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Abstract
A method for the topology optimization of structures composed of nonlinear beam elements based on a hysteretic finite
element modeling approach is presented. In the context of the optimal design of structures composed of truss or beam
elements, studies reported in the literature have mostly considered linear elastic material behavior. However, certain
applications require consideration of the nonlinear response of the structural system to the given external forces. Particular
to the methodology suggested in this paper is a hysteretic beam finite element model in which the inelastic deformations are
governed by principles of mechanics in conjunction with first-order nonlinear ordinary differential equations. The nonlinear
ordinary differential equations determine the onset of inelastic deformations and the approximation of the signum function in
the differential equation with the hyperbolic tangent function permits the derivation of analytical sensitivities. The objective
of the optimization problem is to minimize the volume of the system such that a system-level displacement satisfies a
specified constraint value. This design problem is analogous to that of seismic design where inelastic deformations are
permitted, yet sufficient stiffness is required to limit the overall displacement of the system to a specified threshold. The
utility of the method is demonstrated through numerical examples for the design of two structural frames and a comparison
with the solution from the topology optimization assuming linear elastic material behavior. The comparisons show that the
nonlinear design is either comprised of a lower volume for a given level of performance, or offers better performance for a
given volume in comparison with optimized linear design.

Keywords Topology optimization · Hysteretic finite element · Beam element · Material inelasticity · Frame structures

1 Introduction

Certain design applications require consideration of the
nonlinear structural response, e.g., material inelasticity or
buckling, to ensure the design meets specific requirements.
For example, when designing structural systems for
seismic excitation, the systems are intentionally permitted
to undergo inelastic deformations while not exceeding
specified drift limits (ASCE 2017). Although a substantial
body of literature exists on the design of structural systems
by topology optimization (Bendsoe and Sigmund 2004)
spanning from early work by Miche (1904), to more
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recent advancements in methodological developments and
applications (Sigmund 1994; Le et al. 2010; Asadpoure
et al. 2011; Deaton and Grandhi 2014), these studies
often invoke the assumption of linear elastic material
response. More recently, studies have relaxed the elastic
material assumption (e.g., Nakshatrala and Tortorelli 2015;
Alberdi and Khandelwal 2017) explicitly considering
inelastic material response. However, existing literature
considering material inelasticity has focused almost entirely
on continuum. In this paper, a method for the topology
optimization of nonlinear structural systems composed
of beam elements considering material inelasticity is
presented. Material inelasticity is modeled using a hysteretic
beam finite element (FE) formulation (Triantafyllou and
Koumousis 2011, 2012). The objective of the topology
optimization formulation is to minimize the total volume,
that can be considered a proxy for the cost of the structural
system, while constraining the system-level deformation.

A benefit of the hysteretic beam FE formulation, in
the context of topology optimization, is that it permits
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the derivation of continuous and differentiable sensitivities
facilitating the use of gradient-based optimization algo-
rithms as described in detail in this paper. Similar to the
established FE approach (Bathe 2006), the hysteretic FE
method uses displacement interpolation functions to relate
nodal degrees-of-freedom (DOF) to internal strain fields
within each element. Unique to the hysteretic FE approach,
however, are the addition of hysteretic DOF and associated
hysteretic interpolation functions that distribute the inelas-
tic response along the length of the element. The hysteretic
DOF are governed by first-order nonlinear ordinary differ-
ential equations (ODEs), commonly referred to as evolution
equations, and determine the onset of material inelasticity
(Sivaselvan and Reinhorn 2000; Triantafyllou and Kou-
mousis 2011). An additional benefit of the hysteretic FE
formulation is that it offers computational efficiency, espe-
cially for transient excitation, due to the constant elastic
stiffness and hysteretic matrices, which are evaluated only
once at the outset of the analysis, and do not require updat-
ing throughout. Furthermore, in the context of topology
optimization, this means their associated sensitivities with
respect to the design variable, also only need to be evaluated
for each nonlinear analysis.

Literature pertaining to nonlinearity in topology opti-
mization has generally focused on continuum structures
employing elasto-plastic or plasticity formulations. Several
of these past studies have developed methods and/or analyt-
ical sensitivities for history-dependent problems for finite
strain under quasi-static conditions (Tortorelli 1992; Maute
et al. 1998; Yuge et al. 1999; Nakshatrala et al. 2013;
Zhang et al. 2017a), transient excitation and dynamic condi-
tions (Nakshatrala and Tortorelli 2015; Alberdi et al. 2018),
and for considering both material and kinematic nonlinear-
ities (Kleiber 1993; Tsay and Arora 1990; Schwarz et al.
2001; Wallin et al. 2016). Furthermore, recent studies have
suggested combining the areas of nonlinear topology opti-
mization of continuum structures and damage mechanics
for the design of damage resistant structures (Achtziger and
Bendsøe 1995; James and Waisman 2014, 2015; Alberdi
and Khandelwal 2017; Li et al. 2017, 2018; Li and Khandel-
wal 2017). For this class of problems a damage model and
local damage constraints are typically incorporated into the
design problem to achieve damage resistant designs.

A few studies have considered nonlinearity for the
topology optimization of frame structures. An early work
by Yuge and Kikuchi (1995) studied the optimal design
of frame structures considering plastic deformations. In
the Yuge and Kikuchi (1995) study, two-dimensional
structures were represented by a periodic microstructure
where the stress field was obtained from an elasto-
plastic FE analysis based on the homogenization method
and plastic deformations followed plastic flow theory.

In another work, Pedersen (2003) studied plasticity in
topology optimization in the context of crashworthiness,
where a ground structure composed of two-dimensional
beam elements with rectangular solid cross sections was
considered and optimized to maximize energy absorption.
In the Pedersen (2003) study, plastic deformations were
assumed to be concentrated at the ends of the beam elements
and the plastic deformations modeled using conventional
plastic flow theory. Later, Pedersen (2004) extended the
method to account for distributed plasticity in the beam
elements. Others have studied nonlinear elastic and hyper-
elastic materials in continuum (Klarbring and Strömberg
2013; Luo et al. 2015) and discrete uniaxial truss element
systems (Ramos and Paulino 2015; Zhang et al. 2017b).
Multi-material design considering material nonlinearity has
also been suggested for periodic structures (Swan and
Kosaka 1997) and for truss structures (Zhang et al. 2018).
However, the assumption of nonlinear elastic material
behavior is not suitable when inelastic deformations are
expected as is the case when designing structures to resist
seismic ground motion.

Here we present, a method for the topology optimization
of nonlinear structural systems composed of beam elements
considering inelastic material behavior. As mentioned
previously, the method combines topology optimization
with a hysteretic FE approach to model the inelastic material
behavior and as such original mathematical formulations
and analytical sensitivities necessary to employ this
modeling framework for the design of structural systems
are presented. For this study, the ground structure approach,
widely used for the topology optimization of structures
is employed (Bendsoe and Sigmund 2004; Rozvany
and Lewinski 2014). Nonlinear quasi-static analysis is
carried out using the hysteretic beam FE model and an
iterative solution scheme. As has been suggested by Kim
et al. (2003) and Gömöry et al. (2009) for different
applications, the hyperbolic tangent function is suggested
as a suitable approximation of the signum function
in the hysteretic evolution equations, to ensure these
functions are continuous and differentiable everywhere.
As such, analytical sensitivities with respect to the design
variable were derived by direct differentiation. Numerical
design examples are presented for the quasi-static case to
demonstrate the utility of the method, where the objective of
the design is to minimize the volume in a given domain for
a given external force(s) subject to a specified system-level
displacement constraint. For comparison, linear minimum
compliance topology optimization problem is solved to
obtain an optimal linear design solution using the optimal
volume of the nonlinear design. Nonlinear analysis is
performed with the linear minimum compliance design for
the same level of external force and the results are compared
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with that of the nonlinear volume minimization design to
study and illustrate the impact of explicitly considering
material inelasticity in the optimization problem.

The remainder of the paper is organized as follows.
Section 2 presents the overall methodology, beginning with
a discussion on the nonlinear FE modeling approach in
the context of beam elements. This discussion is followed
by the design formulation for topology optimization of
structural systems considering material inelasticity, solution
schemes for the nonlinear analysis and sensitivities with
respect to the design variables. Section 3 presents the
numerical examples and associated results whereby the
methodology is applied for the design of structural systems
for static excitation including discussions of the results
and observations. Lastly, in Section 4, a summary and
description of the main contributions and findings are
provided.

2Methodology

The proposed method consists of three main components,
specifically nonlinear structural analysis employing the
hysteretic beam FE model, the optimization problem
formulation, and the corresponding sensitivities to facilitate
gradient-based optimization. Evaluation of the performance
of a given system relies on the nonlinear static analysis
employing the hysteretic beam FE model and provides the
basis for the derivation of the sensitivities, hence important
details of the modeling approach are described in the
subsequent section for the benefit of the remainder of the
paper. Herein, boldface upper and lower case font denote
matrix and vector quantities, respectively.

2.1 Nonlinear beam FEmodel

Given the focus of this study being on the optimization of
frame structures, an appropriate nonlinear beam FE model
that is able to simulate inelastic behavior of beam elements
is required. Here the hysteretic beam FE model suggested
by Triantafyllou and Koumousis (2012) is adopted. The
hysteretic FE approach is the result of efforts by various
researchers to extend hysteretic models governed by first-
order ODEs (Bouc 1967; Baber and Wen 1981; Baber
and Noori 1985; Foliente 1995) beyond the uniaxial case
toward established mechanics frameworks including an
integrated hysteretic beam FE formulation (Triantafyllou
and Koumousis 2011, 2012), multi-axial plasticity (Casciati
1989; Sivaselvan and Reinhorn 2000) and more recently
a consistent nonlinear Timoshenko beam FE formulations
(Amir et al. 2019). For a detailed derivation of the
model formulations, the interested reader is referred to the
aforementioned studies.

Like the conventional displacement-based FE approach
(Bathe 2006), the hysteretic FE method employs displace-
ment interpolation functions, however, there are additional
hysteretic DOF and associated interpolation functions that
differentiate the hysteretic FE modeling approach from
conventional methods. This section summarizes the gen-
eral concept and notable details of the hysteretic beam
FE model. Additional details, definitions, and relationships
necessary to complete the formulation can be found in
Appendices 1 and 2. The model employed here is based
upon a two-node Euler-Bernoulli beam element with length
L as illustrated in Fig. 1. The beam element has three
independent displacement DOF for each node, namely lon-
gitudinal u, transverse w and rotation θ ; however, unique to
this FE modeling approach are hysteretic DOF, z, in addi-
tion to the traditional displacement DOF. Two hysteretic
DOF are considered for each node, specifically zu and zφ

corresponding to longitudinal and rotational deformations,
respectively. Thus, the element displacement and hysteretic
DOF vectors can be defined as:

del = [
u1 w1 θ1 u2 w2 θ2

]T

zel = [
zu1 zφ1 zu2 zφ2

]T
, (1)

where the superscripts e and l denote element-level
and DOF with respect to the element local coordinates,
respectively. Subscripts 1 and 2 correspond to the start and
end nodes, respectively. Herein, superscripts e and l are
only shown when necessary to differentiate element from
system-level and local from global coordinates. Assuming
a prismatic beam element, the internal stress resultants at a

Fig. 1 Illustration of a two-node beam element and corresponding
displacement and hysteretic DOF
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given point x along the length of the element are given by
the following set of hysteretic laws:

P(x) = αuEaεu(x) + (1 − αu)Eazu(x)

M(x) = αφEIεφ(x) + (1 − αφ)EIzφ(x), (2)

where P(x) and M(x) correspond to axial force and bend-
ing moment, respectively. The stress resultants in (2) can
be viewed as the sum of two parallel components, the first
component contributing to the post-elastic kinematic hard-
ening and the second is the nonlinear component simulating
the hysteretic behavior according to the hysteretic DOF
(zu(x) and zφ(x)). Variables εu(x) and εφ(x) are the axial
strain and curvature, respectively; E, I , and a are the elas-
tic modulus, moment of inertia, and cross-sectional area
of the beam element, respectively; and αu and αφ are the
ratio of post-elastic to elastic modulus for axial and bending
deformations, respectively.

The hysteretic DOF evolved according to a set of
nonlinear ODEs, commonly referred to as evolution
equations, that for the axial deformation and curvature are
expressed as:

żu(x) = (1 − H1u(x)H2u(x)) ε̇u(x)

żφ(x) = (
1 − H1φ(x)H2φ(x)

)
ε̇φ(x), (3)

where H1u(x) and H1φ(x) are functions given by:

H1u(x) =
∣
∣
∣∣
P h(x)

P h
c

∣
∣
∣∣

n

, H1φ(x) =
∣
∣
∣∣
Mh(x)

Mh
c

∣
∣
∣∣

n

. (4)

In (4), P h(x) is the current hysteretic axial force,
P h

c is the hysteretic axial force capacity, Mh(x) is the
current hysteretic bending moment, Mh

c is the hysteretic
bending moment capacity and n is a hysteretic parameter
that controls the transition between elastic and inelastic
branches. Furthermore, H2u(x) and H2φ(x) in Eq. 3 are
heaviside functions expressed as follows:

H2u(x) = γ sgn
(
P h(x)ε̇u(x)

)
+ β

H2φ(x) = γ sgn
(
Mh(x)ε̇φ(x)

)
+ β, (5)

where sgn(·) is the signum function and β and γ

are parameters that control the relationship between the
loading and unloading stiffness. Specifying the hysteretic
parameters to satisfy the following constraints of β + γ =
1 and −γ ≤ β ≤ γ have been proven to result in a
thermodynamically admissible model (Erlicher and Point
2004). Hence, in this study, both β and γ are set equal to 0.5
that results in the loading and unloading stiffnesses being
equal in addition to satisfying the parameter constraints. To
consolidate the notation into more compact expressions, the
hysteretic laws shown in (2) are expressed in matrix format
as:

mel(x) = Dε(x) + Dhzel(x), (6)

where the components of mel(x) are arranged as mel(x) =
[P(x) M(x)]T , and matrices D and Dh are the elastic and
hysteretic rigidity matrices whose elements are functions of
the material and the cross sectional properties. Similarly, the
evolution equations shown in (3) are compactly expressed
in matrix format as follows:

żel(x) = (I2×2 − S(x)) ε̇(x), (7)

where I is identity matrix and the matrix S(x) is defined in
(8).

S(x) =
[

H1u(x)H2u(x) 0
0 H1φ(x)H2φ(x)

]
. (8)

Following the displacement-based FE approach, the
conventional cubic displacement interpolation functions
are used to relate nodal displacements to the local
deformation fields at a given location along the length of
the element but are omitted here for brevity (see Bathe
2006). Assuming axial force is constant along the length of
the element, that the bending moment varies linearly, and
applying the appropriate hysteretic boundary conditions,
the interpolation functions for the hysteretic DOF, zel are
expressed as:

zu(x) = [
0.5 0.5

]
[

zu1

zu2

]

zφ(x) = [
1 − x

L
x
L

]
[

zφ1

zφ2

]
. (9)

The hysteretic interpolation functions shown in (9) serve
to distribute the inelasticity along the length of the element.
Substituting the hysteretic laws in (2), the interpolation
functions and their derivatives into the variational principle
of virtual work expressed for a given location x along
the length of the beam element, performing the required
integration by parts and enforcing the integration limits of
0 and L, the following element elastic stiffness matrix and
hysteretic matrix are obtained:

Kel = E

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎣

αua
L

0 0 −αua
L

0 0

0 12αφI

L3
6αφI

L2 0 − 12αφI

L3
6αφI

L2

0 6αφI

L2
4αφI

L
0 − 6αφI

L2
2αφI

L−αua
L

0 0 αua
L

0 0

0 − 12αφI

L3 − 6αφI

L2 0 12αφI

L3 − 6αφI

L2

0 6αφI

L2
2αφI

L
0 − 6αφI

L2
4αφI

L

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎦

Hel = E

⎡

⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

(αu−1)a
2 0 (αu−1)a

2 0

0 (αφ−1)I

L
0 − (αφ−1)I

L

0 (αφ − 1)I 0 0
− (αu−1)a

2 0 − (αu−1)a
2 0

0 − (αφ−1)I

L
0 (αφ−1)I

L

0 0 0 −(αφ − 1)I

⎤

⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

.

(10)
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Thus, the element force deformation relationship in local
coordinates can be compactly expressed as:

Keldel + Helzel = fel . (11)

To proceed to the solution of the system-level equations
in global coordinates, both Kel and Hel must be transformed
to the global coordinates system which can be accomplished
according to the following expressions:

Ke = ΛT KelΛ, He = ΛT Hel, (12)

where Λ is the conventional 6 × 6 transformation matrix
for beam element (Bathe 2006). After performing the
appropriate transformations and mapping, the global force-
displacement equations are expressed as follows:

Kd + Hz = f, (13)

where K and d are the stiffness matrix and displacement
vector respectively, H and z are the hysteretic matrix and the
hysteretic vector, respectively, and f is a vector of external
nodal forces all in global coordinates. After assembling the
global matrices, boundary conditions are imposed in the
usual manner to obtain the system matrices via the typical
direct stiffness assembly method. A benefit of this hysteretic
FE modeling approach, in comparison with the more typical
plasticity approach, is that the matrices K and H only need
to be evaluated once, at the outset of the nonlinear analysis
and otherwise remain constant.

The gradient-based optimization requires sensitivities
of the objective function and constraints with respect
to the design variables. For computational efficiency, it
is preferable to use analytical sensitivities to numerical
approximations and this point is one of the motivations for
employing the hysteretic beam FE model. However, the
exact form of the nonlinear ODEs shown in (7) includes
the signum function. Hence, a mathematical approximation
is introduced in order to obtain analytical sensitivities
that are continuous and differentiable everywhere. Here,
the hyperbolic tangent function is introduced as an
approximation for the signum function according to:

H2u = γ tanh(ζP hε̇u) + β

H2φ = γ tanh(ζMhε̇φ) + β, (14)

where ζ is a coefficient that controls the shape of
the hyperbolic tangent function in the proximity of
zero. Assigning a large numerical value to ζ , closely
approximates the signum function shape yet remains
differentiable. In this study, a value of 50 is specified for ζ .

2.2 Optimization problem

The design problem considered here seeks to minimize the
volume of the structural system subject to a system-level
displacement constraint. Hence, having the nonlinear beam

FE model, the volume minimization topology optimization
problem considering material inelasticity subject to a
system-level displacement constraint can be expressed as:

Find : a1, ..., aN

Minimize
a

: v =
N∑

s=1

asLs

Subject to : Kd + Hz = f

dv ≤ d∗

0 < ρmin < a ≤ ρmax, (15)

where v is the volume in the domain, a is a vector of
design variables representing the individual element cross-
sectional areas and N is the number of elements, for a given
iteration in the optimization process. Here, equilibrium of
the structural system and the system-level displacement
are imposed as constraints which relate the response
of the system to the design variables. Nonlinear static
analysis is performed to establish equilibrium of the system
and to evaluate the response, which is the displacement
at a specific degree of freedom, dv , here representing
the system-level deformation which is constrained to a
threshold value d∗. Each element’s cross-sectional area, as ,
is also constrained in (15) between ρmin and ρmax. The lower
limit ρmin avoids singularity during the optimization process
and the upper limit is based on the maximum cross sectional
area available for I-shaped sections in American Institute
of Steel Construction (2015). An approach for relating
the cross-sectional area to other geometric properties
for I-shaped cross sections suggested by Changizi and
Jalalpour (2017b) is adopted in this study and the regression
curves for the median range are used for the optimization
process.

2.2.1 Nonlinear analysis

Nonlinear static analysis is employed to determine the
unknown DOF, d and z. Each nonlinear static analysis
is performed in a step-wise fashion until the specified
external force value is attained. A challenge when material
inelasticity is considered, is the iterative, and hence
computationally expensive analysis, which is often required.
For this study, a Newton solution scheme is devised for
the hysteretic FE model and the nonlinear static analysis
whereby for each force step, the unknowns (that is d and z)
are iteratively updated until the norm of the residual vector
falls below the specified tolerance. For the solution scheme,
the equilibrium equations and hysteretic evolution equations
are combined into a single system of nonlinear equations
whereby the unknown displacement and hysteretic DOF are
simultaneously updated in an iterative manner. We define
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a vector, xj+1
i+1 , which is an augmented set of unknowns

containing d and z as:

xj+1
i+1 =

[
dj+1

i+1

zj+1
i+1

]

, (16)

where i represents the ith force-step and j represents the
j th iteration of the ith force step. For a given force step,
the vector of unknowns, xj+1

i+1 , is updated according to the
following expression:

xj+1
i+1 = xj

i+1 − J−1
v gv, (17)

where Jv and gv are the Jacobian matrix and residual vector,
respectively, each subsequently defined. For a quasi-static
analysis, the rate of change of the hysteretic DOF and strains
are approximated using the following backward difference
expressions to convert the nonlinear ODEs into a set of
algebraic expressions conducive to the Newton update:

żel
i+1 = Δzel

Δt
= zel

i+1 − zel
i

Δt

ε̇i+1 = Δε

Δt
= εi+1 − εi

Δt
, (18)

where Δt represents pseudo time that is, nevertheless,
eliminated from the equations through algebra. Substituting
(18) into (7), the following expression is obtained that
relates zel

i+1 to εi+1 for the two-node beam element:

zel
i+1 = zel

i + (I2×2 − S)Δε, (19)

and the equilibrium equation at step i + 1 can be written as:

Kdj

i+1 + Hzj

i+1 = fi+1. (20)

Thus, the combined system of equations, which is
the equilibrium (20) and the hysteretic evolution (19), is
expressed compactly for the Newton update as:

gv = qv + Tvx
j

i+1 − cv . (21)

The quantities qv , Tv and cv are expressed as follows:

qv =
[
03r×1

gz

]
, Tv =

[
K H

−R I3r×4N

]

cv =
[
fi+1

gzc

]
, (22)

where r is the number of nodes in the domain. The quantities
gz, R and gzc are assembly matrices of the following
element-level relations:

ge
z = SΔε, Re = BΛ, ge

zc = zi − εi , (23)

where B is the strain-displacement matrix for the beam
element. Lastly, the Jacobian matrix, Jv , is evaluated
according to (24):

∂gv

∂xj

i+1

= Jv = Tv + Jvn, (24)

where Jvn is the part of the Jacobian matrix with complete
derivation provided in Appendix 3. With all associated
terms sufficiently defined in (16) through (24), the system
of nonlinear equations can be solved for each iteration of the
optimization process to determine the DOF of the system, d
and z, for a specified external force, f.

2.2.2 Sensitivities

The use of gradient-based optimization necessitates sensi-
tivities with respect to the design variable, a. The sensitivity
of the objective function is obtained in a straightforward
manner and is omitted here for brevity. The main challenge
in deriving the sensitivities arises from the nonlinear con-
straint on the system-level displacement. Sensitivities for
the displacement constraint were derived through direct dif-
ferentiation and begins with the differentiation of the aug-
mented vector, xj+1

i+1 , with respect to a and continues with
the differentiation of all subsequent terms to obtain the ana-
lytical expressions for the sensitivities. The key steps of the
derivation are provided here and additional details for the
complete derivation are given in Appendix 4. The derivative
of system-level displacement constraint is a component of:

∂xj+1
i+1

∂a
=

⎡

⎣
∂dj+1

i+1
∂a

∂zj+1
i+1
∂a

⎤

⎦ , (25)

where this derivative is obtained by differentiation of (17)
according to:

∂xj+1
i+1

∂a
= ∂xj

i+1

∂a
+ J−1

v

∂Jv

∂a
J−1
v gv − J−1

v

∂gv

∂a
, (26)

and the derivative of the Jacobian matrix, ∂Jv/∂a, is:

∂Jv

∂a
= ∂Tv

∂a
+ ∂Jvn

∂a
. (27)

The third term in (26), ∂gv/∂a, is obtained by
differentiating (21) as follows:

∂gv

∂a
= ∂qv

∂a
+ ∂Tv

∂a
xj

i+1 + Tv

∂xj

i+1

∂a
− ∂cv

∂a
. (28)

As indicated by (28), the derivatives of the expressions in
(22) for qv , Tv and cv are required and are expressed as:

∂qv

∂a
=

[
03r×1

∂gz

∂a

]
,

∂Tv

∂a
=

[
∂K
∂a

∂H
∂a

04N×3r 04N×4N

]

∂cv

∂a
=

[
03r×1
∂gzc

∂a

]
, (29)
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where ∂gz/∂a is an assembly of the following element-level
derivatives:

∂ge
z

∂a
= ∂S

∂a
Δε + S

∂Δε

∂a

∂S
∂a

=
[

∂H1u

∂a
H2u + H1u

∂H2u

∂a
0

0
∂H1φ

∂a
H2φ + H1φ

∂H2φ

∂a

]

,

(30)

and similarly, ∂gzc/∂a is obtained using the element
expression given by:

∂ge
zc

∂a
= ∂zel

i

∂a
− ∂εi

∂a
,

∂εi

∂a
= BΛ

∂de
i

∂a
. (31)

Equations (26)–(31), and the derivative of the objective
omitted, comprise the analytical sensitivities for the volume
minimization design formulation.

2.3 Solution of the topology optimization process

With the requisite components having been developed in
the previous sections, the problem formulation described in
Section 2 for the topology optimization of frame structures
considering material inelasticity is applied following the
process depicted by the flow diagram shown in Fig. 2.
Rather than perform a single phase of optimization and
then post-process the results, removing elements with
areas less than the minimal constraint value, which could
result in a design solution that does not satisfy the
constraints, in this study multiple phases of optimization
are performed to ensure the final optimized design satisfies
the constraints. For each phase of optimization, the
gradient-based algorithm employed is the Interior Point
algorithm by way of the fmincon function in MATLAB
(The MathWorks Inc. 2018) with a specified tolerance
of 0.0001% on the objective function and the nonlinear
constraint. Following the first phase of optimization,
element areas are ranked and those with minimal area are
removed from the ground structure, but without exceeding
a total elements volume of 5% and an updated FE
model is generated accordingly for a subsequent phase of
optimization. The limit of 5% of the total volume was
found to provide an adequate balance between additional
computation and egregious degeneration of the solution. No
difference in the final solution was observed when testing
lower values for this limit, e.g., 2%. To achieve a converged
design solution, subsequent phases of the optimization
process (see Fig. 2), typically two or three, are performed
each starting with the updated design configuration with
minimal area elements having been removed. Convergence
is achieved when no elements in the optimized design
have minimal area, and the topology connectivity remains
unchanged throughout a given phase of optimization. For
each design application, the nonlinear static analysis is

Fig. 2 Flowchart for topology optimization solution scheme

carried out using the iterative Newton solution scheme
outlined in the previous section. The specified external force
is applied in 20 equal force increments.

Due to the non-convex nature of the volume minimiza-
tion problem, the global optima cannot be guaranteed.
However, in an effort to investigate the non-convexity and
gain confidence in the optimized solution, a multi-start strat-
egy where initial values of the design variables are randomly
assigned (Boese et al. 1994; Martı́ et al. 2016) is adopted in
this study. For each numerical example, an entire optimiza-
tion process was conducted for five starting cases, which
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is the set of specified initial cross-sectional areas, and the
solution from the five optimization processes with the low-
est objective function value is considered the best estimate
of the global optimal design solution. For each randomized
start case, the initial cross-sectional areas are established by
sampling the volume for each element from a uniform dis-
tribution, from which the cross-sectional area is assigned
based upon the elements location in the ground structure.
One of the five starting cases assumed the initial cross-
sectional area of all elements in the ground structure to be
equal, referred to as uniform area.

3 Numerical examples

The utility of the proposed methodology is demonstrated
through two representative numerical examples for the
design of structural systems composed of beam elements.
Details pertaining to the two design examples are provided
in this section. As previously stated, the ground structure
approach is employed in this study, whereby a dense mesh
of connected elements is the initial configuration for the
considered design examples. The material is assumed to be
steel with Young’s modulus of 29,000 ksi and yield stress of
36 ksi. The inelastic to elastic ratios, αu and αφ , are each set
equal to 0.01, and exponent, n, for the hysteretic functions
is set equal to 2. The constitutive relationship considered
is illustrated by the axial stress versus axial strain, and
normalized moment versus curvature relationships shown
in Fig. 3. These relationships are obtained using the
hysteretic laws (shown in (2)) and the entire response,
that is the loading branch, unloading branch and inelastic
deformations, are determined by the hysteretic variables that
are governed by the hysteretic evolution equations shown in
(3). Also shown in Fig. 3, for reference, is a linear elastic
response.

3.1 Example 1: a 4 × 2 frame structure

The first example is the design of a 4 × 2 frame structure
with a lateral force applied at the top left node of the domain.
The ground structure, boundary conditions and direction of
applied force are shown in Fig. 4. The dimensions of the
domain are Lx = 19.68 ft (6 m) and Ly = 39.4 ft (12 m).

Prior to each example, the accuracy of the analytical
sensitivities developed in Section 2.2.2 was evaluated by
comparison with that obtained from a finite difference
approximation. The sensitivity values of the displacement
constraint for the 4 × 2 frame ground structure are shown in
Fig. 5. As is seen from Fig. 5 the derived sensitivities from
the two methods agree well with negligible error (less than
0.05%), verifying the accuracy of the analytical sensitivities
obtained through the direct differentiation approach.

The minimum volume design problem subject to
displacement constraint is solved for the frame structure
shown in Fig. 4 for a specified displacement constraint
d∗ of 11.8 in., equivalent to a drift ratio of 2.5% (i.e.,
d∗/Ly = 0.025) and the specified external force of 500
kips. The optimized design for the d∗ = 0.025Ly by starting
optimization from the uniform area distribution is shown
in Fig. 6, where the thickness of the lines comprising the
topologies indicates the relative size of the element area
and the area values are normalized with respect to the
their maximum among the designs. The numerical value
adjacent to each element denote the element number. For
this example, a volume of 2.3995 × 104 in.3 was required
for the nonlinear optimization/design to satisfy the drift
constraint.

In addition to the uniform area starting case, as
described in Section 2.3, four randomized area starting
cases were performed for each numerical example in
an attempt to identify the global optima. The optimized
topologies obtained for each of the randomized starting
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Fig. 4 Ground structure for the 4 × 2 frame structure under a lateral
external force

cases, including attributes of the optimized designs, and a
plot of the initial randomized areas for the 4 × 2 frame
structure are presented in Fig. 7. Numerical values of
the initial cross-sectional areas for each starting case are
tabulated and reported in Appendix 5. It can be seen from a
comparison of the results shown in Fig. 6 with those shown
in Fig. 7 that, since all designs satisfy the displacement
constraint, d∗ = 11.81 in., the nonlinear design shown in
Fig. 6 is comprised of the lowest volume among the five
designs, and hence is considered the best solution.

To investigate the effect of considering material nonlin-
earity directly in the optimization problem, the best nonlin-
ear design shown in Fig. 6, is compared with the best design
solutions from two additional optimization problems con-
sidering the same domain and external force but assuming
the material to be linear elastic. Specifically, the first linear
optimization problem seeks to minimize the compliance for
a given volume constraint and the second linear optimiza-
tion problem seeks to minimize the volume subjected to a
drift displacement constraint. These linear design solutions
where then evaluated using nonlinear FE analysis described
in Section 2.2.1 to assess their respective performance and
compare this performance with that of the best nonlinear
design. Details pertaining to the two linear optimization for-
mulations can be found in Appendix 6. For both the linear
optimization problems, the same multi-start strategy per-
formed for the nonlinear design problem was employed, and
the solution with the lowest objective function value was
considered the best linear design. Figure 6 shows a compari-
son of the solution from the nonlinear volume minimization
problem, denoted nonlinear design, with the solution of
the linear compliance minimization problem, denoted linear

design, and their performance in terms of system force-
displacement response when evaluated using nonlinear FE
analysis. The linear design is obtained by setting the optimal
volume of the nonlinear design as the volume constraint for
the linear compliance problem. From Fig. 6 it can be seen
that both designs share a common primary load path; how-
ever, the nonlinear design includes an additional diagonal
element in comparison with the linear design and the pro-
portioning of the individual areas differs between the two
designs. For reference, the element with maximum area is
from the linear compliance design solution located at ele-
ment 7 with an area of 31.18 in.2. Importantly, from the
system force-displacement responses shown in Fig. 6, the
nonlinear design satisfies the specified constraint (11.8 in.),
whereas the linear design with the same volume of mate-
rial as the nonlinear design, exceeds the specified constraint
when evaluated by nonlinear FE analysis, with a displace-
ment of 15.06, equivalent to a drift ratio of 3.2%, or 27.5%
larger than the response of the nonlinear optimized design.

The solution of the second linear optimization problem,
that is volume minimization subject to the same displace-
ment constraint (2.5% drift) resulted in a linear design
solution with the same general topology as the other lin-
ear design shown in Fig. 6 but with a volume of 5.1767 ×
103 in.3. As anticipated, this volume is considerably smaller
than the optimized volume of the nonlinear design. Scal-
ing the linear volume of 5.1767 × 103 in.3 by a factor of
4.715, without changing the proportioning of the element
cross-sectional areas, results in a design based on the linear
optimized topology that satisfies the drift constraint when
evaluated by nonlinear quasi-static analysis. Interestingly,
4.715 × 5.1767 × 103 = 2.4408 × 104 in.3, exceeds the
volume of the nonlinear design of 2.3995 × 104 in.3. These
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Fig. 5 Comparison of the results of sensitivity analysis derived
with the analytical direct differentiation method and finite difference
approximation for the 4 × 2 frame ground structure
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Fig. 6 Nonlinear minimum volume design for 2.5% system drift ratio
and comparative linear design with the equivalent volume for the 4×2
frame structure along with the force-displacement responses for each

optimized design. Numerical values adjacent to structural elements
denote the element number

comparisons illustrate the nonlinear design offers either bet-
ter performance for the same volume or lower volume for
a given level of performance, by comparison with the two
optimized linear designs.

A summary of the performance metrics and design
attributes, for the nonlinear and linear designs, is provided
in Table 1. The cross-sectional areas (in.2) for the optimized
designs are reported next to each element, from which the
different allocation of volume to the common load path
between the nonlinear and linear designs is apparent. The

lateral force resistance of the nonlinear design, at a given
displacement is marginally larger than that of the linear
design and hence the total energy (ET ) absorbed up to the
displacement constraint is larger for the nonlinear design
by 1.4%. Moreover, the minimum and maximum cross-
sectional areas of the nonlinear design, in comparison with
the linear design, have been reduced.

When considering material inelasticity, the distribution
of volume differs from the linear design, where some of
the volume from the main load path in the base elements
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Fig. 7 Resulting nonlinear optimized designs for randomized starting cases for the 4 × 2 frame structure
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Table 1 Summary of the performance metrics and design attributes of
the nonlinear volume minimization optimized design and correspond-
ing linear design for the 4 × 2 frame structure

Nonlinear Linear

v, in.3 2.3995 × 104 2.3995 × 104

dv , in. 11.81 15.06

ET , kips-in. 4.8863 × 103 4.8198 × 103

N 11 10

min(a), in.2 1.31 3.38

max(a), in.2 27.27 31.18

(i.e., 7 and 8) for the nonlinear design is reallocated to
other elements in the primary load path (i.e., 5 and 6) and
to add diagonal elements, or increase the volume of the
common diagonal elements (i.e., 3 and 4). The redistribution
is, in part, because in the nonlinear design the moment
capacity of the elements is explicitly considered and if
reached, supporting diagonal elements are required to limit
deformations and hence additional elements appear where
unbraced elements form plastic hinges, in particular at the
connecting node of elements 9 and 10.

To illustrate the importance of the diagonal elements,
element 3 is removed from the nonlinear design and
an additional nonlinear analysis is performed for the
same specified external force. The corresponding force-
displacement response for the nonlinear design with and
without element 3 is shown in Fig. 8. Although element
3 constitutes only 2.35% of the total volume of the
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Fig. 8 Force-displacement responses of the optimized nonlinear
design for 4 × 2 frame structure with and without element 3

optimized structure, its importance in attaining the specified
displacement constraint is significant, as its removal results
in a substantial increase (68.6%) in tip displacement relative
to the nonlinear design with element 3 intact and hence is
not able to satisfy the displacement constraint.

The objective function and displacement constraint
values for each iteration throughout the entire optimization
process, following the procedure shown in Fig. 2, for the
best nonlinear design of the 4 × 2 frame are shown in
Fig. 9. The periodic drop and rise of the objective and
constraint values correspond to the beginning of each phase
of optimization. As can be seen from Fig. 9, the value of
dv − d∗ is approximately zero at the final phase, illustrating
that the optimized nonlinear design satisfies the specified
displacement constraint d∗.

Additionally, the hysteretic FE model permits assessing
the cyclic response of the design and evaluating the
inelastic displacements. The optimized nonlinear design
was analyzed for the cyclic force history shown on the left
side of Fig. 10 to obtain the system overall cyclic response
shown in Fig. 10 and accordingly, the inelastic deformations
can be evaluated.

3.2 Example 2: a 3 × 2 half beam

The second design example is a 3 × 2 half beam structure
under a vertical external force at the center of the full
domain. The beam domain, boundary conditions, and
location of the applied force are shown in Fig. 11. Due to
the symmetry of the boundary conditions and loading for
the full domain, a symmetric design is expected, therefore
half of the domain is modeled and used in the optimization
process for computational efficiency. The dimensions of the
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Fig. 9 Iteration histories of the objective and constraint for the
nonlinear design of 4 × 2 frame structure
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Fig. 10 Cyclic force history and cyclic response for the nonlinear design of 4 × 2 frame

domain are Lx = 59.05 ft (18 m) and Ly = 19.68 ft
(6 m). Similar to Example 1, the nonlinear minimum volume
design problem subject to displacement constraint is solved
for a center displacement constraint as d∗ = Lx/200 and
applied external force of 250 kips.

As in Example 1, the values of the sensitivities for
the displacement constraint evaluated using the analytical
gradients developed for the hysteretic beam FE modeling
approach via the direct differentiation method are compared
with numerical sensitivities obtained by finite difference
approximation for the 3 × 2 half beam ground structure.
For comparison, these sensitivities are plotted in Fig. 12. As
with Example 1, the sensitivities agree well with negligible
relative error thus providing further verification of the
accuracy of the analytical sensitivities obtained through the
direct differentiation approach described in Section 2.2.2.

0.5

Fig. 11 Ground structure for the 3 × 2 half beam structure under a
vertical force

Similar to Example 1, the nonlinear design problem
is solved for multiple starting cases, including uniform
and randomized starting areas. The resulting optimized
topologies for uniform and randomized areas are shown in
Figs. 13 and 14, respectively. Plot of the randomized initial
area values for each randomized starting case and design
attributes are also presented in Fig. 14. Numerical values
for the randomized areas for each starting case are tabulated
and reported in Appendix 5. Again all designs satisfy the
displacement constraint of d∗ = Lx/200 = 3.54 in. so
that by comparing the results shown in Fig. 13 with those
shown in Fig. 14, the nonlinear design shown in Fig. 13 is
comprised of the lowest volume and hence is considered the
best nonlinear design solution.
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Fig. 12 Comparison of the results of sensitivity analysis derived
with the analytical direct differentiation method and finite difference
approximation for the 3 × 2 half beam ground structure
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responses for each optimized design. Numerical values adjacent to the
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As with Example 1, the best nonlinear topology
is compared with the optimized solutions from two
linear topology optimization problems. Again a multi-
start strategy is employed for both linear topology
optimization problems and the linear design reported for
each optimization problem is the one with the lowest
objective function value that satisfied the constraints from
among all the starting cases. These linear design solutions
where then evaluated using nonlinear FE analysis described
in Section 2.2.1 to assess their respective performance and
compare this performance to that of the best nonlinear
design. The first linear optimization problem seeks to
minimize the compliance for a given volume constraint.

More specifically, the linear design is obtained by setting
the optimized volume of the nonlinear design as the volume
constraint for the linear compliance problem for the purpose
of comparison. The linear design and the associated force-
displacement responses obtained from nonlinear quasi-
static analysis of the nonlinear and linear designs are shown
in Fig. 13. For reference the element with maximum area
is located in the linear design solution (element 7). As
seen from Fig. 13, the nonlinear topology obtained from
the proposed methodology, shows a common primary load
path with the linear design, but includes additional diagonal
elements outside of this primary load path. Albeit by
less of a margin than with Example 1, as expected, the
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Fig. 14 Resulting nonlinear optimized designs for randomized starting cases for the 3 × 2 half beam structure
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nonlinear design satisfies the specified center displacement
constraint, whereas the linear design when evaluated by
nonlinear FE analysis slightly exceeds the constraint for this
example.

The second linear optimization problem seeks to
minimize the volume subjected to a drift displacement
constraint. Solving the linear volume minimization design
problem subject to the displacement constraint d∗ of
Lx/200 resulted in a volume of 4.1016 × 103 in.3

(for details of the linear design problems, see Appendix
6). The topology for the linear volume minimization
problem is similar to that shown in Fig. 13 and has
been omitted to avoid unnecessary repetition. As expected,
this volume is considerably smaller than the optimized
volume of the nonlinear design. Scaling the linear volume
by a factor of 2.25 results in a design, based on the
linear volume minimization design, that satisfies the
displacement constraint when evaluated by nonlinear quasi-
static analysis. However, 2.25 times 4.1016 × 103 in.3, or
9.2286 × 103 in.3, that exceeds the volume of the nonlinear
design of 9.1790 × 103 in.3. These results are consistent
with those observed for the nonlinear design of the 4 ×
2 frame structure in Example 1, and again illustrate that
the nonlinear design either offers better performance for
the same volume or lower volume for a given level of
performance, by comparison with the two linear designs.

Table 2 summarizes the results and attributes for the
nonlinear and comparative linear design solutions for the
3 × 2 half beam. Again the cross-sectional areas (in.2) for
the optimized designs are reported next to each element,
and the difference in the values of areas is shown. In the
nonlinear design, the volume allocated to the primary load

Table 2 Summary of the performance metrics and design attributes of
the nonlinear volume minimization optimized design and correspond-
ing linear design for the 3 × 2 half beam structure

Nonlinear Linear

v, in.3 9.1790 × 103 9.1790 × 103

dv , in. 3.54 3.66

ET , kips-in. 6.3150 × 102 6.2656 × 102

N 10 7

min(a), in.2 1.70 7.05

max(a), in.2 10.58 10.59
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Fig. 15 Iteration histories of the objective and constraint for the
nonlinear design of 3 × 2 half beam structure

path (i.e., elements 2, 4, 6, 7, 8, and 10) is less than for
the linear design, and a portion of volume is allocated to
the supplementary supporting elements (i.e., elements 1, 3,
5, and 9), which is necessary to satisfy the specified design
constraint. Again, the nonlinear design has a marginally
higher force resistance for a given displacement and as such
results in a larger amount of absorbed energy (ET ) up to
the displacement constraint, by comparison with the linear
design, by 0.8%. In the nonlinear design, the minimum and
maximum cross-sectional areas have been reduced relative
to the linear design. Similar to Example 1, the optimized
volume distribution and increase in the number of elements
relative to the linear design are the main differentiating
features.

The histories of the objective and displacement constraint
for each iteration throughout the optimization process for
the nonlinear design of the 3×2 half beam frame are shown
in Fig. 15 following the process shown in Fig. 2. Again,
in the final phase, that is, last iteration, the value of dv −
d∗ is approximately zero indicating that the displacement
constraint is satisfied at the final stage of optimization. As
with Example 1, the periodic drop and rise of the objective
and constraint values correspond to the beginning of each
phase of optimization.

As previously mentioned, the hysteretic FE modeling
permits analysis of the cyclic response and evaluating the
inelastic deformations of the system without any change in
the formulation. For this example, the cyclic loading shown
in Fig. 16 is applied to the optimized nonlinear beam design
presented in Fig. 13 to obtain the cyclic response of the
design and inelastic deformations.
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Fig. 16 Cyclic force history and cyclic response for the nonlinear design of 3 × 2 half beam

4 Summary and concluding remarks

This paper contributes a method for the topology optimiza-
tion of nonlinear structures based on a hysteretic beam FE
model. Two beneficial features of the hysteretic FE mod-
eling approach in the context of topology optimization are
that analytical sensitivities could be derived by invoking a
mathematical approximation for the signum function and
the stiffness and hysteretic matrices need only to be eval-
uated once for each nonlinear structural analysis. As such,
original analytical sensitivities and solution algorithms were
presented to combine the hysteretic FE modeling approach
and topology optimization.

The utility of the method was demonstrated through
two numerical design examples. The optimized designs
are sought while permitting material inelasticity by way
of inelastic deformations in individual elements. Due to
the non-convexity of the optimization problem considered
in this study, multiple starting cases with randomized
initial cross-sectional areas were performed and used to
initiate the optimization process. For each design example
presented, the uniform area starting case resulted in
the best nonlinear design solution. However, it is worth
noting, that sampling from a high-dimensional design space
subjected to nonlinear constraints in the context of topology
optimization is an ongoing research topic. The resulting
nonlinear design comprised of elements along a common
load path similar to the comparative linear design. However,
the distribution of volume to elements in the common
load path varies and additional elements are included
in the nonlinear design. These elements are necessary
for the design to achieve the specified displacement
constraint. While the primary structural system designs are
similar, these differences between the nonlinear and linear
designs serve important purposes in attaining the overall
design objectives. Although the optimized design from the

nonlinear and linear designs share some similar features,
in the context of frame structures and beam elements, the
findings from this study suggest that the solution obtained
from linear elastic problem formulation is not suitable if
inelastic deformations are expected and that the inelastic
deformations should be explicitly considered to ensure the
designs compliance with the specified requirements.

For this study, the scope was restricted to planar
frame structures composed of nonlinear Euler-Bernoulli
beam elements to introduce the idea of hysteretic FE
method for nonlinear topology optimization. As is well
known, Newton type solution schemes require iterations
at each step in the analysis that can significantly increase
the computational cost relative to analysis of linear
systems, as was observed for the numerical examples
presented in this study. As such, part of ongoing research
is aimed at devising a more efficient solution scheme
for topology optimization employing the hysteretic finite
element modeling approach. Other ongoing research is
aimed at extending the suggested hysteretic FE topology
optimization method to include nonlinear Timoshenko
beam elements, local damage constraints, and time varying
excitation for the design of frame structures whereby
variation of the structural response with time is implicitly
considered. Further extensions to 3D space frames and
continuum structures are also possible and of interest to the
authors in future work. Such extensions do however require
enhancements to existing hysteretic FE beam models,
including addition of transverse, rotation and torsion DOF
and an appropriate yield function or development of a 3D
hysteretic FE solid element.
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Appendix 1. Hysteretic forces and hysteretic
capacities

The additional details for evaluation of the H1u, H1φ ,
H2u and H2φ functions presented in Section 2.1 for the
governing ODEs (7) are described in this section. First the
hysteretic force ratios are defined as:

Pr = P h

P h
c

, Mr = Mh

Mh
c

. (32)

The hysteretic forces, P h and Mh, and the hysteretic
capacities, P h

c and Mh
c , are defined using the following

expressions:

P h = (1 − αu)Eazu, P h
c = (1 − αu)aσy

Mh = (1 − αφ)EIzφ, Mh
c = (1 − αφ)Mp, (33)

where σy is the yield stress of the material. In (33), Mp

stands for the plastic moment of a section, which mainly
depends on the cross section type and its geometry. For the
design examples considered in this paper, I-shaped sections
are employed and Mp is evaluated using the following
relations:

Mp = Mpw + Mpf , Mpw = σy(h − 2tf )2tw/4

Mpf = σytf bf (h − tf ), (34)

where Mpw and Mpf are the plastic moments associated
with web and flange of an I-shaped section, respectively. As
shown in (34), section properties such as h (section depth),
tw (web thickness), tf (flange thickness) and bf (flange
width) are required for Mp evaluation.

Appendix 2. Virtual work expression
to obtain beam element stiffness
and hysteretic matrices

As mentioned in Section 2.1, to derive the element stiffness
and hysteretic matrices, proper shape functions should be
used to interpolate the displacement and hysteretic fields in
conjunction with the virtual work formulation. Following
Triantafyllou and Koumousis (2012) and implementing the
variational principle of virtual work, and then separating

the elastic component from the hysteretic component, the
following expression obtained as:

(δdel)T
∫ L

0
BT DBdx · del +

(δdel)T
∫ L

0
BT DhNzdx · zel = (δde,l)T fel, (35)

where B is the strain-displacement matrix derived from
shape functions of the Euler-Bernoulli beam element as
follows:

B =
[ −1

L
0 0 −1

L
0 0

0 12x−6L

L3
6xL−4L2

L2 0 −12x+6L

L3
6xL−4L2

L2

]T

,

(36)

and the matrices D and Dh are defined as:

D=
[

αuEa 0
0 αφEI

]
, Dh =

[
(1−αu)Ea 0

0 (1−αφ)EI

]
.

(37)

Finally, matrix Nz, representing the hysteretic interpola-
tion functions in (35) is expressed as:

Nz =
[

0.5 0 0.5 0
0 1 − x

L
0 x

L

]
. (38)

The above expressions provide the details required to
derive the element stiffness and hysteretic matrices.

Appendix 3. Derivation of Jvn

As described in Section 2.2.1, the second part of the
Jacobian matrix, is required and evaluated using:

Jvn =
⎡

⎣
0(3r)×(3r+4N)

Jd Jz

⎤

⎦ , (39)

where the matrices Jd and Jz are the assembly of the
following vectors evaluated at each node, which results in a
2 × 2 matrix for each element:

jez =
[

∂H1u

∂zu
H2u + H1u

∂H2u

∂zu
0

0
∂H1φ

∂zφ
H2φ + H1φ

∂H2φ

∂zφ

]

Δε

jed =
[

H1u
∂H2u

∂u
0

0 H1φ
∂H2φ

∂θ

]

Δε, (40)

where as defined previously, Δε = ε
j

i+1−εi . The derivative
components in (40), are obtained by differentiation of
the H1u, H1φ , H2u and H2φ functions with respect to
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displacement and hysteretic DOF, yielding the following
expressions:

∂H1u

∂zu

= n|Pr |n−1sign(Pr)(1 − αu)Ea/P h
c

∂H1φ

∂zφ

= n|Mr |n−1sign(Mr)(1 − αφ)EI/Mh
c

∂H2u

∂zu

= γ ζ(1 − αu)EaΔεusech(ζP hΔεu)
2

∂H2φ

∂zφ

= γ ζ(1 − αφ)EIΔεφsech(ζMhΔεφ)2

∂H2u

∂u
= γ ζ

(
P h ∂Δεu

∂u

)
sech(ζP hΔεu)

2

∂H2φ

∂θ
= γ ζ

(
Mh ∂Δεφ

∂θ

)
sech(ζMhΔεφ)2. (41)

Note, assigning an even value to n, removes the absolute
value operator from the H1u, H1φ and their derivatives,
resulting in a smooth functions without introducing
discontinuity in sensitivities.

Appendix 4. Sensitivities

In this section, necessary details of sensitivity analysis
described in Section 2.2.2, are presented. First, the
derivatives for functions H1u, H1φ , H2u, and H2φ with
respect to design variable, a, are obtained by differentiation
of (4) and (14):

∂H1u

∂a
= n|Pr |n−1sign(Pr)

∂Pr

∂a
∂H1φ

∂a
= n|Mr |n−1sign(Mr)

∂Mr

∂a

∂H2u

∂a
= γ ζ

(
∂P h

∂a
Δεu + P h ∂Δεu

∂a

)
sech(ζP hΔεu)

2

∂H2φ

∂a
= γ ζ

(
∂Mh

∂a
Δεφ + Mh ∂Δεφ

∂a

)
sech(ζMhΔεφ)2.

(42)

The terms ∂Pr/∂a and ∂Mr/∂a in (42) are expressed as:

∂Pr

∂a
=

∂P h

∂a
P h

c − P h ∂P h
c

∂a

(P h
c )2

∂Mr

∂a
=

∂Mh

∂a
Mh

c − Mh ∂Mh
c

∂a

(Mh
c )2

, (43)

where the derivatives of P h, P h
c , Mh, and Mh

c with respect
to design variables are obtained by differentiation of (33):

∂P h

∂a
= (1 − αu)

(
Ezu + Ea

∂zu

∂a

)

∂P h
c

∂a
= (1 − αu)σy

∂Mh

∂a
= (1 − αφ)

(
E

∂I

∂a
zφ + EI

∂zφ

∂a

)

∂Mh
c

∂a
= (1 − αφ)

∂Mp

∂a
, (44)

and the ∂Mp/∂a term is evaluated by differentiating (34) as
follows:

∂Mp

∂a
= ∂Mpw

∂a
+ ∂Mpf

∂a

∂Mpw

∂a
= σy

(
∂tw

∂a
(h − 2tf )2/4 + tw(h − 2tf )

×
(

∂h

∂a
− 2

∂tf

∂a

)
/2

)

∂Mpf

∂a
= σy

(
∂tf

∂a
bf (h − tf ) + tf

∂bf

∂a
(h − tf )

+tf bf

(
∂h

∂a
− ∂tf

∂a

))
. (45)

The derivative for ∂Jvn/∂a is expressed using:

∂Jvn

∂a
=

[
0(3r)×(3r+4N)

∂Jd

∂a
∂Jz

∂a

]
, (46)

where ∂Jz/∂a, is the global assembly of the following
element-level expression obtained by differentiating (40):

∂jez
∂a

=
[

∂2H1u

∂a∂zu
H2u + ∂H1u

∂zu

∂H2u

∂a
+ ∂H1u

∂a
∂H2u

∂zu
+ H1u

∂2H2u

∂a∂zu

0

0
∂2H1φ

∂a∂zφ
H2φ + ∂H1φ

∂zφ

∂H2φ

∂a
+ ∂H1φ

∂a

∂H2φ

∂zφ
+ H1φ

∂2H2φ

∂a∂zφ

]

Δε

+
[

∂H1u

∂zu
H2u + H1u

∂H2u

∂zu
0

0
∂H1φ

∂zφ
H2φ + H1φ

∂H1φ

∂zφ

]
∂Δε

∂a
,

(47)

and similarly for the ∂Jd/∂a, the element-level expression
is obtained by differentiating (40):

∂jed
∂a

=
[

∂H1u

∂a
∂H2u

∂u
+ H1u

∂2H2u

∂a∂u
0

0
∂H1φ

∂a

∂H2φ

∂θ
+ H1φ

∂2H2φ

∂a∂θ

]

Δε

+
[

H1u
∂H2u

∂u
0

0 H1φ
∂H2φ

∂θ

]
∂Δε

∂a
. (48)

As indicated by (47) and (48), the sensitivities of the
functions presented in (41) with respect to design variables
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are required, where the derivation results in the following
expressions:

∂2H1u

∂a∂zu

= n(1 − αu)E(n − 1)
∂Pr

∂a
|Pr |n−2sign(Pr )a/P h

u

∂2H1φ

∂a∂zφ

= n(1 − αφ)E

⎛

⎝(n − 1)
∂Mr

∂a
|Mr |n−2sign(Mr)I/Mh

y

+|Mr |n−1
∂I
∂a

Mh
y − I

∂Mh
y

∂a

(Mh
y )2

⎞

⎠

∂2H2u

∂a∂zu

= (1 − αu)Eγ ζ sech(ζP hΔεu
e)2

(
Δεu + a

∂Δεu

∂a

−2aΔεu tanh(ζP hΔεu
e)

(
∂P h

∂a
Δεu + P h ∂Δεu

∂a

))

∂2H2φ

∂a∂zφ

= (1 − αφ)Eγ ζ sech(ζMhΔεφ)2

×
(

∂I

∂a
Δεφ + I

∂Δεφ

∂a
− 2IΔεφ tanh(ζP hΔεφ)

×
(

∂Mh

∂a
Δφ + Mh ∂Δεφ

∂a

))

∂2H2u

∂a∂u
= γ ζ sech(ζP hΔεu)2

(
∂P h

∂a

∂εu

∂u
+ P h ∂2εu

∂a∂u

−2ζP h ∂Δεu

∂u
tanh(ζP hΔεu)

(
∂P h

∂a
Δεu + P h ∂Δεu

∂a

))

∂2H2φ

∂a∂θ
= γ ζ sech(ζMhΔεφ)2

(
∂Mh

∂a

∂Δεφ

∂θ
+ Mh ∂2Δεφ

∂a∂θ

−2ζMh ∂Δεφ

∂θ
tanh(ζMhΔεφ)

(
∂Mh

∂a
Δεφ + Mh ∂Δεφ

∂a

))
.

(49)

Last, the matrices ∂K/∂a and ∂H/∂a, are the global
assembly of the element derivative matrices according to:

∂Ke

∂a
= ΛT ∂Kel

∂a
Λ,

∂He

∂a
= ΛT ∂Hel

∂a
, (50)

where the matrices ∂Kel/∂a and ∂Hel/∂a are obtained
through differentiating (10).

∂Kel

∂a
= E

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

αu

L
0 0 −αu

L
0 0

0
12 ∂I

∂a
αφ

L3
6 ∂I

∂a
αφ

L2 0 − 12 ∂I
∂a

αφ

L3
6 ∂I

∂a
αφ

L2

0
6 ∂I

∂a
αφ

L2
4 ∂I

∂a
αφ

L
0 − 6 ∂I

∂a
αφ

L2
2EIαφ

L−αu

L
0 0 αu

L
0 0

0 − 12 ∂I
∂a

αφ

L3 − 6 ∂I
∂a

αφ

L2 0
12 ∂I

∂a
αφ

L3 − 6 ∂I
∂a

αφ

L2

0
6 ∂I

∂a
αφ

L2
2 ∂I

∂a
αφ

L
0 − 6 ∂I

∂a
αφ

L2
4 ∂I

∂a
αφ

L

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∂Hel

∂a
= E

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

(αu−1)
2 0 (αu−1)

2 0

0
∂I
∂a

(αφ−1)

L
0 − ∂I

∂a
(αφ−1)

L

0 ∂I
∂a

(αφ − 1) 0 0
− (αu−1)

2 0 − (αu−1)
2 0

0 − ∂I
∂a

(αφ−1)

L
0

∂I
∂a

(αφ−1)

L

0 0 0 − ∂I
∂a

(αφ − 1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

,

(51)

that completes the derivations for the sensitivities. The
derivatives of section properties such as ∂I/∂a and ∂h/∂a

for I-shaped cross sections are adopted from Changizi and
Jalalpour (2017b).

Appendix 5. Cross-sectional areas for
randomized starting cases

As described in Sections 2.3 and 3, a multi-start strategy
is performed in an attempt seeking the global optima. The
specific values of areas for each randomized starting cases
of 4 × 2 frame and 3 × 2 half beam ground structures
for the nonlinear design problem are tabulated in Tables 3
and 4, respectively. The element numbering is generally
defined in a way that the elements connected to each node
are concatenated in the global element connectivity matrix.
Node numbering starts from the left bottom, row-wise, of
the domain and continues to the node on the top right.

Table 3 Values of cross-sectional areas (in.2) for the randomized
starting cases of the 4 × 2 frame ground structure

Element number Case 1 Case 2 Case 3 Case 4

1 8.0706 0.9619 3.2358 2.8014

2 4.0199 0.35266 3.2957 0.83283

3 3.1768 2.2437 3.0726 1.689

4 0.83349 1.9658 2.2373 1.5995

5 0.85705 1.4345 1.0385 0.38898

6 0.27421 2.626 0.82324 0.18225

7 8.2593 5.5058 3.8126 0.80693

8 6.3876 6.7692 1.9223 1.2549

9 3.1885 5.1734 4.295 0.65097

10 1.7917 5.3946 5.2648 2.1031

11 0.67181 0.75303 0.11323 0.082275

12 2.5162 0.54459 2.0223 0.95027

13 8.9293 6.1053 0.73508 0.58404

14 0.97425 0.52031 4.2824 1.9011

15 1.4736 2.9138 5.281 0.37995

16 1.7932 2.3252 0.28257 0.90026

17 0.29909 3.3769 3.5465 1.6023

18 2.4252 1.6676 0.060188 0.49979

19 3.6369 3.4501 5.7728 0.16879

20 5.6182 3.7236 4.1844 0.48448

21 2.299 4.1109 2.8518 0.90211

22 2.8049 2.2801 3.737 0.59814

23 0.62398 1.3635 3.394 0.36814

24 1.3519 0.51589 2.0725 1.3164

25 1.4564 5.1392 1.1638 2.4494

26 6.8521 2.2987 1.8386 3.4494

27 4.9796 0.24653 0.97245 0.99311

28 2.0052 4.1867 0.22328 2.1322

29 2.771 0.95207 0.40373 0.0093546
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Table 3 (continued)

Element number Case 1 Case 2 Case 3 Case 4

30 1.189 1.7349 2.3272 0.97855

31 4.796 6.0311 7.9323 2.8721

32 4.7584 1.9922 1.8924 0.52829

33 3.4155 4.0836 2.1923 2.1144

34 1.5153 1.7305 4.1548 1.3682

35 1.2095 2.68 3.5698 1.3251

36 1.6045 2.4215 2.2404 0.80644

37 3.82 3.8784 8.343 2.8416

38 2.0556 0.10857 4.0941 0.74611

39 3.1916 1.8349 1.7976 0.5067

40 3.3557 1.8603 2.7958 0.55999

41 3.8353 2.3699 2.0612 2.0957

42 3.8807 1.7279 2.4946 2.9755

43 0.71382 4.5571 3.6315 0.65863

44 0.13967 2.3843 2.8182 0.9128

45 2.6228 7.7846 3.4745 3.0907

46 1.8151 2.1694 3.2175 1.3939

47 3.7367 4.2653 4.007 2.2475

48 4.3246 1.7397 2.463 0.36516

49 8.4575 7.0896 4.6581 2.9658

50 2.6174 4.1875 3.1157 1.5325

51 2.1735 3.3093 4.3206 0.89255

52 6.9044 1.8942 0.69722 1.7058

53 6.8631 6.9308 6.0744 1.4308

54 4.2338 5.2646 5.3185 1.3592

55 9.506 4.0621 4.2326 4.0589

56 1.3539 8.3242 1.595 0.53273

57 8.7118 5.4395 4.136 4.165

58 5.9215 0.336 1 0.584 4.2646

59 2.7119 9.5344 5.4283 1.7975

60 1.2593 2.0741 4.9356 2.1806

61 0.527 0.689 2.5994 2.9014

62 2.237 2.275 1.5001 3.5534

63 2.0908 6.3792 3.6879 3.7646

64 8.5128 0.966 8.6685 3.8427

65 1.432 7.292 9.3462 1.973

66 6.6027 1.919 8.2827 2.1767

67 8.9821 2.4785 0.11702 4.849

68 1.9632 5.0466 0.067 2.9052

69 2.187 9.2845 1.011 4.3084

70 6.9137 0.238 9.2039 1.4012

71 8.6885 9.7961 0.50929 3.1554

72 0.46736 3.9499 4.5149 2.9832

73 0.343 6.6228 8.4087 4.8851

74 9.569 1.1155 8.7092 0.43555

Table 4 Values of cross-sectional areas (in.2) for the randomized
starting cases of the 3 × 2 half beam ground structure

Element number Case 1 Case 2 Case 3 Case 4

1 0.53091 2.0298 3.5643 1.2329

2 0.43366 1.7685 1.7167 0.1382

3 0.883 0.52707 2.2287 1.7326

4 1.2843 0.79316 0.42191 0.93694

5 1.2667 0.90156 0.84956 0.33059

6 1.063 0.085274 0.07251 0.61955

7 1.0928 1.7572 2.7203 0.62374

8 1.8322 2.2743 2.1636 2.7794

9 0.19517 0.49549 1.9484 0.8614

10 0.24238 1.8745 2.2464 2.2025

11 0.29572 2.1746 2.1128 0.040158

12 1.1641 1.4984 0.73591 1.5327

13 1.6988 1.7916 0.0012272 2.3168

14 0.65084 0.98742 1.944 1.992

15 1.074 1.6719 0.47219 1.5212

16 0.32028 0.53057 0.49845 1.6992

17 0.11928 2.1438 0.74059 0.22096

18 1.4593 1.0981 0.17242 1.6224

19 1.9231 2.1254 2.6867 0.053104

20 2.017 0.38652 1.7014 0.68823

21 1.5116 0.20232 1.235 0.42074

22 0.99969 0.45191 0.60764 1.7125

23 1.251 1.3595 1.3378 0.11274

24 1.1828 1.2653 0.77897 0.84275

25 3.3927 2.4772 3.4415 2.3559

26 0.0011334 1.6239 2.0295 1.523

27 1.3278 0.36402 0.57301 1.4297

28 2.1015 2.0397 1.9638 0.20689

29 3.3962 2.8702 1.246 3.0203

30 1.1449 0.90435 1.4157 1.2369

31 1.6451 3.4998 2.8631 2.5674

32 2.7492 0.31866 2.6807 0.78537

33 0.49437 0.7187 0.28536 1.2705

34 1.7088 1.8108 2.9557 2.5976

35 1.9546 0.13572 0.057169 2.2366

36 0.88168 1.1491 0.66612 0.73509

37 4.1006 2.7869 3.7176 0.44655

38 3.5837 2.6507 3.9716 0.29984

39 2.8431 4.156 1.8668 3.2915

40 1.1971 4.3001 3.786 4.1633

41 3.2333 3.9509 4.5352 3.6143

42 0.40504 1.5915 1.2331 1.8056

43 3.037 2.2644 0.65871 4.951

44 3.2067 3.7667 1.144 2.7201

45 3.5406 0.55012 1.779 4.9876

46 4.3217 0.54952 1.4592 0.38484
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Table 4 (continued)

Element number Case 1 Case 2 Case 3 Case 4

47 4.7659 1.3514 4.7142 1.0826

48 3.7311 2.627 0.26082 4.0527

49 2.821 4.8704 3.0124 4.7804

50 4.504 3.5573 0.82798 4.092

51 2.8145 1.5616 4.2614 1.5454

52 0.082397 1.4594 0.85168 0.79402

53 0.58638 4.258 2.5526 4.4338

Appendix 6. Linear topology optimization
design problems

As mentioned in Section 3, two linear design problems are
solved to investigate optimality of the nonlinear designs and
compare the optimized topologies. The first is solved with
the optimal volume obtained from the nonlinear design as
a constraint, where the compliance is set as the objective to
find the most stiff structure for a given volume. This design
problem is expressed as:

Find : a1, ..., aN

Minimize
a

: c = fT d

Subject to : Kd = f

v =
N∑

s=1

asLs ≤ vopt

0 < ρmin < a ≤ ρmax, (52)

where linear equilibrium equation, volume and bounds
on cross-sectional areas are imposed as the constraints
(more information can be found in Changizi and Jalalpour
(2017a)). The second linear design problem is analogous to
the nonlinear design problem, where the goal is to minimize
the volume of the structural system subject to equilibrium
and displacement constraint, stated as:

Find : a1, ..., aN

Minimize
a

: v =
N∑

s=1

asLs

Subject to : Kd = f

dv ≤ d∗

0 < ρmin < a ≤ ρmax, (53)

where linear equilibrium equation, displacement constraint
and bounds on cross-sectional areas are imposed as the
constraints. For both linear design problems, the stiffness
matrix is assembled through element-level matrix shown in
(10) by setting αu and αb to 1.
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