
https://doi.org/10.1007/s00158-020-02629-w

EDUCATIONAL PAPER

A new generation 99 line Matlab code for compliance topology
optimization and its extension to 3D

Federico Ferrari1 ·Ole Sigmund1

Received: 18 February 2020 / Revised: 2 May 2020 / Accepted: 10 May 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Compact and efficient Matlab implementations of compliance topology optimization (TO) for 2D and 3D continua are given,
consisting of 99 and 125 lines respectively. On discretizations ranging from 3 · 104 to 4.8 · 105 elements, the 2D version,
named top99neo, shows speedups from 2.55 to 5.5 times compared to the well-known top88 code of Andreassen et al.
(Struct Multidiscip Optim 43(1):1–16, 2011). The 3D version, named top3D125, is the most compact and efficient Matlab
implementation for 3D TO to date, showing a speedup of 1.9 times compared to the code of Amir et al. (Struct Multidiscip
Optim 49(5):815–829, 2014), on a discretization with 2.2 · 105 elements. For both codes, improvements are due to much
more efficient procedures for the assembly and implementation of filters and shortcuts in the design update step. The use of
an acceleration strategy, yielding major cuts in the overall computational time, is also discussed, stressing its easy integration
within the basic codes.

Keywords Topology optimization · Matlab · Computational efficiency · Acceleration methods

1 Introduction

The celebrated top99Matlab code developed by Sigmund
(2001) has certainly promoted the spreading of topology
optimization among engineers and researchers, and the
speedups carried by its heir, top88 (Andreassen et al.
2011), substantially increased the scale of examples that can
be solved on a laptop.

On these footprints, several other codes have followed,
involving extension to 3D problems (Liu and Tovar
2014; Amir et al. 2014), material design (Andreassen
and Andreasen 2014; Xia and Breitkopf 2015), level–
set parametrizations (Wang 2007; Challis 2010), use of
advanced discretization techniques (Talischi et al. 2012;

Responsible Editor: Palaniappan Ramu

� Federico Ferrari
fferrar3@jh.edu

Ole Sigmund
sigmund@mek.dtu.dk

1 Department of Mechanical Engineering, Technical University
of Denmark, Nils Koppels Allé 404, 2800 Kongens Lyngby,
Denmark

Suresh 2010; Sanders et al. 2018), or integration of TO
within some finite element frameworks.

With the evolution of TO and its application to more
and more challenging problems, implementations in top88
may have become outdated. Also,Matlab has improved in the
last decade. Hence, we believe it is time to present a new
“exemplary” code collecting shortcuts and speedups, allow-
ing to tackle medium-/large-scale TO problems efficiently
on a laptop. Preconditioned iterative solvers, applied for
example in Amir and Sigmund (2011), Amir et al. (2014),
Ferrari et al. (2018) and Ferrari and Sigmund (2020), allow
the solution of the state equation with nearly optimal effi-
ciency (Saad 1992). Thus, the computational bottleneck
has been shifted on other operations, such as the matrix
assembly or the repeated application of filters. Efficiency
improvements for these operations were touched upon by
Andreassen et al. (2011), however, without giving a quanti-
tative analysis about time and memory savings.

Here, we provide compact Matlab codes for minimum
compliance topology optimization of 2D and 3D continua
which show a substantial speedup compared to the top88
code. We include several extensions by default, such
as specification of passive domains, a volume-preserving
density projection (Guest et al. 2004; Wang et al. 2011) and
continuation strategies for the penalization and projection
parameters in a very compact, yet sharp, implementation.

(2020) 62:2211–2228Structural and Multidisciplinary Optimization

Published online: 24 August 2020/

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02629-w&domain=pdf
http://orcid.org/0000-0003-3863-6621
mailto: fferrar3@jh.edu
mailto: sigmund@mek.dtu.dk

F. Ferrari and O. Sigmund

Coincidentally, the new 2D TO implementation consists of
99 lines of code and is thus named top99neo. We also
show how to include an acceleration technique recently
investigated for TO by Li et al. (2020), with a few extra lines
of code and potentially carrying major speedups. Changes
needed for the extension to 3D problems are remarkably
small, making the corresponding code (top3D125) the
most compact and efficient Matlab implementation for 3D
compliance TO to date.

Our primary goal is not to present innovative new
research. Rather, we aim at sharing some shortcuts and
speedups that we have noticed through time, to the benefit
of the research community. Improvements introduced by the
present codes will be much useful also on more advanced
problems, such as buckling optimization, which will be
dealt with in an upcoming work.

The paper is organized as follows. In Section 2, we
recall the setting of TO for minimum compliance. Section 3
is devoted to describe the overall structure of the 2D
code, focusing on differences with respect to top88.
Sections 3.1–3.5 give insights about the main speedups and
show performance improvements with respect to top88.
The very few changes needed for the 3D code are listed in
Section 4, where an example is presented and the efficiency
is compared to the previous code from Amir et al. (2014).
Some final remarks are given in Section 5. Appendix A
gives some details about the redesigns step that are useful
for better understanding a method proposed in Section 3.2
and the Matlab codes are listed in Appendices B and C.

2 Problem formulation and solution scheme

We consider a 2D/3D discretization �h consisting of m

equi-sized quadrilateral elements �e. Hereafter we denote

by n the global number of Degrees of Freedom (DOFs) in
the discretization and by d the number of (local) DOFs of
each element.

Let x = {xe}e=1:m ∈ [0, 1]m be partitioned between xA
and xP , the sets of active (design) variables and passive ele-
ments, respectively. The latter may be further split in the sets
of passive solid P1 (xe = 1) and void P0 (xe = 0) elements,
of cardinalities mP1 and mP0 , respectively (see Fig. 1a).

The set of physical variables x̂A = H(x̃) are defined by
the relaxed Heaviside projection (Wang et al. 2011)

H(x̃e, η, β) = tanh(βη) + tanh(β(x̃e − η))

tanh(βη) + tanh(β(1 − η))
(1)

with threshhold η and sharpness factor β, where x̃ = Hx is
the filtered field, obtained by the linear operator

H (xe, rmin) :=
∑

i∈Ne
he,ixi

∑
i∈Ne

he,i

(2)

where Ne = {i | dist(�i, �e) ≤ rmin} and he,i =
max(0, rmin − dist(�i, �e)).

Given a load vector f ∈ R
n and the volume fraction

f ∈ (0, 1), we consider the optimization problem
⎧
⎨

⎩

min
xA∈[0,1]mA

c
(
x̂
)

s.t. V
(
x̂
) ≤ f |�h|

(3)

for the minimization of compliance c
(
x̂
) = uT f with an

upper bound on the overall volume

V
(
x̂
) =

m∑

e=1

|�e|x̂e = 1

m

(

mP1 +
∑

e∈A
x̂e

)

≤ f (4)

Problem (3) is solved with a nested iterative loop. At
each iteration, the displacement u is computed by solving
the equilibrium problem

Ku = f (5)

Fig. 1 Definition of the active A, passive solid P1, and void P0
domains (a) and illustration of the connectivity matrix C for a simple
discretization (b). The set of indices I , here shown for the element

e = 1, is used by the assembly operation. The symmetric repetitions in
I are highlighted, and their elimination gives the reduced set Ir (see
Section 3.1)

2212

A new generation 99 line Matlab code for compliance...

where the stiffness matrix K = K(x̂) depends on the
physical variables through a SIMP interpolation (Bendsøe
and Sigmund 1999) of the Young modulus

E(x̂e) = Emin + x̂
p
e (E0 − Emin) (6)

with E0 and Emin the moduli of solid and void (Emin �
E0). The gradients of compliance and structural volume
with respect to x̂ read (χe = 1 if e ∈ A and 0 otherwise and
1m is the identity vector of dimension m)

∇x̂c
(
x̂
) = −uT ∇x̂KuχA , ∇x̂V

(
x̂
) = 1

m
1mχA (7)

and the sensitivities with respect to the design variables are
recovered as

∇xc (x) = ∇x̃H � (HT ∇x̂c
(
x̂
)
)

∇xV (x) = ∇x̃H � (HT ∇x̂V
(
x̂
)
)

(8)

where � represents the element-wise multiplication and

∇x̃H = β
1 − tanh(β(x̃ − η))2

tanh(βη) + tanh(β(1 − η))
(9)

The active design variables e ∈ A are then updated by
the optimality criterion rule (Sigmund 2001)

xk+1,e = U(xk,e) =

⎧
⎪⎨

⎪⎩

δ− if Fk,e < δ−
δ+ if Fk,e > δ+
Fk,e otherwise

(10)

where δ− = max(0, xk,e − μ), δ+ = min(1, xk,e + μ), for
the fixed move limit μ ∈ (0, 1) and

Fk,e = xk,e

(

− ∂eck

λ̃k∂eVk

)1/2

(11)

depends on the element sensitivities.
In (11), λ̃k is the approximation to the current Lagrange

multiplier λ∗
k associated with the volume constraint. This is

obtained by imposing V (x̂k+1(λ̃)) − f |�h| ≈ 0, e.g., by
bisection on an interval �(0)

k ⊃ λ∗
k .

3Matlab implementation and speedups

The Matlab routine for 2D problems (see Appendix B) is
called with the following arguments

where nelx and nely define the physical dimensions
and the mesh resolution, volfrac is the allowed volume
fraction on the overall domain (i.e., A ∪ P), penal the
penalization used in (6), and rmin the filter radius for (2).
The parameter ft is used to select the filtering scheme:
density filtering alone if ft=1, whereas ft=2 or ft=3

also allows the projection (1), with eta and beta as
parameters. ftBC specifies the filter boundary conditions
(’N’ for zero- Neumann or ’D’ for zero-Dirichlect), move
is the move limit used in the OC update and maxit sets the
maximum number of redesign steps.

The routine is organized in a set of operations which
are performed only once and the loop for the TO iterative
redesign. The initializing operations are grouped as follows

PRE.1) MATERIAL AND CONTINUATION PARAMETERS

PRE.2) DISCRETIZATION FEATURES

PRE.3) LOADS, SUPPORTS AND PASSIVE DOMAINS

PRE.4) DEFINE IMPLICIT FUNCTIONS

PRE.5) PREPARE FILTER

PRE.6) ALLOCATE AND INITIALIZE OTHER PARAMETERS

and below we give details only about parameters and
instructions not found in the top88 code.

To apply continuation on the generic parameter “par,”
a data structure is defined

parCont = {istart, maxPar, isteps, deltaPar};

such that the continuation starts when loop=istart and
the parameter is increased by deltaPar each isteps,
up to the value maxPar. This is implemented in Lines 6
and 7 for the penalization parameter p and the projection
factor β, respectively. The update is then performed, by the
instruction (see Line 92)

making use of compact logical operations. Continuation
can be switched off, e.g., by setting maxPar<=par, or
istart>=maxit.

The blocks defining the discretization (PRE.2)) contain
some changes compared to top88. The number of
elements (nEl), DOFs (nDof), and the set of node numbers
(nodeNrs) are defined explicitly, to ease and shorten some
following instructions. The setup of indices iK and jK, used
for the sparse assembly, is performed in Lines 15–21 and
follows the concept detailed in Section 3.1. The coefficients
of the lower diagonal part of the elemental stiffness matrix
are defined in vectorized form, such that Ke = V(K

(s)
e) (see

Lines 22–26). Ke is used for the assembly strategy described
in Section 3.1. However, in Lines 27–29, we also recover
the complete elemental matrix (Ke0), used to perform the
double product uT

e Keue when computing the compliance
sensitivity (7). Although this could also be written in terms
of the matrix K

(s)
e only, this option would increase the

number of matrix/vector multiplications.
In PRE.3), the user can specify the set of restrained

(fixed) and loaded (lcDof) DOFs and passive regions
(P1 ↔ pasS and P0 ↔ pasV) for the given configuration.
Supports and loads are defined as in the top88 code,

2213

F. Ferrari and O. Sigmund

whereas passive domains may be specified targeting a set
of column and rows from the array elNrs. Independently
of the particular example, Lines 34–36 define the vector of
applied loads, the set of free DOFs, and the sets of active
A ↔ act design variables.

In order to make the code more compact and read-
able, operations which are repeatedly performed within
the TO optimization loop are defined through inline func-
tions in PRE.4) (Lines 38–43). The filter operator is built
in PRE.5) making use of the built-in Matlab function
imfilter, which represents a much more efficient alter-
native to the explicit construction of the neighboring array.
A similar approach was already outlined by Andreassen
et al. (2011), pointing to the Matlab function conv2, which
is however not completely equivalent to the original oper-
ator, as it only allows zero-Dirichlet boundary conditions
for the convolution operator. Here, we choose imfilter,
which is essentially as efficient as conv2, but gives the
flexibility to specify zero-Dirichlet (default option), or zero-
Neumann boundary conditions.

Some final initializations and allocations are performed
in PRE.6). The design variables are initialized with
the modified volume fraction, accounting for the passive
domains (Line 52–53) and the constant volume sensitivity
(7) is computed in Line 51.

Within the redesign loop, the following five blocks of
operations are repeatedly performed

RL.1) COMPUTE PHYSICAL DENSITY FIELD

RL.2) SETUP AND SOLVE EQUILIBRIUM EQUATIONS

RL.3) COMPUTE SENSITIVITIES

RL.4) UPDATE DESIGN VARIABLES AND APPLY CONTINUATION

RL.5) PRINT CURRENT RESULTS AND PLOT DESIGN

In block RL.1), the physical field is obtained, applying
the density filter and, if selected, also the projection. If ft=3,
the special value of the thresholdeta giving a volume-preserv-
ing projection is computed, as discussed in Section 3.2.

Fig. 2 Geometrical setting for the MBB example

The stiffness interpolation and its derivative (sK, dsK)
are defined, and the stiffness matrix is assembled (see
Lines 73–76). Ideally, one could also get rid of Lines 73–
74 and directly define sK in Line 75 and dsK within
Line 79. However, we decide to keep these operations
apart, enhancing the readability of the code and to ease the
specification of different interpolation schemes. Equation
(5) is solved on Line 77 using the Matlab function
decomposition, which can work with only half of
the stiffness matrix (see Section 3.1). The sensitivity of
compliance is computed, and the backfiltering operations
(8) are performed in RL.3).

The update (10), with the nested application of the
bisection process for finding λ̃k , is implemented in RL.4)
(Lines 86–91), and we remark that lm represents

√
λ.

Some information about the process is printed and the
current design is plotted in RL.5) (Lines 94–97). On
small discretizations, repeated plotting operations absorb a
significant fraction of the CPU time (e.g., 15% for m =
4800). Therefore, one might just plot the final design,
moving Lines 96–97 outside the redesign loop.

The tests in the following have been run on a laptop
equipped with an Intel(R) Core(TM) i7-5500U@2.40-GHz
CPU, 15 GB of RAM, and Matlab 2018b running in serial
mode under Ubuntu 18.04 (but a similar performance is
expected in Windows setups). We will often refer to the
half MBB beam example (see Fig. 2) for numerical testing.
Unless stated otherwise, we choose �h = 300 × 100,
f = 0.5, and rmin = 8.75 (Sigmund 2007). The load, having
total magnitude |q| = 1 is applied to the first node. No
passive domains are introduced for this example; therefore,
pasS=[];, pasV=[]; and we set E1 = 1, E0 = 10−9,
and ν = 0.3 in all the tests.

3.1 Speedup of the assembly operation

In top88, the assembly of the global stiffness matrix is
performed by the built-in Matlab function sparse

where sK ∈ R
m∗d2×1 collects the coefficients of all the

elemental matrices in a column-wise vectorized form (i.e.,
V(Ke)) and iK and jK are the sets of indices mapping each
sK(i) to the global location K(iK(i),jK(i)).

These two sets are set up through the operations

iK = V
[
(C ⊗ 1d)T

]
, jK = V

[
(C ⊗ 1T

d)T
]

(12)

where C[m×d] is the connectivity matrix and “⊗” is the
Kronecker product (Horn and Johnson 2012). The size of
the array I = [iK,jK] ∈ N

m∗d2×2 grows very quickly with
the number of elements m, especially for 3D discretizations

2214

A new generation 99 line Matlab code for compliance...

Table 1 Number of entries in the array I and corresponding memory requirement for the 2D and 3D test discretizations. White background refers
to the F strategy with coefficients specified as double, cyan background to the H strategy, and light green to the H strategy and element specified
as int32. The H strategy cuts |I| and memory of ≈ 44% in 2D and ≈ 48% in 3D. Then, specifying the indexes as int32 further cuts memory
of another 50%

(see Table 1), and even though its elements are integers,
the sparse function requires them to be specified as
double precision numbers. The corresponding memory
burden slows down the assembly process and restricts the
size of problems workable on a laptop.

The efficiency of the assembly can be substantially
improved by

1. Acknowledging the symmetry of both Ke and K

2. Using an assembly routine working with iK and jK
specified as integers

To understand how to take advantage of the symmetry of
matrices, we refer to Fig. 1b and to the connectivity matrix
C. Each coefficient Cej ∈ N addresses the global DOF
targeted by the j th local DOF of element e. Therefore, (12)
explicitly reads

iKe = {ce, ce, . . . , ce︸ ︷︷ ︸
d times

}

jKe = {ce1, . . . , ce1︸ ︷︷ ︸
d times

, ce2, . . . , ce2︸ ︷︷ ︸
d times

, . . . , ced , . . . , ced︸ ︷︷ ︸
d times

} (13)

where ce = {ce1, ce2, . . . , ced} is the row corresponding to
element e.

If we only consider the coefficients of the (lower)
symmetric part of the elemental matrix K

(s)
e and their

locations into the global one K(s), the set of indices can be
reduced to

iKe = {ce1, . . . , ced , ce2, . . . , ced , . . . , ce3, . . . , ced , . . . , ced }
jKe = {ce1, . . . , ce1︸ ︷︷ ︸

d times

, ce2, . . . , ce2︸ ︷︷ ︸
(d−1) times

, ce3, . . . , ce3︸ ︷︷ ︸
(d−2) times

, . . . , ced } (14)

and the overall indexing array becomes Ir = [iK,jK] ∈
N

d̃∗m×2 where d̃ = ∑d
j=1

∑
i≤j i. The entries of the

indexing array and the memory usage are reduced by
approx. 45% (see Table 1).

The set of indices (14) can be constructed by the
following instructions (see Lines 15–21)

which can be adapted to any isoparametric 2D/3D element
just by changing accordingly the number d of elemental
DOFs. In the attached scripts, based on 4-noded bilinear
Q4 and 8-noded trilinear H8 elements, we set d=8 and
d=24, respectively. The last instruction sorts the indices
as iKr(i) > jKr(i), such that K(s) contains only
sub-diagonal terms.

The syntax K=sparse(iK,jK,sK) now returns the
lower triangular matrix K(s) and we remark that the full
operator can be recovered by

K = K(s) + (K(s))T − diag[K(s)] (15)

which costs as much as the averaging operation 1
2 (K+KT),

performed in top88 to get rid of roundoff errors. However,
the Matlab built-in Cholesky solver and the corresponding
decomposition routine can use just K(s), if called with
the option ’lower’.

2215

F. Ferrari and O. Sigmund

Point 2 gives the most dramatic improvement, and
can be accomplished by using routines developed by
independent researchers. The sparse2 function, from
Suite Sparse (Davis 2019), was already pointed out by
Andreassen et al. (2011) as a better alternative to the built-
in Matlab sparse; however, no quantitative comparisons
were performed. According to the CHOLMOD reference
manual (Davis 2009), sparse2works exactly as sparse,
but allowing the indices iK and jK to be specified
as integers (accomplished by defining this type for the
connectivity matrix, see Lines 11 and 13).

Here we suggest the “fsparse” routine, developed
by Engblom and Lukarski (2016). Besides working with
integers iK and jK, the function enhances the efficiency of
the sparse assembly by a better sorting of the operations.
From our experience on a single core process, fsparse
gives a speedup of 170–250% compared to sparse2, and
is also highly parallelizable (Engblom and Lukarski 2016).
Defining the sets ik and jk as int32 type, we can
drastically cut the memory requirements, still representing
n ≈ 2.1 · 109 numbers, far beyond the size of problems one
can tackle in Matlab.

In order to use fsparse, one needs to download
the “stenglib” library1 and follow the installation
instructions in the README.md file. The packages of the
library can be installed by running the “makeall.m” file.
As fsparse is contained within the folder “Fast,” one may
only select this folder when running makeall.m.

We test the efficiency of the assembly approaches
on 2D and 3D uniform discretizations with m2 and m3

elements, respectively. Figure 3 shows time scalings for
the different strategies: “F” corresponds to the assembly
in top88, “H” takes advantage of the matrix symmetry
only and “H,fsparse” correponds to the use of the
fsparse routine (Engblom and Lukarski 2016) also. All
the approaches exhibit a linear scaling of CPU time w.r.t
the DOFs number. However, half the CPU time can be cut
just by assembling K(s) (strategy H,sparse). Therefore,
we definitely recommend this to users who aim to solve
medium-size (105 to 106 DOFs) structural TO problems
on a laptop. However, the most substantial savings follow
from using fsparse (Engblom and Lukarski 2016) and
by coupling these two strategies (H,fsparse) speedups of
10 for the 2D and 15 for 3D setting can be achieved. It is
worth to highlight that a 3D stiffness matrix of the size of
≈ 9 · 105 can be assembled in less than a second and even
one of size 6.2 · 106 can be assembled on a laptop in less
than 10s. For this last case, the sole storage of the arrays iK,

1https://github.com/stefanengblom/stenglib

Fig. 3 Scaling of assembly time performed with the 3 strategies
discussed in Section 3.1. Compared to the standard (F) assembly, the
H strategy alone cuts near 50% of time and memory, and with the use
of fsparse gives an overall efficiency improvement of 10–15 times

jK, and sK would cause a memory overflow, ruling out the
“F” approach.

3.2 Speedup of the OC update

The cost of the redesign step xk+1 = U(xk) is proportional
to the number of bisections (nbs) required for computing the
approximation λ̃k ≈ λ∗

k . The following estimate (Quarteroni
et al. 2000)

nbs ≥ log(|�(0)|) − log(τ)

log(2)
− 1 (16)

is a lower bound to this number for a given accuracy τ >

|λ∗
k − λ̃k| and it is clear that nbs would decrease if �(0),

the initial guess for the interval bracketing λ∗
k , could be

shrunk. Moreover, the volume constraint should be imposed
on the physical field (x̃ or x̂) and, in the original top88
implementation, this requires a filter application at each
bisection step, which may become expensive.

2216

https://github.com/stefanengblom/stenglib

A new generation 99 line Matlab code for compliance...

The efficiency of the redesign step can be improved by a
two-step strategy

1. Using volume-preserving filtering schemes
2. Estimating the interval �

(0)
k bracketing the current

Lagrange multiplier λ∗
k

Concerning point 1, the density filter is naturally volume-
preserving (i.e., V (xk) = V (x̃k)) (Bourdin 2001; Bruns
and Tortorelli 2001). Therefore, the volume constraint can
be enforced on V (xk) as long as the density filter alone is
considered (ft=1). The relaxed Heaviside projection (1),
on the other hand, is not volume-preserving for any η; thus,
it would require one filter-and-projection application at each
bisection step. However, (1) can also be made volume-
preserving by computing, for each x̃k , the threshhold η∗

k

such that (Xu et al. 2010; Li and Khandelwal 2015)

η∗
k −→ min

η∈[0,1] |V (x̂k(η)) − V (x̃k)| (17)

This can be done, e.g., by the Newton method, starting
from the last computed η∗

k−1 and provided the derivative of
(1) with respect to η

∂V (x̃(η))

∂η
= −2β

∑

i∈A

(eβ(1−x̃i) − eβ(x̃i−1))(eβx − eβx̃i)

(eβ − e−β)[eβ(x̃i−η) + eβ(η−x̃i)]2 (18)

Existence of η∗ ∈ [0, 1] for all x̃ ∈ [0, 1]m follows from
the fact that g(η) = V (x̂(η)) − V (x̃) is continuous on [0, 1]
and g(0)g(1) ≤ 0; uniqueness follows from the fact that
∂g
∂η

< 0 for all η ∈ (0, 1).
Numerical tests on the MBB beam show that generally

η∗
k ∈ [0.4, 0.52], the larger variability occurring for low

volume fractions (see Fig. 4a). We also observe that η∗
k

takes values slightly above 0.5 when rmin is increased or
β is raised. Convergence to η∗

k is generally attained in 1–2
Newton iterations (see Fig. 4a).

The procedure for computing η∗
k from (17), with

tolerance ε = 10−6 and initial guess η0 = eta, provided by
the user, is implemented in Lines 63–67, that are executed
if the routine top99neo is called with the parameter
ft=3. Otherwise, if ft=2, the input threshhold eta is kept
fixed. In case of the latter, the volume constraint should be
consistently applied on V (x̂); otherwise, some violation or
over-shooting of the constraint will happen. In particular, if
the volume constraint is imposed on x and η is kept fixed,
one has V (x̂) > f |�h|, if η < 0.5, and V (x̂) < f |�h|, if
η > 0.5.

Even tough we usually observed small differences, these
may result in local optima or bad designs, especially for low
volume fractions or high β values. Therefore, accounting for
this more general situation Lines 87–91 should be replaced
by the following

Fig. 4 Evolution of the parameter η∗ realizing the equivalence V (x̃) =
V (x̂), for different volume fractions f and filter radii rmin (a)
and evolution of the Lagrange multiplier estimate λ# given by (19)
compared to λ∗ (b). For both plots, the cumulative number of Newton
iterations nNewton (viz. number of bisection steps nbs) is shown against
the right axis

However, there could be other situations when one cannot
rely on volume-preserving filters (e.g., when imposing
length scale through robust design). Therefore, a more
general strategy to reduce the cost of the OC update is to cut
the number of bisection steps.

To this end, the selection of the initial bracketing interval
�

(0)
k may build upon the upper bound estimate for λ∗

k

(Hestenes 1969; Arora et al. 1991)

λ#k =
[

1

mf

m∑

e=1

xk,e

(

− ∂eck

∂eVk

)1/2
]2

(19)

2217

F. Ferrari and O. Sigmund

More details on the derivation of (19) are given in
Appendix A. The behavior of the estimate (19) is shown
in Fig. 4b for the MBB example. The overall number
of bisections (nbs) in order to compute λ∗

k meeting the

tolerance τ = 10−8 when considering �
(0)
k = [0, λ∗

k]
is cut by about 50%, compared with the one required by
starting from �(0) = [0, 109] as in top88. Moreover, if
no projection is applied, (19) could be used together with
(10) to perform an explicit Primal-Dual iteration to compute
(xk+1, λ

∗
k) and this would reduce the number of steps even

more (see green curve in Fig. 4b).
However, in the basic versions of the codes, given in

Appendices B and C, we consider the bisection process and
(19) is used to bracket the search interval, as this procedure
is more general.

3.3 Acceleration of the OC iteration

The update rule (10) resembles a fixed-point (FP) iteration
xk+1 = U(xk), generating a sequence {xk} converging to a
point such that r = U(x∗) − x∗ = 0.

Several methods are available to speedup the conver-
gence of such a sequence (Brezinski and Chehab 1998;
Ramiere and Helfer 2015), somehow belonging to the fam-
ily of quasi-Newton methods (Eyert 1996). The acceleration
proposed by Anderson (1965), for instance, is nowadays
experiencing a renewed interest (Fang and Saad 2009; Prat-
apa et al. 2016; Peng et al. 2018) and has recently been
applied to TO by Li et al. (2020).

Anderson acceleration takes into account the residuals ri ,
their differences �ri = ri+1 − ri and the differences of
the updates �xi = xi+1 − xi for the last mr iterations (i.e.
i = k − mr, . . . , k − 1), and obtains the new element of the
vector sequence as

xk+1 = x#k + ζr#k (20)

where ζ ∈ [0, 1] is a damping coefficient and

x#k = xk −
k−1∑

i=k−mr

γ
(k)
i �xi = xk − Xkγ k

r#k = rk −
k−1∑

i=k−mr

γ
(k)
i �ri = rk − Rkγ k

(21)

The coefficients γ
(k)
i minimize the following

{γ (k)
i }mr

i=1 → min
γ

‖r#k(γ)‖22 (22)

The rationale behind the method is to compute a rank-mr

update of the inverse Jacobian matrix J−1
k of the nonlinear

system rk = 0. This has been shown to be equivalent to a
multi-secant Broyden method (Eyert 1996; Fang and Saad
2009) starting from J−1

0 = −ζ I .

The update rule (20) is usually applied only once each q

steps. Thus, we can write more generally xk+1 = xk + zk ,
where (Pratapa et al. 2016)

zk =
{

αrk if k+1
q

/∈ N

ζ I − (Xk + ζFk)γ k if k+1
q

∈ N
(23)

(α ∈ (0, 1)) obtaining the so-called periodic Anderson
extrapolation (PAE) (Pratapa et al. 2016; Li et al. 2020).

The implementation can be obtained, e.g., by adding the
following few lines after the OC step (Line 91)

where the part solving (22) and the update has been put in a
separate routine for better efficiency.

In the above, we use the “\” for solving the least squares
problem (22); however, strategies based on a QR (or SVD)
decomposition may be preferred in terms of numerical
stability. We refer to Fang and Saad (2009) for a deeper
discussion on this point.

In order to assess the effect of different filtering schemes
and the introduction of parameter continuation, Anderson
acceleration is tested on the MBB example considering the
following options

T1 Density filter alone, p = 3;
T2 Density-and-projection filter, with η∗ computed from

(17) and β = 2
T3 As T2, but with continuation on both β and p, defined

by the parameters betaCnt={250,16,25,2} and
penalCnt={50,3,25,0.25}

T4 As T2, but for the discretization �h = 600 × 200

For all the cases, the TO loop stops when ‖rk‖2/√m <

10−6, where the residual is defined with respect to the
physical variables (i.e., rk = x̃k − x̃k−1 for T1 and rk =
x̂k − x̂k−1 for T2–T4). The acceleration is applied each
q = 4 steps, considering the last mr = 4 residuals, starting
from iteration q0 = 20 for T1–T2 and from q0 = 500
for T3–T4, when both continuations have finished. We set
α = 0.9 for the non-accelerated steps. The choice mr = 4
is based on the observation that convergence improvements
increase very slowly for mr > 3 (Anderson 1965; Eyert

2218

A new generation 99 line Matlab code for compliance...

Table 2 Comparison of convergence-related parameters for the
standard (T) and accelerated (T-PAE) TO tests, for the MBB example

it. c �c ‖r‖2/√m mND

T1 2500 252.7 4.2 · 10−8 1.03 · 10−5 0.025

T1-PAE 828 258.9 4.2 · 10−10 9.95 · 10−7 0.021

T2 2500 246.1 5.1 · 10−8 3.21 · 10−5 0.023

T2-PAE 352 253.9 6.2 · 10−9 9.97 · 10−7 0.014

T3 2500 199.6 1.1 · 10−4 1.91 · 10−3 0.014

T3-PAE 752 197.5 3.7 · 10−8 8.72 · 10−7 0.007

T4 2500 191.8 2.0 · 10−7 3.21 · 10−5 0.006

T4-PAE 818 192.1 2.5 · 10−7 9.97 · 10−7 0.001

1996). However, a deeper discussion about the influence of
all parameters on the convergence is outside the scope of the
present work and we refer to Li et al. (2020) or, in a more
general context, to Walker and Ni (2011) for this .

Results are collected in Table 2 and Figs. 5 and 6,
showing the evolution of the norm of the residual, the
flatness of the normalized compliance �ck/c0 = (ck −
ck−1)/c0 and the non-discreteness measure mND = 100 ·
4xT (1 − x)/m. We observe how Anderson acceleration
substantially reduces the number of iterations needed to
fulfill the stopping criterion, at the price of just a moderate
increase in compliance (0.2–3%). Moreover, starting the
acceleration just a few iterations later (e.g., it = 50 or
it = 100 for T1) gives much lower compliance values
(c = 254.3 and c = 252.9, respectively) and for T3 and T4
when the acceleration is started as the design has stabilized,
compliance differences are negligible.

Fig. 5 Optimized designs obtained without (left column) and with
Anderson acceleration (right column) of the TO loop

From Fig. 5 it is easy to notice the trend of PAE of
producing a design with some more bars. This may even
give slightly stiffer structures, such as for case T3, where
the non accelerated approach removes some bars after it =
2000, whereas stopping at the design of T3–PAE gives a
stiffer structure.

A comment is about the convergence criterion used,
which is different from the one in top88 (maximum
absolute change of the design variables (‖xk+1 − xk‖∞).
Here, we consider it more appropriate to check the residual
with respect to the physical design field, and the 2-norm
seems to give a more global measure, less affected by local
oscillations.

3.4 Performance comparison to top88

We compare the performance of top99neo to the previous
top88 code. In the following, we will refer to “top88”
as the original code provided by Andreassen et al. (2011)
and to “top88U” as its updated version making use of the
sparse2 function (Davis 2009) for the assembly, with iK
and jK specified as integers, and the filter implemented by
using conv2.

The codes are tested by running 100 iterations for the
MBB beam example (see Fig. 2), for the discretizations
300 × 100, 600 × 200, and 1200 × 400, a volume fraction
f = 0.5 and considering mesh independent filters of radii
rmin = 4, 8, and 16, respectively. For top88 and top88U,
we only consider density filtering, whereas for the new
top99neo, we also consider the Heaviside projection,
with the η∗ computed as described in Section 3.2. It will be
apparent that the cost of this last operation is negligible.

Timings are collected in Table 3 where tit is the average
cost per iteration, tA and tS are the overall time spent
by the assembly and solver, respectively, and tU is the
overall time spent for updating the design variables. For
top88 and top88U, the latter consists of the OC updating
and the filtering operations performed when applying the
bisection on the volume constraint. For top99neo, this
term accounts for the cost of the OC updating, that for
estimating the Lagrange multiplier λ∗ as discussed in
Section 3.2 and the filter and projection (Lines 59–70). tP
collects all the preliminary operations, such as the set up of
the discretization, and filter, repeated only once, before the
TO loop starts.

From tit, we clearly see that top99neo enhances the
performance of the original top88 by 2.66, 3.85, and 5.5
times on the three discretizations, respectively. Furthermore,
timings of top88 on the largest discretization (1200×400),
relate to a smaller filter size (rmin = 12), because of memory
issues; thus, the speedup is even underestimated in this
case. Comparing to top88U version, the improvements are
less pronounced (i.e., 1.55, 1.57, and 1.78 times) but still

2219

F. Ferrari and O. Sigmund

Fig. 6 Evolution of some parameters related to convergence for the
standard and Anderson accelerated TO process. The first row shows
the normalized norm of the residual defined on physical variables, the

second row shows a measure of the flatness of the objective function
and the last row shows the non-discreteness measure

substantial. The computational cost of the new assembly
strategy is very low, even comparing to the top88U
version, and its weight on the overall computational cost is
basically constant. Also, from Table 3, it is clear that the
design variables update weighs a lot on the overall CPU
time, for both top88 and top88U. On the contrary, this
becomes very cheap in the new top99neo thanks to the
strategies discussed in Section 3.2; tU takes about 4–5% of
the overall CPU time.

Computational savings would become even higher when
adopting the larger filter size rmin = 8.75 for the mesh
300 × 100, and scaling to rmin = 17.5 and rmin = 35
on the two finer discretizations. For these cases, speedups
with respect to top88 amount to 4.45 and 10.35 on the
first two meshes, whereas for the larger one, the setup of
the filter in top88 causes a memory overflow. Speedups
with respect to top88U amount to 1.55, 2.55 and 3.6 times
respectively.

Table 3 Comparison of numerical performance between the old top88/top88U and new top99neo Matlab code. tit is the cost per iteration,
tA, tS , tU are the overall times for assembly, equilibrium equation solve, and design update, respectively. tP is the time spent for all the preliminary
operations. Values within brackets represent the % weight of the corresponding operation on the overall CPU. On the larger mesh, top88 is run
with rmin = 12, because of memory issues

�h 300 × 100, rmin = 4 600 × 200, rmin = 8 1200 × 400, rmin = 16

top88 top88U top99neo top88 top88U top99neo top88 top88U top99neo

tit 0.615 0.358 0.231 4.57 1.87 1.19 31.3 10.1 5.69

tA 19.4(31.5) 5.4(15.0) 1.4 (6.1) 83.1(18.2) 31.3(16.7) 5.6 (4.7) 361.1(11.6) 151.5(15.2) 30.7 (5.4)

tS 23.1(37.4) 22.9(59.3) 19.7(85.3) 122.4(26.8) 109.3(58.4) 106.9(89.7) 592.5(19.0) 513.2(50.9) 510.5(89.6)

tU 13.3(21.6) 4.8(13.5) 1.2 (4.8) 223.8(48.8) 38.0(20.3) 5.2 (4.4) 1164.2(37.4) 310.4(31.4) 29.2 (5.1)

tP 0.8(1.3) 0.06 (0.2) 0.1 (0.3) 12.9 (2.8) 0.1(< 0.1) 0.2(< 0.1) 92.3 (3.1) 0.5(< 0.1) 0.6(< 0.1)

2220

A new generation 99 line Matlab code for compliance...

Fig. 7 Designs obtained for the
frame reinforcement problem
sketched in Fig. 1a. In a, the
horizontal, triangular load
distribution is pointing
leftwards, whereas in b, it is
pointing rightwards

3.5 Frame reinforcement problem

Let us go back to the example of Fig. 1a, adding the specifi-
cation of passive domains and a different loading condition.

We may think of a practical application like a reinforcement
problem for the solid frame, with thickness t =L/50 (P1),
subjected to two simultaneous loads. A vertical, uniformly
distributed load with density q = −2 and a horizontal height-
proportional load, with density b = ±y/L. Some structural
material has to be optimally placed within the active design
domainA in order to minimize the compliance, while keeping
the void space (P0), which may represent a service opening.

To describe this configuration, we only need to replace
Lines 31–33 with the following

where lDofv and lDofh target the DOFs subjected to
vertical and horizontal forces, respectively. Then, the load
(Line 34) is replaced with

Figure 7 shows the two optimized design corresponding
to the two orientations of the horizontal load b, after
100 redesign steps. The routine top99neo has been
called with the following arguments nely=nelx=900,
volfrac=0.2, penal=3, rmin=8, ft=3, eta=0.5,
beta=2 and no continuation is applied. The cost per
iteration is about 10.8 s and, considering the fairly large
discretization of 1.62 · 106 DOFs, is very reasonable.

4 Extension to 3D

The implementation described in Section 3 is remarkably
easy to be extended to 3D problems (see Section Appendix).

Fig. 8 Geometrical sketch of the 3D cantilever example (a) and opti-
mized topology for �h = 48 × 24 × 24 and considering the two filter
boundary conditions (b, c). The design in d corresponds to the finer

mesh �h = 96×48×48 and has been obtained by replacing the direct
solver with the multigrid–preconditioned CG (see Amir et al. 2014 for
details)

2221

F. Ferrari and O. Sigmund

Notable modifications are the definition of K
(s)
e for the

8-node hexahedron (Lines 24–47) and the solution of the
equilibrium (5), now performed by

which in this context has been observed to be faster than the
decomposition routine. Then, apart from the plotting
instructions, all the operations are the same as in the 2D
code and only 12 lines need minor modifications, basically
to account for the extra space dimension (see tags “#3D#”
in Section Appendix).

We test the 3D implementation on the cantilever example
shown in Fig. 8a, for the same data considered in Amir et al.
(2014). The discretization is set to �h = 48 × 24 × 24, the
volume fraction is f = 0.12, and the filter radius rmin =√
3. We also consider the volume-preserving Heaviside

projection, (ft=3). Figure 8b and c show the designs
obtained after 100 redesign steps, for the two different filter
boundary conditions. The design in (b), identical to the
one in Amir et al. (2014), corresponds to zero-Neumann
boundary conditions (i.e., the option “symmetric” was
used in imfilter). The design in (c) on the other hand,
corresponds to zero-Dirichlect boundary conditions for the
filter operator and is clearly a worse local minimum.

The overall CPU time spent over 100 iterations is 1741 s
and about 96% of this is due to the solution of the state equa-
tion. Only 1.2% of the CPU time is taken by matrix
assemblies and 0.4% by filtering and the design update
processes.

Upon replacing the direct solver in top3D125 with the
same multigrid preconditioned CG solver of Amir et al.
(2014), we can compare the efficiency of the two codes.
We refer to Table 4 for the CPU timings, considering the
discretizations �h = 48 × 24 × 24 (l = 3 multigrid levels)
and�h = 96×48×48 (l = 4 multigrid levels). top3D125
shows speedups of about 1.8 and 1.9, respectively, and most
of the time is cut on the matrix assembly. In the code
of Amir et al. (2014), this operation takes about 50% of
the overall time (and notably has the same weight as the

state equation solve) whereas in top3D125 this weight is
cut to 7 − 10%. Also, the time spent for the OC update
is reduced, even though the code of Amir et al. (2014)
already implemented a strategy for avoiding filtering at each
bisection step.

5 Concluding remarks

We have presented new Matlab implementations of compli-
ance topology optimization for 2D and 3D domains. Com-
pared to the previous top88 code (Andreassen et al. 2011)
and available 3D codes (e.g., by Liu and Tovar 2014 or Amir
et al. 2014), the new codes show remarkable speedups.

Improvements are mainly due to the following:

1. The matrix assembly is made much more efficient by
defining mesh-related quantities as integers (Matlab
int32) and assembling just one half of the matrix.

2. The number of OC iterations is drastically cut by
looking at the explicit expression of the Lagrange
multiplier for the problem at hand.

3. Filter implementation and volume-preserving density
projection allow to speed up the redesign step.

The new codes are computationally well balanced and as
the problem size increases the majority of the time (85 to
90% for 2D and even 96% for 3D discretizations) is spent
on the solution of the equilibrium system. This is precisely
what we aimed at, as this step can be dealt with efficiently
by preconditioned iterative solvers (Amir et al. 2014; Ferrari
et al. 2018; Ferrari and Sigmund 2020). We also discussed
Anderson acceleration, that has recently been applied to TO
also by Li et al. (2020), to accelerate the convergence of the
overall optimization loop.

We point out that even if we specifically addressed
volume constrained compliance minimization and density-
based TO the methods above can be applied also to level-set
and other TO approaches. Point 1 can be extended to all
problems governed by symmetric matrices. Points 2 and 3

Table 4 Performance comparison between the new top3D125 code and the one from Amir et al. (2014). tit, tA, tS , tU , and tP have the same
meaning as in Table 3 and numbers between brackets denote the % weight of the operations on the overall CPU time

�h 48 × 24 × 24, rmin = √
3 96 × 48 × 48, rmin = 2

√
3

top3dmgcg top3D125 top3dmgcg top3D125

tit 3.19 1.79 27.33 14.20

tA 160.6(50.3) 13.1 (7.4) 1369(50.1) 137.2(9.7)

tS 148.1(46.4) 151.7(84.7) 1250(45.7) 1272(89.5)

tU 1.97 (0.6) 0.7 (0.4) 21.2 (0.8) 15.12(1.1)

tP 0.74 (0.4) 0.24 (0.1) 39.2 (1.4) 0.29(<0.1)

2222

A new generation 99 line Matlab code for compliance...

can also be extended to other problems, to some extent,
and Anderson acceleration is also usable in a more general
setting (e.g., within MMA).

Therefore, we believe that this contribution should be help-
ful to all researchers and practitioners who aim at tackling
TO problems on laptops, and set a solid framework for the
efficient implementation of more advanced procedures.

Acknowledgments The project is supported by the Villum Fonden
through the Villum Investigator Project “InnoTop.” The authors are
grateful to members of the TopOpt group for their useful testing of the
code.

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflict of
interest.

Replication of results Matlab codes are listed in the Appendix
and available at www.topopt.dtu.dk. The stenglib package,
containing the fsparse function, is avaialble for download at
https://github.com/stefanengblom/stenglib.

Appendix A: Elaboration on the OC update

Let us consider (3) at a given design point xk assuming the
reciprocal and linear approximation for the compliance and
volume functions, respectively (Christensen and Klarbring
2008)
{

min
x∈[δ−,δ+]m c (x) � ck + ∑m

e=1(−x2
k,e∂ec(xk))x

−1
e

s.t.
∑m

e=1 ∂eV (xk)xe − f |�h| ≤ 0
(24)

We set up the Lagrangian associated with (24)

L(x, λ) = c(x) + λ

(
m∑

e=1

∂eV (xk)xe − f |�h|
)

and seek the pair (xk+1, λ
∗
k) ∈ R

m × R+ solving the
subproblem

max
λ>0

{

ψ(λ) := min
x∈C

L(x, λ)

}

(25)

where C = {x ∈ R
m | δ− ≤ xe ≤ δ+, e = 1 . . . , m}

and ψ(λ) is the dual function. Equation (25) is solved
by primal-dual (PD) iterations, as x and λ are interlaced.
Replacing ξ = xk and using subscripts (j) to denote inner
PD iterations, we have

1. Fixed λ = λ(j), the inner minimization in (25) gives

ξ2e ∂ec(ξ)x−2
e +λ∂eV (ξ) = 0 =⇒ xe = ξe

(

− ∂ec(ξ)

λ∂eV (ξ)

) 1
2

due to separability of the approximation. Let us denote
the rightmost expression xe = F(j)e(λ), and taking into
account the box constraints in C, we have

U(xe) =

⎧
⎪⎪⎨

⎪⎪⎩

x(j+1),e = δ− if e ∈ L = {e | x(j+1),e ≤ δ−}
x(j+1),e = δ+ if e ∈ U = {e | x(j+1),e ≥ δ+}
x(j+1),e = F(j),e if e ∈ M = {e | δ− < x(j+1),e < δ+}

(26)

where C = L+U+M. The above is equivalent to (10).
2. We then evaluate the dual function for x(j+1) given by

(26), and the stationarity (∂λψ = 0) gives

m∑

e=1

∂eV (ξ)(χU δ++χLδ−+F(j),e(λ)χM)−f |�h| = 0

where χ[·] is the characteristic function of a set.
In this simple case, the above can be solved for
λ(j+1), the Lagrange multiplier enforcing the volume
constraint for the updated density x(j+1), and after some
simplifications, we obtain

λ(j+1) =
(∑

e∈M x(j+1)e(∂ec(ξ)/∂eV (ξ))1/2

f |�h|/∂eV (ξ) − |L|δ− − |U |δ+

)2

(27)

where | · | denotes the number of elements in a set.

Equations (26) and (27) can be iteratively used to
compute the new solution (xk+1, λ

∗
k), as implemented in the

code here below (again, note that lm here represents
√

λ)

and, for the MBB beam example, this performs as shown by
the green curves in Fig. 4b.

However, a closed form expression such as (27) cannot
be obtained for more involved constraint expressions and
therefore a root finding strategy must be employed to
approximate the Lagrange multiplier. The application of
(27) to the current, feasible design point (x(j+1) = xk)
reduces to

λ# =
[

1

mf

m∑

e=1

xk,e

(

− ∂ec(ξ)

∂eV (ξ)

)1/2
]2

(28)

since |M| = |�h| = m, |L| = |U | = 0 and we made use of
(7). We immediately verify that (28) is identical to (19).

2223

F. Ferrari and O. Sigmund

AppendixB: The 2D code for compliance
minimization

2224

A new generation 99 line Matlab code for compliance... 2225

F. Ferrari and O. Sigmund

AppendixC: 3D code for compliance
minimization

2226

A new generation 99 line Matlab code for compliance... 2227

F. Ferrari and O. Sigmund

References

Amir O, Sigmund O (2011) On reducing computational effort in
topology optimization: how far can we go? Struct Multidiscip
Optim 44(1):25–29. https://doi.org/10.1007/s00158-010-0586-7

Amir O, Aage N, Lazarov BS (2014) On multigrid–CG for efficient
topology optimization. Struct Multidiscip Optim 49(5):815–829.
https://doi.org/10.1007/s00158-013-1015-5

Anderson DG (1965) Iterative procedures for nonlinear integral
equations. J Assoc Comput Mach 12(4):547–560

Andreassen E, Andreasen CS (2014) How to determine composite
material properties using numerical homogenization. Comput
Mater Sci 83:488–495

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sig-
mund O (2011) Efficient topology optimization in matlab
using 88 lines of code. Struct Multidiscip Optim 43(1):1–16.
https://doi.org/10.1007/s00158-010-0594-7

Arora JS, Chahande AI, Paeng JK (1991) Multiplier methods for engi-
neering optimization. Int J Numer Methods Eng 32(7):1485–1525

Bendsøe MP, Sigmund O (1999) Material interpolation schemes
in topology optimization. Arch Appl Mech 69(9):635–654.
https://doi.org/10.1007/s004190050248

Bourdin B (2001) Filters in topology optimization. Int J Numer
Methods Eng 50(9):2143–2158. https://doi.org/10.1002/nme.116

Brezinski C, Chehab JP (1998) Nonlinear hybrid procedures and
fixed point iterations. Numer Funct Anal Optim 19(5–6):465–487.
https://doi.org/10.1080/01630569808816839

Bruns TE, Tortorelli DA (2001) Topology optimization of
non-linear elastic structures and compliant mechanisms.
Comput Methods Appl Mech Eng 190(26):3443–3459.
https://doi.org/10.1016/S0045-7825(00)00278-4. http://www.
sciencedirect.com/science/article/pii/S0045782500002784

Challis VJ (2010) A discrete level-set topology optimization code
written in matlab. Struct Multidiscip Optim 41(3):453–464.
https://doi.org/10.1007/s00158-009-0430-0

Christensen P, Klarbring A (2008) An introduction to structural
optimization. Solid mechanics and its applications. Springer,
Netherlands

Davis TA (2009) User guide for CHOLMOD: a sparse Cholesky
factorization and modification package

Davis T (2019) Suitesparse: a suite of sparse matrix software. http://
faculty.cse.tamu.edu/davis/suitesparse.html

Engblom S, Lukarski D (2016) Fast matlab compatible sparse
assembly on multicore computers. Parallel Comput 56:1–17

Eyert V (1996) A comparative study on methods for convergence
acceleration of iterative vector sequences. J Comput Phys
124(2):271–285. https://doi.org/10.1006/jcph.1996.0059

Fang HR, Saad Y (2009) Two classes of multisecant methods for
nonlinear acceleration. Numer Linear Algebra Appl 16(3):197–
221. https://doi.org/10.1002/nla.617

Ferrari F, Sigmund O (2020) Towards solving large-scale topology
optimization problems with buckling constraints at the cost of
linear analyses. Comput Methods Appl Mech Eng 363:112,911.
https://doi.org/10.1016/j.cma.2020.112911

Ferrari F, Lazarov BS, Sigmund O (2018) Eigenvalue topology
optimization via efficient multilevel solution of the frequency
response. Int J Numer Methods Eng 115(7):872–892

Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design variables

and projection functions. Int J Numer Methods Eng 61(2):238–
254. https://doi.org/10.1002/nme.1064

Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory
Appl 4(5):303–320. https://doi.org/10.1007/BF00927673

Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge
University Press, New York

Li L, Khandelwal K (2015) Volume preserving projection filters and
continuation methods in topology optimization. Engineering Stru
85:144–161

Li W, Suryanarayana P, Paulino G (2020) Accelerated fixed–point
formulation of topology optimization: application to compliance
minimization problems. Mech Rese Commun 103:103,469

Liu K, Tovar A (2014) An efficient 3d topology optimization code
written in matlab. Struct Multidiscip Optim 50(6):1175–1196.
https://doi.org/10.1007/s00158-014-1107-x

Peng Y, Deng B, Zhang J, Geng F, Qui W, Liu L (2018) Anderson
acceleration for geometry optimization and physics simulation.
ACM Trans Graph 37(4):42:1–42:14

Pratapa PP, Suryanarayana P, Pask JE (2016) Anderson acceleration
of the jacobi iterative method: An efficient alternative to krylov
methods for large, sparse linear systems. J Comput Phys 306:43–
54. https://doi.org/10.1016/j.jcp.2015.11.018

Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics. Texts
in applied mathematics. Springer

Ramiere I, Helfer T (2015) Iterative residual–based vector methods
to accelerate fixed point iterations. Comput Math Appl 70:2210–
2226

Saad Y (1992) Numerical methods for large eigenvalue problems.
Manchester University Press

Sanders ED, Pereira A, Aguiló MA, Paulino GH (2018) Polymat: an
efficient Matlab code for multi–material topology optimization.
Struct Multidiscip Optim 58:2727–2759

Sigmund O (2001) A 99 line topology optimization code writ-
ten in Matlab. Struct Multidiscip Optim 21(2):120–127.
https://doi.org/10.1007/s001580050176

Sigmund O (2007) Morphology–based black and white filters for
topology optimization. Struct Multidiscip Optim 33(4):401–424

Suresh K (2010) A 199–line Matlab code for Pareto–optimal tracing in
topology optimization. Struct Multidiscip Optim 42(5):665–679

Talischi C, Paulino GH, Pereira A, Menezes IF (2012) Polytop:
a matlab implementation of a general topology opti-
mization framework using unstructured polygonal finite
element meshes. Struct Multidiscip Optim 45(3):329–357.
https://doi.org/10.1007/s00158-011-0696-x

Walker HF, Ni P (2011) Anderson acceleration for fixed point
iterations. SIAM J Numer Anal 49(4):1715–1735

Wang MY (2007) Structural topology optimization using level set
method. In: Computational methods in engineering & science.
Springer, Berlin, pp 310–310

Wang F, Lazarov B, Sigmund O (2011) On projection methods,
convergence and robust formulations in topology optimization.
Struct Multidiscip Optim 43(6):767–784

Xia L, Breitkopf P (2015) Design of materials using topology
optimization and energy-based homogenization approach
in matlab. Struct Multidiscip Optim 52(6):1229–1241.
https://doi.org/10.1007/s00158-015-1294-0

Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density
filter based on Heaviside functions. Struct Multidiscip Optim
41:495–505

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2228

https://doi.org/10.1007/s00158-010-0586-7
https://doi.org/10.1007/s00158-013-1015-5
https://doi.org/10.1007/s00158-010-0594-7
https://doi.org/10.1007/s004190050248
https://doi.org/10.1002/nme.116
https://doi.org/10.1080/01630569808816839
https://doi.org/10.1016/S0045-7825(00)00278-4
http://www.sciencedirect.com/science/article/pii/S0045782500002784
http://www.sciencedirect.com/science/article/pii/S0045782500002784
https://doi.org/10.1007/s00158-009-0430-0
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1002/nla.617
https://doi.org/10.1016/j.cma.2020.112911
https://doi.org/10.1002/nme.1064
https://doi.org/10.1007/BF00927673
https://doi.org/10.1007/s00158-014-1107-x
https://doi.org/10.1016/j.jcp.2015.11.018
https://doi.org/10.1007/s001580050176
https://doi.org/10.1007/s00158-011-0696-x
https://doi.org/10.1007/s00158-015-1294-0

	A new generation 99 line Matlab code for compliance...
	Abstract
	Introduction
	Problem formulation and solution scheme
	Matlab implementation and speedups
	Speedup of the assembly operation
	Speedup of the OC update
	Acceleration of the OC iteration
	Performance comparison to top88
	Frame reinforcement problem

	Extension to 3D
	Concluding remarks
	Compliance with ethical standards
	Appendix A: Elaboration on the OC update
	AppendixB: The 2D code for compliance minimization
	Appendix B: The 2D code for compliance minimization
	AppendixC: 3D code for compliance minimization
	Appendix C: 3D code for compliance minimization
	References

