ξ, η)ui . (7)

Similar to (3), the linear mapping relation between the
parametric domain and the physical field in 2D is stated as
(

x

y

)

=
(

xini + ξ(xend − xini)

yini + η(yend − yini)

)

=
(

xini + ξ lx

yini + ηly

)

(8)

in which xini, xend, yini, and yend are the lower and upper
bounds of the embedded domain in two directions as defined
in Fig. 1c and lx and ly denote the length and the width of
the embedded domain.

For an intuitive understanding of the construction of T-
spline shape functions, we take the cubic T-spline as an
example, and each local knot vector consists of 5 knots. As
observed in Fig. 6b–d, Q1 denotes a general knot, while
Q2 and Q3 represent the T-junction and inserted knots. For
each of these three knots, two rays are shot to identify the
local knot vectors ξ i = {

ξi,1, ξi,2, ξi,3, ξi,4, ξi,5
}
and ηi =

{
ηi,1, ηi,2, ηi,3, ηi,4, ηi,5

}
in both directions by collecting

the intersections. For anchor Q1 corresponding to a general
knot, the two univariate T-spline shape functions are
illustrated in Fig. 6b. For anchors Q2 and Q3 corresponding
to T-junction and inserted knots, fictitious knots marked
by squares have been inserted at the intersections with
the initial T-mesh, as illustrated in Fig. 6c and d. These
fictitious knots are treated as auxiliaries for constructing the
T-spline shape functions, and the univariate T-spline shape
functions associated with anchors Q2 and Q3 are depicted
in Fig. 6c and d, respectively. Finally, based on (5–6), the
final T-spline shape functions can be constructed.

According to Kuru, Gokturk, et al. (2014), the hierar-
chical B-splines may cause overlaps of shape functions
between different levels. In our work, the implemented T-
spline shape functions have the advantage of achieving local
subdivision without introducing redundant knots. In the
remainder of this paper, we adopt the most commonly used
cubic T-spline (p = 3) shape functions (Bazilevs et al. 2010;
da Veiga et al. 2011; Li and Scott et al. 2014).

2.3 Finite cell method based on T-spline shape
functions

In this subsection, we recall the finite cell method (FCM) in
2D and further present the development of T-spline FCM.
The linear elasticity problem defined in the FCM formula
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can be described as

⎧
⎪⎨

⎪⎩

– div σ (u) = βf , in D

u = g, on ΓD

σ (u) · n = t, on ΓN

(9)

where σ , u, f , g, n, and t denote stress tensor, displacement
vector, body force vector, initial displacement on ΓD , the
unit outer normal vector on ΓN , and the boundary force
vector, respectively. The scale factor β is defined as

β =
{
1, in Ω

0, in D\Ω . (10)

Given a structural boundary implicitly described by a
level set function Φ(x), the scale factor β can then be
replaced by a Heaviside functionH(Φ(x)). Then, according
to Parvizian et al. (2007) and Cai et al. (2014), the finite cell
formulation of the weak form transformed from (9) can be
stated as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

KU = F

K =
∑

c

kc =
∑

c

∫

Dc

BTH(Φ(x))DBdS

F =
∑

c

fc =
∑

c

(∫

Dc

TTH(Φ(x))fdS +
∫

ΓN

⋂
Dc

TTtdΓ

)

(11)

where K is the global stiffness matrix and F is the global
load vector, and they are assembled from the cell stiffness
matrices kc and the cell load vectors f c, respectively.
As illustrated in Fig. 1c, three types of finite cells can
be identified with the aid of H(Φ(x)). For the stiffness
matrix with respect to different cells, a general practice
is to employ the Gaussian integral. Being aware that the
integration points are all located within the physical domain

for physical cells, the Heaviside function takes a value
of 1, and the corresponding stiffness matrix is derived
in the same manner as that in conventional FE methods.
With regard to fictitious cells, it is straightforward that
zero matrixes are obtained since the corresponding Gauss
points are located out of the structural boundary. It is
noteworthy that, when boundary cells are concerned, the
quadtree refinement strategy widely used in FCM is adopted
to enrich the number of Gauss points for accuracy’s sake.
Interested readers are referred to the references (Parvizian et
al. 2007; Schillinger et al. 2013; Cai et al. 2014; Zhang et al.
2015) for more details about its implementation. It should be
emphasized that the dimensionality of each kc or f c might
be different due to the adoption of locally refined T-mesh.

D is the elasticity matrix and B is the strain matrix
defined as

B=

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤

⎥⎥⎥⎥⎥⎥
⎦

T=

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤

⎥⎥⎥⎥⎥⎥
⎦

[
T1 0 T2 0 · · · TN 0
0 T1 0 T2 · · · 0 TN

]

(12)

in which Ti is the ith T-spline shape function calculated as
(6).

Note that, T-spline shape functions are multiplied with
a weight function such that the homogeneous Dirichlet
boundary condition (DBC) can be accurately imposed. In
the calculation process, T is then modified as

T =
[

wT1 0 wT2 0 · · · wTN 0
0 wT1 0 wT2 · · · 0 wTN

]
(13)

where the weighting function w is, in reality, an implicit
function that takes zero values at the Dirichlet boundary and
can be defined in most cases by the level set method. Typical
Dirichlet boundaries associated with a single point and a
curved segment have been studied (Zhang et al. 2015). As a
result, B is amended as

B =

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤

⎥⎥⎥⎥⎥⎥
⎦

T =

⎡

⎢⎢⎢⎢⎢⎢
⎣

∂w

∂x
T1 + w

∂T1

∂x
0 · · · ∂w

∂x
TN + w

∂TN

∂x
0

0
∂w

∂y
T1 + w

∂T1

∂y
· · · 0

∂w

∂y
TN + w

∂TN

∂y

∂w

∂y
T1 + w

∂T1

∂y

∂w

∂x
T1 + w

∂T1

∂x
· · · ∂w

∂y
TN + w

∂TN

∂y

∂w

∂x
TN + w

∂TN

∂x

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (14)
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3 T-mesh refinement in FCM

In this section, the finite cells to be refined are first
identified based on a stress gradient–based criterion. A
refinement strategy is then developed to guarantee the linear
independence of the shape functions. The merits of this
refinement are finally investigated.

3.1 Identification of the cells to be refined

According to Ainsworth and Senior (1998), when using
adaptivity with FEM for elasticity, the elements with sharp
stress changes are refined. Inspired by this, it is proposed
to analytically calculate the gradient of the stress/strain to
identify the cells to be refined under the framework of FCM.
This is practicable owing to the high-order continuity of the
shape functions. In this work, the gradient of the von Mises
stress σvon is adopted. Since σvon is calculated from the
stress vector σ = {

σx, σy, τxy

}T = DBU, we thus focus
on calculating the derivatives of σ

⎧
⎪⎪⎨

⎪⎪⎩

∂σ

∂x
= D

∂B
∂x

U

∂σ

∂y
= D

∂B
∂y

U

. (15)

Combing with (14), the derivatives of B can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂B
∂x

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

∂2(wT1)

∂x2
0 · · · ∂2(wTN)

∂x2
0

0
∂2(wT1)

∂y∂x
· · · 0

∂2(wTN)

∂y∂x

∂2(wT1)

∂y∂x

∂2(wT1)

∂x2
· · · ∂2(wTN)

∂y∂x

∂2(wTN)

∂x2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

∂B
∂y

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

∂2(wT1)

∂x∂y
0 · · · ∂2(wTN)

∂x∂y
0

0
∂2(wT1)

∂y2
· · · 0

∂2(wTN)

∂y2

∂2(wT1)

∂y2

∂2(wT1)

∂x∂y
· · · ∂2(wTN)

∂y2

∂2(wTN)

∂x∂y

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

(16)

with the entries calculated as
⎧
⎪⎪⎨

⎪⎪⎩

∂2(wTi)

∂x2
= w

∂2Ti

∂x2
+ 2 ∂w

∂x
∂Ti

∂x
+ ∂2w

∂x2
Ti

∂2(wTi)

∂y2
= w

∂2Ti

∂y2
+ 2 ∂w

∂y
∂Ti

∂y
+ ∂2w

∂y2
Ti

∂2(wTi)
∂x∂y

= w
∂2Ti

∂x∂y
+ ∂w

∂x
∂Ti

∂y
+ ∂w

∂y
∂Ti

∂x
+ ∂2w
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Ti

. (17)

Since the shape functions Ti are defined in the parametric
space, a 2-order Jacobian matrix needs to be introduced to
obtain the partial derivatives of Ti with respect to x and y.
Thus, we have

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡
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⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (18)

According to (8), we naturally have ∂x/∂ξ = lx and
∂y/∂η = ly . As a consequence, the 2-order Jacobian
in (18) can be further simplified as a diagonal matrix:

diag
(
lx, ly, l

2
x, l2y, lx ly

)
.

Based on (16–18), ∂σvon/∂x can be calculated analyti-
cally by taking advantage of the high-order continuity of
T-spline shape functions. It should be noted that a prede-
fined threshold value σ̃ is used to identify cells within which
the stress changes sharply. Once the maximum stress gradi-
ent within a cell is larger than σ̃ , this cell is further refined. It
should be clear that σ̃ is problem-dependent, and the authors

suggest to choose σ̃ = 0.5|| � σvon||max for cases where the
density of the initial B-mesh is moderate.

Other than the gradient-based refinement, the refinement
of finite cells can be necessary for situations where a cell
size is larger than the local feature of a structure.

3.2 T-mesh generation

After identifying the cells to be refined, a simple quadtree
refinement criterion is adopted to generate T-mesh. Suppose
that the physical domain corresponding to the gray part in
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1-level 2-level 3-level

(a) (b) (c) (d)

refinement refinement refinement

Fig. 7 Three levels of refinement based on the quadtree strategy

Fig. 7a is to be refined. Then, the initial B-mesh is refined
by quadtree strategy to generate a T-mesh, as shown in
Fig. 7b. For a more accurate approximation, this refinement
can be carried out on several levels. Figure 7b–d show the
T-meshes after the refinement up to 3 levels.

We are aware that not all the T-spline shape functions
associated with the T-meshes are linearly independent (Li
et al. 2012). The linear independence however is of vital
importance for structural analysis (Buffa et al. 2010; Li et al.
2012; Morgenstern and Peterseim 2015; Scott et al. 2012).
The T-mesh with one level of refinement in Fig. 7b can
be treated as inserting knots successively along with two
directions. In the first step, we can consider that only two
knots along the horizontal direction are inserted and marked
by light blue dots, as illustrated in Fig. 7b. Subsequently,
another group of three knots is introduced along the vertical
direction and marked by red dots, as shown in Fig. 7b.
According to the Theorem 3.7 in Buffa et al. (2010), the
corresponding T-spline shape functions constructed by the
T-mesh in Fig. 7b are linearly independent. By analogy,
the linear independence of the T-spline shape functions
associated with T-meshes in Fig. 7c or d is also preserved.

3.3 Numerical validation of T-spline FCM

In what follows, two numerical examples are adopted
to verify the proposed T-mesh refinement. The first

example is provided to quantitatively show the accuracy
improvement of the T-spline FCM comparing with the
analytical solution. The second one is studied to show the
efficiency improvement compared with the B-spline one.

3.3.1 Accuracy verification on a hollow cylindrical disk

We first consider a hollow cylindrical disk loaded uniformly,
as shown in Fig. 8a. This benchmark is adopted to
investigate the computing accuracy when increasing the
local refinement levels. Due to the symmetry of the
problem, a quarter model is considered, as shown in Fig. 8b.
According to Cai et al. (2014) and Meng et al. (2016), the
analytical solution of this problem is given by the Lamé
equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

σr = − Pr21

r21 − r22

(

1 − r22

r2

)

σθ = − Pr21

r21 − r22

(

1 + r22

r2

)

τrθ = 0

(19)

in which σr , σθ , and τrθ are the radial, circumferential, and
shear stress, respectively. In this example, the geometric
parameters are defined as r1 = 4 and r2 = 1. The applied
pressure is P = 10. By substituting these parameters into

Fig. 8 a A hollow cylindrical
disk under outer pressure and b
the simplified analysis model P

1r

2r x

y
r

(a) (b)
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Fig. 9 The distributions of
analytical stress components in
a the circumferential direction
and b the radial direction

18.83-21.33 -16.33 -13.83 -11.33 -10 -7.5 -5 -2.5 0

(a) The stress distribution in circumferential direction (b) The stress distribution in radial direction

(19), the stress distributions are analytically obtained and
are shown in Fig. 9.

In the first place, the problem is solved by adopting the
B-spline FCM in using bi-cubic B-spline shape functions
which are defined associated with 121 control points. The
relative error distributions of the radial and circumferential
stresses are shown in Fig. 10a. As demonstrated in the
figure, the analysis result is generally acceptable except
that large errors are observed near the inner boundary of
the structure in both the circumferential and the radial
directions. We attributed this to the insufficiency of the
number of DOFs related to the B-spline shape functions.

For comparison reasons, the above problem is then
solved with the use of T-spline FCM. The local refinement

cells are first identified by virtue of the stress gradient
criterion developed in Section 3.1. T-junction knots are
subsequently introduced to locally refine the finite cells.
Figure 10b–c illustrate two representative T-meshes and the
resulting relative error distributions. We observe that the
relative error near the inner boundary tends to be smaller
and smaller with the increase of the number of refinement
levels.

Moreover, the maximum and minimum stresses are
depicted in Fig. 11, increasing gradually the numbers of
refinement levels from 1 to 10. Clearly, the stresses converge
to the analytical values indicated by the black solid lines.
Furthermore, the difference from the analytical solution
seems to decrease to a rather low level (around 0.4%)

Fig. 10 Relative error
distributions of stress
components under a the initial
B-mesh, b T-mesh with one level
of refinement, and c T-mesh
with two levels of refinement

(c) 2nd refinement(b) 1st refinement

0 0.0104 0.0209 0.0313 0.0417

Radial 

0 0.0035 0.0069 0.0104 0.0139

Circumferential 

(a) B-spline

Radial 

0 0.0324 0.0649 0.0973 0.1297

0 0.0115 0.0230 0.0344 0.0459
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Fig. 11 Convergences of the maximum and minimum stress components in a the circumferential and b the radial directions (the black lines in a
and b denote the analytical results, and the gray color zones indicate the margins of the corresponding relative error (not applicable to σmax
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after three levels of refinements. These results demonstrate
that the T-spline FCM with local refinement leads to a
more accurate result in the sense of the maximum/minimum
stress.

Following Cai et al. (2014), an error indicator is defined
for a direct estimation of the stress distribution over the
whole structure. The following L2 norm is adopted

eL2 =
√∫

Ω
(σ − σ ∗)T(σ − σ ∗)H(Φ)dΩ

∫
Ω

(σ ∗)T(σ ∗)H(Φ)dΩ
(20)

where σ = {σr, σθ , τrθ }T is the stress vector solved by
adopting the T-spline FCM and the analytical one σ ∗ is set
as the baseline. One can observe the convergent variation
of this error with the increase of the refinement levels
in Fig. 12. Notably, this error drops from 0.08 to 0.01
after only three times refinements. Hence, unless otherwise
specifically stated, a refinement level of 3 will be hereafter
employed.
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Fig. 12 The error indicator versus the refinement level

3.3.2 Efficiency verification on a shaped tension bar

After verifying the accuracy improvement with T-spline
refinement, the efficiency of the proposed method is further
validated. In fact, the efficiency improvement is prominent
in cases when the feature size varies largely with the
need for a dense B-mesh. T-spline FCM can deal with
such a problem efficiently using a rather coarse B-mesh
accompanied by local refinement. Hence, a shaped tension
bar is studied. The dimensions and boundary conditions are
illustrated in Fig. 13a. Young’s modulus is E = 207.4 GPa,
and Poisson’s ratio is μ = 0.3. The analysis result obtained
by ANSYS with a fine mesh of 31486 DOFs is presented in
Fig. 13b, and the obtained maximum von Mises stress 85.92
MPa is regarded as the reference solution.

Figure 14a shows the relative error distribution of the von
Mises stress obtained by adopting a rather coarse B-mesh
of 288 DOFs. It is noted that an inaccurate analysis result
is obtained with the maximum error as high as 475%. To
circumvent this issue, conventional B-spline FCM refines
the fixed grid along with both directions such that the
smallest feature shall generally cover several finite cells.
Figure 14b–c are the relative error distributions obtained
with a moderate and a dense B-mesh, respectively. The
maximum relative errors decrease to 3.6% and 1.3%, and
they are both considered to be acceptable.

As for the T-spline FCM, the refinement criterion
proposed in Section 3.1 is adopted. Inserted and T-junction
knots are introduced along with refinement until the 3rd
level. The resulting T-meshes are presented in Fig. 14d–
f, and the relative errors in comparison with the reference
solution are also illustrated. As observed, by virtue of only
a single level of refinement, a reliable analysis result is
achieved, with the maximum error of the von Mises stress
being 7.4%. Moreover, this error is further decreased to
1.8% at the 3rd refinement level.

For the sake of clarity, the number of DOFs and the
analysis relative error versus the reference value 85.92 MPa
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Fig. 13 a The shaped tension bar with its left edge fixed and loaded by a uniform traction on the right edge. b The von Mises distribution obtained
using ANSYS

are compared in Table 1. It can be observed that the number
of DOFs under different levels of refinement with T-spline
FCM is much less compared with the refined B-spline FCM,
for instance, 346 vs. 1254, with only 1-level refinement.
Also, with the increase of the local refinement level, the
result is convergent to the reference solution as expected,
and the efficiency is remarkably improved.

4 Shape optimization under T-spline FCM
framework

In what follows, T-spline FCM will be further extended
to optimization problems in favor of the design phase of
engineering parts. Sensitivity analysis will first be carried
out, and the framework of the optimization is subsequently
presented.

4.1 Shape optimization statement

In this work, we concentrate on the shape optimization with
stress constraint for 2D linear elasticity problems. The goal
is to minimize the material usage of the structure. For the
permission of boundary evolution during the optimization
procedure, an implicit level set function Φ(x, α) is defined
for the structure based on a series of shape parameters α. As
a consequence, the area of the structure is computed as an
integral of the Heaviside function on the embedded domain.
Therefore, the minimum weight optimization problem with
maximum stress constraint can be stated as

min V = ∫
D

H(Φ(x, α))dS

s.t.

⎧
⎨

⎩

KU = F
σvon ≤ σ von

αi ≤ αi ≤ αi

(21)

B-spline refinement T-spline refinement

(a) (d)

(b)

(c)

(e)

(f)

0 0.011 0.021 0.032 0.042 0.053 0.063 0.074

0 0.0035 0.007 0.011 0.014 0.018 0.021 0.025

0 0.0025 0.005 0.075 0.01 0.013 0.015 0.0180 0.002 0.0038 0.0058 0.0077 0.0096 0.012 0.013

0 0.005 0.010 0.015 0.02 0.025 0.031 0.036

0 0.68 1.36 2.03 2.71 3.39 4.07 4.75

Fig. 14 Relative error distributions of von Mises stress under a–c B-meshes and d–f T-meshes, with different refinement levels
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Table 1 Comparison of the number of DOFs and the resulting
maximum relative errors in employing different B-/T-meshes for the
shaped tension bar

Refinement B-Mesh T-mesh

Level DOFs Error DOFs Error

0 288 475% / /

1 1254 3.6% 346 7.4 %

2 2838 1.3% 438 2.5 %

3 / / 680 1.8 %

where α = {α1, α2, · · · , αn } denotes the vector of design
variables and σ von represents the maximum allowable von-
mises stress. αi and αi are the lower and upper bound of the
ith shape design variable. It is noticed that α collects such
variables as length, width, radius, and interpolation/control
points of a spline, which may alter the shape of a given
structure.

In the current work, the gradient-based method of
moving asymptotes (MMA) is adopted for all the examples,
and the optimization is stopped when either of the following
two convergence criteria is satisfied: (1) the maximum
iteration number MaxN is attained, (2) the ∞-norm of the
design variables between the last two iterations is decreased
to a critical value (e.g., ‖ αn − αn−1 ‖∞� ε). In the
current work, the threshold values are adopted as follows:
MaxN = 200 and ε = 10−3.

4.2 Sensitivity analysis

For optimization problems, the sensitivities expression is
of vital importance for the gradient-based optimization
algorithms. Consider the von Mises stress is defined as

σvon =
√

σ 2
x + σ 2

y + (σx − σy)2 + 6τ 2xy

2
(22)

with three stress components σx , σy , and τxy . Its derivative
with respect to αi can be deduced from

∂σ

∂αi

= DB
∂U
∂αi

(23)

in which ∂U/∂αi is obtained by differentiating both sides of
KU = F

∂U
∂αi

= −K−1 ∂K
∂αi

U. (24)

Being aware that the global stiffness matrix K is
decomposed into local stiffness matrix, the differentiation
of kc is required

∂kc

∂αi

=
∫

Dc

B
T
DB

∂H(Φ)

∂αi

dS =
∫

∂Ω
⋂

Dc

B
T
DB

∂Φ

∂αi

1

‖ �Φ ‖dΓ .

(25)

It should be noted that the dimensionality of each kc

might be different due to the adoption of T-spline shape
functions. It is emphasized that the level set function,
defining the structural boundary, is also used to locate
different types of finite cells. Therefore, both the cell
stiffness kc and global stiffness matrix K are influenced
by the level set function, as observed in (25), while other
physical quantities like F and D are independent of Φ.

The sensitivity of the objective function in (21) with
respect to αi can be calculated as

∂V

∂αi

=
∫

D

∂H(Φ)

∂αi

dS =
∫

D

dH(Φ)

dΦ

∂Φ

∂αi

dS

=
∫

D

∂Φ

∂αi

(
dH(Φ)

dΦ
‖ �Φ ‖

)
1

‖ �Φ ‖dS

=
∫

D

∂Φ

∂αi

δ
1

‖ �Φ ‖dS =
∫

∂Ω

∂Φ

∂αi

1

‖ �Φ ‖dΓ (26)

where δ represents the directional derivative of the
Heaviside function in the normal direction. By now, all
prerequisites for gradient-based optimization algorithm
have been obtained.
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Fig. 15 A shape optimization framework with T-spline FCM
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Fig. 16 aA plate with a circular hole fixed on the left and loaded on the right. b The vonMises stress distribution using ANSYS. c The construction
of the level set function

4.3 Shape optimization framework

Along with the structural evolution in shape optimization,
the T-mesh is required to be updated at each iteration such
that the local refinement is in accordance with the resulting
stress gradient. As discussed earlier in Section 3.2, the
generation of T-mesh relies on a pre-analysis. To avoid
such pre-analysis in each iteration, we propose to adopt
the T-mesh which is issued from the previous iteration
step. To do this, the optimization procedure starts with
a uniform B-mesh in the first iteration, and the analysis
problem is solved by virtue of FCM. Subsequently, the
stress gradient is derived and fed to the local refinement
strategy. The resulting T-mesh is then provided for the next
iteration, while the design parameters are updated by the
gradient-based MMA optimization algorithm. The above
procedures are repeated until convergence. A flowchart
of the optimization framework is depicted in Fig. 15. It

is relevant to underline that all the T-meshes during the
iterations are constructed by applying the adaptively local
refinement to the initial uniform B-mesh.

5 Numerical examples

In this section, several numerical shape optimization
problems are dealt with under the framework of adaptive
T-spline FCM. In the present work, the level set function
Φ(x, α) that implicitly describes the total structural
boundary will be defined based on a series of geometric
primitives according to the R-function theory (Shapiro et al.
1991). For the plate with a circular hole, we will present
in detail the construction of the level set function from the
design variables. As for the other two cases, cubic spline
interpolation functions will be involved in the same manner
as other geometric features such as a circle or a straight line.

(a) (b)

14.06 134.40 254.74 375.08 495.4217.03 112.87 208.72 304.56 400.40

Fig. 17 Final stress distributions under a coarse B-mesh and b dense mesh using ANSYS
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Fig. 18 The evolution of
T-meshes during the iterations

(a) 1st iteration (b) 2nd iteration

(c) 3rd iteration (d) 7th iteration

(e) 20th iteration (f) Final iteration

Interested readers are referred to Cai et al. (2014) for more
details on how to construct a level set function.

5.1 Case1: a plate with a circular hole

As the first example, we set forth a simple two-dimensional
plate with a hole to check the stress gradient–based
refinement criterion of T-spline FCM. The dimensions of
the structure are given in Fig. 16a. Young’s modulusE = 200
GPa and Poisson’s ratio μ = 0.29 are adopted. The structure
is fixed at the left side and loaded by a uniform traction force
on the right boundary. Here, we will try to minimize the
area of the structure with the upper bound of the von Mises
stress set at 400 MPa. As illustrated in Fig. 16b, the initial
maximum stress is 320.22 MPa calculated by ANSYS. The

design variables are the lengths of the semi-axis of the
elliptical hole, a and b, with an upper bound of 15 mm.

As shown in Fig. 16c, the basic geometric primitives
for constructing the level set function of the plate include
four straight lines and a circle. Since the four lines
indicate the fixed boundaries, their corresponding level set
functions ϕ1 − ϕ4 are independent of the design variables.
As for the inner boundary which is designed to evolve
during optimization, two variables are defined and the
level set function is expressed as ϕ5(a, b). As mentioned
earlier, R-function is then adopted to obtain the level set
function for the entire structure, and Boolean operations are
demonstrated step-by-step in the figure.

Under the framework of FCM, the conventional B-
spline shape functions are first employed to carry out

9.57 65.31 121.05 176.79 232.53 288.28 344.02 399.76
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Fig. 19 a The final stress distribution under T-spline FCM and b the convergence curve
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Fig. 20 The basic dimensions of the torque arm with the definition of
design variables

optimization with a coarse mesh of 12 × 4. After several
iterations, the final values of the design variables are a =
15 mm and b = 12.02 mm. Despite that, the maximum
von Mises stress seems to be constrained below 400
MPa in Fig. 17a, this design can however be unreliable
due to the inaccuracy caused by the coarse B-mesh. For
verification purposes, a re-analysis is conducted utilizing
the commercial software ANSYS with a refined mesh of
10808 quadrilateral elements. As observed in Fig. 17b, the
maximum von Mises stress attains 495.42 MPa which has
seriously violated the allowable stress of 400 MPa.

In pursuit of a reliable design, the optimization problem
is then carried out using T-spline shape functions. The same
initial mesh is adopted to generate T-mesh with the help of
the proposed refinement criterion. Recall that three levels of
refinement are applied at each iteration. Several T-meshes
during the iterations are shown in Fig. 18, and the optimized
design variables are a = 15 mm and b = 10.55 mm.
Figure 19 presents the final optimized design along with

Fig. 21 Some T-meshes during
the optimization

(a) 1st iteration (b) 2nd iteration

(c) 3rd iteration (d) 7th iteration

(e) 10th iteration (f) Final iteration

the convergence history of both the objective function and
the stress constraint. It is underlined that convergence is
reached after only 40 iterations, and the ε value is decreased
to 0.0009. In order to make sure this result is reliable with
respect to that obtained by B-spline FCM, a re-analysis is
carried out for the optimized structure by ANSYS, and the
maximum stress is 403.08 MPa, with only 0.75% deviation
from the allowable stress.

5.2 Case2: Torque arm

As the second example, the torque arm optimization
problem widely investigated in the recent researches
(Bennett and Botkin 1985; Cai et al. 2014; Zhang and
Huang 2017; Zhang et al. 2015, 2017) is studied here.
The part is fixed on the left inner circular and loaded
with both horizontal and vertical force at the center of the
right inner circle. The dimensions of the torque arm are
presented in Fig. 20. The shape variables are chosen as
the y coordinates of a group of 5 key points and the x

coordinates of two semicircles as well as the radii r1 and
r2. Based on these design variables, the cubic splines are
first interpolated (McKinley et al. 1998), and the resulting
level set functions are combined with those of other fixed
boundaries analogous to the first example. Young’s modulus
isE = 207.4 GPa and Poisson’s ratio isμ = 0.3. The area of
the structure is minimized while constraining the von Mises
stress below 800 MPa.

According to Cai et al. (2014), the max von Mises stress
of the initial design is about 435 MPa around the inner slot.
For this test case, the T-spline FCM is employed directly to
do the shape optimization. A B-mesh that contains 22 × 12
cells is adopted as the initial mesh, and the first analysis
is performed to calculate the von Mises stress gradient. A
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refined T-mesh is then obtained following the refinement
procedure. Figure 21 showcases some T-meshes during the
iterations. The optimized result and the convergence curve
of the optimization procedure are depicted in Fig. 22.

Clearly, the initial volume of the structure V0 = 374.72
mm3 is reduced to Vfinal = 176.55 mm3 after optimization.
The value of the objective function attains a reduction of
53% compared with the initial one after only 25 steps.
Besides, the optimized design is very similar to the one in
Cai et al. (2014) with the initial cells being 22 × 12 verse
61 × 32.

It is noteworthy that in the first few iteration steps, the
convergence history of σmax oscillates due to the mismatch
between the structural shape and the T-mesh inherited
from previous steps. Later, such a phenomenon gradually
disappears since the shape variation tends to be smaller and
smaller, and the mismatch shall no longer present.

5.3 Case3: Bracket

The third example concerns a triangular bracket. The
structure is fixed on the two bottom holes and loaded by
a horizontal force at the center of the upper inner hole.
The multi-point constraint (MPC) strategy is adopted for
the imposition of the concentrated force. The dimensions
and the design variables of the bracket are presented in
Fig. 23. Young’s modulus E = 207.4 GPa and Poisson’s
ratio μ = 0.3 are adopted as the material properties.
Analogous to previous examples, the area of the structure is
minimized with an allowable von Mises stress of 800 MPa.
The construction of the level set function of the bracket is
similar to the former two examples, and interested readers
are referred to Cai et al. (2014) for more details.

First, a coarse uniform mesh of 20 × 35 cells is used
for the B-spline FCM. The maximum von Mises stress,
as illustrated in Fig. 24a, deviates apparently from the
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Fig. 23 The dimensions and the design variables of the bracket model

reference value, 413.3 MPa given in Cai et al. (2014). To
highlight the problem, the global B-mesh refinement and the
local T-mesh refinement are adopted to conduct the stress
analysis, respectively. Both results have only a difference of
0.5% in terms of the maximum von Mises stress, as shown
in Fig. 24b–c. The T-spline method increases only 10% of
the cell number compared with the initial one, while the cell
number of the dense B-mesh is four times of the initial one.

Therefore, structural optimization of the bracket is finally
carried out with adaptive T-spline refinement. Figure 25
illustrates some steps of the T-meshes during the iterations.
After 40 steps of iterations, the optimization process
converges. Analogous to the two previous examples, the
optimization stops as the ∞-norm decreases inferior to the
threshold value. The final optimized design is shown in
Fig. 26a, and the convergence curve is illustrated in Fig. 26b.
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Fig. 24 The von Mises stress distributions calculated from a a coarse initial B-mesh, b a uniformly refined B-mesh, and c a locally refined T-mesh

It should be noted that the obtained design is very similar
to that in Cai et al. (2014) with about 70% less finite
cells. It concludes that the efficiency improvement is quite
remarkable.

6 Conclusions

In this study, a T-spline finite cell method is proposed
for reducing the computational effort and improving the

Fig. 25 T-meshes with 3-level
refinements during the
optimization process

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

(d) 7th iteration (e) 20th iteration (f) Final iteration
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Fig. 26 a The von-mises stress
distribution for the final design.
b The convergence history
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efficiency in structural shape optimization design. The main
contributions of this work are:

(1) Local refinement is achieved by introducing the T-
spline shape functions into FCM, and shape optimiza-
tion framework is correspondingly established. This
method demonstrates the great advantage of using
local T-mesh refinement for the computing accuracy
instead of a global and uniform B-mesh refinement.

(2) The stress gradient is analytically calculated owing
to the high-order continuity of the T-spline shape
functions, and a stress gradient–based criterion is
developed to identify the cells for refinement.

(3) The combination of the quadtree subdivision strategy
with the computed stress gradient field enables more
accurate analysis results to be obtained at critical
locations, and the resulting optimization design is of
higher reliability.

We conclude also that, through all the three presented
examples, the number of DOFs can be reduced by up to
70%, while still maintaining a similar analysis accuracy.
Concerning 3D examples, this efficiency improvement is
anticipated to be even more significant, and it will be
demonstrated in the coming work.
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