
https://doi.org/10.1007/s00158-020-02643-y

RESEARCH PAPER

Parametric optimization for morphing structures design:
application to morphing wings adapting to changing
flight conditions

Jonathan M. Weaver-Rosen1 · Pedro B. C. Leal2 ·Darren J. Hartl2 · Richard J. Malak Jr.1

Received: 23 January 2020 / Revised: 28 April 2020 / Accepted: 2 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Morphing structures can allow significant improvements in performance by optimally changing shape across varying
conditions. A critical barrier to the design of morphing structures is the challenge of determining how optimal shape changes
as a function of the many operating conditions that affect optimality. Traditional engineering optimization techniques are
able to determine an optimal shape only for one condition or an aggregation over operating conditions (i.e., optimizing
average performance). Parametric optimization is an alternative approach that can solve a family of related optimization
problems simultaneously. Herein the authors analyze the design of a structurally consistent camber morphing wing for light
aircraft applications using parametric optimization techniques. The approach combines rigorous consideration of structural
constraints via Class/Shape Transformation (CST) equations and use of a C1-continuous analytical representation of wing
outer mold line geometry with the Predictive Parametric Pareto Genetic Algorithm (P3GA), an algorithm for nonlinear
multi-parametric optimization. The system is tuned to maximize lift-to-drag ratio, a key metric for aircraft flight range.
Kriging-based interpolation is applied to P3GA output to obtain an optimal solution map determining optimal shape
variable values as a function of flight conditions (airspeed, angle of attack, and altitude). Solutions obtained from iterated
use of traditional optimization techniques are utilized to benchmark the more novel and efficient parametric optimization
accuracy. Results show that parametric optimization is useful for optimizing morphing structures across a range of operating
conditions.
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1 Introduction

The design advantage of morphing structures is that as oper-
ating conditions change, the structure can adapt to be opti-
mal in a range of operating regimes as illustrated in Fig. 1.
It is possible to optimize a non-morphing structure for aver-
age performance over a distribution of potential operating
conditions (Fig. 1a), but this still results in suboptimal
solutions at any one operating condition. Traditional (non-
morphing) structures may be optimized to a specific oper-
ating condition, but changes in the external conditions will
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lead to sub-optimal off-condition performance (Fig. 1b). In
contrast, a morphing structure can adapt its geometry to be
optimal at any operating condition within some prescribed
range.

Successful design of optimally morphing structures
requires an advanced technique in engineering optimization.
Parametric optimization, also called parametric program-
ming, is a methodology to solve an optimization problem
as a function of one or more exogenous parameters (Fiacco
1976). The exogenous parameters are variables that affect
optimization results but that are not determined by the
optimization process. In an aerospace context, parameter
variables can include flight conditions that affect aircraft
performance, such as airspeed, angle of attack, and altitude.
The underlying concept of using parametric optimization
for optimal morphing is the central idea that parameter val-
ues could be sensed during system operation and that the
system can morph to the solution optimal for the sensed
conditions.
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(a)

(b)

Fig. 1 a Static robust design provides less sensitivity to changing
conditions but accepts sub-optimality. b Morphing designs can adapt
to changing conditions to maintain optimality

Engineering researchers have applied parametric opti-
mization in the design of strategies for chemical process
control that adapt to changing operating conditions (e.g.,
plant state (Pistikopoulos et al. 2004), time (Wang et al.
2000), or material availability (Acevedo and Salgueiro
2003) and the design of multifunctional structures in which
design requirements are treated as parameters due to their
potential to change during the course of a project (Hartl
et al. 2016). Parametric optimization also arises in economic
analysis called comparative statics, which seeks to identify
how market equilibria shift due to changes in exogenous
parameters (Spiegel and Subrahmanyam 2015).

To be efficient, parametric optimization requires special-
ized optimization codes. Although it is possible to iterate
a traditional optimization algorithm at different values for
parameters, this approach does not scale well. Gamboa et al.
(2009) apply such a sampling approach to the parametric
optimization of a morphing wing, but deals with only one
parameter (airspeed). For larger numbers of parameters -

sometimes called multi-parametric problems—the number
of samples required would grow prohibitively large. Prior
work exists on specialized methods for parametric opti-
mization, including algorithms for linear (Gal 1984; Filippi
2004), quadratic (Spjøtvold et al. 2007; Bemporad and Fil-
ippi 2003), convex (Acevedo and Salgueiro 2003; Dua and
Pistikopoulos 1999), mixed integer linear (Dua and Pis-
tikopoulos 2000), and nonlinear black-box (Hale 2005; Gal-
van and Malak 2015) cases. This work uses the Predictive
Parametric Pareto Genetic algorithm (P3GA) introduced
by Galvan and Malak (2015). P3GA can handle nonlinear
black-box functions and is capable of solving single- and
multi-objective parametric problems. A comparative study
demonstrated that P3GA is superior to iterated application
of a traditional optimization algorithm (Galvan et al. 2018).
Previous implementations of P3GA focus on solving prob-
lems where the parameter values are not yet fully known but
will be constant during operation (Hartl et al. 2016; Galvan
et al. 2018). In the case study presented here, the parame-
ter values are continuously changing during operation, and
the structure must optimally morph in response to these
changing parameters.

Optimal morphing is particularly appealing in aircraft
design, where performance is critical and often costly.
Morphing aero-structures are defined in this work as those
that can C1-continuously change their outer mold line
(OML). Morphing expands the space of traditional aircraft
control and trim methods, such as flaps and slats, to
include smooth configurations with improved aerodynamic
performance (Leal et al. 2018). Aviation can benefit from
this technology to minimize drag (Leal et al. 2018)
and noise (Maglieri et al. 2014) or to improve aircraft
maneuverability (Nam et al. 2002). However, the benefits
of continuous shape change are not intuitive for each flight
condition and have not yet been fully explored.

Although there has been extensive work in optimizing
an aircraft OML to improve overall performance, most
methods have one or more of the following drawbacks:
(i) no structural constraints are considered when defining
geometry (Tandies and Assareh 2016; Lane and Marshall
2009; Liem et al. 2017), (ii) no analytical C1 geometric
representation exists (Liem et al. 2017; Morris et al. 2010),
and/or (iii) the design is optimized for only a limited number
of flight conditions (Leal et al. 2018; Tandies and Assareh
2016; Lane and Marshall 2009; Liem et al. 2017; Liu et al.
2015; Hicks and Henne 1978). Optimized configurations
that do not consider (i) will result in thin airfoils that
are infeasible to manufacture while drawback (ii) hinders
the use of gradient-based methods or sensitivity analyses
and results in high-drag OMLs. Drawback (iii) leads to
designs that perform well at specific flight conditions but
that underperform for all other conditions. Some have
addressed (i) using thickness (Liem et al. 2017; Liu
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et al. 2015) and volume (Morris et al. 2010; Hicks and
Henne 1978) constraints on the OML that reproduce the
inner structure restrictions. Recently, Leal and Hartl have
addressed both (i) and (ii) using a structurally consistent
approach based on Class/Shape Transformation (CST)
equations (Leal and Hartl 2019). Additionally, parametric
optimization addresses (iii) by treating flight conditions as
parameters. This current work combines the CST approach
with parametric optimization to yield a comprehensive
approach to optimal morphing wing design. To the authors’
knowledge, this article is the first application of parametric
optimization to morphing wings in particular and morphing
structures in general.

Section 2 is an overview of parametric optimization and
the specific techniques used in this study, and Section 3 con-
tains a description of the structurally consistent CST-based
morphing wing model. Next, the morphing wing optimiza-
tion problem formulation is presented (Section 4) along
with results (Section 5). Finally, the parametric results are
benchmarked against solutions obtained from a traditional
optimization applied at samples of the parameter values
(Section 6). Comparison results indicate that parametric
optimization using P3GA is an effective approach for
determining the optimal morphed structure across a range
of operating conditions surpassing a traditional approach.

2 Parametric optimization

2.1 Theory

Parametric optimization differs from traditional methods by
directly considering uncontrollable variables (i.e., parame-
ters) during the optimization procedure. By doing so, the opti-
mal solution is found as a function of these changing param-
eters. The single-objective parametric optimization problem
formulation can be stated as follows (Galvan et al. 2018):

J ∗(θ) = min
x

J (x, θ)∀θ ∈ [θ lb, θub] ,
subject to:

g(x, θ) ≤ 0,
h(x, θ) = 0,
xlb ≤ x ≤ xub ,

x ∈ IRk ,

θ ∈ IRm ,

(1)

where J is the scalar objective function, θ is the parameter
vector of length m, J ∗(θ) is the optimal objective value as a
function of the parameters (i.e., J ∗(θ) : IRm → IR), the
vector x is the optimization variable vector of length k, and
g and h represent the inequality and equality constraints,
respectively, as functions of the optimization variables and
parameters. Both the optimization variables and parameters
are constrained by upper bounds (xub, θub) and lower

bounds (xlb, θ lb). The vector x∗(θ) represents the optimal
optimization variables for any variation of the parameters
(i.e., x∗(θ) : IRm → IRk) such that:

J ∗(θ) = J (x∗(θ), θ). (2)

In this work, J ∗(θ) is called the performance model, and
x∗(θ) is called the optimal solution map. This work addresses
single-objective formulations; when multiple objectives are
considered, J∗(θ) is the mathematical representation of the
parameterized Pareto frontier (Malak and Paredis 2010).

The performance model can be used to determine how
parameters affect optimal performance and assess which
parameters are most critical. The optimal solution map
provides an engineer with the optimal design configuration
given a vector of parameter values. In a morphing context,
this optimal solution map removes the need to perform a
computationally expensive optimization algorithm during
operation as conditions change. Instead, the optimal
solution map x∗(θ) is directly used to determine the optimal
morphed shape during operation under changing conditions.

In the case of morphing aircraft, optimization variables
include the variables that control wing OML (i.e., shape varia
bles) during operation, while parameters could include varia-
bles such as airspeed, angle of attack, altitude, temperature,
air density, and others. In most cases, it is unlikely that a pilot
will know all of these parameter values for a given flight plan
at take-off, and many parameters are subject to change during
flight. Using the proposed parametric optimization technique,
a pilot or a controls system is always informed of all optimal
lift-to-drag ratios and corresponding shape variables for a
vector of parameters describing the flight condition.

2.2 Methods

The parametric optimization algorithm utilized in this work,
known as P3GA (Galvan and Malak 2015), is an exten-
sion of NSGA-II (Deb et al. 2002) that handles uncon-
trolled and/or non-preferential parameters. Determining
dominance in a parametric optimization problem is not triv-
ial. P3GA predicts parametric dominance as a means of
selecting new designs for analysis by employing a machine
learning technique throughout the optimization procedure.
A comprehensive explanation of P3GA and parametric
dominance is given by Galvan and Malak (2015). P3GA
has been successful in both numerical and engineering stud-
ies (Hartl et al. 2016; Galvan and Malak 2015). Galvan
et al. (2018) concluded that P3GA performs efficiently as
the number of parameters increases by assessing its perfor-
mance alongside a parametric variant of NSGA-II, known
as p-NSGAII. P3GA outperformed p-NSGAII in most cases
considered with two parameters, and P3GA always outper-
formed p-NSGAII in cases considered with three or more
parameters.
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P3GA directly outputs the discrete configurations (i.e.,
set of optimization variables and corresponding parameters)
found to be optimal in addition to an implicit representation
of the performance model. A Gaussian-based process such
as a Kriging interpolation (van Beers and Kleijnen 2004)
can approximate the optimal solution map from the optimal
configurations found with P3GA as demonstrated by Hartl
et al. (2016). Therefore, x̂∗(θ) will denote the approximate
optimal solution map via Kriging interpolation. For the
case study herein, the DACE toolbox (Lophaven et al.
2002) is used to train x̂∗(θ) using the optimal designs from
P3GA and a Gaussian correlation function and a quadratic
regression model (see Lophaven et al. 2002 for details on
training a Kriging model).

3 Camber morphing wing description

The design problem considers the cross section of an infinite
wing (i.e., an airfoil) undergoing camber morphing. The
CST method is used to mathematically define all generated
airfoils (Leal et al. 2017). This method has been shown
to accurately represent any realistic airfoil geometry with
a minimum number of variables (Kulfan 2007). The CST
equations are bijective; hence, two equations are necessary
to fully represent the upper and lower surfaces of the airfoil.
The two surfaces are denoted herein as active (lower) and
passive (upper). While the passive surface is restricted to
have constant length but it is free to bend, the active surface
is free to both constrict and bend. This represents the case
where the lower surface contains active material. The CST
equations are formulated in the non-dimensional ψ − ζ

domain that is related to the physically meaningful domain
x − z via the airfoil chord c (ψ = x/c and ζ = y/c)
depicted in Fig. 2. The CST equations for subsonic airfoils
(N1 = 0.5 and N2 = 1) with trailing edge thickness ΔζT E

are as follows:

ζA = ψ0.5(1 − ψ)

n∑

i=1

Ai

n!
i!(n − i)!psii(1 − ψ)n−i

+ ψ
ΔζT E

2
, (3)

ζP = ψ0.5(ψ − 1)
n∑

i=1

Pi

n!
i!(n − i)!psii(1 − ψ)n−i

− ψ
ΔζT E

2
, (4)

where ζA and ζP are the non-dimensional distances
perpendicular to the chord to the active and passive surfaces,
ψ is the non-dimensional distance along the chord (ψ ∈
[0, 1]), Ai and Pi are the shape function coefficients, and n

is the order of the Bernstein polynomials.
Leal and Hartl (2019) modified the CST equations

so that children airfoils (i.e., morphed configurations)
can be generated from any parent airfoil (i.e., original
configuration) while considering kinematic constraints
related to the internal structure; thus, all of the explored
designs herein are known to be physically feasible for low
strains (≤ 4%), even without recourse to full structural
analysis. In the model it is assumed that the overall
morphing structure has or maintains the following: rigid
body spars, constant leading edge radius, constant passive
surface length, and constant angles between spars and
passive surface. The equations above can be used to
describe the children and parent configurations (denoted by
a superscript c and p, respectively) by varying the values of
the shape coefficients. Using an owl airfoil as an example
parent airfoil (Leal et al. 2018) and an internal structure
consisting of five spars, a different OML can be generated at
minimal computational cost (i.e., indirect calculation) that
preserves the spar dimensions as shown in Fig. 2.

A system of equations is formulated by applying (3) for
n spar intersections with the child active surface, located at
coordinates (ψc

A,j , ζ
c
A(ψc

A,j ))∀ j ∈ [1, n], as follows:

fj =
n∑

i=0

FjiA
c
i or f = FA , (5)

where A is the active shape coefficient vector (n-
dimensional), f is the forwards restriction vector (n-
dimensional)

fj = 2 ζ c
A(ψc

A,j ) + ψc
A,jΔζ c

T E

2
√

ψc
A,j (ψ

c
A,j − 1)

− A0(1 − ψc
A,j )

n , (6)

and F is the forwards function matrix (n × n dimensional),
given as

Fji = n!
i!(n − i)! (ψ

c
A,j )

i(1 − ψc
A,j )

n−i . (7)

If all coordinates (ψc
A,j , ζ

c
A(ψc

A,j )) can be calculated, F
is a square tensor and invertible, and the values of the active
children shape coefficients Ac

i are determined by solving
the linear system of equations (5). Therefore, the only free

Fig. 2 Morphing airfoil example
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degrees of freedom for the children configurations are the
passive shape coefficients Pc.

As detailed in Leal and Hartl (2019), a set of kinematic
constraints is utilized to guarantee structural feasibility of
the morphed configurations and to establish coordinates
(ψc

A,j , ζ c
A(ψc

A,j )) as a function of Ap, Pp, Pc, and the
locations and heights of spars. In the context of real aircraft,
the parent airfoil and much of its internal structure are
fixed and known. Therefore, the children airfoils are only
a function of Pc, used herein as the optimization variables.
For this work, the shape coefficients of a NACA 0012
airfoil using fourth-order Bernstein polynomials are used
and denoted in Table 1. A symmetric airfoil is chosen to
demonstrate that morphing is effective even for an airfoil
with initially no camber, even as compared with other
examples of non-morphing airfoils as will be shown. The
non-dimensional spar locations are also fixed at 0.1, 0.3, 0.6,
and 0.8.

Since the framework (i) guarantees kinematically accept-
able deformation states, (ii) only consists of linear system
of kinematic equations, (iii) assumes that enough force is
generated to obtain the desired strains, and (iv) strictly lim-
its the strains generated anywhere in the morphing body to
be within material limits, structural analysis is not neces-
sary and the generation of new children configurations is
greatly expedited. The framework is independent of actuator
technology, but previous work has shown that shape mem-
ory alloy actuators, for example, can generate the necessary
strains for a camber morphing wing (Leal et al. 2018).

4 Parametric formulation of amorphing
aerostructure design problem

The optimal morphing aerostructure problem can be formu-
lated as a multi-parametric optimization problem, where
the single objective is to maximize the lift-to-drag ratio.
This ratio is determined by calculating the coefficients of
lift and drag using XFOIL (Drela 2001), a subsonic panel-
method aerodynamic solver. The operational parameters
considered are angle of attack α, airspeed V , and altitude
H , all of which vary during flight. For this work, the
optimization variables are the shape coefficients of the

Table 1 Shape coefficients for parent (reference) NACA 0012 airfoil
considered in this work from which all morphed configurations are
generated

P
p

0 P
p

1 P
p

2 P
p

3 P
p

4

0.1828 0.1179 0.2079 0.0850 0.1874

A
p

0 A
p

1 A
p

2 A
p

3 A
p

4

0.1702 0.1528 0.1592 0.1195 0.1651

child (morphed) airfoil P c
i for i = [1, 2, 3, 4], where each

coefficient is spatially predominant in a different chordwise
location. Together, the four shape coefficients define the
airfoil shape (see Table 1 for parent shape coefficients Pp).
P c
1 and P c

4 dominate respectively the leading and trailing
edges, while P c

2 and P c
3 are most relevant for intermediate

chordwise coordinates. All other aspects of the problem,
such as the initial NACA 0012 shape and spar locations
are held constant to allow clarity of presentation. CST
equations of order n = 4 are utilized based on a convergence
study performed by Leal and Hartl (2019). Depending
on the requirements of the design exploration, n can be
increased to allow more subtle topological manipulations
and structural constraints (e.g., spars).

The mathematical problem formulation is thus:

J ∗(α, V, H) = max
Pc

J (Pc; α, V, H),

Subject to:

Pc ∈ P,⎡

⎣
0◦

20m/s
5000ft

⎤

⎦ ≤
⎡

⎣
α

V

H

⎤

⎦ ≤
⎡

⎣
12◦

65m/s
40000ft

⎤

⎦ ,
(8)

where the objective function J represents the lift-to-drag
ratio, J ∗(α, V, H) represents the maximum lift-to-drag
ratio as a function of the parameters, x = Pc, and θ =
[α, V, H ]T .

To prevent generating shapes that either are unreason-
able or cannot be accurately studied with XFOIL, the shape
coefficients are conservatively constrained based on feasi-
ble, existing airfoil shapes. This feasible set is denoted P. To
quantify this constraint, 1636 shape coefficient vectors
are calculated for all the airfoils contained in a given
database (Selig 1995). A thorough investigation of this four-
dimensional data revealed that the feasible space would
not be easily constrained via linear constraints. As shown
by Malak and Paredis (2010), a Support Vector Domain
Description (SVDD) can be trained to fit the data and
provide a single, nonlinear constraint. This SVDD is a one-
class classifier that, once trained, predicts whether a new
data point lies inside or outside of the class (Tax and Duin
1999). In this case, the class being trained is that of feasible
airfoil shapes.

5 Results

Since the solution of a single-objective three-parameter
problem cannot be readily visualized in 4-D space, results
are herein presented in two phases. Section 5.1 presents a
two-parameter subset of the solution where altitude is fixed
at 10,000 ft while angle of attack and airspeed are still
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(a) (b)

Fig. 3 Results considering altitude held constant at 10,000 ft. a Popu-
lation of structurally feasible morphed designs projected into this 3-D
domain and lift-to-drag ratios of optimal performance across changing

flight conditions. b Comparison between the performance of the mor-
phing NACA 0012 configurations and that of a fixed NACA 0012, a
fixed NACA 4415 and a fixed NACA 64(1)-212

treated as parameters. Then, Section 5.2 conveys the full,
three-parameter solution.

5.1 Two-parameter problem

Considering a fixed altitude of 10,000 ft, the performance
model over changing angle of attack and airspeed is illustra-
ted by the surface in Fig. 3a. Depending on the parameter
values, lift-to-drag ratios of up to 169 are achieved. Overall,

the optimal lift-to-drag ratio monotonically increases as
airspeed V increases. An increase of angle of attack for
smaller angles (α ≤ 5◦) results in an increase of this objec-
tive. However, for higher angles of attack (α > 5◦), the
lift-to-drag ratio decreases because of sensitivity to stalling
(Drela 2001). Figure 3b shows a comparison between the
performance for the camber morphing NACA 0012 and
three fixed airfoils for the same flight conditions (including
the fixed NACA 0012). The benefits of using a morphing

Fig. 4 Four structurally consistent morphed configurations from the
optimal solution map for low (design A), medium (design B),
and high (designs C and D) angles of attack and their relation to the

performance model are depicted along with airfoil shape coefficients,
designed flight condition, and lift-to-drag ratio
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airfoil are apparent at smaller angles of attack where
significant increases in achievable lift-to-drag ratios are
obtained. For higher angles of attack, the morphing opti-
mization seems to be less relevant for this parent airfoil.
Although there is one region (α ∈ (7◦, 11◦)) where the
fixed NACA 4415 dominates, the morphing NACA 0012
appears to outperform all considered fixed airfoils for the
majority of these flight parameters. The maximum benefit
seen by the fixed NACA 4415 over the morphing NACA
0012 is an increase of 18.8 of the lift-to-drag ratio. How-
ever, the lift-to-drag ratio of the morphing NACA 0012 is on
average 9 points higher than that of the fixed NACA 4415.
Additionally, the morphing NACA 0012 always outper-
forms the fixed NACA 4415 for the lower angles of attack
that airplanes more commonly operate. This result shows
that the morphing NACA 0012 is physically unable to match
the performance of the NACA 4415 shape due to the struc-
turally consistent constraints. This gives evidence to support
analyzing a morphing NACA 4415 concept especially when
looking at higher angle of attack applications.

The optimal morphed configuration clearly changes with
flight condition, but four distinct families can be clustered
based on their topology (Arthur and Vassilvitskii 2007).
Figure 4 illustrates how the performance model and optimal
solution map can be used together to display these four
families of airfoils. The depicted airfoils are the cluster
centers (Arthur and Vassilvitskii 2007) for each family of
solutions. At lower angles of attack (α < 4◦), the morphed
configurations (design A) are similar to traditional high-
lift airfoils (Abbott and Doenhoff 1959). As angle of attack
increases (4◦ ≤ α < 7◦), the maximum camber location
tends towards the leading edge, resulting in configurations
(design B) similar to avian airfoils (Bansmer et al. 2012).
As angle of attack continues to increase (7◦ ≤ α < 9◦), the
high camber at the front of the airfoil decreases, leading to
traditional airfoil shapes (design C). At the highest angles
of attack, camber is decreased to delay boundary layer
separation, leading to unorthodox designs (design D) known
as reflexed airfoils (Jacobs and Pinkerson 1936; Pankonien
et al. 2016). Each of the identified designs is not acceptable

Fig. 5 Approximate optimal solution map providing the value of each
shape coefficient for the camber morphing NACA 0012 when alti-
tude is fixed at 10,000 ft. Such a map could be used to schedule a

controller such that morphing structures automatically adapt during
operation. a Value of P̂ c∗

1 . b Value of P̂ c∗
2 . c Value of P̂ c∗

3 . d Value

of P̂ c∗
4
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for all flight conditions, but is viable as one of many states
of a morphing airfoil.

Figure 5 illustrates the optimal solution map approxi-
mation, P̂c∗(α, V, H), for each shape coefficient over the
subset of the parameter space where H = 10,000 ft. For
lower angles of attack (α < 7◦), P̂1

c∗
increases, P̂2

c∗
fluc-

tuates near its highest value, and P̂3
c∗

and P̂4
c∗

decrease to
augment camber and relocate the maximum camber loca-
tion towards the leading edge. At higher angles of attack
(α ≥ 9◦), all shape coefficients decrease to curtail cam-
ber, generating children configurations similar to the parent
airfoil.

5.2 Three-parameter problem

Although the four-dimensional performance model (three
parameters and one objective) can be difficult to visualize

directly, depicting multiple two-dimensional subsets for a
fixed aircraft speed and altitude is enlightening (Fig. 6).
Figure 6a displays the two-dimensional solution subsets at
four different airspeeds while fixing altitude at 20,000 ft.
Likewise, Fig. 6b displays the two-dimensional solution
subsets at four different altitudes with airspeed fixed at
35m/s.

Visualizing these reduced subsets of the four-dimensional
performance model reiterates the trend seen in the two-
parameter solution, and also elucidates how this model is af-
fected by altitude variations. The lift-to-drag ratio mono-
tonically increases as airspeed increases while the effect of
angle of attack is not as straightforward. Angle of attack
continues to maximize the lift-to-drag ratio near 5◦, but
variations in altitude change this peak slightly. While the
curves for 10,000 and 20,000 ft are similar, the performance
begins to decrease more rapidly for altitudes of 30,000

Fig. 6 Two-dimensional subsets
of the four-dimensional
performance model for the
morphing airfoil: a sections of
this model where altitude is
fixed at 20,000 ft and airspeed is
sampled at 20, 35, 50, and
65m/s; b sections of the same
model fixing airspeed at 35m/s
and aircraft altitude at 10, 20,
30, and 40 thousand feet

(a)

(b)
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and 40,000 ft. This is the expected response as air density
decreases at higher altitudes, leading to varying Reynolds
numbers (i.e., different flow regimes). Note that the perfor-
mance model somewhat deviates from these trends when the
angle of attack is near 2◦ and 8◦, which may be an artifact
of aerodynamic instabilities in these regions.

Figure 7 displays the shape coefficient values (cf. Fig. 5)
with angle of attack and altitude featured on the horizontal
and vertical axes, respectively, and airspeed fixed at 35m/s.
The subset of the optimal solution map represented by
Fig. 7 shows that altitude has very little effect on the
optimal morphed airfoil shapes, even though the optimal
performance of these airfoils is affected (cf. Fig. 6). In the
interest of brevity, only a small subset of the full optimal
solution map is visualized.

With respect to computational cost, the runtime for the
full parametric optimization loop that solves (8) for all three
parameters using P3GA is approximately 117 h for 400
generations with a population size of 150 individuals (Intel
i7 core processor with 8 GB of RAM). The majority of
this runtime is spent evaluating the objective function via

XFOIL, which requires 6 to 20 s depending on the aero-
dynamic complexity. In this case, the computational cost
of the methods used within P3GA (i.e., machine learning)
are negligible compared with objective function cost.

6 Benchmarking

To quantify any errors in the performance model, its out-
put is compared with that from multiple executions of a tra-
ditional genetic algorithm (each with a different set of
fixed parameter values). Sixty-four parameter combinations
selected via a Latin Hypercube sampling (LHS) for the
morphing NACA 0012 parent shape are considered and rep-
resent 64 single-objective individual optimizations to obtain
the maximum lift-to-drag ratio, J �, and optimal shape coef-
ficients, P

c�
i , using the built-in GA in MATLAB (2017b).

Default algorithmic settings are used, and the results are
taken as truth solutions as convergence to within a small tol-
erance occurs. Note that the solutions to the 64 genetic opti-
mizers required 1344 h in total, though direct comparison

(a) Value of (b) Value of 

(c) Value of (d) Value of 

Fig. 7 Approximate optimal solution map providing the value of each shape coefficient for the camber morphing NACA 0012 when airspeed is
fixed at 35m/s. a P̂ c∗

1 . b P̂ c∗
2 . c P̂ c∗

3 . d P̂ c∗
4
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(a) (b)

Fig. 8 Results of parametric optimization via P3GA contrasted with
the results of the traditional genetic algorithm (Goldberg and Hol-
land 1988): a the performance model (surface) as compared with the

8 × 8 grid of traditional optimization solutions (points), b percent error
between the performance model and validation points as calculated
via (9)

Fig. 9 Difference between the results of the optimal solution map and the traditional genetic algorithm (Goldberg and Holland 1988) from the
four optimization variables (P c

1 , P
c
2 , P

c
3 , and P c

4 ) using (10) for the two-parameter subset where altitude is fixed at 10,000 ft. a δ1. b δ2. c δ3. d δ4
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with P3GA’s runtime of 117 h is inconclusive since P3GA
did not enforce any stopping criteria beyond the maximum
number of generations. All optimizations performed in this
study (via P3GA and a traditional genetic algorithm) are
done using a quad-core computer with a 2.93 GHz Intel
i7-870 processor and 8 GB of RAM. Additionally, both
P3GA and genetic algorithms in general are highly paral-
lelizable. Therefore, all presented results are generated from
four parallel processes to evaluate the population members
among each generation of both P3GA and the benchmark-
ing genetic algorithm. The error of the performance model
is quantified using (9).

Error (θ) =
∣∣J ∗(θ) − J �(θ)

∣∣
∣∣J �(θ)

∣∣ (9)

The average and standard deviation of the error in
performance among the 64 fixed parameter sites considered
are 2.85% and 3.30%, respectively. To provide a graphical
representation, another study is performed where a two-
parameter subset of the full solution is explored to allow
for visualization in three dimensions (two parameters and
one objective). Fixing the altitude parameter at 10,000 ft, an
8 × 8 grid of combinations of angle of attack and airspeed
are chosen to run a total of 64 additional iterations of a
traditional genetic algorithm. These 64 combinations are
plotted in red over the performance model in Fig. 8a for this
fixed altitude. P3GA is able to represent the trends of the
true solution very well. The errors (defined in (9)) of this
subset are largely within 5%, as shown in Fig. 8b.

Finally, the full optimal solution map from parametric
optimization is benchmarked against the discrete optimal
configurations for the original 64 points in parameter space
via LHS. The differences between the shape coefficients
from the optimal solution map and those from fixed-
parameter optimizations are given by:

δi (θ) =
∣∣∣P̂i

c∗
(θ) − P

c�
i (θ)

∣∣∣
xub,i − xlb,i

∀i ∈ [1, 2, 3, 4] , (10)

where P̂i
c∗

(θ) is the optimal ith shape coefficient predicted
by the Kriging model of the optimal solution map and
P

c�
i (θ) is the optimal ith shape coefficient predicted by the

fixed-parameter optimizations via a common GA (Goldberg
and Holland 1988). This difference is normalized by the
bounds of shape coefficients which are determined by the
1636 feasible airfoils and introduced via the nonlinear
constraint. All shape coefficients are allowed to vary from
±0.5; thus, the denominator of (10) equals 1. The average
differences for each of the four shape coefficients are
2.38%, 3.48%, 1.85%, and 2.34%, respectively. To allow for
visualization of these differences, a subset of the optimal
solution map at H = 10, 000 ft is visualized for each shape
coefficient based on the same 8 × 8 grid over angle of attack

and airspeed from before (Fig. 9). This agreement gives
evidence to support the use of parametric optimization in
a morphing context as a preliminary step in calculating the
optimal shape variables for many sets of external conditions.

7 Conclusion

This work shows the potential of parametric optimization
as applied to the design of a morphing structure. P3GA is
shown to be an effective tool for optimizing a flight per-
formance objective function over a range of parameters,
making it a useful method for optimizing morphing struc-
tures. The results of parametric optimization using P3GA
are found to be within a reasonable error tolerance as
compared with traditional methods, with the advantage of
capturing a more detailed understanding of the parameter
space at a reduced computational cost. This accuracy, cou-
pled with the decreased runtime compared with traditional
methods (Galvan et al. 2018), supports the use of para-
metric optimization for solving morphing problems over
traditional optimization methods. Visualizing the parametric
solutions (performance model and optimal solution map),
even when the solution dimensionality is greater than three,
is demonstrated by viewing subsets. The full performance
model is found to have an average error of approximately
2.85%, and the optimal solution map has average errors
of less than 3.5% for each of the four optimization vari-
ables (shape coefficients). The two-parameter performance
model describing the morphing NACA 0012 lift-to-drag
ratios compared with those from non-morphing baseline
designs motivates morphing technologies and shows that
morphing airfoils can drastically improve wing performance
and achieve similar or better performance across chang-
ing operational conditions than fixed, specialized airfoils.
Future work will consider (i) other parent airfoil configu-
rations (shape and number/spacing of spars), (ii) exploring
other benefits of parametric optimization when designing
and operating morphing structures, and (iii) solving the opti-
mal solution map for cases where approximation via an
interpolation method is not valid. These studies will serve
to further strengthen the case for using parametric optimiza-
tion and the associated methodologies in the design and
operation of morphing technologies.
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Replication of results Although the results presented are obtained
from stochastic methods, the same type of results could be replicated.
The morphing airfoil framework is publicly available on GitHub
(https://github.com/leal26/AeroPy), and P3GA can be made available
upon request.

References

Abbott IH, Doenhoff AEV (1959) Theory of wing sections, including
a summary of airfoil data. Courier Corporation, google-books-iD:
DPZYUGNyuboC

Acevedo J, Salgueiro M (2003) An efficient algorithm for convex
multiparametric nonlinear programming problems. Ind Eng Chem
Res 42(23):5883–5890. https://doi.org/10.1021/ie0301278

Arthur D, Vassilvitskii S (2007) k-means++: the advantages of careful
seeding. In: Proceedings of the eighteenth annual ACM-SIAM
symposium on discrete algorithms, society for industrial and
applied mathematics, pp 1027–1035

Bansmer S, Buchmann N, Radespiel R, Unger R, Haupt M, Horst
P, Heinrich R (2012) Aerodynamics and structural mechanics of
flapping flight with elastic and stiff wings. In: Tropea C, Bleck-
mann H (eds) Nature-inspired fluid mechanics, vol 119. Springer,
Berlin, pp 331–354. https://doi.org/10.1007/978-3-642-28302-420

Bemporad A, Filippi C (2003) Suboptimal explicit receding horizon
control via approximate multiparametric quadratic programming.
J Optim Theory Appl 117(1):9–38. https://doi.org/10.1023/A:
1023696221899

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evolut
Comput 6(2):182–197

DrelaM (2001) XFOIL 6.9 user primers. MIT AERO and Astro Harold
Youngren, Aerocraft, Incl

Dua V, Pistikopoulos EN (1999) Algorithms for the solution of
multiparametric mixed-integer nonlinear optimization problems.
Ind Eng Chem Res 38(10):3976–3987. https://doi.org/10.1021/
ie980792u

Dua V, Pistikopoulos EN (2000) An algorithm for the solution of
multiparametric mixed integer linear programming problems, p 17

Fiacco AV (1976) Sensitivity analysis for nonlinear programming
using penalty methods. Math Program 10(1):287–311. https://doi.
org/10.1007/BF01580677

Filippi C (2004) An algorithm for approximate multiparametric
linear programming. J Optimiz Theory App 120(1):73–95.
https://doi.org/10.1023/B:JOTA.0000012733.44020.54

Gal T (1984) Linear parametric programming—a brief survey.
Springer, Berlin, pp 43–68. https://doi.org/10.1007/BFb0121210

Galvan E, Malak RJ (2015) P3ga: an algorithm for technology
characterization. J Mech Des 137(1):011401

Galvan E, Malak RJ, Hartl DJ, Baur JW (2018) Performance assess-
ment of a multi-objective parametric optimization algorithm with
application to a multi-physical engineering system. Struct Mul-
tidiscip Optim 58(2):489–509. https://doi.org/10.1007/s00158-
018-1902-x

Gamboa P, Vale J, Lau FJP, Suleman A (2009) Optimization of
a morphing wing based on coupled aerodynamic and structural
constraints, vol 47. https://doi.org/10.2514/1.39016

Goldberg DE, Holland JH (1988) Genetic algorithms and machine
learning. Mach Learn 3(2):95–99

Hale ET (2005) Numerical methods for d-parametric nonlinear
programming with chemical process control and optimization
applications. Chemical Engineering Department, University of
Texas. Austin, TX

Hartl DJ, Galvan E, Malak RJ, Baur JW (2016) Parameterized
design optimization of a magnetohydrodynamic liquid metal
active cooling concept. J Mech Des 138(3):031402

Hicks RM, Henne PA (1978) Wing design by numerical optimization.
J Aircr 15(7):407–412. https://doi.org/10.2514/3.58379

Jacobs E, Pinkerson R (1936) Tests in the variable-density wind tunnel
of related airfoils having the maximum camber unusually far
forward. NACA-TR-537, U.S. environmental protection agency
available through the National Technical Information Service,
Springfield, VA. Langley Field, VA, United States

Kulfan B (2007) Recent extensions and applications of the “CST”
universal parametric geometry representation method. In: 7th
AIAA aviation technology, integration and operations conference
(ATIO). American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2007-7709

Lane K, Marshall D (2009) A surface parameterization method for
airfoil optimization and high lift 2d geometries utilizing the cst
methodology. American Institute of Aeronautics and Astronautics.
https://doi.org/10.2514/6.2009-1461

Leal PB, Stroud H, Sheahan E, Cabral M, Hartl DJ (2018) Skin-based
camber morphing utilizing shape memory alloy composite actua-
tors in a wind tunnel environment. American Institute of Aeronau-
tics and Astronautics. https://doi.org/10.2514/6.2018-0799

Leal PBC, Hartl DJ (2019) Structurally consistent class/shape
transformation equations for morphing airfoils. J Aircr 56(2):505–
516. https://doi.org/10.2514/1.C035025

Leal PBC, Patterson R, Hartl DJ (2017) Design optimization
toward a shape memory alloy-based bio-inspired morphing wing.
https://doi.org/10.2514/6.2017-0054

Leal PBC, Savi MA, Hartl DJ (2018) Aero-structural optimization of
shape memory alloy-based wing morphing via a class/shape trans-
formation approach. P I Mech Eng G-J Aer 232(15):2745–2759.
https://doi.org/10.1177/0954410017716193

Liem RP, Martins JR, Kenway GK (2017) Expected drag minimization
for aerodynamic design optimization based on aircraft operational
data. Aerosp Sci Technol 63:344–362. https://doi.org/10.1016/j.
ast.2017.01.006

Liu Y, Yang C, Song X (2015) An airfoil parameterization method for
the representation and optimization of wind turbine special airfoil.
J Therm Sci 24(2):99–108. https://doi.org/10.1007/s11630-015-
0761-7

Lophaven SN, Nielsen HB, Sondergaard J (2002) Dace - a Matlab kri-
ging toolbox, Version 2.0. Technical Report No IMM-TR-2002-12

Maglieri DJ, Bobbitt PJ, Plotkin KJ, Shepherd KP, Coen PG, Richwine
DM (2014) Sonic boom: six decades of research. NASA Langley
Research Center, Hampton, Virginia, United States, NASA SP-
2014-622

Malak RJ, Paredis CJJ (2010) Using support vector machines to
formalize the valid input domain of predictive models in systems
design problems. J Mech Des 132(10):101001. https://doi.org/10.
1115/1.4002151

MATLAB (2017b) MATLAB user manual R2017b
Morris AM, Allen CB, Rendall TCS (2010) High-fidelity aerodynamic

shape optimization of modern transport wing using efficient
hierarchical parameterization. Int J Numer Methods Fluids
63(3):297–312. https://doi.org/10.1002/fld.2067

Nam C, Chattopadhyay A, Kim Y (2002) Application of shape
memory alloy (SMA) spars for aircraft maneuver enhancement.
In: SPIE’s 9th annual international symposium on smart structures
and materials, international society for optics and photonics,
pp 226–236

Pankonien AM, Gamble L, Faria C, Inman DJ (2016) Synergistic smart
morphing aileron: capabilites identification. American institute of
aeronautics and astronautics. https://doi.org/10.2514/6.2016-1570

3006

https://doi.org/10.1021/ie0301278
https://doi.org/10.1007/978-3-642-28302-420
https://doi.org/10.1023/A:1023696221899
https://doi.org/10.1023/A:1023696221899
https://doi.org/10.1021/ie980792u
https://doi.org/10.1021/ie980792u
https://doi.org/10.1007/BF01580677
https://doi.org/10.1007/BF01580677
https://doi.org/10.1023/B:JOTA.0000012733.44020.54
https://doi.org/10.1007/BFb0121210
https://doi.org/10.1007/s00158-018-1902-x
https://doi.org/10.1007/s00158-018-1902-x
https://doi.org/10.2514/1.39016
https://doi.org/10.2514/3.58379
https://doi.org/10.2514/6.2007-7709
https://doi.org/10.2514/6.2009-1461
https://doi.org/10.2514/6.2018-0799
https://doi.org/10.2514/1.C035025
https://doi.org/10.2514/6.2017-0054
https://doi.org/10.1177/0954410017716193
https://doi.org/10.1016/j.ast.2017.01.006
https://doi.org/10.1016/j.ast.2017.01.006
https://doi.org/10.1007/s11630-015-0761-7
https://doi.org/10.1007/s11630-015-0761-7
https://doi.org/10.1115/1.4002151
https://doi.org/10.1115/1.4002151
https://doi.org/10.1002/fld.2067
https://doi.org/10.2514/6.2016-1570


Parametric optimization for morphing structures design...

Pistikopoulos EN, Dua V, Bozinis NA, Bemporad A, Morari M (2004)
On-line optimization via off-line parametric optimization tools.
Comput Chem Eng 24(2-7):183–188

Selig M (1995) Summary of low speed airfoil data. SoarTech
publications

Spiegel M, Subrahmanyam A (2015) Informed speculation and
hedging in a noncompetitive securities market. Rev Financ Stud
5(2):307–329. https://doi.org/10.1093/rfs/5.2.307. http://oup.prod.
sis.lan/rfs/article-pdf/5/2/307/24417338/050307.pdf

Spjøtvold J, Tøndel P, Johansen TA (2007) Continuous selection
and unique polyhedral representation of solutions to convex
parametric quadratic programs. J Optim Theory Appl 134(2):177–
189. https://doi.org/10.1007/s10957-007-9215-z

Tandies E, Assareh E (2016) Inverse design of airfoils via an
intelligent hybrid optimization technique. Eng Comput 33(3):361–
374. https://doi.org/10.1007/s00366-016-0478-6

Tax DM, Duin RP (1999) Support vector domain description. Pat-
tern Recogn Lett 20(11-13):1191–1199. https://doi.org/10.1016/
S0167-8655(99)00087-2

van Beers WCM, Kleijnen JPC (2004) Kriging interpolation in sim-
ulation: a survey. In: Proceedings of the 2004 winter simula-
tion conference, vol 1, p 121. https://doi.org/10.1109/WSC.2004.
1371308

Wang Y, Seki H, Ohyama S, Akamatsu K, Ogawa M, Ohshima
M (2000) Optimal grade transition control for polymerization
reactors, vol 24. https://doi.org/10.1016/S0098-1354(00)00550-0

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Jonathan M. Weaver-Rosen1 · Pedro B. C. Leal2 · Darren J. Hartl2 · Richard J. Malak Jr.1

Jonathan M. Weaver-Rosen
jonr23@tamu.edu

Pedro B. C. Leal
leal26@tamu.edu

Darren J. Hartl
darren.hartl@tamu.edu

1 Department of Mechanical Engineering, Texas A&M
University, College Station, TX, 77843, USA

2 Department of Aerospace Engineering, Texas A&M
University, College Station, TX, 77843, USA

3007

https://doi.org/10.1093/rfs/5.2.307
http://oup.prod.sis.lan/rfs/article-pdf/5/2/307/24417338/050307.pdf
http://oup.prod.sis.lan/rfs/article-pdf/5/2/307/24417338/050307.pdf
https://doi.org/10.1007/s10957-007-9215-z
https://doi.org/10.1007/s00366-016-0478-6
https://doi.org/10.1016/S0167-8655(99)00087-2
https://doi.org/10.1016/S0167-8655(99)00087-2
https://doi.org/10.1109/WSC.2004.1371308
https://doi.org/10.1109/WSC.2004.1371308
https://doi.org/10.1016/S0098-1354(00)00550-0
http://orcid.org/0000-0003-1087-5452
http://orcid.org/0000-0002-1485-9495
http://orcid.org/0000-0001-9922-0481
http://orcid.org/0000-0003-3341-5555
mailto: jonr23@tamu.edu
mailto: leal26@tamu.edu
mailto: darren.hartl@tamu.edu

	Parametric optimization for morphing structures design...
	Abstract
	Introduction
	Parametric optimization
	Theory
	Methods

	Camber morphing wing description
	Parametric formulation of a morphing aerostructure design problem
	Results
	Two-parameter problem
	Three-parameter problem

	Benchmarking
	Conclusion
	References
	Affiliations


