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Abstract
Variable correlation commonly exists in practical engineering applications. However, most of the existing polynomial chaos (PC)
approaches for uncertainty propagation (UP) assume that the input random variables are independent. To address variable
correlation, an intrusive PC method has been developed for dynamic system, which however is not applicable to problems with
black-box-type functions. Therefore, based on the existing data-driven PC method, a new non-intrusive data-driven polynomial
chaos approach that can directly consider variable correlation for UP of black-box computationally expensive problems is
developed in this paper. With the proposed method, the multivariate orthogonal polynomial basis corresponding to the correlated
input random variables is conveniently constructed by solving the moment-matching equations based on the correlation statistical
moments to consider the variable correlation. A comprehensive comparative study on several numerical examples of UP and
design optimization under uncertainty with correlated input random variables is conducted to verify the effectiveness and
advantage of the proposed method. The results show that the proposed method is more accurate than the existing data-driven
PC method with Nataf transformation when the variable distribution is known, and it can produce accurate results with unknown
variable distribution, demonstrating its effectiveness.
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Nomenclature
bi The ith coefficient of PC model
d Dimension of random inputs
x Random input vector
y Stochastic response value
H Order of PC model
P(k) The kth orthogonal polynomials for

correlated variables
P The orthogonal polynomials for

independent variables

Q + 1 Number of PC coefficients
μ Mean value
μa, b Correlation statistical moment
ρ Correlation coefficient
σ Standard deviation value
Ωc Original correlated random variable space
Γ(x) Joint cumulative distribution function
DD-PC The data-driven polynomial chaos method
gPC The generalized polynomial chaos method
GS-PC The Gram-Schmidt polynomial chaos method
ME-PC The multi-element generalized

polynomial chaos method
PC Polynomial chaos
UP Uncertainty propagation

1 Introduction

Uncertainty propagation (UP) methods, which could be used
to quantify uncertainty in system output performance based on
random or noisy inputs, are of great importance for design
under uncer ta in ty especia l ly for problems with
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computationally expensive simulation analysis models of
black-box type (such as finite element analysis and computa-
tional fluid dynamics). A variety of probabilistic UP ap-
proaches have been developed (Lee and Chen 2009), among
which the polynomial chaos (PC) technique is a rigorous one
due to its strongmathematical basis. By using PC, the function
with random inputs can be represented as a stochastic meta-
model, based on which lower-order statistical moments as
well as reliability of the function output can be derived effi-
ciently to facilitate the implementation of design optimization
under uncertainty scenarios like robust design optimization
(Xiong et al. 2011a) and reliability-based design optimization
(Coelho and Bouillard 2011). As it has high efficiency and
accuracy for UP, the PC method has been extensively applied
to engineering problems, such as the propagation of uncertain-
ty in composite structures (Mukhopadhyay et al. 2016), the
robust aerodynamic optimization of airfoil (Dodson and Parks
2015), marine vessel (Wei et al. 2018), and trajectory of the
flight vehicle (Prabhakar et al. 2010).

The original PC method employs the Hermite orthogonal
polynomial as the basis, which exhibits slow convergencewhen
the input random variable follows non-Gaussian distribution
(William and Meecham 1968). To address this issue, Xiu and
Karniadakis extended the original PC method to a generalized
one (gPC) that can directly deal with five typical types of dis-
tribution based on the Askey scheme (Xiu and Karniadakis
2003). In addition, to solve UP problems with arbitrary distri-
bution forms and improve the applicability of the PC method, a
Gram-Schmidt PCmethod (GS-PC) using Schmidt orthogonal-
ization and a multi-element generalized PC method (ME-PC)
were developed byWittevee and Bijl (Witteveen and Bijl 2013)
and Wan and Karniadakis (Wan and Karniadakis 2006), re-
spectively. However, due to cost limitations, the complete prob-
abilistic distribution of input random variable may not exist
with insufficient data in practical engineering.

To solve this problem, some non-probabilistic methods of
UP could be used, such as random sets (Zhang and Achari
2010), interval probabilities (Xiao et al. 2016; Liu et al. 2019),
interval theory (Xia et al. 2017; Li et al. 2017), fuzzy logic
(Abou 2012), etc. On the other hand, in the classical probabil-
ity theory, Oladyshkin and Nowak proposed a non-intrusive
data-driven PC (DD-PC) method without referring to the dis-
tribution functions, withwhich the univariate orthogonal poly-
nomial basis is constructed by matching certain order of sta-
tistical moments of the input random variable based on the
discrete data (Oladyshkin et al. 2011; Oladyshkin and
Nowak 2012). Later, to improve the accuracy and efficiency
of the DD-PC method, they applied the Bayesian method to
calibrate the DD-PC model (Oladyshkin et al. 2013). To solve
higher-dimensional UP problems, an enhanced DD-PC meth-
od was developed by Wang et al. through extending the
Galerkin projection method to DD-PC, in which the quadra-
ture nodes and weights required by PC coefficient calculation

were obtained by solving the moment-matching equations
(Wang et al. 2017). Zhou et al. improved the accuracy of
DD-PC method with equilibrium sampling strategy and
weighted least-square method (Guo et al. 2019). The DD-PC
methods have demonstrated to have a wider scope of applica-
tion compared to the existing PC approaches (gPC, GS-PC,
ME-PC) that require the complete probabilistic distributions
of input random variables.

However, for all the existing PC methods including gPC,
GS-PC, ME-PC, and DD-PC, it is generally assumed that the
input random variables are independent to each other during
the construction of PC model. However, in practical engineer-
ing applications, oftentimes, the input random variables are
statistically correlated, such as the material properties and fa-
tigue properties in structural analysis (Socie 2003), and the
length and width of a beam structure considering earthquake
resistance (Du 2008). To deal with the correlated input ran-
dom variables, the transformation methods, such as
Rosenblatt transformation (Rosenblatt 1952), orthogonal
transformation (Rackwitz and Flessler 1978) and Nataf trans-
formation (Kiureghian and Liu 1986), can be employed to first
transform the correlated random input variables into indepen-
dent standard normal ones. UPwith PC is then conducted with
respect to these variables. Noh et al. made a comparative study
of Rosenblatt transformation and Nataf transformation and
applied them to design optimization under uncertainty of a
coil spring with correlation between the inner diameter and
the wire diameter (Noh et al. 2009). Song et al. applied the
Nataf transformation to statistical sensitivity analysis consid-
ering correlated input random variables (Song et al. 2011).
However, these transformation methods would inevitably in-
duce errors, which may be large especially when the

Table 1 Test functions and the distribution information

Function 1: y = x1 + x2
Case 1: x1 ∼N(1, 0.22), x2 ∼N(2, 0.22)
Case 2: x1 ∼U(0, 1), x2 ∼U(0, 1)
Case 3: x1 ∼Rayl(0.5), x2 ∼Rayl(0.5)
Case 4: unknown distribution; raw data

Function 2: y = 3x1
3x2 − 1

Case 1: x1 ∼N(1, 0.252), x2 ∼N(1, 0.252)
Case 2: x1 ∼U(1, 2), x2 ∼U(1, 2)
Case 3: x1 ∼Rayl(0.2), x2 ∼Rayl(0.2)
Case 4: unknown distribution; raw data

Function 3: y = x1
2 + sin(x2)

Case 1: x1 ∼N(1, 0.12), x2 ∼N(3, 0.52)
Case 2: x1 ∼U(0, 2), x2 ∼U(2, 4)
Case 3: x1 ∼Rayl(0.1), x2 ∼Rayl(0.1)
Case 4: unknown distribution; raw data

Function 4: y ¼ e −x1ð Þ þ x23 þ x32, x1 and x2 are correlated
Case 1: x1 ∼N(1, 0.22), x2 ∼N(0, 0.22), x3 ∼N(0, 0.12)
Case 2: x1 ∼U(−1, 1), x2 ∼U(0, 2), x3 ∼N(0, 0.12)
Case 3: x1 ∼Rayl(1), x2 ∼Rayl(1), x3 ∼N(0, 0.12)
Case 4: unknown distribution; raw data
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correlated input random variables follow complex non-
Gaussian probabilistic distributions or the response function
are highly nonlinear (Lebrun and Dutfoy 2009). Moreover,
when the correlated input random variable does not have com-
plete distribution function due to cost limit and exists as data,
these transformation approaches that are based on variable
probabilistic distribution are clearly inapplicable. In this case,
the existing DD-PC methods cannot work, not to mention the
PC methods that require the complete probabilistic distribu-
tion (such as gPC, GS-PC, andME-PC). To address this issue,
Paulson et al. (Paulson et al. 2017) developed an intrusive
arbitrary polynomial chaos method considering correlated in-
put random variables for UP of dynamic system, in which the
orthogonal polynomial basis was constructed for correlated
random variables using the Gram-Schmidt orthogonalization
technique based on the statistical moments of correlated var-
iables and Galerkin projection was employed for PC coeffi-
cient calculation (Appendix). Later, Wang et al. (Wang et al.
2019) applied this method to probabilistic load flow.
However, for black-box computationally expensive problems,
it is impossible to apply the intrusive PC method.

Therefore, as an improvement of the existing DD-PC
method, a new non-intrusive DD-PC approach that can
directly consider the correlation of input random variables
during the orthogonal polynomial construction (short for
DD-PC-Corr in this paper) is developed for black-box

computationally expensive problems in this work. The
multivariate orthogonal polynomial basis is constructed
by solving the moment-matching equations based on the
correlation statistical moments of input random variables
conveniently, rather than resorting to the Gram-Schmidt
orthogonalization process that is much more complicated.
Meanwhile, a comprehensive comparative study on prob-
lems with different nonlinearity and random variable infor-
mation (different distribution types and raw data) for UP
and design optimization under uncertainty are conducted to
fully explore the effectiveness and advantage of the pro-
posed method. With the proposed method, the scenario of
correlation statistical moment that is defined as certain or-
der of statistical moment considering the variable correla-
tion is introduced based on the discrete data of input ran-
dom variables. Through matching zero to certain order of
correlation statistical moments, the multivariate orthogonal
polynomial considering the correlation of input random
variables is directly constructed based on moment-
matching equations. The regression technique is employed
to calculate the PC coefficients. When the probabilistic
distribution of correlated random input is known, no trans-
formation is required by the proposed method, and thus,
the accuracy of UP would be improved compared to all the
existing PC approaches (gPC, GS-PC, ME-PC, and DD-
PC). When the probabilistic distributions of correlated

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 2 Results of Function 1 (Case 2, y > 1.6)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 1 Results of Function 1 (Case 1, y > 3.5)
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random input variables are unknown and only some raw
data exist, all the existing PC approaches cannot work,
while the proposed DD-PC-Corr method is still applicable.

The rest of this article is organized as follows. The
proposed DD-PC-Corr method that can directly consider
correlated input random variables is presented in Sect. 2.
In Sect. 3, the proposed method is applied to several nu-
merical examples for UP to explore its effectiveness and
accuracy. In Sect. 4, the proposed method is further
employed to robust design optimization of a mathematical
example and reliability-based design optimization of a
coil spring problem. Conclusions are drawn in Sect. 5.

2 The proposed DD-PC-Corr method

As an improvement of the existing DD-PC approach, a
new non-intrusive DD-PC-Corr method is proposed in
this paper to make the PC theory applicable to UP prob-
lems with correlated input random variables that do not
have complete probabilistic distribution functions. For the
existing DD-PC approaches, the univariate orthogonal
polynomial basis corresponding to each input random var-
iable is constructed without considering variable correla-
tion, while for the proposed one, the multivariate

orthogonal polynomial basis for the correlated input ran-
dom variables is directly constructed, without referring to
transformation. A step-by-step description of the proposed
DD-PC-Corr method that can directly consider variable
correlation is given as follows. For brevity, a function
y = g(x) with a d-dimensional input random vector
x = [x1,…, xd] is used for illustration of UP. It is assumed
that x1, …, xz(z ≤ d) are correlated to each other, while the
others (xz + 1, …, xd) are independent.

Step 1: Represent the stochastic output y as a PC model
of order H:

y≈ ∑
Q

i¼0
bi P x1;…; xzð Þ⊗P xzþ1;…; xdð Þ
h i ið Þ

ð1Þ

where bi represents the i
th PC coefficient;⊗ denotes the tensor

product operation; Q + 1 (Qþ 1 ¼ dþHð Þ!
d!H! ) is the number

polynomial terms in the PC model.

In (1), P(x1,…, xz) and P xzþ1;…; xdð Þ are the orthogonal
polynomials corresponding to correlated input random vari-
ables x1, …, xz and the independent random variables xz + 1,
…, xd, respectively. The numbers of terms for P(x1,…, xz) and

P xzþ1;…; xdð Þ are zþHð Þ!
z!H! and d−zþHð Þ!

d−zð Þ!H! , respectively. P

xzþ1;…; xdð Þ is constructed by conducting direct tensor

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 3 Results of Function 1 (Case 3, y > 2.5)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 4 Results of Function 1 (Case 4, y >4.5)
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product on the univariate orthogonal polynomial basis as fol-
lows:

P xzþ1;…; xdð Þ ¼ ∏
d

j¼zþ1
ϕ j

α jð Þ x j
� � ð2Þ

where ϕ j
α jð Þ x j

� �
represents the univariate orthogonal poly-

nomial basis constructed by matching statistical moments
from 0 to some order of xj.

The construction of ϕ j
α jð Þ x j

� �
is exactly the same as that

of the existing DD-PC methods (Oladyshkin et al. 2011;
Oladyshkin and Nowak 2012), and thus is not introduced in
detail here. The main contribution of this work lies in the
construction of P(x1,…, xz) that can directly consider variable

correlation. The kth (k ¼ 0; 1;…; zþHð Þ!
z!H! ) multivariate orthog-

onal polynomial P(k)(x1,…, xz) is defined as

P kð Þ x1;…; xzð Þ ¼ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ ð3Þ

where ps
(k) is the polynomial coefficient to be solved, αs

j is the

power of xj, and it clearly satisfies 0≤ ∑
z

j¼1
αs

j≤H .

Taking z = 2 and H = 2 for example, there are 6 orthogonal
polynomial terms with polynomial order no more than 3 and
P(k)(x1,…, xz)(k = 0, 1,…, 5) can be constructed as below:

P 0ð Þ x1; x2ð Þ ¼ p0
0ð Þ

P 1ð Þ x1; x2ð Þ ¼ p0
1ð Þ þ p1

1ð Þx1
P 2ð Þ x1; x2ð Þ ¼ p0

2ð Þ þ p1
2ð Þx1 þ p2

2ð Þx2
P 3ð Þ x1; x2ð Þ ¼ p0

3ð Þ þ p1
3ð Þx1 þ p2

3ð Þx2 þ p3
3ð Þx12

P 4ð Þ x1; x2ð Þ ¼ p0
4ð Þ þ p1

4ð Þx1 þ p2
4ð Þx2 þ p3

4ð Þx12 þ p4
4ð Þx1x2

P 5ð Þ x1; x2ð Þ ¼ p0
5ð Þ þ p1

5ð Þx1 þ p2
5ð Þx2 þ p3

5ð Þx12 þ p4
5ð Þx1x2 þ p5

5ð Þx22

8>>>>>><
>>>>>>:

ð4Þ

Step 2: Solve polynomial coefficient ps
(k) in (3) to gen-

erate the multivariate orthogonal polynomial basis con-
sidering variable correlation.

According to the orthogonality property of the polynomial,
it can be obtained

∫x1;…;xz∈ΩcP
kð Þ x1;…; xzð ÞP lð Þ x1;…; xzð ÞdΓ x1;…; xzð Þ

¼ δkl;∀k; l ¼ 0; 1;…;
zþ Hð Þ!
z!H!

ð5Þ

where δkl is the Kronecker delta, Ωc stands for the original

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 5 Results of Function 2 (Case 1, y > 15)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 6 Results of Function 2 (Case 2, y > 40)
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correlated random variable space, and Γ(x) represents the joint
cumulative distribution function (CDF) of the correlated ran-
dom variables.

Given the assumption that all the polynomial coefficients

in (3) p kð Þ
s k ≤ zþHð Þ!

z!H!

� �
are not equal to 0 and p kð Þ

k ¼ 1 for

simplicity, a new set of equations can be obtained as below
by conducting inner product between P(r)(r = 0, 1,…, k − 1)
and P(k) based on (5):

∫x1;…;xz∈Ωcp
0ð Þ
0 ∑

k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

∫x1;…;xz∈Ωc ∑
1

s¼0
ps

1ð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

∫x1;…;xz∈Ωc ∑
2

s¼0
ps

1ð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

⋮
∫x1;…;xz∈Ωc ∑

k−1

s¼0
ps

k−1ð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð6Þ

By expanding the second equation in (6), one can obtain

∫x1;…;xz∈Ωc p0
1ð Þ Π

z

j¼1
x j
� � α0

jð Þ þ p1
1ð Þ Π

z

j¼1
x j
� � α1

jð Þ
� �

∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

ð7Þ

From the first equation in (6), it can be derived that

∫x1;…;xz∈Ωcp0
1ð Þ Π

z

j¼1
x j
� � α0

jð Þ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0 ð8Þ

Substituting (8) into (7), (7) can be simplified as

∫x1;…;xz∈Ωcp1
1ð Þ Π

z

j¼1
x j
� � α1

jð Þ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0 ð9Þ

As has been assumed that p kð Þ
k ¼ 1, (9) can be further trans-

formed as

∫x1;…;xz∈Ωc ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jþα1
jð ÞdΓ x1;…; xzð Þ ¼ 0 ð10Þ

Similarly, by expanding the third equation in (6), one can
obtain

∫x1;…;xz∈Ωc p0
2ð Þ Π

z

j¼1
x j
� � α0

jð Þ þ…þ p2
2ð Þ Π

z

j¼1
x j
� � α1

jð Þ
� �

∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0

ð11Þ

Based on the first equation in (6) and (9), it can be derived that

∫x1;…;xz∈Ωcp0
2ð Þ Π

z

j¼1
x j
� � α0

jð Þ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0 ð12Þ

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 7 Results of Function 2 (Case 3, y > −0.9)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 8 Results of Function 2 (Case 4, y > 40)
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∫x1;…;xz∈Ωcp1
2ð Þ Π

z

j¼1
x j
� � α1

jð Þ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0 ð13Þ

Substituting (12) and (13) into (11), (11) can be simplified as

∫x1;…;xz∈Ωcp2
2ð Þ Π

z

j¼1
x j
� � α1

jð Þ ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jð Þ
� �

dΓ x1;…; xzð Þ ¼ 0 ð14Þ
As p 2ð Þ

2 ¼ 1, (14) can be further transformed as

∫x1;…;xz∈Ωc ∑
k

s¼0
ps

kð Þ Π
z

j¼1
x j
� � αs

jþα2
jð ÞdΓ x1;…; xzð Þ ¼ 0 ð15Þ

By respectively employing the same way above on the 4th,
5th,…, kth equation in .(6), one can further obtain k-3 simpli-
fied equations. Combing these simplified equations ((10),
(15),…), a new set of equations can be obtained as below:

∫x1;…;xz∈Ωc ∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jþα0
jð ÞdΓ x1;…; xzð Þ ¼ 0

∫x1;…;xz∈Ωc ∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jþα1
jð ÞdΓ x1;…; xzð Þ ¼ 0

∫x1;…;xz∈Ωc ∑
k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jþα2
jð ÞdΓ x1;…; xzð Þ ¼ 0

⋮
∫x1;…;xz∈Ωc ∑

k

s¼0
ps

kð Þ Π
j¼1

z
x j
� � αs

jþαk−1
jð ÞdΓ x1;…; xzð Þ ¼ 0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ

Define ∫x1;…;xz∈Ωc Π
z

j¼1
x j
� � αa

jþαb
jð ÞdΓ x1;…; xzð Þ ¼ μa;b, and

rewrite (16) in the matrix form as

μ0;0 μ1;0 ⋯ μk;0
μ0;1 μ1;1 ⋯ μk;1
⋮ ⋮ ⋮ ⋮

μ0;k−1 μ1;k−1 ⋯ μk;k−1
0 0 ⋯ 1

2
66664

3
77775

p kð Þ
0

p kð Þ
1
⋮
p kð Þ
k−1

p kð Þ
k

2
666664

3
777775 ¼

0
0
0
⋮
1

2
66664

3
77775 ð17Þ

In (17), μa , b(a = 0, 1, …, k; b = 0, 1, …, k − 1) is
named as the correlation statistical moment of x1, …,
xz in this paper, which can directly take the correlation
among x1, …, xz into account. If the distribution infor-
mation is unknown, μa, b can be easily calculated from
the given discrete data of x1, …, xz. Equation (17) can
be easily solved to obtain the unknown polynomial co-
efficients in (3), and the construction of multivariate
orthogonal polynomial P(k) for correlated input random
variables is completed.

Step 3: Once P(x1,…, xz) and P xzþ1;…; xdð Þ are con-
structed, the regression (Isukapalli et al. 2000) or
Galerkin projection (Xiu and Karniadakis 2002) tech-
niques can be employed to calculate the PC coefficients
bi in the PC model.

It should be pointed out that for the Galerkin projection
method, the efficient Gaussian quadrature numerical

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 9 Results of Function 3 (Case 1, y > 2)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 10 Results of Function 3 (Case 2, y > 4)
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integration technique is generally employed, where the
Gaussian quadrature nodes are required to be calculated.
However, for the proposed method, the multivariate orthogo-
nal polynomial for the correlated input random variables is
constructed, of which the zeros (Gaussian quadrature nodes)
are difficult to obtain. Therefore, other numerical integration
methods are employed in replacement of Gaussian quadrature,
which however requires a great amount of nodes to calculate
the PC coefficients. This is generally unaffordable to problems
with computational expensive simulation models. Therefore,
the regression method is recommended to calculate the PC
coefficients for the proposed method. During sampling, if
the distributions of input random variables are known, the
Latin Hypercube sampling method considering sample
weights (Xiong et al. 2011b) is employed to generate sample
points for regression. If only data exist for the input random
variables, the input sample points are selected from the given
raw data to ensure the space-filling property and spatial uni-
formity as far as possible.

Step 4: Once the PC coefficients are calculated, a cheap
stochastic meta-model is constructed, based on which
Monte Carlo simulation (MCS) is conducted to obtain
the probabilistic characteristics of output y.

For the proposed method, the main computational cost
comes from Step 3, as many function calls are required. And

the computational cost of Step 1 and Step 2 from the orthog-
onal polynomial construction is almost negligible compared to
Step 3. As an improvement of the existingDD-PCmethod, the
proposed method will be degraded into the existing DD-PC
when the variable correlation is zero.

3 Numerical test for uncertainty propagation

In this section, the proposed DD-PC-Corr method is applied to
four mathematical examples and one coil spring problem to
verify its effectiveness and accuracy for UP with correlated
input random variables. The results of MCS obtained by re-
peatedly calling the original response function with 106 runs
are employed as the benchmark to validate the effectiveness of
the proposed method. The first four statistical moments
(mean, standard deviation, skewness, kurtosis) and the prob-
ability of failure of the output response are calculated (short
forM, Std, Ske, Kur, and Pf in this paper), of which the errors
relative to MCS are calculated.

Clearly, the order of polynomial is an important tuning
parameter for PC. In literature, many works have been done
to determine it in a scientific way (Hampton and Doostan
2018; Sinou and Jacquelin 2015). However, the main contri-
bution of the proposed method lies in the construction of the
orthogonal polynomial basis considering variable correlation
using moment-matching, and the rest of procedures such as

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 11 Results of Function 3 (Case 3, y > 0.3)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 12 Results of Function 3 (Case 4, y > 5)
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the calculation of PC coefficients are basically the same as the
existing PC approaches. Therefore, the order of the PC model
is simply set as H = 3 considering the compromise between
accuracy and computational cost. Meanwhile, the regression
method (Isukapalli 1999) is employed to calculate the PC
coefficients, in which the sample size is set as twice the num-
ber of unknown PC coefficients as is commonly done in liter-
ature (Hosder et al. 2007).

3.1 Mathematical examples

To fully investigate the effectiveness of the proposed method,
four mathematical examples with varying nonlinearity and
different distribution forms of input random variables are con-
sidered, which are shown in Table 1. In Table 1, N, U, and
Rayl represent normal, uniform, and Rayleigh distribution,
respectively. For Case 1 to Case 3, the probabilistic distribu-
tion of the input random variable is known and correlated, and
the existing DD-PC method with Nataf transformation is also
tested for comparison. For Case 4, the input random variables
do not have probabilistic distributions and are correlated,
which exist as some raw discrete data. In this case, the existing
DD-PC method with Nataf transformation cannot work, and
only the proposed method is tested. For all the cases, different
strengths of correlation (ρ = 0, 0.5, 0.8; weak, medium and
strong) are considered.

The first four statistical moments (M, Std, Ske, and Kur)
and the probability of failure (Pf) of the output response for the
proposed DD-PC-Corr method (denoted by Proposed), the
existing DD-PC method with Nataf transformation (denoted
by Existing) and MCS are shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, and 16, in which the errors relative to
MCS for the proposed and existing methods are shown nu-
merically above the corresponding bars (all the errors are in
the form of percentage error). From these figures, some note-
worthy observations can be made.

Firstly, for Case 1 to Case 3 with known distributions of the
input random variables, the results of the proposed DD-PC-
Corr method are clearly much more accurate than the existing
DD-PC method with Nataf transformation for various corre-
lation coefficients, which is owed to the direct consideration
of the variable correlation in the construction of orthogonal
polynomial basis. For the existing method, the Nataf transfor-
mation is employed to transform the correlated input random
variables into independent standard normal ones when the
input random variables are correlated, in which more or less
errors would be induced to UP. Specially, for Examples 2–4,
as the functions are more nonlinear than Example 1 (linear),
the errors of the existing method are clearly larger. For
Example 1, as the function is linear, the results produced by
the proposed method are almost the same to those of MCS.

Secondly, compared to Case 1, the errors of Case 2 and
Case 3 for the existing method are generally larger and the

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 13 Results of Function 4 (Case 1, y > 0.5)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 14 Results of Function 4 (Case 2, y > 8)
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advantage of proposed method in accuracy is more obvious,
especially for the errors of skewness and kurtosis. The inter-
pretation is that uniform and Rayleigh distributions are con-
sidered in Case 2 and Case 3, and larger errors are induced by
the Nataf transformation compared to those of Case 1 with
normal distribution. Moreover, for the estimation of skewness
and kurtosis with PC theory, as the nonlinearity is higher,
larger errors are induced by the Nataf transformation com-
pared to those of mean and variance.

Thirdly, in Case 4 that the distribution of input random
variable is unknown, the proposed method considering vari-
able correlation can produce accurate results that are very
close to MCS, while the existing DD-PC method with Nataf
transformation even cannot work.

All these results demonstrate the effectiveness and advan-
tage of the proposed method.

To study the convergence property, the relative errors
(%) of the statistical moments and Pf with different PC
orders obtained by the proposed DD-PC-Corr method and
the existing DD-PC method with Nataf transformation are
illustrated in Figs. 17, 18, 19, and 20. For space limit, only
the results of Function 2 with large correlation (ρ = 0.8 or
strong) are shown here. It is noticed that for both methods,
with the increase of the PC order, the relative errors signif-
icantly decrease, and the decline of the proposed method is
clearly more rapid, exhibiting better convergence property.
Meanwhile, the errors of the proposed method are

evidently smaller compared to the existing approach with
the same order of PC model (i.e., the same number of
function calls). These results demonstrate the effectiveness
and good convergence property of the proposed method.

3.2 Coil spring

A coil spring problem adopted from (Arora 2004) (see
Fig. 21) is further employed to investigate the effectiveness
of the proposed method. It is originally a design problem
and is modified to an example for UP in this subsection. In
the manufacturing process, the inner diameter D (unit, in)
and the wire diameter d (unit, in) may be physically corre-
lated, which are assumed to follow normal distributions
(D ∼N(1, 0.12), d ∼N(0.15, 0.012)). The rest of the param-
eters are considered to be deterministic, which are ex-
plained in Table 2.

We are concerned about the mass of the coil spring, which
is calculated as follows:

Mass ¼ 25000� N þ Qð Þπ2 Dþ dð Þd2ρ ð18Þ

Similarly, different strength of the correlation coeffi-
cient between D and d (ρDd) is considered. The first
four statistical moments (M, Std, Ske, and Kur) of the
output response for the proposed DD-PC-Corr method
(denoted by Proposed) and MCS are shown in

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 15 Results of Function 4 (Case 3, y > 20)

(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 0.8
Fig. 16 Results of Function 4 (Case 4, y > 10)
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Fig. 22, in which the errors relative to MCS for the
proposed are shown numerically above the correspond-
ing bars (all the errors are in the form of percentage
error). From Fig. 22, it is noticed that all the results
calculated by the proposed DD-PC-Corr method are
very close to those produced by MCS with different
correlation strength, and the relative errors are basically
within 1%. Generally, the relative errors of skewness
and kurtosis are larger than those of mean and standard
deviation, as the nonlinearity of skewness and kurtosis
estimation within PC theory is higher. These results
show great agreements to those obtained in Sect. 3.1,
and further demonstrate the effectiveness of the pro-
posed method.

4 Numerical test for design optimization
under uncertainty

In this section, the proposed DD-PC-Corr method is
employed to robust optimization of one mathematical
example and reliability-based design optimization of a
coil spring problem to further verify its effectiveness
and accuracy in addressing UP with correlated input
random variables. Meanwhile, optimization is also con-
ducted with MCS for UP, of which the results are used
as benchmark to validate the effectiveness of the pro-
posed method. Once the optimization is done, MCS is
conducted to obtain the confirmed results, through
substituting the obtained optimal design variables by
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Fig. 18 Relative errors with different PC orders (Function 2, Case 2, ρ = 0.8)
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Fig. 21 Coil spring
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Table 2 Physical meaning of coil spring parameters

Parameters Physical meaning Parameters Physical meaning

N = 10 Number of active coils P= 10 lb Applied load

Q = 2 Number of inactive coils G = 1.15e7 lb./in2 Shear modulus

ρ = (7.38e−4) lb-s2/in4 Mass density of material τa = 80,000 lb./in2 Allowable shear stress

Δ = 0.5 in Minimum spring deflection ω0 = 100 Hz Lower limit on surge wave frequency

(a) ρ = 0 (b) ρ = 0.2 (c) ρ = 0.4

(d) ρ = 0.6 (e) ρ = 0.8 (e) ρ = 0.8
Fig. 22 Results of UP for coil spring

Table 3 Optimal results of robust optimization

ρ = 0 ρ = 0.5 ρ = 0.8

Methods
Optimum

Proposed MCS Proposed MCS Proposed MCS

μx1 3.3668 3.3709 3.3965 3.4107 3.4368 3.4452

μx2 5.0549 4.9968 5.1457 5.1260 5.3733 5.2848

FC 0.0745 0.0758 0.0803 0.0807 0.0936 0.0895

GC 0.2375 0.2230 0.0148 0.0134 0.0020 0.0016
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DD-PC-Corr and MCS-based design optimization into
the objective and constraint functions considering uncer-
tainties of input random variables. The order of PC
model is set as H = 3.

4.1 Mathematical example

Robust design optimization on a mathematical example
shown in (19) is firstly employed with the proposed DD-PC-
Corr method for statistical moment calculation. Different cor-
relation coefficients (ρ = 0, 0.5, 0.8) are considered. Table 3
shows the results of robust optimization using the proposed
method and MCS, in which FC and GC denote the confirmed
objective and constraint function values. From this table, it is
found that the results of the proposed DD-PC-Corr method are
very close to those produced by the MCSmethod for different
correlation coefficients, and the relative errors are all within
5%, indicating the effectiveness and accuracy of the proposed
DD-PC-Corr method. Moreover, for different correlation co-
efficients, the obtained optimal solutions always satisfy the
constraints:

Min
μx1

;μx2

F ¼ σ f

15

s:t: G ¼ μg−3σg ≥0
f x1; x2ð Þ ¼ x1−4ð Þ3 þ x1−3ð Þ4 þ x2−5ð Þ2 þ 10
g ¼ x1 þ x2−6:45
xi : N μxi ; 0:42

� �
; i ¼ 1; 2

1≤μx1 ≤10; 1≤μx2 ≤10
ð19Þ

4.2 Coil spring

The reliability-based design optimization (RBDO) formula-
tion of the coil spring problemmentioned in Sect. 3.2 is shown
in (20):

Min
μD;μd

F ¼ μmass

s:t: Pi Gi > 0ð Þ≤0:02275; i ¼ 1; 2; 3

mass ¼ 25000� N þ Qð Þπ2 Dþ dð Þd2ρ
G1 ¼ 1−

δ
Δ

G2 ¼ τ
τa

−1

G3 ¼ 1−
ω
ω0

δ ¼ P
K

¼ 8P Dþ dð Þ3N
d4G

τ ¼ 8kP Dþ dð Þ
πd3

¼ 8P Dþ dð Þ
πd3

4 Dþ dð Þ−d
4D

þ 0:615d
Dþ d

� �

ω ¼ d

2πN Dþ dð Þ2
ffiffiffiffiffiffi
G
2ρ

s
0:8≤μD≤1:5; 0:1≤μd ≤0:3

ð20Þ
where μ represents the mean of the variable, and Pi denotes
the probability of failure of the ith limit state function.

The optimization of the coil spring problem aims to find the
design variables (the means of the inner diameter D and wire
diameter d) of the coil spring, to minimize the mass subject to
constraints on the deflection δ, the shear stress τ, and the
vibration frequency ω of the spring. The inner diameter D
and the wire diameter d are considered to be uncertain and
follow normal distribution, with standard deviation as 0.1 and
0.01, respectively. In the manufacturing process,D and dmay
be physically correlated to each other. Ignoring such correla-
tion may significantly impact the performance of the spring,
and thus, it is necessary to consider it. In this work, different
correlation coefficients ρDd = [0, 0.5, 0.8] are tested. The
proposed DD-PC-Corr method and MCS is employed to esti-
mate the probability of failure and mean of mass in RBDO.

The optimal results of RBDO using the proposed DD-PC-
Corr method and MCS and the confirmed results of the orig-
inal design (μD = 1, μd = 0.15) are displayed in Table 4. As

Table 4 Optimal results for coil spring problem

ρDd 0 0.5 0.8

Methods
Optimum

Proposed MCS Original Proposed MCS Original Proposed MCS Original

μD 1.0750 1.0741 1.0000 0.9817 1.0044 1.0000 0.9146 0.9067 1.0000

μd 0.1001 0.1000 0.1500 0.1002 0.1004 0.1500 0.1002 0.1000 0.1500

PC
1 0.0170 0.0217 0.9878 0.0194 0.0164 0.9994 0.0172 0.0203 1.0000

PC
2 0.0043 0.0044 0.0000 0.0006 0.0009 0.0000 0.0000 0.0001 0.0000

PC
3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

FC 3.1602 3.1698 6.9450 2.9582 3.0230 6.9687 2.7952 2.7521 7.0078
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shown in the table, for different correlation coefficients, the
proposed method can produce feasible optimal results that are
very close to those of MCS, demonstrating the effectiveness
of the proposed method. Meanwhile, for different correlation
coefficients, with the employment of RBDO, the mean value
of spring mass and the failure probability of the deflection are
significantly reduced by RBDO compared with the original
design, which clearly improve the reliability. For the original
design, the failure probability of the deflection (P1) is almost
100%, yielding terrible reliability.

5 Conclusions

In this paper, a new non-intrusive data-driven polynomial
chaos (DD-PC) method that can directly consider variable
correlation into the construction of PC model is developed
for uncertainty propagation with black-box computational ex-
pensive function. With the proposed method, the multivariate
orthogonal polynomial basis that can consider variable corre-
lation is constructed by solving the moment-matching equa-
tions based on the correlation statistical moments of correlated
input random variables. And the regression technique is
employed for PC coefficient calculation considering compu-
tational efficiency. The proposed method is applied to several
numerical examples with correlated input random variables
for UP and design optimization under uncertainty. It is found
that when the variable distribution is known, as no transfor-
mation is required for the proposedmethod, it is more accurate
than the existing DD-PC method with Nataf transformation;
when it is unknown, almost all the existing PC methods can-
not work, the proposedmethod can still obtain accurate results
that are very close to those produced by Monte Carlo simula-
tion. The effectiveness and advantage of the proposed method
are well demonstrated.
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Appendix

The correlated statistical moments and the polynomial coeffi-
cients for Function 1 (Case 1, ρ= 0.8) in Sect. 3.1 are provided
as below.

For this example, the dimension of correlated random var-
iable is 2 and the order of model is set as H = 3. Therefore,
there are ten two-dimensional orthogonal polynomial bases
with polynomial order on more than 3. The correlated statis-
tical moments that are in the form of matrix in (17) are shown
as below:
P 0ð Þ x1; x2ð Þ ¼ 1½ � k ¼ 0ð Þ ð21Þ

P 1ð Þ x1; x2ð Þ ¼ ∫x1;x2∈Ωc1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1dΓ x1; x2ð Þ
0 1

� �
k ¼ 1ð Þ

ð22Þ
P 2ð Þ x1; x2ð Þ

¼
∫x1;x2∈Ωc1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x2dΓ x1; x2ð Þ
∫x1;x2∈Ωc x1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1

2dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1x2dΓ x1; x2ð Þ
0 0 1

2
4

3
5 k ¼ 2ð Þ

ð23Þ
P 9ð Þ x1; x2ð Þ

¼

∫x1;x2∈Ωc1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1dΓ x1; x2ð Þ ⋯ ∫x1;x2∈Ωc x2
3dΓ x1; x2ð Þ

∫x1;x2∈Ωc x1dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1
2dΓ x1; x2ð Þ ⋯ ∫x1;x2∈Ωc x1x2

3dΓ x1; x2ð Þ
⋮ ⋮ ⋮ ⋮

∫x1;x2∈Ωc x1x2
2dΓ x1; x2ð Þ ∫x1;x2∈Ωc x1

2x22dΓ x1; x2ð Þ ⋯ ∫x1;x2∈Ωc x1x2
5dΓ x1; x2ð Þ

0 0 ⋯ 1

2
66664

3
77775

k ¼ 9ð Þ

ð24Þ

Based on the probabilistic distribution information of the
correlated input random variables, one can obtain these corre-
lated statistical moments that will be employed in the orthog-
onal polynomial basis construction. As the correlated statisti-
cal moments for k = 0, 1,..., 8 are all part of those for k = 9,
only those for k = 9 is given as below:

1 1:0037 2:0047 1:0470 2:0432 4:0581 1:1307 2:1618 4:1988 8:2947
1:0037 1:0470 2:0432 1:1307 2:1618 4:1988 1:2600 2:3652 4:5040 8:7086
2:0047 2:0432 4:0581 2:1618 4:1988 8:2947 2:3652 4:5040 8:7086 17:1153
1:0470 1:1307 2:1618 1:2600 2:3652 4:5040 1:4445 2:6671 4:9901 9:4668
2:0432 2:1618 4:1988 2:3652 4:5040 8:7086 2:6671 4:9901 9:4668 18:2262
4:0581 4:1988 8:2947 4:5040 8:7086 17:1153 4:9901 9:4668 18:2262 35:6458
1:1307 1:2600 2:3652 1:4445 2:6671 4:9901 1:6991 3:0911 5:6923 10:6171
2:1618 2:3652 4:5040 2:6671 4:9901 9:4668 3:0911 5:6923 10:6171 20:0705
4:1988 4:5040 8:7086 4:9901 9:4668 18:2262 5:6923 10:6171 20:0705 38:4842

2
6666666666664

3
7777777777775

k ¼ 9ð Þ ð25Þ

Correspondingly, the polynomial coefficients of the ten two-
dimensional orthogonal polynomial bases are listed as below:
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p 0ð Þ
0

h i
¼ 1½ �

p 1ð Þ
0 ; p 1ð Þ

1

h i
¼ 1;−1:0037½ �

p 2ð Þ
0 ; p 2ð Þ

1 ; p 2ð Þ
2

h i
¼ 1;−0:7874;−1:2143½ �

p 3ð Þ
0 ; p 3ð Þ

1 ;…p 3ð Þ
3

h i
¼ 1; 0:0000;−2:0149; 0:9733½ �

p 4ð Þ
0 ; p 4ð Þ

1 ;…p 4ð Þ
4

h i
¼ 1;−0:7601;−1:0339;−0:4550; 1:2818½ �

p 5ð Þ
0 ; p 5ð Þ

1 ;…p 5ð Þ
5

h i
¼ 1;−1:5269; 0:5869;−2:4795; 1:8735; 1:5374½ �

p 6ð Þ
0 ; p 6ð Þ

1 ;…p 6ð Þ
6

h i
¼ 1; 0:0124;−0:0202;−2:9868;−0:0242; 2:8980;−0:8728½ �

p 7ð Þ
0 ; p 7ð Þ

1 ;…p 7ð Þ
7

h i
¼ 1;−0:7414; 0:0434;−2:1284; 0:2956; 0:9175; 1:9156;−1:2221½ �

p 8ð Þ
0 ; p 8ð Þ

1 ;…p 8ð Þ
8

h i
¼ 1;−1:5061; 0:5835;−1:0560;−0:8766; 1:1998; 2:6053;−0:3874;−1:6164½ �

p 9ð Þ
0 ; p 9ð Þ

1 ;…p 9ð Þ
9

h i
¼ 1;−2:1648; 1:5190;−0:3394;−3:8632; 5:6408;−2:0132; 4:9097;−3:6227;−2:0516½ �

ð26Þ

Replication of results The results shown in the manuscript can be re-
produced. Considering the size limit of the uploaded supplementary ma-
terial, the codes for one of the mathematical example for UP (Function 1
and Function 2 in Sect. 3.1) is uploaded as supplementary material. For
the rest of the examples, it is very easy to implement by changing the
response functions and sample points based on the codes provided to
obtain the results shown in the manuscript
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