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Abstract
This paper presents a density-based topology optimization approach to design easy-removal support structures for additive
manufacturing (AM). First, a multi-field structural parameterization is proposed for topology optimization by considering
AM filtering technique that ensures the physical design being self-support. An easy-removal constraint is developed to
generate porous structural patterns in the contact region between the support structures and its surroundings. An improved
formulation is further proposed to prevent obtaining impractical solutions which contain one-node connection in the
structural members. Besides, an overhang constraint and a design-dependent self-weight load are considered. As a result,
the optimized support structures are self-support, able to support the overhang regions of the given prototype and possesses
excellent mechanical properties to bear the self-weight of the entire AM part. It can be easily removed from both the
prototype and the baseplate. Numerical examples and discussions are given to demonstrate its effectiveness and applicability.

Keywords Support structures · Additive manufacturing · Easy removal · Overhang constraint · Topology optimization

1 Introduction

With the fast development of additive manufacturing (AM)
techniques, mechanical parts with complex geometries can
be fabricated in a much easier way. The market needs and
the volume of AM production grow rapidly nowadays as
the processes are becoming more efficient. An additively
manufactured part (e.g., by powder-bed-based selective
laser melting) generally consists of two parts, the functional
part and the support structures. The latter is used to support
the overhang features of the functional design during an
AM process to ensure the overall manufacturability, while it
must be removed afterwards by a manual or machining post-
process. Due to inevitable machining and human errors,
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the risk of damaging the functional part is high in the
post-process if the support structures are badly designed or
too complicated to be removed. The cost of post-process
contributes significantly to an AM activity. Hence, it is
preferable to design easy-removal and cost-effective AM
support structures with enough stiffness to support the
overhangs of the functional prototype.

Many works have been done to design support structures
for AM (Jiang et al. 2018) and the most common strategy
is based on utilizing predefined geometric patterns. For a
given prototype, designers may choose geometric primitives
such as lattice (Hussein et al. 2013; Strano et al. 2013),
straight thin wall (Krol et al. 2012), sloping wall (Huang
et al. 2009), or tree-like (Lantada et al. 2017) geometric
primitives to support the overhang regions of a prototype.
Although most of the geometric patterns are porous and
self-support, the AM support structures are generally
designed based on engineers’ experiences and it is difficult
in practice to realize a balance between the geometric
complexity, mechanical property (e.g., stiffness), material
usage, and the cost of post-processing.

Topology optimization (Bendsøe and Kikuchi 1988;
Sigmund and Maute 2013; Xia and Shi 2016; Xia
et al. 2019) is an effective design approach to generate
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structures that possess effective mechanical properties such
as optimized stiffness to weight ratio. For AM-oriented
structural topological design, one of the hot topics in
recent years is to design self-support structures using
the topology optimization techniques. Langelaar (2016)
and Langelaar (2017) developed an AM filtering method
that can ensure the optimized structure being self-support.
Gaynor and Guest (2016) proposed a projection-based
strategy in a similar way to achieve a self-support structural
design. Zhang and Zhou (2018) used polygon holes as
design primitives to control the overhang angle. Moreover,
a polygon modification and re-optimization strategy was
used to avoid the unprintable V-shape areas. Qian (2017)
proposed a projected perimeter-based formulation to control
the overhang angle. A grayness constraint was used at
the same time to prevent the appearance of gray density.
Guo et al. (2017) achieved self-support structural design
based on the moving morphable components (MMC)
and moving morphable voids (MMV) frameworks. Zhang
et al. (2019) proposed an overhang angle constraint and a
hanging feature constraint to achieve self-support structural
design. In addition, Allaire et al. (2017a, b, c) solved the
overhang issue by considering the mechanical property of
the intermediate structure in the layer-by-layer additive
manufacturing process. By using the above methods, the
functional structure is self-support and it reduces the
manufacturing cost of using additional support structures.
However, the mechanical property (e.g., stiffness) of the
functional structure degrades substantially due to the self-
support design requirement comparing with that without
such a constraint.

In order to obtain a well-behaved functional part with as
low manufacturing cost as possible, another design strategy
is to optimize the support structures for a given functional
prototype rather than generating self-support prototype with
degraded structural performance.1 Mezzadri et al. (2018)
designed support structures by applying evenly distributed
pressure load in the need-support surface of the functional
structure for a compliance minimization problem. Zhou
et al. (2019) proposed a topology optimization approach to
design support structures that can dissipate thermal energy
efficiently and also support the overhang surface of the
given prototype. Langelaar (2018) proposed an approach to
optimize the functional part, the support structures, and the
AM building direction at the same time. Allaire and Bogosel
(2018) proposed several models to optimize the stiffness or
the heat dissipation ability of the support structures and the
functional prototype. However, the focuses of above studies
are mainly on the mechanical property and material usage of

1For AM parts whose support structures can hardly be removed by
post-processing, e.g., structural infill with closed walls, a self-support
internal design is still preferable.

the support structures without considering the easy-removal
issue.

One way to obtain easy-removal support structures
is by preventing bulky material conglomerating in the
contact regions between the support structures and its
surroundings including the prototype and the baseplate.
Previously, Liu et al. (2019) proposed a method by changing
the gravity of the functional structure into several point
loads and then applying these loads on the top surface
of designable domain for structural design optimization.
In doing so, the optimized support structure near the top
surface can be easily separated. However, in Liu’s model,
the stiffness of the functional structure is neglected while in
practice the self-gravity and the overall structural stiffness
including both the prototype and the support structures shall
be preferably considered. Kuo et al. (2017) proposed a
repulsion index function to measure the element connection.
By incorporating the repulsion index function into a multi-
objective optimization problem, the layout of easy-removal
support structures can be obtained. However with their
solution, there is a large amount of gray elements in
the contact region and the support structures cannot fully
support the overhangs of the functional structure.

In this paper, a density-based topology optimization
method is proposed to design easy-removal AM support
structures for a given non-designable functional structure.
The support structure will not only have enough stiffness to
bear the gravity of the functional prototype and itself but can
also fully support the overhangs of the prototype, ensuring
the overall manufacturability. The AM filter proposed by
Langelaar (2017) is firstly utilized in parameterization
strategy so that the support structure is self-support. A
geometric constraint proposed by Zhou et al. (2019) is
further utilized to make sure that the overhang feature
of the given prototype can be fully supported. More
importantly, a local volume constraint proposed by Wu
et al. (2018) is employed in the contact region between the
support structure and its surroundings and thus the support
structure can be easily removed from the prototype and the
baseplate. Furthermore, an improved formulation is further
proposed to prevent obtaining impractical design solutions
that exhibiting one-node connection in the structural
members.

The remainder of this paper is organized as follows. In
Section 2, a topology optimization model is proposed to
design easy-removal support structure. The key technolo-
gies including the AM filtering, the overhang constraint
and the easy-removal constraint are introduced. A numerical
example is then given to discuss the one-node connection
issue. Afterwards, an improved formulation is proposed to
address the issue, which is followed by successful design
cases of easy-removal support structures in Section 4. Dis-
cussions and conclusions are given in Section 5.
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2 Topology optimizationmodel
for easy-removal AM support
structures

2.1 Structural parameterization

In this section, a density-based topology optimization model
is proposed to design easy-removal support structures for
a given functional prototype. As shown in Fig. 1e, the
building chamber � which consists of a non-designable
domain �N (blue color) and the rest designable domain �D

is discretized by square finite elements. Each element is
annotated with a physical variable φ̌e(e = 1 : N) indicating
whether it is solid (φ̌e = 1) or void (φ̌e = 0), where e is
the element index. The physical variables are dependent on
design variables φe ∈ [0, 1](e = 1 : N) through a series of
filtering operations.

First, a density filter (Bruns and Tortorelli 2001; Bourdin
2001) is applied to avoid the mesh-dependent and check-
board issues (Bendsøe and Sigmund 2003):

φ̄e = 1∑
i∈Ne,r

Hei

∑
i∈Ne,r

Heiφi, (1)

where Ne,r = {i|‖χe − χi‖ ≤ r, i ∈ �D} is the set
containing elements near element e within the filter radius
r . χi and χe are the center positions of elements i and e,
respectively. Hei = max(0, r − ‖χe − χi‖) is the weight
function.

Second, a Heaviside projection is used (Guest et al. 2004;
Sigmund 2007; Wang et al. 2010) to have a clear solid-void
design as follows:

φ̃e = tanh(βη) + tanh(β(φ̄e − η))

tanh(βη) + tanh(β(1.0 − η))
, (2)

where β controls the sharpness of the differentiable function
and η is the threshold.

In order to guarantee the support structure being self-
support, an AM filter (Langelaar 2017) is further applied
to remove the overhang feature of the overall structure
including the design domain for support structures and
the non-design domain for the given prototype. The idea
of the AM filter is shown in Fig. 2. For an element at
position (i, j ), the nearest three elements under it with
index (i − 1, j − 1), (i − 1, j ), and (i − 1, j + 1) are
defined as the support region of the element (i, j ). If no
material exists in the support region of the element (i, j ),
the element is unprintable and will be removed by the
AM filter. Otherwise, the element at (i, j ) is supported by
the underlying structure. By applying the AM filter, the
unprintable overhang structure will be removed and the
remaining structure φ̂ is self-support under a 45o overhang
constraint. The formulation of the AM filter is given as
follows:

φ̂(i,j) =
{
min(φ̃(i,j), ξ(i,j)), i > 1
φ̃(i,j), i = 1

, with (3)

ξ(i,j) = max(φ̂(i−1,j−1), φ̂(i−1,j), φ̂(i−1,j+1)), (4)

and differentiable form is given as:

φ̂(i,j) =
{

1
2 (φ̃i,j +ξ(i,j)−

√
(φ̃(i,j) − ξi,j )2 + εm + √

εm), i > 1

φ̃(i,j), i = 1
, with

(5)

ξi,j = (φ̂P
(i−1,j−1) + φ̂P

(i−1,j) + φ̂P
(i−1,j+1))

1
Q , (6)

where P = 40, Q = P + ln 3
ln 0.5 , and εm = 10−4 are used as

suggested in Langelaar (2017).
One issue of applying the AM filter to entire domain is

that some parts of the non-designable functional structure

Fig. 1 Parameterization of
topology optimization for AM
with four different filters (blue
color, non-designable domain
�N ; red color, overhang region).
a Design variable. b–d
Intermediate variable. e Physical
variable
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Fig. 2 Support region of element (i, j )

are removed as shown in Fig. 1d. In order to keep the non-
designable domain unchange in the optimization process,
an extra feature-preserving filter is applied afterwards to
recover the eroded functional structure (Zhou et al. 2019):

φ̌e =
{

φ̂e, e ∈ �D

1, e ∈ �N
. (7)

2.2 Overhang constraint

With the above parameterization, the support structure in
designable domain �D is guaranteed to be self-support
and the functional structure in non-designable domain
�N remains unchanged during the optimization process.
However, some parts of the functional structure may not
be supported by the underlying support structure as shown
in Fig. 1e. Hence, an overhang constraint proposed by
Zhou et al. (2019) is leveraged here to make sure that the
overhangs of the prototype are fully supported.

As shown in Fig. 3, by applying the ideal AM filter (3-
4) to the cantilever beam without having any supports, the
need-support (NS) region �NS of the functional structure is
defined as the area wherever is removed by the AM filtering
operation as shown in green color. A indicator function G

Fig. 3 The need-support region (marked in green) of a cantilever beam

is then used to calculate the volume of the non-supported
overhang regions in �NS as:

G =
∑

e∈�NS

(1 − φ̂e)Ve

= (IT · lNS − φ̂
T · lNS)Ve, (8)

where lNS is a vector related to �NS . If an element belongs
to �NS , the corresponding element in lNS is equal to 1.
Otherwise, it is equal to 0. I is a unit vector with values of
1. The overhang constraint is given as follows:

G ≤ εr , (9)

where εr = 10−4 × IT · lNSVe is a small value according to
Zhou et al. (2019).

2.3 Easy-removal constraint

The key idea to design easy-removal support structures is
herein to ensure that connections between the supports to
its surroundings are porous and easy-to-break, rather than a
bulky structural bond.

As shown in Fig. 4, a contact region �C around the
prototype and the baseplate with thickness tC inside the
designable domain �D is firstly defined. For each element
e ∈ �C , the local volume fraction in the neighborhood is
calculated by:

v̄e = 	i∈Ne,R
φ̌i

	i∈Ne,R
1

, e ∈ �C, (10)

where Ne,R = {i : ‖χe − χi‖ ≤ R, i ∈ �C} is the set
containing elements around element e within the distanceR.
A local volume constraint proposed by Wu et al. (2018) is
applied in�C to restrict the material usage inside, and hence
resulting in porous and easy-removal structural pattern in
the contact region. The ideal local volume constraint is
given by:

max
e∈�C

v̄e ≤ αl, (11)

where αl is the maximum allowable local volume fraction.
A differentiable p-norm-based formulation is given as

Fig. 4 The contact region (marked in red) of a cantilever beam
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follows to approximate the above function:

Vl =
⎛
⎝ 1

M

∑
e∈�C

v̄Pl
e

⎞
⎠

1/Pl

≤ αl, (12)

where Pl = 16 is used as suggested in (Wu et al. 2018).
M = ∑

e∈�C
1 is the total number of elements in the

contact region �C . With the proposed design constraint,
easy-removal support structures can be realized as will be
demonstrated in later sections.

2.4 Material interpolation and optimizationmodel

Besides the easy-removal and support-to-overhang proper-
ties, the support structures must be stiff enough to bear
the gravity of itself and the functional prototype. The grav-
ity load of the non-designable functional structure is fixed
while that of the support structures is design-dependent.
The gravity acceleration g for elements with intermediate
densities is interpolated by a linear function:

ge = φ̌eg0, (13)

where g0 = 1 is the gravity acceleration for solid elements.
Moreover in this work, the Young modulus E of the
elements with intermediate physical densities is interpolated
using rational approximation of material properties (RAMP)
(Stolpe and Svanberg 2001):

Ee = Emin + φ̌e

1 + q(1 − φ̌e)
(E0 − Emin), (14)

where E0 = 1 and Emin = 10−9 are used for the solid and
void, respectively. q = 10 is the penalty factor.

With the above parameterization and constraints, a
topology optimization model for easy-removal support
structures is proposed as:

min
φ

: C = F T · U

s.t . : V ≤ αV0

: Vl ≤ αl

: G ≤ εr

: KU = F

: 0 ≤ φe ≤ 1, e = 1, 2, ..., N

, (15)

where C is the compliance of the overall structure subject
to gravity loads and a fixed baseplate boundary condition.
V = ∑

e∈�D

φ̌e is the volume of support structures. V0 is the

volume of designable domain �D . α is the allowable upper
bound for the volume fraction.K, U , and F are the stiffness
matrix, the displacement vector, and the force vector,

respectively. The method of moving asymptotes (MMA)
(Svanberg 1987) is used to solve the above optimization
problem.

2.5 Topology optimization workflow

The workflow of the topology optimization approach is
shown in Fig. 5 and the solution procedure is given as
follows:

Step 1: Setup the designable domain �D and the non-
designable domain �N . Initialize the design
variables and β.

Step 2: Perform density filtering, projection, AM filtering,
and feature-preserving filtering.

Step 3: Solve the FEA model and calculate design
responses.

Step 4: Calculate the sensitivity for each design response.
Step 5: Use the MMA method to update design variables.
Step 6: Check the condition for β continuation. If the

change rate of the objective function is less than
0.005 in 10 continuous iterations, β < βmax are
both satisfied, then double the value of β and turn
to Step 2. Otherwise, turn to Step 7.

Step 7: Check the convergence. If the change rate of the
objective function is less than 0.005 in 10 contin-
uous iterations and all the constraints are satisfied,
stop the optimization process. Otherwise, turn to
Step 2.

2.6 Numerical example

A benchmark topology optimization example is used here
to study the proposed solution. It is to design the support
structures for the cantilever beam shown in Fig. 3, which is
discretized by a mesh of 400 × 200 square elements. The
optimization parameters are set as follows: the maximum
allowable volume fraction for the support structure α =
0.3, the allowable local volume fraction is αl = 0.6, the
neighborhood distance R = 6, the thickness of contact
region tC = 3, and the threshold value η = 0.5. Besides, a
continuation approach is used by setting β = 1 initially and
doubling its value up to 32 until convergence.

The optimized result is shown in Fig. 6 and the support
structure in the contact region exhibits a porous structural
layout, indicating that it can be removed easily. Besides,
all the overhang regions of the functional structure are
well supported by the optimized supports. However, several
one-node connected bars are observed in the optimized
design, of which the enlarged snapshots are given in Fig. 6.
These one-node connections exist as it indeed satisfies
the overhang constraint. However, due to the discretization
of using square elements and impractical finite element
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Fig. 5 Workflow of topology
optimization

modeling, it neither can provide any stiffness nor can
be manufactured in practice. Hence, such a design is
impractical and meaningless.

3Manufacturable design solution

The support structure optimized in the previous section
contains porous structural features in the contact regions
between itself and the surroundings, which can be
easily removed from the prototype and the baseplate
after AM processing. However, the design exhibits one-
node connection which is impractical from manufacturing
viewpoint. An improved solution is introduced herein to
avoid such a issue.

As shown in Fig. 7, three projected fields are considered
in the improved solution where the filtered field φ̄ is
projected to eroded φ̃ero, intermediate φ̃int , and dilated field
φ̃dil respectively:

φ̃ero
e = tanh(βηero) + tanh(β(φ̄e − ηero))

tanh(βηero) + tanh(β(1.0 − ηero))
, (16)

φ̃int
e = tanh(βηint ) + tanh(β(φ̄e − ηint ))

tanh(βηint ) + tanh(β(1.0 − ηint ))
, (17)

φ̃dil
e = tanh(βηdil) + tanh(β(φ̄e − ηdil))

tanh(βηdil) + tanh(β(1.0 − ηdil))
, (18)

where different projection threshold values ηero = 0.7,
ηint = 0.5, and ηdil = 0.3 are chosen in this work. To
ensure the property of being self-support and to recover
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Fig. 6 Optimized support
structure for a cantilever bean
(red color, the optimized support
structure in the contact region),
(a–c) enlarged details

the non-designable functional prototype, the AM filter and
the feature-preserving filter are applied to the projected
fields, similarly to the previous section, which are in turn
represented as φ̂ero, φ̂int φ̂dil and the physical fields φ̌ero,
φ̌int (the blueprint design to be manufactured), and φ̌dil .

For topology optimization problems involving only
stiffness and structural weight, a minimum length scale can
be imposed on the intermediate design if one considers the
eroded design as the measure for stiffness and the dilated
design for structural weight, provided that eroded design has
the the worst stiffness and the dilated design has the highest
structural volume ratio (Lazarov et al. 2016). Such an idea
is employed in the current work and it is found effective
in avoiding the one-node connection issue in the blueprint
design. The improved formulation is given as follows:

min
φ

: Cero = (F ero)T · U ero

s.t . : V dil(φ̌
dil

) ≤ αV0

: Vl(φ̌
int

) ≤ αl

: G(φ̌
ero

) ≤ εr

: K(φ̌
ero

)U ero = F ero

: 0 ≤ φe ≤ 1, e = 1, 2, ..., N

, (19)

Fig. 7 Improved structural parameterization

where the objective functional, the overhang constraint,
and the state equation are defined on the eroded design.
The corresponding design-dependent gravity acceleration is
given as:

gero
e = φ̌ero

e g0. (20)

The overhang constraint is imposed in the eroded design,
which has the thinnest structural members and the worst
ability to support the functional structure. As a result, the
support structures in the intermediate design will satisfy the
overhang constraint naturally. The constraint is given as:

G(φ̌
ero

) ≤ εr , (21)

where the volume of overhang features in �NS is calculated
by:

G(φ̌
ero

) =
∑

e∈�NS

(1 − φ̂ero
e )Ve

= (IT · lNS − (φ̂
ero

)T · lNS)Ve. (22)

Since the intermediate design φ̌int is the blueprint to be
manufactured, the easy-removal constraint is defined on it
as:

Vl(φ̌
int

) =
⎛
⎝ 1

M

∑
e∈�C

(v̄int
e )Pl

⎞
⎠

1/Pl

≤ αl, (23)

where v̄int
e is the local volume fraction of element e for

intermediate design:

v̄int
e = 	i∈Ne,R

φ̌int
i

	i∈Ne,R
1

, e ∈ �C . (24)
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Fig. 8 Optimized results for cantilever beam with different volume fractions. a α = 0.25. b α = 0.3. c α = 0.35. d α = 0.4

Moreover, the volume fraction constraint is defined on the
dilated design as:

V dil(φ̌
dil

) =
∑

e∈�D

φ̌dil
e ≤ αV0. (25)

In order to impose a desirable volume fraction α∗ to the
intermediate design, the parameter α is updated at least 10
design iterations after the last change, provided that the
current volume constraint satisfied. The update rule is based
on the square root of the ratios between the desirable volume
fraction and that of the intermediate design:

α(new) = α(old)

√
α∗

V int
, (26)

where α(old) and α(new) are the upper volume fraction for
dilated design before and after the update, respectively.
This strategy drives the volume fraction of the intermediate
design to the desired volume fraction α∗ indirectly.

The workflow of the improved topology optimization
model is almost the same as that described in Section 2.5,
except that the α parameter adaptation is added between
Step 3 and Step 4.

4 Numerical examples

4.1 Support structure design for a cantilever beam

The first example is to redesign the support structures with
the improved optimization formulation for the cantilever
beam shown in Fig. 3. The optimized designs with different
allowable volume fraction from 0.25 to 0.4 are shown in
Fig. 8.

The optimization parameters are set the same for all the
cases as follows: the filter radius of the density filter in
(1) r = 2.5, contact thickness tC = 3, the neighborhood
distanceR = 6, the local volume fraction αl = 0.6. For each
case, the compliance (C), volume ratio (α), and the number
of remaining overhang elements (OE) are compared. The
overall compliance is decreasing as the allowable material
increases. Besides, the low numbers of OE show that
proposed optimization is able to generate effective structure
to support the overhang of a given prototype. Note that the
OE value is obtained by applying the AM filter (3–4) to
the optimized result and then summing up the number of
removed elements in �NS .

Fig. 9 Geometry-based support
structures for comparison
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Fig. 10 The given MBB beam
(left) and the corresponding
need-support region (right)

Fig. 11 a optimized result with local volume constraint applied in the overall designable domain; b–d optimized results with contact thickness
tC = 9, 6, 3; e optimized result without easy-removal constraint

Fig. 12 The given letter figure
(left) and the corresponding
need-support region (right)
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Fig. 13 (a) The optimized
support structure for “SJTU.” (b)
A modified support structure by
removing a portion of supports

For all the results shown in Fig. 8, the previously
seen one-node connection issue is resolved. The optimized
designs show that the material tends to accumulate in
the bottom of design domain because of the self-weight
load. Such a tendency becomes more clear as the volume
fraction α increases. Besides, the support structures in
contact regions resemble a pattern of dashed line, which
can be easily removed comparing with a full-material and
bulky connection. However, a precise minimum length
scale cannot be defined by the proposed solution and
parameterization. The topic of length-scale control is out of
the scope of the current work and one may leverage other
techniques, e.g., geometric constraints (Zhou et al. 2015) for
such a purpose.

Moreover, two geometry-based support structures are
generated for comparison as shown in Fig. 9. Both the
optimized support structures by the proposed method and
the geometry-based support structures can support the
overhang features of the functional part. However, when
the material usage for the support structures is the same,

the support structure optimized by the proposed method in
Fig. 8a has a lower compliance value.

4.2 Support structure design for a MBBmodel

The second example is to design support structures for
a MBB beam sized 150 × 450 as shown in Fig. 10,
where the corresponding need-support regions are marked
in green. The optimization parameters are given as follows:
the volume fraction α = 0.25, the radius of density filer
r = 2.5, the neighborhood distance R = 6, the local volume
fraction αl = 0.6.

The optimized result with the local volume constraint
applied in the overall designable domain is given in
Fig. 11a. For comparison, the optimized results with contact
thickness tC = 9, 6, 3 are shown in Fig. 11b–d and the
optimized result without using the easy-removal constraint
is given in Fig. 11e. The compliance value becomes lower
as the thickness of the contact region decreases. Among
these structures, the optimized result with the easy-removal
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Fig. 14 Optimized results with
different building directions. a
build from bottom; b build from
left; c build from right

constraint applied in the overall designable domain has
the largest compliance value while the one without the
constraint exhibits the most stiff design.

4.3 Support structure design for a complexmodel

The third example is presented to design support structures
for a geometric prototype consisting of four English letters
SJTU (the capital initials of Shanghai Jiao Tong University)
as shown in Fig. 12, where the corresponding need-support
regions are highlighted. The size of domain is 650 × 350.
The optimization parameters for this example are set as

follows: the allowable volume fraction for the support
structures α = 0.3, the filter radius of the density filter
r = 2.5, contact thickness tC = 3, the neighborhood
distance R = 6, and the local volume fraction αl = 0.6.

As shown in Fig. 13a, the model is fully supported by
the optimized supports and the contact region exhibits a
porous feature. In order to illustrate the necessity of the
supports between the letters “S” and “J,” a modified support
structure without any supports between “S” and “J” is
constructed for comparison as shown in Fig. 13b. The latter
structure has a higher compliance value, indicating that the
removed supports indeed help increase the stiffness of the
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overall structure. Furthermore, three other different printing
directions are also considered and the corresponding
optimized supports with the same material usage as that
in Fig. 13a are given in Fig. 14. As a comparison, the
optimized design shown in Fig. 14a has the highest stiffness
value. It can be seen that the proposed approach can
be applied to generate easy-removable support structures
with optimized mechanical property. Besides, the printing
direction is found to be an important variable in AM design
optimization. By selecting an appropriate printing direction,
the stiffness of the overall AM part can be significantly
enhanced.

5 Conclusions

This paper proposes a density-based topology optimization
method to design easy-removal support structure for addi-
tive manufacturing . The underlying structural parametriza-
tion takes the AM filtering technique into account to ensure
the support structure being self-support, which is neces-
sary for AM support structures. The overhang constraint
helps reduce the overhang features of the given functional
prototype. Besides, the local volume constraint in contact
region is utilized to ensure that the porous pattern in specific
region can be easily removed after AM. Structural member
size is also effectively controlled by an improved formu-
lation and thus the entire manufacturability is guaranteed.
Numerical examples show that the proposed method can
generate optimized support structures that possess the char-
acteristics of self-support, efficient mechanical property,
and manufacturability. To cope with the practical scenario
in additive manufacturing, design-dependent gravity loads
are considered in the current work for structural stiffness
maximization.

However, there is one issue remaining in the current
solution that worthy further investigation. It is observed that
the number of overhang elements in the optimized design
is not vanish but a small number even though the overhang
constraint is satisfied. In the current implementation, the
threshold εr is set to a small value rather than zero, which is
otherwise difficult to be satisfied. It is because according to
(5–6), the value of φ̂ero

e may be slightly larger than 1 and 1−
φ̂ero

e < 0 in (8). The summation counteracts a positive value
of 1− φ̂ero

e in (8), leaving the elements where 1− φ̂ero
e ≥ 0

unsupported and thus the number of overhang elements
in overall structure cannot reach zero. This issue will be
addressed in a separate future work. Besides, extension of
the proposed approach to 3D application will be targeted as
a separate future work.
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