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Abstract
Due to lack of sufficient data and information in engineering practice, it is often difficult to obtain precise probability distributions
of some uncertain variables and parameters in reliability-based design optimization (RBDO). In this paper, distributional
probability-box (p-box) model is employed to quantify these uncertain variables and parameters. To reduce the computational
cost in RBDO associated with expensive and time-consuming constraints, an active learning Kriging-assisted method is pro-
posed. In this method, the sequential optimization and reliability assessment (SORA) method is extended for RBDO under
distributional p-box model. Kriging metamodels are constructed to make the replacement of actual constraints. To remove
unnecessary computational expense on constructing Kriging metamodels, a screening criterion is built and employed for the
judgment of active constraints in RBDO. Then, an active learning function is defined to find out update samples, which are
adopted for sequentially refining Kriging metamodel of each active constraint by focusing on its limit-state surface (LSS) around
the most probable target point (MPTP) at the solution of SORA. Several examples, including a welded beam problem and a
piezoelectric energy harvester design, are provided to test the accuracy and efficiency of the proposed active learning Kriging-
assisted method.

Keywords Reliability-based design optimization . Distributional probability-box model . Kriging metamodel . Active learning .

Sequential optimization and reliability assessment

Nomenclature
P(⋅) Probability of an event
g(⋅) Constraint function
f(⋅) Object function
d Vector of deterministic variables
dl Lower bound vector of deterministic variables
du Upper bound vector of deterministic variables
X Vector of p-box variables
x Realization of X

μx Vector of the nominal values of X
μl
x Lower bound vector of μx

μu
x Upper bound vector of μx

P Vector of p-box parameters
p Realization of P
μp Vector of the nominal values of P
μl
p Lower bound vector of distribution mean of P

μu
p Upper bound vector of distribution mean of P

σp Vector of the distribution standard deviation of P
σu
p Upper bound vector of σp

Z Vector containing both X and P
z Realization of Z
μz Vector of the nominal values of Z
Y Vector of interval distribution parameters of Z
y Realization of Y
zMPTP The most probable target point of Z
s Offset vector of Z
W Vector of random parameters with the

standard normal distribution
w Realization ofW
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Rl Lower bound of the reliability degree of a constraint
Ru Upper bound of the reliability degree of a constraint
Rt Target reliability degree of a constraint
βt Target reliability index of a constraintbg ⋅ð Þ Mean of Kriging prediction
σ2bg ⋅ð Þ Variance of Kriging prediction
Φ(⋅) Cumulative distribution function of the standard nor-

mal distribution
U(⋅) A learning function (Echard et al. 2011)
Fp(⋅) An active learning function proposed in this work

1 Introduction

Uncertainties often exist in practical engineering problems,
which may stem from changing operating and environmental
conditions, manufacturing tolerances, insufficient informa-
tion, and so on. Constraint feasibility at the optimal solution
of deterministic design optimization cannot be guaranteed
when fluctuations of uncertain variables and parameters exist.
To this end, reliability-based design optimization (RBDO) is
developed, in which failure probabilities of constraints are
evaluated (Tu et al. 1999; Youn et al. 2003; Lee et al. 2012;
Li et al. 2015a). Uncertainties are often classified into random
and epistemic uncertainties. Generally, random uncertainties
are quantified by classical probability theory, which requires
sufficient data and knowledge to establish precise probability
distributions. In some engineering problems, however, there is
not enough information to build precise probability distribu-
tions of some uncertainties, which are often taken as epistemic
uncertainties. There are some available tools to describe the
epistemic uncertainties, such as possibility theory (Mourelatos
and Zhou 2008), fuzzy theory (Li et al. 2015b; Wang et al.
2018), interval model (Wang and Qiu 2010; Yang et al.
2015a; Zhang et al. 2018b, 2019b), convex model (Meng
and Zhou 2018; Meng et al. 2020), evidence theory (Zhang
et al. 2015, 2018a; Yang et al. 2019), and probability-box (p-
box) model (Ferson 1996; Ferson and Ginzburg 1996; Ferson
and Hajagos 2004; Jiang et al. 2011). Among these tools, p-
box model provides a simple framework to quantify epistemic
uncertainties by imprecise probability distributions with a pair
of lower and upper cumulative distribution functions (CDFs)
(Schöbi and Sudret 2017). P-box model permits the existence
of uncertain variables without exceedingly precise assump-
tions on the definition of distribution parameters in reliability
analysis (Beer et al. 2013), and has attracted much attention in
the description of epistemic uncertainties. The p-box model
can be classified into distributional p-box model and
distribution-free p-box model (Schöbi and Sudret 2017). The
RBDO under distributional p-box model is focused on
in this work.

In RBDO, it is significant to handle two essentials, includ-
ing reliability analysis and integration strategies of reliability

analysis and optimization procedure (Chen et al. 2014). For
reliability analysis under distributional p-box model, Zhang
et al. (2010) develop an interval Monte Carlo simulation
(IMCS) to calculate the interval of failure probability. In
IMCS, Monte Carlo simulation (MCS) is applied to generate
random samples in the standard normal space, and then the
maximum and minimum values of each constraint function
are calculated at each sample in terms of the distribution pa-
rameter intervals in distributional p-box model. Due to lots of
constraint evaluations required by IMCS, its applications are
restricted in the cases with time-consuming computer simula-
tions, such as finite element analysis. To enhance the efficiency
of IMCS, variation-reduction sampling methods are introduced
in reliability analysis, such as line sampling (Koutsourelakis
et al. 2004; de Angelis et al. 2015) and subset simulation (Au
and Beck 2001; Alvarez et al. 2018). Compared with IMCS,
variation-reduction sampling methods need fewer simulated
samples and the evaluation number of true constraints is re-
duced. Alternatively, to estimate the failure probability interval
in reliability analysis under distributional p-box model, Jiang
et al. (2011) propose two analytical methods based on reliabil-
ity index approach (RIA) and performance measurement ap-
proach (PMA), respectively.

To further cut down the evaluation number of the actual
constraints in reliability analysis, metamodel-assisted methods
have attracted great attention, where the actual constraints are
replaced by metamodels. Many types of metamodels have
been applied in reliability analysis, such as polynomial re-
sponse surface (Guan and Melchers 2001; Wang and Wang
2012; Shayanfar et al. 2017; Zhang et al. 2017), neural net-
works (Pedroni et al. 2010; Xiao et al. 2018), support vector
machine (Basudhar and Missoum 2010; Song et al. 2013;
Zhang et al. 2019d), M5Tree (Keshtegar and Kisi 2017,
2018), and Kriging (Xiao et al. 2019a, b, 2020; Zhang et al.
2019a). Unlike other metamodels, Kriging metamodel not on-
ly predicts the response of a constraint function, but also pro-
vides the local prediction variance (Wang and Wang 2013;
Zhang et al. 2020a, b). Based on Kriging, Yang et al.
(2015b) propose a combination method of an expected risk
function and IMCS for reliability analysis under distributional
p-box model. Schöbi and Sudret (2017) develop a method
with multi-level Kriging metamodels to perform reliability
analysis in consideration of two types of p-box models. For
hybrid reliability analysis under random and distributional p-
box variables, it is determined that the bounding limit-state
surfaces (LSSs) in the standard normal space are the cru-
cial regions for estimation of failure probability bounds
and an update strategy is developed to refine the
Kriging metamodel of the performance function by fo-
cusing on these crucial regions (Zhang et al. 2019c).

In RBDO, the integration strategies of optimization proce-
dure and reliability analysis have a significant influence on
solving efficiency. The nested strategy in the double-loop
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method respectively performs reliability analysis and optimi-
zation procedure in inner and outer loop, which shows a low
solving efficiency (Keshtegar et al. 2020). Compared with the
nested strategy, decoupled strategies in the single-loop meth-
od (Liang et al. 2007) and sequential optimization and reli-
ability assessment (SORA; Du and Chen 2004) are more ef-
ficient. In RBDO under distributional p-box model, Huang
et al. (2017) develop a decoupled strategy by an incremental
shifting vector technique to convert the nested RBDO into a
sequential iterative process of deterministic design optimiza-
tion and reliability analysis.

In cases with time-consuming constraints, the application
of metamodels in RBDO has been also investigated. Lee and
Jung (2008) develop a constraint boundary sampling (CBS)
strategy to construct the Kriging metamodels by focusing on
refining the approximated LSSs of constraints around the fea-
sible region of deterministic design optimization. Then, the
double-loop method with PMA is applied to perform RBDO
based on Kriging metamodels, where each constraint is re-
placed by a Kriging metamodel. To cut down the computa-
tional cost on the construction of Kriging metamodels in
RBDO, some local metamodeling strategies have been devel-
oped, such as important boundary sampling strategy (Chen
et al. 2015), local approximation method using the most prob-
able point (Li et al. 2016), and adaptive directional boundary
sampling strategy (Meng et al. 2018). Among these methods,
CBS can be extended to RBDO under distributional p-box
model. However, some unnecessary computational cost may
be caused by CBS because some local regions of the LSSs are
far from the RBDO solution and do not need to be perfectly
approximated by metamodels. For the other local approxima-
tion methods, it is difficult to apply them to RBDO under
distributional p-box model because their Kriging metamodels
are constructed based on the local characteristics of RBDO
under probability model.

In this paper, an active learning Kriging-assisted meth-
od is proposed for RBDO under distributional p-box mod-
el. As a decoupled strategy, SORA has higher execution
efficiency than the double-loop method, even though the
true constraints are substituted by metamodels. Thus, in
this work, SORA is extended to RBDO under distribu-
tional probability-box model. To alleviate the computa-
t ional burden of SORA in the cases with time-
consuming constraints, Kriging metamodel is established
for each constraint based on initial training samples. It is
noted that maybe not all constraints are active during
RBDO. To avoid unnecessary computational cost on the
construction of Kriging metamodels, a screening criterion
is presented to judge the active constraints. Generally, it is
difficult to integrate IMCS with SORA. And when SORA
is used for RBDO, the crucial approximated region for
reliability analysis is the LSSs around the most probable
target points (MPTPs) of active constraints at the solution

of SORA. Thus, to refine Kriging metamodels in SORA,
some existing update strategies (Yang et al. 2015b;
Schöbi and Sudret 2017; Zhang et al. 2019c) cannot be
directly used. Then, in this work, an active learning func-
tion is defined and employed to obtain update samples of
the Kriging metamodels in SORA. These update samples
will be sequentially added into the set of initial training
samples and used to refine the Kriging metamodel of each
active constraint by concentrating on its LSS around the
MPTP at the solution of SORA. The framework of the
proposed method is that (1) initial Kriging metamodels
are built; (2) SORA is extended and performed to find
the MPTPs at the solution of SORA; (3) active constraints
are screened out based on the prediction uncertainties; (4)
Kriging metamodels of active constraints are updated
based on MPTPs and prediction uncertainties; (2) and
(4) are repeated until the solution of SORA no longer
changes. Four examples, including a welded beam prob-
lem and a piezoelectric energy harvester design, are
tested to validate the performance of the proposed meth-
od. The results show that the proposed method is accu-
rate and efficient for RBDO under distributional p-box
model. The evaluations of actual constraints can be
greatly decreased by the proposed method.

2 SORA for RBDO under distributional p-box
model

In this section, the RBDO under distributional p-box model is
described mathematically, and the extended application
of SORA in solving RBDO under distributional p-box
model is given.

2.1 RBDO under distributional p-box model

In this work, distributional p-box model is used to describe
epistemic uncertainties, where undetermined distribution pa-
rameters are described by intervals. The description of the p-
box variable and parameter is presented in Fig. 1. In Fig. 1a, a
p-box parameter P with an interval distribution mean is pre-
sented. To take an example, the distribution standard devia-
tion of P is 1, and the interval of the distribution mean of P is
[0, 2]. The nominal value μp of P is set to the midpoint of the
interval, i.e., μp = 1. In Fig. 1b, a p-box variable X with an
interval distribution standard deviation is presented, where the
interval of the distribution standard deviation of X is [1, 2].
The nominal value μx of X is set to the distribution mean of X,
which is a design variable in RBDO. To take an example, μx is
equal to 0 in Fig. 1b.

Let Z denote the vector of p-box variables and parameters
with interval distribution parameters. The vector of the inter-
val distribution parameters is represented by Y. And let y
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denote the realization of Y. Due to the existence of interval
distribution parameters, the CDF of the zi is also an interval.

Its upper and lower bounds are denoted by Fzi and Fzi , re-
spectively. In addition, it is difficult to directly perform reli-
ability analysis in the space ofZ. Generally, reliability analysis
under p-box model can be performed bymeans of Fzi and Fzi .
When a point w = [w1,…,wq] in the standard normal space is
transformed into the space of Z by using zi; zi

� � ¼
F
−1
zi Φ wið Þð Þ; F−1

zi Φ wið Þð Þ
h i

, an interval z; z½ � can be obtain-

ed, where q is the total number of p-box variables and param-
eters, and Φ is the standard normal CDF. Thus, w in the stan-
dard normal space corresponds to an interval z; z½ � in Z space.
Then, the response G(w,Y) of a constraint in the standard
normal space at w is not a deterministic value but an interval

G w;Yð Þ; G w;Yð Þ� �
, where

G w;Yð Þ ¼ min
z∈ z;z

h i g zð Þ; G w;Yð Þ ¼ max
z∈ z;z

h i g zð Þ ð1Þ

Because the CDFs of Z change with y, and the transforma-
tion between w and z is realized based on the CDFs, (1) can be
rewritten as

G w;Yð Þ ¼ min
y

g z yð Þð Þ; G w;Yð Þ ¼ max
y

g z yð Þð Þ ð2Þ

Hence, in the standard normal space, the LSS of the con-
straint is not a single hypersurface but a band enclosed by the

lower bounding LSS S and the upper bounding LSS S as

shown in Fig. 2, where S and S are expressed as

S : G w;Yð Þ ¼ 0; S : G w;Yð Þ ¼ 0 ð3Þ

Under the distributional p-box model, the reliability degree
of a constraint is an interval value (Jiang et al. 2011). Its lower

and upper bounds can be respectively calculated by

Rl ¼ P G W;Yð Þ > 0
� �

¼ P min
y

g Z yð Þð Þ
� �

> 0

� 	
ð4Þ

Ru ¼ P G W;Yð Þ > 0
� �

¼ P max
y

g Z yð Þð Þ
� �

> 0

� 	
ð5Þ

whereW is the vector of random parameters with the standard
normal distribution, and w is considered the realization ofW.

Generally, the upper bound of the failure probability is
considered in RBDO. Therefore, the lower bound of the reli-
ability degree is adopted in this work to ensure a safety design.
Then, a RBDO problem under distributional p-box model can
be typically formulated as

f ind : d;μx

min : f d;μx;μp

� �
s:t: : P min

y
g j d;Z yð Þð Þ

� �
> 0

� 	
≥Rt

j; j ¼ 1; 2;…; ng

Z ¼ X ;P½ �; dl ≤d≤du; μl
x≤μx≤μ

u
x

y ¼ y1; y2;…; yny

h i
; yi∈ yli; y

u
i

� �
; i ¼ 1; 2;…; ny

ð6Þ

0

SSiw

jw
Fig. 2 Bounding LSSs in the standard normal space

(a) A p-box parameter with an interval distribution mean; (b) A p-box variable with an interval distribution 

standard deviation

Fig. 1 Description of the p-box
variable and parameter
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where f is the objective function. The vector of the p-box
variables is denoted by X. The vector of the p-box parameters
is represented by P. The vectors μx and μp represent the
nominal values of X and P, respectively. In this work, for a
p-box variable X, its distribution mean is considered its
nominal value μx. For a p-box parameter P, when its
distribution mean is a deterministic value, this value is
considered the nominal value μp. When its distribution mean
is an interval value, the midpoint of the interval is considered
the nominal value μp. The vector d denotes the deterministic
variables. The vectors dl and du are the lower and upper
bounds of optimization domain of d. The vectors μl

x and μu
x

denote the lower and upper bounds of optimization domain of
μx, respectively. The target reliability degree of the jth con-
straint is denoted by Rt

j. In this work, the fixed bounds

of interval distribution parameters are considered. In (6), for a
p-box parameter, the fixed interval bounds can be
considered for both its distribution mean and standard
deviation. For a p-box variable, the fixed interval bounds can
be considered for its distribution standard deviation. In this
work, the bounds of the distribution mean of the p-box variable
are not considered. When the distribution mean of a p-box
variable is set to an interval value, the bounds of this interval
are constantly changing during RBDO, which is complex and
will be researched in our future work.

2.2 RBDO under distributional p-box model by SORA

SORA is proposed by Du and Chen (2004) for RBDO only
with random uncertainty, which can efficiently decouple
RBDO into a sequential cycle of deterministic optimization
and reliability analysis. In this work, SORA is extended to
handle RBDO under distr ibutional p-box model.
Specifically, the deterministic optimization problem in the
(k + 1)th cycle is formulated as

find : d;μx

min : f d;μx;μp

� �
s:t: g j d;μz þ s kþ1ð Þ

j

� �
> 0; s kþ1ð Þ

j ¼ z kð Þ
MPTP; j−μ

kð Þ
z ; j ¼ 1; 2;…; ng

μz ¼ μx;μp

h i
; dl ≤d≤du; μl

x≤μx≤μ
u
x

ð7Þ

where μ kð Þ
z is the design point in the kth cycle, and z kð Þ

MPTP; j is the

MPTP of the jth constraint in the kth cycle. The offset vector of

the jth constraint at the (k + 1)th cycle is denoted by s kþ1ð Þ
j .

The number of constraints is ng. z kð Þ
MPTP; j is obtained by

PMA in the kth cycle. μz will be determined in the (k + 1)th
cycle.

In PMA, a constraint reliability is analyzed based on the

minimum response Gmin
j , which is calculated by

find : w; y
min : Gj w; yð Þ
s:t: wk k ¼ βt

j

y ¼ y1; y2;…; yny

h i
; yi∈ yli; y

u
i

� �
; i ¼ 1; 2;…; ny

ð8Þ

where w is the vector of variables with the standard normal
distribution and transformed by w = T(z), and Gj(w) = gj(z). T
is the Rosenblatt transformation function. The optimal value

of (8) is denoted by Gmin
j . If Gmin

j is not less than 0, the jth

constraint will satisfy the target reliability degree Φ βt
j

� �
,

where βt
j is the target reliability index of the jth constraint. It

can be seen that (8) is a two-layer nested optimization problem
(Jiang et al. 2011). The outer-layer optimization is employed
to perform reliability analysis as follows

find : w
min : Gj w; yð Þ
s:t: wk k ¼ βt

j

ð9Þ

The inner-layer optimization is modeled in (10), which is
applied to realize interval analysis and obtain y.

find : y
min : Gj w; yð Þ
s:t: y ¼ y1; y2;…; yny

h i
; yi∈ yli; y

u
i

� �
; i ¼ 1; 2;…; ny

ð10Þ

The optimization in (10) can be realized by min
z∈ z;z½ �

g j zð Þ

based on (1). The optimal solution of PMA based on (9) and
(10) is the MPTP of the jth constraint, i.e., wMPTP, j. In the
original design space, the MPTP is represented by zMPTP, j.
For the inner-layer optimization in (10), its solution is deter-
mined by the transformation function T and the constraint
function. Only when both T and the constraint function are
monotonous with regard to the interval distribution parame-
ters, the solution of (10) will be the bounds of the interval
distribution parameters. Generally, it is difficult to judge the
monotony of the constraint function, especially when it is a
black-box one. Thus, it is unsuitable that the RBDO under
distributional p-box model is considered the RBDO under
random variables by simplifying the interval distributional
parameters to their bounds.

For a RBDO problem under distributional p-box model, its
solution obtained by the SORAmethod is illustrated in Fig. 3. In
this figure,μ*

x denotes the obtained solution of SORA.X1 and X2
are p-box variables, whose distribution standard deviations are
interval values. For a simple illustration, differentβt-circles corre-
spond to different distribution standard deviations of the p-box
variables.
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3 An active learning Kriging-assisted method
for RBDO under distributional p-box model

In practical engineering problems, the evaluation of con-
straints may be time-consuming. To decrease the evaluation
number of the true constraints in RBDO under distributional
p-box model, the Kriging metamodel is introduced to approx-
imate each constraint in this work. It is noted that maybe not
all constraints are active in RBDO. Considering prediction
uncertainties of Kriging metamodel, a screening criterion is
established and used for the judgment of active constraints.
Then, an active learning function is defined to obtain update
samples for refining Kriging metamodels by focusing on the
LSSs around theMPTPs of active constraints at the solution of
SORA. Finally, based on SORA, the active learning Kriging-
assisted method is proposed for RBDO under distributional p-
box model.

3.1 Screening criterion for active constraints

As shown in Fig. 3, g3 is an inactive constraint while g1 and g2
are active constraints. The LSS of g3 is far from the solution of
SORA. It can be observed that inactive constraints do not
affect the solution of SORA. The update of Kriging
metamodels should concentrate on the approximation accura-
cy of the active constraints. Thus, it is necessary to screen out
the active constraints.

At the solution of SORA, the MPTPs of active constraints
are located on the LSSs while the MPTPs of inactive con-
straints are not on the LSSs. As presented in Fig. 3, xMPTP, 1

and xMPTP, 2 are located on the LSSs of g1 and g2, while xMPTP,

3 is far from the LSS of g3. Thus, the screening criterion for
active constraints can be established based on the MPTPs at
the solution of SORA. Specifically, if gj(d

∗, zMPTP, j) > 0, gj is

inactive, while gj is active if gj(d
∗, zMPTP, j) = 0. The vector d∗

represents deterministic variables in the solution of SORA.
For the Kriging metamodel, its prediction G at an untried

point obeys a normal distribution with the mean bg and vari-

ance σ2bg, i.e., G∼N bg;σ2bg� �
. When a constraint g(d, z) is re-

placed by the Kriging metamodel, the probability of correctly
predicting the sign ofbg d; zð Þ is equal toΦ(U(d, z)), whereU is
a learning function formulated as (11) (Echard et al. 2011).
Because Φ(2) > 97.7%, if bg d; zð Þ > 0 and U(d, z) > 2, the
probability of G d; zð Þ > 0 will be larger than 97.7%.

U d; zð Þ ¼
bg d; zð Þ



 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2bg d; zð Þ

r ð11Þ

Thus, in this paper, for the approximated constraints by
Kriging metamodels, the screening cri terion is
established by considering the prediction uncertainties of the
Kriging metamodels. Specifically, if bg j d

*; zMPTP; j
� 


> 0 and

U(d∗, zMPTP, j) > 2, bg j is inactive, while bg j is active if U(d
∗,

zMPTP, j) ≤ 2.

3.2 An active learning function for Kriging update

During RBDO by SORA, the MPTPs are employed to judge
the reliability degree of constraints in reliability analysis.
Additionally, in the deterministic optimization, the MPTPs
are used to calculate the offset vectors. Thus, the approxima-
tion accuracy of the MPTPs is crucial in RBDO when the
constraints are replaced by Kriging metamodels. As shown
in Fig. 3, at the solution of SORA obtained by SORA, the
MPTP of each active constraint is the intersection point be-
tween the LSS of the constraint and the βt-circle. To obtain a

Fig. 3 RBDO under
distributional p-box model by
SORA
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high approximation accuracy of the MPTP of each active con-
straint, the location information of the above intersection point
can be utilized when selecting update samples for Kriging
metamodel refinement. Meanwhile, the update samples that
are too close to existing training samples cannot provide suf-
ficiently new information for Kriging metamodel refinement.
Thus, the shortest distance between a new update sample and
the existing training samples is considered in the selection of
update samples. Based on the two above considerations, an
active learning function for Kriging update in RBDO under
distributional p-box model is defined as (12).

Fp d*; z
� 
 ¼ U d*; z

� 

E zð Þ

D zð Þ ð12Þ

where Fp denotes the active learning function. d
∗ is the vector

of deterministic variables at the solution of SORA. The point
with the minimum value of Fp is selected as an update sample.
From (11), it can be found that U is directly dependent on the
prediction value and variance of the Kriging metamodel. The
closer bg is to 0 and the larger the prediction variance of the
Kriging metamodel is, the smaller U is. Thus, in (9), U is
applied to make the update sample located around the LSS

of a constraint. In addition, E is employed to enhance the
chance of points located around the βt-circle being selected,
which is formulated as (13).

E zð Þ ¼ e T zð Þk k−βt
jð Þ2 ð13Þ

Step 1: Establish the initial Kriging metamodel for each constraint

Step 2: Perform SORA under distributional p-box model

Step 3: Screen out active constraints

Step 4: Generate candidate points for each active constraint

Step 5: Update the Kriging metamodel of each active constraint

Step 6: Implement SORA under distributional p-box model

Step 7: Does the procedure converge?

Step 8: Output the RBDO solution

Y

N

Fig. 4 Flowchart of the proposed
method

Fig. 5 Training samples, the LSSs of true and approximated constraints
in LHS with Kriging
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In (13), T is a transformation operation, such as Nataf trans-
formation and Rosenblatt transformation, which is used to
transform z into the standard normal space. In T, the mean
and standard deviation of each p-box variable and parameter
are taken from the corresponding ones at the solution of
SORA. In (12), D(z) is the shortest distance between the up-
date sample and existing training samples in terms of p-box
variables and parameters, which is used to avoid the update
samples around the existing training samples which are cho-
sen. D(z) is evaluated by

D zð Þ ¼ z−zmink k
zu−zlk k ð14Þ

where zmin is the existing training sample with the shortest
distance from z. The vectors zu and zl are the upper and lower
bounds of z, respectively. For the purpose of adequately cov-
ering the uncertain space of P during the establishment of
Kriging metamodels, five-sigma rule is adopted to define the
initial sampling space of P in this work based on the experi-

ence in Bichon et al. (2008), i.e., μl
p−5σu

p;μ
u
p þ 5σu

p

h i
,

which is also considered the bounds of uncertain space of P.
μl
p and μu

p are the lower and upper bounds of the distribution

mean vector of p-box parameters, respectively, and σu
p is the

upper bound of the distribution standard deviation vector of p-
box parameters. Then, the vector zu and zl are set to

μu
x;μ

u
p þ 5σu

p

h i
and μl

x;μ
l
p−5σu

p

h i
, respectively.

3.3 Generation of candidate update samples

To obtain the candidate update samples for each active con-
straint gj, a hypersphere is defined in the standard normal
space and its radius is set to βt

j. The spherical coordination

is shown in (15), where um is the mth p-box variable or pa-
rameter in z.

u1 ¼ ρcosα1

u2 ¼ ρsinα1cosα2

⋮
um−1 ¼ ρsinα1sinα2sinα3⋯sinαm−2cosαm−1
um ¼ ρsinα1sinα2sinα3⋯sinαm−2sinαm−1

8>>>><>>>>: ð15Þ

Then, the hypersphere can be represented as

Δ j ¼ ρ;αið Þjρ∈ 0;βt
j

h i
; αi∈ 0; 2π½ �; i ¼ 1; 2;…;m‐1

n o
ð16Þ

In each region Δj, Nc candidate samples are randomly
generated based on (ρ,αi) and then transformed into the orig-
inal design space by the inverse transformation operation T−1,
where the mean is zMPTP, j and the standard deviations of p-
box variables and parameters are those at the solution of
SORA. Then, the samples located outside μl

x;μ
u
x

� �
in (7) will

be deleted. Among the remaining candidate points in the orig-
inal design space, the point with the minimum Fp is selected as
an update sample.

Fig. 8 Update samples, the LSSs of true and approximated constraints in
the proposed method

Fig. 7 Initial training samples, and the LSSs of true and approximated
constraints when iter = 1 for the proposed method

Fig. 6 Update samples, the LSSs of true and approximated constraints in
CBS with Kriging
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3.4 Procedure of the proposed method

In this section, based on SORA, the active learning Kriging-
assisted method is proposed for RBDO under distributional p-
box model. The flowchart of the proposed method is present-
ed in Fig. 4. The procedure of the proposed method is de-
scribed as follows.

Step 1: Establish the initial Kriging metamodel for each
constraint. For deterministic and p-box variables, their design
space is taken as the sampling region. For p-box parameters,

their sampling region is set to μl
p−5σu

p;μ
u
p þ 5σu

p

h i
. Initial

training samples are generated in these sampling regions, and
the corresponding responses of constraints are evaluated.
Generally, the number of initial training samples can be deter-
mined according to the dimension of the problem and the
involved computational cost (Li et al. 2016). Then, initial
Kriging metamodels of constraints are established.

Step 2: Perform RBDO under distributional p-box model
by SORA. The iteration information iter is set to 1. Based on
the built Kriging metamodels of constraints, SORA is per-
formed and the solution of SORA is denoted by d*;μ*

x

� 

iter.

Step 3: Screen out active constraints. Based on the screen-
ing criterion in the “Screening criterion for active constraints”
section, active constraints are screened out. Let na denote the
number of active constraints gk (k = 1, 2,…, na).

Step 4: Generate candidate points for each active con-
straint. At the solution of SORA, Nc candidate samples are
generated around the MPTP of each active constraint as

described in the “Generation of candidate update samples”
section.

Step 5: Select update samples for each active con-
straint. For each active constraint, based on its candidate
points, an update sample (d∗, z)new is selected based on the
active learning function in the “An active learning func-
tion for Kriging update” section.

Step 6: Update the Kriging metamodel of each active con-
straint. For each active constraint gk, if iter = 1, its response is
calculated at the new update sample. The relative prediction
error εk of the Kriging metamodel at the new update sample is
estimated by (17) (Chen et al. 2014). Then, the Kriging
metamodel is updated.

εk ¼
gk d*; z
� 


new−bgk d*; z
� 


new




 



R gkð Þ ð17Þ

where R(gk) = max(gk) −min(gk). max(gk) and min(gk) are the
maximum and minimum values of the active constraint gk at
the existing training samples, respectively.

When iter > 1, for each active constraint, if εk ≤ 10−6

which is evaluated in the last update, the region in the
vicinity of the MPTP of the active constraint is well ap-
proximated, and the corresponding Kriging metamodel
will not be updated. Otherwise, the response of the active
constraint at the new update sample is calculated, and εk is
recalculated at the new update sample. Then, the corre-
sponding Kriging is updated.

Table 1 Comparative results in
mathematical example 1 Methods Objective RBDO solution Sample size Minimum reliability index

μ1 μ2

Double-loop method − 1.459 5.265 3.806 13,365 3.0

SORA − 1.459 5.265 3.806 1935 3.0

LHS with Kriging − 1.686 5.472 3.785 40 2.6

CBS with Kriging − 1.458 5.263 3.806 35 3.0

The proposed method − 1.459 5.265 3.806 21 3.0

Table 2 Comparative results in
mathematical example 2 Methods Objective RBDO solution Sample size Minimum

reliability index
μ1 μ2

Double-loop method 42.658 1.696 1.539 8340 3.0

SORA 42.787 1.703 1.546 3251 3.1

LHS with Kriging 68.432 3.061 2.630 100 14.2

CBS with Kriging 66.943 3.159 2.386 62 11.8

The proposed method 42.791 1.705 1.545 37 3.1
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Step 7: Implement SORA for RBDO under distribu-
tional p-box model. The iteration information iter is set
to iter + 1. Based on the Kriging metamodels of con-
straints, SORA is performed and the solution of SORA is
denoted by d*;μ*

x

� 

iter.

Step 8: Judge the convergence condition of the pro-
posed method. If the convergence condition in (18) is sat-
isfied, the procedure will go to Step 9; otherwise, go back
to Step 3.

d*;μ*
x

� 

iter−

�
d*;μ*

x

�
iter−1

��� ���
d*;μ*

x

� 

iter

�� ��þ 10−16
≤10−3 ð18Þ

Step 9: Output the RBDO solution under distributional
p-box model.

4 Test examples

In this section, four examples including a welded beam
problem and a piezoelectric energy harvester design are

tested to validate the performance of the proposed meth-
od. In this study, it is assumed that the responses of all
constraints are obtained by running a simulator (i.e., a
computer code) at an input. Thus, the responses of all
constraints at the new update sample can be obtained
simultaneously and used to update all constraints.

4.1 Mathematical example 1

This example is modified from a popular two-
dimensional nonlinear mathematical problem (Youn
and Choi 2004), which is convenient to clearly present
the metamodel update process in the proposed method.
This problem includes three constraints with two p-box
variables. Its RBDO model is formulated as

find μx ¼ μ1;μ2½ �
min f μxð Þ ¼ μ2−μ1

s:t: P min
y

g j x yð Þð Þ
� �

> 0

� 	
≥Rt

j; j ¼ 1; 2; 3

g1 xð Þ ¼ x21x2
20

−1

g2 xð Þ ¼ x1 þ x2−5ð Þ2
30

þ x1−x2−12ð Þ2
120

−1

g3 xð Þ ¼ 80

x21 þ 8x2 þ 5
� 
 −1

x ¼ x1; x2½ �; xi∼N μi; y
2
i

� 

; 0≤μi≤10; yi∈ 0:3; 0:4½ �; i ¼ 1 and 2

μ 0ð Þ
x ¼ 5; 5½ �

ð19Þ

where x1 and x2 are p-box variables. The target reliabil-

ity degrees Rt
j (j = 1, 2, 3) are set to Φ βt

j

� �
, where βt

j is

the target reliability index of constraints and βt
j ¼ 3 in

this example.
In this example, the proposed method is compared with

SORA, the double-loop method, Latin hypercube sampling
(LHS) with Kriging, and CBS with Kriging. For LHS with
Kriging, LHS is applied to generate 40 training points and
then Kriging metamodels of constraints are built based on
the training points. Based on built Kriging metamodels,
SORA is performed without Kriging update. The training
points and RBDO solution obtained from LHS with Kriging
are presented in Fig. 5. It can be seen that constraint g2 is not
well approximated around its MPTP at the RBDO solution.

Table 3 Comparative results in the welded beam example

Methods Objective RBDO solution Sample size Minimum
reliability index

μ1 μ2 μ3 μ4

Double-loop method 2.641 5.650 210.399 210.598 6.252 592,695 3.0

SORA 2.641 5.650 210.399 210.598 6.252 22,266 3.0

LHS with Kriging 2.412 6.767 156.663 204.571 6.268 300 1.3

CBS with Kriging 2.770 5.789 174.141 220.405 6.934 133 1.2

The proposed method 2.641 5.650 210.417 210.597 6.252 97 3.0

Fig. 9 A welded beam structure
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In CBS and the proposed method, the initial Kriging
metamodels of three constraints are established based on 9
training samples, which are generated by 3-level full factorial
design as shown in Figs. 6 and 7. Figure 6 shows all update
samples obtained by CBS. It can be seen that the majority of
these update samples are scattered on the LSSs around the
feasible region of deterministic design optimization. In CBS,
SORA is performed to obtain the RBDO solution based on
updated Kriging metamodels. For the proposed method, the
LSSs of the true and approximated constraints are also pro-
vided in Fig. 8. It can be seen that the LSSs of three true
constraints cannot be well approximated by initial Kriging
metamodels. Based on the screening criterion for active con-
straints in the “Screening criterion for active constraints” sec-
tion, it can be judged that constraints g2 and g3 are active while
g1 is inactive. By using the proposed active learning Kriging-
assistedmethod, 12 update samples are sequentially searched out
and used in the update of Kriging metamodels, which are shown
in Fig. 8. It can be observed that the majority of update samples
are located around the active constraints g2 and g3, and the LSSs
of g2 and g3 around the MPTPs are well approximated at the
RBDO solution of the proposedmethod. Thus, it is demonstrated
that the proposed method can well screen out the active con-
straints and achieve the accurate approximation of the LSSs
around the MPTPs of active constraints at the RBDO solution.

Comparative results are listed in Table 1. From Table 1, it
can be seen that SORA, the double-loop method, CBS with

Kriging, and the proposed method have very similar RBDO
solutions. The reliability analysis method in Jiang et al. (2011)
is implemented to evaluate the reliability indexes of three
constraints at the RBDO solution, which are provided in
Table 1. Except LHS with Kriging, the minimum reliability
indexes in the other methods satisfy the target value. For the
double-loop method and SORA, the number of calls to
constraints is associated with the evaluation of constraint
responses and the calculation of constraint gradients. In terms
of the sample size in evaluations of the true constraints, the
proposed method only requires 21 samples to obtain the final
Kriging metamodels of constraints, which are much fewer
than the other methods. The proposed method shows the
highest efficiency. Thus, it is demonstrated that the proposed
method is very accurate and efficient for RBDO under distri-
butional p-box model.

4.2 Mathematical example 2

This problem is modified from Kang and Luo (2010),
which involves two constraints, two uncertain variables
with interval distributional parameters, and two uncertain
parameters with interval distributional parameters. This
example is used to validate the performance of the
proposed method in the case with both p-box variables
and p-box parameters. The RBDO model of this example
is formulated as follows.

tc
tsh

R

lb

le

lm

w

hm

Fig. 10 A piezoelectric energy
harvester

Table 4 Comparative results in
the piezoelectric energy harvester
example

Methods Objective RBDO solution Sample size Reliability index

μ1 μ2 μ3

SORA 0.0000206

00206

0.0840 0.015 0.008 1960 2.0

CBS with Kriging 0.0000197 0.0803 0.0142 0.008 151 < 0

The proposed method 0.0000206 0.0840 0.015 0.008 82 2.0
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find : μx ¼ μ1;μ2½ �T
min : f μxð Þ ¼ μ1 þ 3ð Þ2 þ μ2 þ 3ð Þ2

s:t: : P min
y

g j z yð Þð Þ
� �

> 0

� 	
≥Rt

j; z ¼ x; p½ �; j ¼ 1 and 2

g1 z yð Þð Þ ¼ x1 x2 þ p1ð Þ−p2
g2 z yð Þð Þ ¼ x2 þ p1ð Þ2p2−x1

x1∼N μ1; y
2
1

� 

; x2∼N μ2; y

2
2

� 

; p1∼N y3; 0:01

2
� 


; p2∼N y4; 0:1
2

� 

0≤μ1≤10; 1≤μ2≤10; y1∈ 0:1; 0:11½ �; y2∈ 0:1; 0:11½ �; y3∈ 0:2; 0:22½ �; y4∈ 2; 2:2½ �

ð20Þ
where x1 and x2 are p-box variables, and p1 and p2 are p-
box parameters. In this example, the target reliability de-
gree Rt

j (j = 1 and 2) is set to Φ(3).

In CBS and the proposed method, initial Kriging
metamodels are built based on 20 initial training samples,
which are uniformly generated by LHS. For LHS with
Kriging, LHS is applied to generate 100 training points and
then Kriging metamodels of constraints are built based on the
training points. The optimization results of the double-loop
method, SORA, LHS with Kriging, CBS with Kriging, and
the proposed method are listed in Table 2. It can be noticed

that the optimized objective value and RBDO solution obtain-
ed by the proposed method are very close to those of the
double-loop method and SORA. The minimum reliability in-
dexes in all the fivemethods satisfy the target value. However,
the RBDO solutions of LHS with Kriging and CBS with
Kriging are conservative. The proposed method only
needs 37 samples to build the final Kriging metamodels
of constraints, which are the fewest among the five
methods. Therefore, the proposed method shows high
accuracy and efficiency for RBDO under distributional
p-box model.

4.3 A welded beam

This example associates with a welded beam as shown in Fig.
9, which includes 5 constraints and 4 p-box variables. The
RBDO problem of this example is formulated as follows.

find : μx ¼ μ1;μ2;μ3;μ4½ �T
min : f μxð Þ ¼ c1μ2

1μ2 þ c2μ3μ4 m2 þ μ2ð Þ
s:t: : P min

y
g j x yð Þð Þ

� �
> 0

� 	
≥Rt

j; j ¼ 1; 2;…; 5

g1 x yð Þð Þ ¼ 1−
τ x yð Þð Þ
m6

; g2 x yð Þð Þ ¼ 1−
σ x yð Þð Þ
m7

; g3 x yð Þð Þ ¼ 1−
x1
x4

g4 x yð Þð Þ ¼ 1−
δ x yð Þð Þ
m5

; g5 ¼
Pc x yð Þð Þ

m1
−1

τ x yð Þð Þ ¼ t x yð Þð Þ2 þ 2t x yð Þð Þtt x yð Þð Þx2
2R x yð Þð Þ þ tt x yð Þð Þ2

� 	0:5

t x yð Þð Þ ¼ m1ffiffiffi
2

p
x1x2

; tt x yð Þð Þ ¼ M x yð Þð ÞR x yð Þð Þ
J x yð Þð Þ ;M x yð Þð Þ ¼ m1 m2 þ x2

2

� �
R x yð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22 þ x1 þ x3ð Þ2

q
2

; J x yð Þð Þ ¼
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3ð Þ2
4

 !
σ x yð Þð Þ ¼ 6m1m2

x23x4
; δ x yð Þð Þ ¼ 4m1m3

2

m3x33x4
;Pc x yð Þð Þ ¼ 4:013x3x34

ffiffiffiffiffiffiffiffiffiffiffi
m3m4

p
6m2

2

1−
x3
4m2

ffiffiffiffiffiffi
m3

m4

r� 	
m1 ¼ 2:6688� 104 Nð Þ;m2 ¼ 3:556� 102 mmð Þ;m3 ¼ 2:0685� 105 MPað Þ
m4 ¼ 8:274� 104 MPað Þ;m5 ¼ 6:35 mmð Þ;m6 ¼ 9:377� 101 MPað Þ
m7 ¼ 2:0685� 102 MPað Þ; c1 ¼ 6:74135� 10−5ð=mm3Þ; c2 ¼ 2:93585� 10−6ð=mm3Þ3:175≤μ1≤50:8; 0≤μ2≤254; 0≤μ3≤254; 0≤μ4≤254; xi∼N μi; y

2
i

� 

;

i ¼ 1; 2; 3; 4y1∈ 0:15; 0:20½ �; y2∈ 0:15; 0:20½ �; y3∈ 0:01; 0:015½ �; y4∈ 0:01; 0:015½ �βt
j ¼ 3; j ¼ 1; 2;…; 5; μ 0ð Þ

x ¼ 6:208; 157:82; 210:62; 6:208½ �T

ð21Þ

where xi (i = 1, 2, 3, and 4) are p-box variables. In this exam-
ple, the target reliability degrees Rt

j (j = 1, 2, …, 5) are set to
Φ(3).

In this example, initial Kriging metamodels in the proposed
method and CBS are built based on 20 initial training samples.
These initial samples are generated by LHS, and uniformly
scatter in the design space. For LHS with Kriging, LHS is
applied to generate 300 training points and then Kriging
metamodels of constraints are built based on the training
points. The comparative results of the double-loop method,
SORA, LHS with Kriging, CBS with Kriging, and the pro-
posed method are listed in Table 3. It can be seen that the
RBDO solution of the proposed method is very close to those

of SORA and the double-loop method. The minimum reliabil-
ity indexes of the constraints at each RBDO solution obtained
by the double-loop method, SORA, and the proposed method
satisfy the target value, while those of LHS with Kriging and
CBS with Kriging violate the target value. In the double-loop
method, an inner optimization procedure in (8) is nested in an
outer loop. The nested framework results in that the double-
loop method is inefficient and a large number of constrain
evaluations are required. The proposed method only requires
97 samples to build the final Kriging metamodels of con-
straints, which are the fewest among the five methods. Thus,
the proposed method shows the highest efficiency for RBDO
under distributional p-box model.
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4.4 Application to a piezoelectric energy harvester

The RBDO of a piezoelectric energy harvester (Seong et al.
2017) is considered in this example. As shown in Fig. 10, the
piezoelectric energy harvester includes a shim laminated by
piezoelectric materials and a tip mass. The materials of shim
and tip mass are blue steel and tungsten/nickel alloy, respec-
tively. Mechanical strain is transferred into voltage or current
under the piezoelectric effect. Thirty-one modes are consid-
ered in this problem, in which higher longitudinal strain is
allowed as small input forces are applied to the energy har-
vester. Voltage is yielded along the thickness direction with
longitudinal stress/strain. The piezoelectric energy harvester
can be modeled by a transformer circuit. According to the
Kirchhoff’s voltage law, the circuit can be described by the

coupled differential equations that characterize the transfor-
mation from mechanical stress/strain to voltage. The conver-
sion process can be simulated by Matlab Simulink. In Fig. 10,
the piezoelectric material length is le = 2.50 × 10−2 m. The
width of the harvester is w = 2.60 × 10−2 m. The thickness of
the piezoelectric patch is tc = 2.54 × 10−4 m. The thickness of
the center shim is tsh = 2.60 × 10−4 m. The load resistance is
R = 7.35 × 10+5Ω. The piezoelectric strain coefficient is equal
to − 153.9 × 10−12 m/V. The Young’s modulus of PZT-5A
and the shim are equal to 66 × 109 Pa and 200 × 109 Pa, re-
spectively. The details of this piezoelectric energy harvester
can be found in Seong et al. (2017). In this example, the length
of shim lb, the length of tip mass lm, and the height of tip mass
hm are distributional p-box variables. The RBDO problem of
this example is expressed as

find : μx ¼ μ1;μ2;μ3½ �T
min : f ¼ μ1 þ μ2ð Þμ3w

s:t: : P min
y

g lb y1ð Þ; lm y2ð Þ; hm y3ð Þð Þ
� �

> 0

� 	
≥Rt

g lb y1ð Þ; lm y2ð Þ; hm y3ð Þð Þ ¼ Pw lb y1ð Þ; lm y2ð Þ; hm y3ð Þð Þ−4� 10−4mW
lb∼N μ1; y

2
1

� 

; lm∼N μ2; y

2
2

� 

; hm∼N μ3; y

2
3

� 

y ¼ y1; y2; y3½ �; y1∈ 1:8� 10−3m; 2:00� 10−3m

� �
; y2∈ 2:25� 10−4m; 2:55� 10−4m

� �
y3∈ 1:19� 10−4m; 1:33� 10−4m
� �

;w ¼ 0:026m
0:08m≤μ1≤0:1m; 0:012m≤μ2≤0:015m; 0:008m≤μ3≤0:01m

ð22Þ

where Pw denotes the harvester output power in frequency
16 Hz and the target reliability degree Rt is set to Φ(2).

In the proposed method and CBS with Kriging, initial
Kriging metamodels are established based on 60 initial train-
ing samples. In the proposed method, 22 updated samples are
sequentially found out to refine the Kriging metamodels. The
comparative results of SORA, CBS with Kriging, and the
proposed method are provided in Table 4. It can be seen that
the RBDO solution of the proposed method is the same as that
of SORA. And the reliability index of the constraint at each
RBDO solution of SORA and the proposed method satisfies
the target value, while that of CBS with Kriging violates the
target value. In terms of the efficiency, 82 samples are re-
quired by the proposed method, which are fewer than those
required by SORA and CBS with Kriging. Thus, the proposed
method presents very high efficiency in RBDO under distri-
butional p-box model.

5 Comparison and discussion

In the proposed method, performing SORA and updating
Kriging metamodels are repeated until the solution of SORA
no longer changes. At the initial iterations, if the initial

Kriging metamodels have poor accuracy in approximations
of true constraints, the solutions obtained by SORA may be
far away the final RBDO solution as shown in Figs. 7 and 8.
As shown in Fig. 8, the final RBDO solution is obtained after
update samples are sequentially added into the DoE. From
Tables 1, 2, 3, and 4, it can be seen that the proposed method
can obtain very similar RBDO solutions compared with the
SORA with true constraints. Thus, even though the initial
Kriging metamodels show poor approximations of true con-
straint functions, the sequential update of Kriging metamodels
in the proposed method will gradually improve the solutions
obtained by SORA. In each iteration of the proposed method,
the update samples are searched out around the current MPTP
obtained by SORA. Thus, in each iteration, the Kriging
metamodel update in the proposed method is a local manner,
which can be taken as exploitation. However, in terms of the
whole RBDO procedure, the Kriging metamodels in the pro-
posed method is sequentially updated to explore the final
RBDO solution. Because the implementation of SORA is
based on the gradient information of objective and constraint
functions, the proposed method is a local optimization meth-
od. Though it can well exploit the local regions around the
solutions obtained by SORA, the proposed method has the
limitation in the exploration of the global RBDO solution.

An active learning Kriging-assisted method for reliability-based design optimization under distributional... 2353



In CBS, Kriging metamodels of true constraints are se-
quentially updated with focusing on the LSSs around the
feasible region of deterministic design optimization, as
shown in Fig. 6. After the construction of Kriging
metamodels is completed, SORA is performed to obtain
the RBDO solution. It can be seen that the construction of
Kriging metamodels in CBS is independent on the imple-
mentation of RBDO, and the local information of the RBDO
solution is not used during the construction of Kriging
metamodels. Simultaneously, Kriging metamodels in CBS
are refined at all LSSs around the feasible region of deter-
ministic design optimization. Thus, the Kriging metamodel
update in CBS can be viewed as a global manner, which
shows that CBS has good exploration ability.

Comparatively, the refined region of Kriging metamodel in
CBS is larger than that in the proposed method, as shown in
Figs. 6 and 8. Therefore, generally, CBS requires more update
samples than the proposed method, as shown in Tables 1, 2, 3,
and 4. Because no exploitation procedure exists in CBS, it is
difficult to keep high approximation accuracy of the local region
around the solution obtained by SORA. However, the proposed
method can well refine the Kriging metamodels in the local
region around the solution of SORA. From the experimental
results in Tables 2, 3, and 4, it can be observed that the proposed
method can provide more accurate RBDO solutions than CBS.

6 Conclusions and future work

In this paper, an active learning Kriging-assisted method is
proposed to handle RBDO under distributional p-box model.
In the proposed method, SORA is extended to decouple the
optimization procedure and reliability analysis in the RBDO
problem under distributional p-box model. To cut down the
computational cost in RBDO associated with time-consuming
constraints, Kriging metamodels are built to replace the actual
constraints. Furthermore, to avoid unnecessary computational
cost on Kriging metamodel establishment in RBDO, a screen-
ing criterion is presented to judge active constraints. Then, an
active learning function is defined to gain update samples,
which are employed to refine the Kriging metamodel of each
active constraint by focusing on its LSS around the MPTP at
the solution of SORA. To validate its accuracy and efficiency,
the proposed method is compared with SORA, the double-
loop method, and CBS by the test of four examples, including
a welded beam problem and a piezoelectric energy harvester
example. Comparative results indicate that the proposedmeth-
od by refining the approximation of the LSSs around the
MPTPs of active constraints at the solution of SORA is more
efficient for RBDO under distributional p-box model, com-
pared with CBS by refining the approximation of LSSs of
constraints around the feasible region of deterministic design
optimization.

In this work, RBDO only with epistemic uncertainties is
considered, where epistemic uncertainties are quantified by
the distributional p-box model. We will extend the proposed
method to RBDO under hybrid random and epistemic uncer-
tainties in the future. Because the implementation of SORA is
based on the gradient information of objective and constraint
functions, the proposed method is a local optimization method.
Though it can well exploit the local regions around the solu-
tions obtained by SORA, the proposed method has the limita-
tion in the exploration of the global RBDO solution. One pos-
sible way to balance the exploitation and exploration capabili-
ties of metamodel-assisted methods for obtaining a global
RBDO solution is that evolution algorithm is combined with
the proposed method, which can be investigated in the future.
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