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Abstract
Efficiency is greatly concerned in reliability analysis community, especially for the problems with high-dimensional input
random variables, because the computation cost of common reliability analysis methods may increase sharply with respect to
the dimension of the problem. This paper proposes a novel meta-model based on the concepts of polynomial chaos expansion
(PCE), dimension-reduction method (DRM), and information-theoretic entropy. Firstly, a PCE method based on DRM is
developed to approximate the original function by a series of PCEs of univariate components. Compared with the PCE of the
original function, the DRM-based PCE can reduce the computational cost. Before constructing the meta-model, a prior of the
degree of the PCE is required, which determines the accuracy and efficiency of the PCE. However, the prior is usually determined
by experience. According to the maximum entropy principle, this paper proposes an adaptive method for the selection of the
polynomial chaos basis efficiently.With the adaptive PCEmethod based on DRM, a novel meta-model method is proposed, with
which the reliability analysis can be achieved by Monte Carlo simulation efficiently. In order to verify the performance of the
proposedmethod, three numerical examples and one structural dynamics engineering example are tested, with good accuracy and
efficiency.

Keywords Polynomial chaos expansion . Dimension-reductionmethod . Entropy . Structural reliability analysis

1 Introduction

Due to the uncertainties frequently involved in industrial ap-
plication, such as uncertainties of material, loads, and geom-
etry, it has been well recognized that the assessment of struc-
tural safety based on probabilistic theory plays an important
role in practical engineering (Du and Chen 2004; Youn et al.
2005). One of the common ways to assess structural safety is
reliability analysis, which is usually modeled by the following
mathematical formulation:

Pf ¼ Pr g xð Þ < gtð Þ ¼ ∫gt−∞p gð Þdg ¼ ∫g xð Þ<gt f xð Þdx ð1Þ

where Pf is the failure probability, Pr(•) is the probability of an
event, gt is the threshold for the definition of failure, x is the
vector of input variables with the joint probability density
function (PDF) of f(x), and g(x) is the interested response of
input variables with the PDF of p(g).

Based on Eq. (1), extensive methods have been developed
to achieve the structural reliability analysis with good efficien-
cy and/or accuracy, including the sampling-based methods
(Xu and Kong 2018a; Xi et al. 2014; Engelund and
Rackwitz 1993), MPP-based methods (Du and Chen 2001;
Meng et al. 2018), moment-based methods (Du and
Sudjianto 2004; Liu et al. 2018; Wu et al. 2020; Xu et al.
2017; Xi et al. 2012; Zhang and Han 2020), and surrogate-
based methods (Zhang et al. 2015; Zhang et al. 2017; Xiong
et al. 2007; Zhu and Du 2016). In general, sampling-based
methods are accurate and robust; therefore, many advanced
sampling-based methods have been proposed recently, such
as line sampling method (Lu et al. 2008), importance sam-
pling method (Dai et al. 2015a, 2015b), and stratified
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sampling method (Shields et al. 2015). However, the deficien-
cy on efficiency still limits the application of sampling-based
methods (Xu and Kong 2018). AlthoughMPP-based methods
usually have good efficiency and are widely used in
reliability-based design optimization and some nonprobability
reliability analysis problems (Meng and Keshtegar 2019;
Meng et al. 2020b), they are not accurate enough for highly
nonlinear problems. Moment-based methods can achieve the
trade-off between accuracy and efficiency, but they may be
confronted with the problem of numerical stability (Youn
et al. 2008; Huang and Du 2006; He et al. 2019b). The basic
idea of surrogate-based methods is to construct a numerical
black box or an analytical model to substitute the real physical
model. Then, the Monte Carlo simulation (MCS) method can
be performed by the meta-model efficiently. Because the
surrogate-based methods reduce the computational burden
greatly with satisfactory accuracy, a large number of advanced
meta-models have been proposed in the recent decades, such
as neural network method (Dai et al. 2015), kriging method
(Meng et al. 2020a; Zhang et al. 2019; Zhang et al. 2020) and
polynomial chaos expansion (PCE) method (Wang et al.
2018; Xu and Kong 2018b; Guo et al. 2018; Zhou et al.
2019). Among these methods, the PCE method has received
increasing attention, which is regarded as probably the most
widely used meta-model for propagating uncertainties
(Abraham et al. 2017).

The main idea of PCE is to represent a random variable, e.g.,
structural stochastic response, by a series of polynomial chaos
basis (Soize and Ghanem 2004). It should be noted that the term
chaos in PCE, which is coined byWiener for handling Gaussian
random process (Wiener 1938), is different from the concept of
chaos in dynamic systems. According toWiener’s idea, Ghanem
and Spanos (1991) started the study onWiener-Hermite polyno-
mial chaos for stochastic finite element. In order to overcome the
difficulties of Hermite polynomial chaos in non-normal prob-
lems, Xiu and Karniadakis (2002a, 2002b, 2003) proposed the
generalized polynomial chaos, which generates the orthogonal
basis based on the probability distribution of the input random
variable. On the basis of the well-chosen orthogonal basis, a
recursive procedure can be used to derive the PCE for fitting
the stochastic responses of mechanical systems.

To obtain the PCE meta-model, it is required to calculate
the regression coefficients of the PCE accurately. The com-
mon non-intrusive methods for the calculation can be grouped
into two categories: least squares approximation (LSA) meth-
od (Hadigol and Doostan 2018; Berveiller et al. 2006) and
projection method (Marelli and Sudret 2015). The LSA meth-
od is a classical method for regression analysis and frequently
used in PCE. Many researches have been done to enhance
efficiency and convergence of LSA method (Hampton and
Doostan 2015; Narayan et al. 2017). The projection method
calculates the coefficients with the aid of the orthonormality of
the polynomial basis. Thus, the calculation of the coefficients

is reduced to a numerical integration problem. Some algo-
rithms have been developed to calculate the numerical inte-
gration efficiently and accurately, such as Gaussian quadra-
ture method and Smolyak’ sparse quadrature method
(Gerstner and Griebel 1998). However, the applications of
both LSA method and projection method are limited by the
dimension of the space of original input random variables,
because the difficulty of the curse of dimension always poses
a great challenge in multiple- and high-dimensional problems.
To overcome the tricky problem, many sparse PCE methods
have been proposed, which neglect the unimportant PCE
terms to reduce the number of PCE coefficients. Typically,
Blatman and Sudret (Blatman and Sudret 2011) proposed an
adaptive sparse PCE based on least angle regression. Cheng
and Lu (2018a) proposed a sparse PCE method based on D-
MORPH regression. Xu and Wang (2019) proposed a sparse
PCE for efficient structural reliability analysis based on
Voronoi cells. Cheng and Lu (2018b) proposed an adaptive
sparse PCE for global sensitivity analysis based on support
vector regression. These sparse strategies have been proven to
be effective in terms of the reduction of computational cost. In
addition to the sparse strategies, dimension-reduction method
(DRM) is also an effective way to deal with multiple- and
high-dimensional problems, but DRM receives much less at-
tention than the sparse strategies in the researches of PCE.

Dimension-reduction method (DRM) is usually used to ap-
proximate arbitrary multivariate function by a series of lower
order components. In reliability analysis community, Rahman
and Xu (2004) firstly proposed a univariate DRM (UDRM) for
the calculation of statistical moments of structural responses. Due
to the high efficiency of UDRM, it is widely used in structural
reliability analysis and reliability-based design optimization.
Acar et al. (2010) employed the combination of the UDRM
and the extended generalized lambda distribution for reliability
analysis. Youn and Xi (2009) proposed an eigenvector
dimension-reduction method for reliability-based robust design
optimization. In order to calculate the fractional moments of
structural responses, Zhang and Pandey (2019) proposed the
multiplicative UDRM (MUDRM). Based on MUDRM and
Laplace transformation, Li et al. (2019) proposed an improved
fractional moment-based maximum entropy method for reliabil-
ity analysis. Although widespread efforts have been made, the
work about the combination of DRMand PCE is few. One of the
typical representatives in this field is provided by Zhang (2013),
which coupled MUDRM with PCE to calculate the PCE coeffi-
cients by projectionmethod efficiently. In this paper, the problem
of curse of dimension in PCE is solved from another angle based
on the DRM and entropy.

The contribution of this paper is twofold. Firstly, different
from the work of Zhang, this paper reduces a multiple- or
high-dimensional function to multiple one-dimensional func-
tions, and then fits each univariate function by PCE. Secondly,
an adaptive method is proposed to select the PCE basis based
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on the concept of the information-theoretic entropy.
Compared with the common sparse strategies, the proposed
adaptive method can construct the PCE adaptively and assess
the convergence of the model, without specifying the prior of
the order of the PCE and resampling for the verification of the
PCE model. Organization of this paper is as follows. In Sect.
2, the fundamental theory of PCE is presented. Section 3 pro-
vides the details of DRM. Section 4 first proposes an adaptive
method for selecting the polynomial chaos basis based on the
concept of the information-theoretic entropy and then de-
velops a novel surrogate-based reliability analysis method
with the combination of PCE and DRM. In Sect. 5, the per-
formance of the proposed meta-model is illustrated by three
numerical examples and one engineering example. Finally,
some conclusions are summarized in Sect. 6.

2 The fundamental theory of polynomial
chaos expansion

2.1 The concept of polynomial chaos basis

In theory, a random variable V can be represented by a sum of
polynomial chaos basis as follows (Karagiannis and Lin 2014):

V ¼ ∑
∞

i¼0
ciϕi ζð Þ ð2Þ

where ci are the PCE coefficients, ζ is random variable with the
PDF of f(ζ), and ϕi are one-dimensional polynomial chaos basis
with the following orthogonality (Blatman and Sudret 2010):

ϕi ζð Þ;ϕ j ζð Þ� � ¼ ∫Ζϕi ζð Þϕ j ζð Þ f ζð Þdζ ¼ δij ð3Þ

where for arbitrary f(ζ), ϕi can be derived by Stieltjes
procedure (Wan and Karniadakis 2006) with the follow-
ing recurrence relation:

ffiffiffiffiffiffiffiffiffiffi
βnþ1

p
ϕnþ1 ζð Þ ¼ ζ−αnð Þϕn ζð Þ−

ffiffiffiffiffi
βn

p
ϕn−1 ζð Þ n ¼ 1; 2; … ð4Þ

where αn and βn are given by the Christoffel-Darboux
formulae as follows:

αn ¼
ζbϕn; bϕn

D E
bϕn; bϕn

D E

βn ¼
bϕn; bϕn

D E
bϕn−1; bϕn−1

D E

ϕn ¼
bϕnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bϕn; bϕn

D Er

ð5Þ

With Eqs. (4) and (5), the polynomial chaos basis can be
derived for the random variable with arbitrary PDF. Herein,
five classical PCEs are listed in Table 1. If V does not follow
the distributions listed in Table 1, Nataf transformation can be
employed to transform arbitrary random variable into the five
classical ones. However, Nataf transformation can be highly
nonlinear; therefore, it can lead to a significantly detrimental
effect on the accuracy and/or convergence of the final truncat-
ed PCE. Therefore, Stieltjes procedure is recommended to
construct the PCE for the non-classical cases.

2.2 The truncation form of multivariate polynomial
chaos expansion

By partial tensorization of the one-dimensional polynomial
chaos basis, a multivariable function Y(x) with mutually inde-
pendent random variables can be approximated by a trunca-
tion expression of M-dimensional PCE as follows (Cheng
et al. 2019):

Y xð Þ ¼ ∑
P−1

i¼0
ciΦi ζð Þ ð6Þ

where Φi are multivariable PCE basis expressed as

Φi ζð Þ ¼ ∏
M

j¼1
ϕi j ζ j

� � ð7Þ

where M is the dimension of multi-dimensional random vec-
tors, x = [x1, x2,…, xM] and ζ = [ζ1, ζ2,…, ζM], and ij compose
the following multi-indices set:

I ¼ i1;…; iM½ �∈NM ; ∑
M

j¼1
i j≤p

( )
ð8Þ

whose cardinality can be calculated by (Shao et al. 2017)

P ¼ pþMð Þ!
p!M !

ð9Þ

where p is the degree of the PCE.

2.3 The calculation of the polynomial chaos expansion
coefficients

Two methods are usually used for the calculation of PCE
coefficients, namely, projection method (Palar et al. 2016)
and least squares approximation (LSA) method (Blatman
and Sudret 2010). Because the projection method is not in-
volved in this study, only the LSAmethod is presented herein.

The LSA method estimates the PCE coefficients by mini-
mizing the residue errors between PCE and the real physical
model at a set of experiment designs. Thus, the following
optimization formulation can be used to calculate the
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coefficients (Blatman and Sudret 2010):

c ¼ argmin ∑
m

j¼1
Y j− ∑

P−1

i¼0
ciΦi ζ j

� �� �2

ð10Þ

with the solution as

c ¼ ΦTΦ
� �−1

ΦTY ð11Þ

where c = [c1, c2,…, cP-1],Y = [Y1, Y2,…, Ym] is the response
vector of real physical model at m experiment designs, andΦ
is defined as

Φ ¼
Φ0 ζ1ð Þ Φ1 ζ1ð Þ ⋯ ΦP−1 ζ1ð Þ
Φ0 ζ2ð Þ Φ1 ζ2ð Þ ⋯ ΦP−1 ζ2ð Þ
⋮ ⋮ ⋱ ⋮

Φ0 ζmð Þ Φ1 ζmð Þ ⋯ ΦP−1 ζmð Þ

2
664

3
775 ð12Þ

According to Eq. (9), the dimension of c increases steeply
with respect to the dimension of the input random variables
and the degree of PCE. Therefore, the computational cost of

experiment designs is intolerable for high-dimensional
problems.

It can be seen that the LSA method is confront with the
problem caused by the dimension of the input random vari-
ables when calculating the PCE coefficients. Extensive efforts
have been made to solve the problem, such as the popular
sparse PCEmethods. In this paper, the problem is solved from
another angle, say dimension-reduction method.

3 Dimension-reduction method

The main idea of dimension-reduction method (DRM) is
to approximate arbitrary multivariate function Y(x) by a
sum of functions of lower order in an increasing hier-
archy as

Y xð Þ≅Y s xð Þ ¼ ∑
s

i¼0
−1ð ÞiCi

M−sþi−1 ∑
k1<⋯< ks−i

Y

μ1;⋯;μk1−1; xk1 ;μk1þ1;⋯;μks−i−1; xks−i ;⋯;μM

� �
ð13Þ

Table 1 Different forms of PCE
The distribution of V Type of polynomial chaos basis f(ζ) Support

Normal Hermite exp(−ζ2/2) (−∞, +∞)
Uniform Legendre 1 [− 1, 1]
Beta Jacobi (1 − ζ)α(1 + ζ)β [− 1, 1]
Exponential Laguerre exp(−ζ) [0, +∞)
Gamma General Laguerre Г(ζ, α + 1, 1) [0, +∞)

Fig. 1 The flowchart of the proposed method
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where μ = (μ1, μ2, ..., μM) is the vector of reference
point. For a sufficiently smooth function, the higher-
order components can be neglected compared with the
univariate components (Zhang and Pandey 2013).
Therefore, Eq. (13) can be reduced into UDRM as fol-
lows (He et al. 2019a):

Y xð Þ≅ ∑
M

j¼1
Y μ− jð Þ; x j
	 


− M−1ð ÞY μð Þ ð14Þ
where μ-(•) presents the vector of reference point with-
out the element “•.”

For the estimation of fractional statistical moments, Zhang and
Pandey (2013) proposed the multiplicative UDRM to approxi-
matemultivariate functions. Themethod is performed as follows:

Step 1: Transform Y(x) into the logarithmic form:

T xð Þ ¼ ln Y xð Þ½ � ð15Þ

Step 2: Approximate T(x) by UDRM,

T xð Þ≅ ∑
M

j¼1
T μ− jð Þ; x j
	 


− M−1ð ÞT μð Þ ð16Þ

Step 3: Perform exponential transformation on Eq. (16),

Y xð Þ ¼ exp T xð Þ½ �≅
∏
M

j¼1
Y μ− jð Þ; x j
	 


Y μð Þ½ �M−1 ð17Þ

Thus, the approximation of Y(x) can be obtained by the
multiplication of the univariate components. In order to avoid
confusion, we name Eq. (14) as SUDRM and Eq. (17) as
MUDRM and take UDRM as a general term for SUDRM
and MUDRM.

4 The proposed meta-model based
on polynomial chaos expansion, univariate
dimension-reduction method, and entropy

In this paper, the UDRM is used to solve the problem of curse of
dimension in PCE. Instead of fitting the original multivariate
function, we approximate the univariate components by PCE,
namely:

Y μ− jð Þ; x j
	 


¼ ∑
P−1

i¼0
c j;iϕ j;i ζ j

� � ð18Þ

Then, the original multivariate function can be recovered
by the PCEs based on SUDRM and MUDRM. Generally
speaking, it is easier and more efficient to fit a univariate
function than a multivariate one. Therefore, the PCE based
on UDRM needs less computational cost compared with the
PCE of original function. If Ni samples are used to construct
PCE of the ith univariate component, the total function eval-
uations will be

Function evaluations ¼ ∑
M

i¼1
Ni ð19Þ

Fig. 2 The convergence histories of univariate component of X1

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 3 PCEs of SUDRM and
MUDRM in case of d = 20 and
q = 1 (In this paper, 1:1 line is the
line with the slope of 1 and the
intercept of 0 for short.). a PCE
based on SUDRM. b PCE based
on MUDRM
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4.1 An adaptive method for the selection
of polynomial chaos basis

Before the calculation of the coefficients, the degree of PCE, p,
should be determined. Without the prior of complexity of the uni-
variate function, a large p should be given for a good approximation.
However, when the LSA method is used to calculate the PCE
coefficients, a larger p means that more coefficients need to be
calculated, that is, more experiment designs are required.
Therefore, to enhance the efficiency of the meta-model, an adaptive
method based on the concept of information-theoretic entropy is
proposed to select the polynomial chaos basis without specifying a
prior of p.

4.1.1 The concept of information-theoretic entropy

Shannon (1948) first proposed the concept of information-
theoretic entropy as follows:

H p1; p2; …; pdð Þ ¼ −h ∑
d

i¼1
pilnpi ð20Þ

where h is a constant with positive support and pi are the prob-
ability mass function of a discrete random variable. The

information-theoretic entropy is usually used to measure the un-
certainty of a probabilistic system andwidely applied in the fields
of mechanic, signal process and statistical inference. On the basis
of Eq. (20), Jaynes (1957) proposed the maximum entropy prin-
ciple (MEP): out of all candidate distributions, one should choose
the distribution that maximizes H. If no other information is
available in addition to the axiom of unit measure, the distribu-
tion is p1 = p2 =…= pd= 1/d according to MEP, which means
that one can only give the most unbiased estimation for maxi-
mizing the uncertainty of the system.When some information of
pi, such as the response of real physicalmodel at the experimental
designs, is available, the formulation of MEP is expressed as

find : p1; p2; …; pd

maximize : H p1; p2; …; pdð Þ ¼ −h ∑
d

i¼1
pilnpi

s:t: : ∑
d

i¼1
pigk xið Þ ¼ mk k ¼ 1; 2;…

ð21Þ

where gk are arbitrary functions of random vector x andmk is the
expectation of gk. It has been proven thatH is a convex function
with respect to pi, i= 1, 2,…, d. Therefore, the uniquemaximum
of H can be obtained if the stationary point is found.

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 4 PCEs of SUDRM and
MUDRM in case of d = 20 and
q = 2. a PCE based on SUDRM. b
PCE based on MUDRM

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 5 PCEs of SUDRM and
MUDRM in case of d = 20 and
q = 3. a PCE based on SUDRM. b
PCE based on MUDRM

W. He et al.2056



4.1.2 An adaptive method for the selection of the polynomial
chaos basis

PCE consists of the unknown expansion coefficients and the
given polynomial chaos basis; therefore, characterizing the
uncertainty of the response (the PDF of the response) is equiv-
alent to evaluating the PCE coefficients (Cheng et al. 2019),
that is, the PCE coefficients determine the probabilistic infor-
mation of the predicted response to some extent. From Eq. (2),
it can be concluded that the PCE converges to the interested
random variable when p is large enough, namely, p ≥ t. As we
know, different values of p correspond to different expansion
coefficients. Before the PCE converges, these different expan-
sion coefficients result in different probabilistic information of
the predicted response. While after the PCE converges, these
coefficients provide the same probabilistic information of the
predicted response because the convergent PCEs represent the
information of real response. If the information-theoretic en-
tropy is used to characterize the probabilistic information of
the prediction response, it can be concluded that the entropy
changes obviously with respect to p before the PCE converges
but almost keeps constant after convergence. In this section,
an adaptive method is proposed for selecting the polynomial
chaos basis for the univariate components using the entropy as
the convergence criterion, without a prior of the degree of
PCE. Thus, we can obtain t and select the polynomial chaos
basis for the univariate components adaptively.

Firstly, assume p as a small integer, such as p = 1, for con-
structing the PCE of the univariate component. The expansion
coefficients, c, can be calculated by projection method or LSA
method. Then, the realizations of the univariate component
estimated by the PCE can be obtained by the samples of ζ;
therefore, the entropy can be calculated via Eq. (20), noted as
H1. Secondly, assume p = 2, then H2 can be obtained.
Similarly, perform the procedure step by step until the differ-
ences of the entropy of successive three p, p = t − 1, p = t, and
p = t + 1, are smaller than ξ, namely,

Ht−Ht−1 < ξ
Htþ1−Ht < ξ

ð22Þ

from which it can be concluded that the PCE converges the
real model when p ≥ t.

It should be pointed out that when Eq. (22) holds, the sta-
tionary point of H(p1, p2, …, pd) is then found and Hmax =Ht

can be obtained according to the property of convex function.

Fig. 6 Comparison of the POEs (d = 20, q = 1)

Table 2 R2 of PCEs based on SUDRM andMUDRM in the three cases

d q PCE based on SUDRM PCE based on MUDRM

20 1 0.9012 0.9999

20 2 0.8479 0.9999

20 3 0.4938 0.9999

Fig. 8 Comparison of the POEs (d = 20, q = 3)

Fig. 7 Comparison of the POEs (d = 20, q = 2)
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It means that after the PCE converges, the final result that we
obtained in all possible candidates maximizes the entropy.
Correspondingly, univariate component can be approximated
by the following truncated PCE:

Y μ− jð Þ; x j
	 


¼ ∑
t

i¼0
c j;iϕ j;i ζ j

� � ð23Þ

Thus, the proposed meta-model is finally constructed as
follows:

Y xð Þ≅bY ¼ ∑
M

j¼1
∑
t

i¼0
c j;iϕ j;i ζ j

� �
− M−1ð ÞY μð Þ ð24Þ

and

Y xð Þ≅bY ¼
∏
M

j¼1
∑
t

i¼0
c j;iϕ j;i ζ j

� �

Y μð Þ½ �M−1 ð25Þ

from which the structural reliability analysis can be achieved by
MCS efficiently. If Y(x) is dominantly additive, e.g., Y= x1 + x2,
Eq. (24) (the PCE based on SUDRM) can approximate the orig-
inal function with good accuracy. If Y(x) is dominantly multipli-
cative, e.g., Y = x1x2, Eq. (25) (the PCE based on MUDRM)
should be employed. This paper selects SUDRM or MUDRM
based on the coefficient of determination with the following ex-
pression:

R2 ¼ 1−
∑
i

Y i−bY i

	 
2

∑
i

Y i−Y
	 
2 ð26Þ

where Yi is real response at the ith verification sample point, Y is
the mean value of the real responses at all verification sample

points, and bY i is the prediction of PCE at the ith verification
sample point. The flowchart of the proposed method is shown
in Fig. 1.

5 Examples

In this section, three numerical examples and one engineering
example are tested to verify the performance of the proposed
method. For comparison, four methods, including crude MCS,
full PCE, sparse PCE based on the least angle regression, and the
proposed method, are used to analyze each example. The PCE
coefficients are calculated by the LSA method due to its flexibil-
ity of strategy of sample augment. According to Wang et al.
(2018), the number of sample points, Ns, for building the PCE
models is twice the number of coefficients. The accuracy of each
method is assessed by relative error as follows:

Relative error ¼ jre−rj
r

ð27Þ

where r is the reference solution from crude MCS and re repre-
sents the results from other methods. Moreover, according to
Marelli and Sudret (2015), the Stieltjes procedure is better than

Table 3 Results of reliability
analysis from different methods d q Methods Pf Relative error Function evaluations Failure region

20 1 Crude MCS 1.45 × 10−4 – 107

Full PCE 1.38 × 10−4 4.83% 1800 F > 450

Sparse PCE 1.39 × 10−4 4.14% 1700

Proposed method 1.42 × 10−4 2.07% 160

20 2 Crude MCS 6.87 × 10−4 – 107

Full PCE – – – F > 106

Sparse PCE – – –

Proposed method 6.89 × 10−4 0.29% 200

20 3 Crude MCS 7.03 × 10−5 – 107

Full PCE – – – F > 3 × 1010

Sparse PCE – – –

Proposed method 7.17 × 10−5 2.00% 240

Fig. 9 The convergence history of univariate component of X1
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Nataf transformation for the problems with non-classical random
variables; therefore, we will employ the Stieltjes procedure for
the non-classical cases.

5.1 Example 1: high-dimensional problem
with interaction terms

A non-smooth and non-monotonous g-function (Saltelli and
Sobol 1995) is first employed to verify the performance of the
proposed method for the high-dimensional problem with in-
teraction terms, whose expression is given as:

F xð Þ ¼ ∏
d

i¼1

4xi−2j jq þ ai
1þ ai

ð28Þ

where ai = 0.5(i − 2) and xi’s independently and identically
follow Gumbel distribution with the mean value of 1 and the
standard deviation of 0.05. Herein, we set d = 20, and examine
the three cases of q = 1, 2, and 3. It can be seen that the effects
of the interaction terms as well as the nonlinearity of the function
become more significant with the increase of q. Therefore, this

function is a challenging test, due to the complex interaction
terms and the presence of the absolute value which prevents
the spectral convergence of the PCE (Crestaux et al. 2009).

5.1.1 The construction of the proposed meta-model

In the light of the flowchart in Fig. 1, the univariate compo-
nents of the original function, namely,

F μ −ið Þ; xi
	 


¼ 4xi−2j jqþai
1þai

∏
d

j¼1; j≠i

4μ j−2j jqþa j

1þa j
, i = 1, 2, … d, are

derived. Because the random variables in this example are not
the classical cases in Table 1, the Stieltjes procedure is used to
construct the polynomial chaos bases. For the three cases of
(d = 20, q = 1), (d = 20, q = 2), and (d = 20, q = 3), the conver-
gence histories of the univariate component ofX1 are shown in
Fig. 2. It can be seen that the proposed adaptive method con-
verges after three, four, and five iterations respectively for
three cases with different nonlinear degrees. Such a good con-
vergence property facilitates the efficient reliability analysis,
which will be seen in the next subsection. Repeating the

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 10 PCEs of SUDRM and
MUDRM (d = 50). a PCE-based
on SUDRM. b PCE-based on
MUDRM

Fig. 11 PCE based on SUDRM (d = 100) Fig. 12 PCE based on SUDRM (d = 200)
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similar steps 20 times, the PCEs of all of the univariate com-
ponents can be obtained. Then, collecting PCEs of the univar-
iate components together in the forms of Eqs. (24) and (25),
the proposed meta-model can be derived. To verify the per-
formance of the proposed meta-model, we sample 100 verifi-
cation points randomly and compare the results of the pro-
posed method with the real model in Figs. 3, 4, and 5, from
which it can be concluded that the MUDRM-based meta-
model is superior to the SUDRM-based one. According to
Eq. (26), the superiority of MUDRM-based meta-model can
be quantified by R2 listed in Table 2, from which it can be
concluded that the original function is dominantly multiplica-
tive. The results show that the proposed method can provide a
good approximation for the high-dimensional problem with
interaction terms. Thus, the PCE based on MUDRM will be
used in the following reliability analysis.

5.1.2 Reliability analysis

With the aid of the proposed meta-model, the uncertainty of
the original function can be quantified. As shown in Figs. 6, 7,
and 8, the proposed method can recover the POE (probability
of exceedance) curves accurately for the three cases. For com-
parison, the reliability analysis results from different methods
are listed in Table 3. For the case of q = 1, each method can
calculate the failure probability accurately, but the proposed
method is the most efficient, whose number of function eval-
uations is less than one tenth of that of full PCE and sparse
PCE. For the cases of q = 2 and 3, full PCE and sparse PCE
fail to complete the construction of the meta-model because
the original function has complex interaction terms and high
nonlinearity. By contrast, the proposed method can accurately
evaluate the failure probabilities, whose relative errors are

Table 4 Results of reliability
analysis from different methods d Methods Pf Relative error Function evaluations Failure region

50 Crude MCS 2.60 × 10−4 – 107

Full PCE – – – g < 0

Sparse PCE 2.55 × 10−4 1.92% 450

Proposed method 2.66 × 10−4 2.31% 300

100 Crude MCS 3.96 × 10−5 – 107

Full PCE – – – g < 0

Sparse PCE 4.00 × 10−5 1.01% 1000

Proposed method 4.05 × 10−5 2.27% 600

200 Crude MCS 4.58 × 10−5 – 107

Full PCE – – – g < 1

Sparse PCE – – –

Proposed method 4.44 × 10−5 3.06% 1200

Fig. 13 Comparison of the CDFs (d = 50) Fig. 14 Comparison of the CDFs (d = 100)
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0.29% and 2.00%, respectively. According to the convergence
histories, we can also calculate the number of function evalu-
ations, namely, 5 × 2 × 20 = 200 and 6 × 2 × 20 = 240. It is
quite efficient that the proposed method can achieve accurate
reliability analysis for the complex problem with so low com-
putational cost. Therefore, it can be concluded that the pro-
posed method can predict the failure probability accurately
and efficiently for the high-dimensional problem with interac-
tion terms.

5.2 Example 2: high-dimensional and nonlinear case

The second example is a classic high-dimensional case for
verifying the performance of reliability analysis method (Xu
and Kong 2018). The response function is expressed as

g ¼ 3−X d þ 0:01 ∑
d−1

i¼1
X 2

i ð29Þ

where d is the dimension of the input random variables and Xi
follow the independent standard normal distributions. Herein,
three cases of d = 50, 100, and 200 are tested with the failure
regions of g < 0, g < 0, and g < 1, respectively.

5.2.1 The construction of the proposed meta-model

Similarly, the PCEs of the univariate components are derived
firstly. Limited by space, the convergence history of the uni-
variate component of X1 is given for illustration. As shown in
Fig. 9, four iterations are enough to obtain the accurate results.
For the case of d = 50, repeat the adaptive procedure for the
selection of polynomial basis 50 times, and then all the PCEs
of univariate components can be obtained step by step.
Subsequently, the proposed meta-model can be derived via
Eqs. (24) and (25). To verify the performance of the proposed
meta-model, 100 verification points are depicted in Fig. 10,

from which it can be concluded that the SUDRM-based meta-
model is superior to the MUDRM-based one. Furtherly, the
performances of the two models are assessed by R2. The R2 of
the SUDRM-based meta-model is 1 and the other one is 0.98,
that is, the original function is dominantly additive, Therefore,
the SUDRM-based meta-model is adopted for reliability anal-
ysis. For the cases of d = 100 and 200, the proposed meta-
models can be built in the same way. Figures 11 and 12 show
that the proposed method is accurate for high-dimensional
problem and robust with respect to the dimension of the input
random variables.

5.2.2 Reliability analysis

In the reliability analysis of high-dimensional problems, we
focus on not only the accuracy but also the efficiency, because
the curse of dimension blocks the application of many com-
mon methods in high-dimensional problems. For example, if
the full PCEwith the degree of three is used for the case of d =

50, 2 3þ50ð Þ!
3!50! ¼ 46852 sample points will be required, which is

computationally prohibitive. From Table 4, it can be seen that
accurate results can be obtained for the cases of d = 50 and 100
when sparse PCE method is used for the high-dimensional
problem. However, sparse PCE fails to achieve the reliability
analysis in the case of d = 200, that is, it is still limited by the
dimension of the input random variables. Compared with the
sparse PCE method, the proposed method can estimate the
failure probability accurately with 300, 600, and 1200 func-
tion evaluations. Obviously, it is fairly efficient that the pro-
posed method can accurately predict such small failure prob-
abilities, i.e., the order of 10−4–10−6, with so low computa-
tional cost. Again, Figs. 13, 14, and 15 show the good perfor-
mance of the proposed method for high-dimensional prob-
lems, especially for capturing the tail of the CDF. Therefore,

Fig. 15 Comparison of the CDFs (d = 200)

Fig. 16 The convergence histories of univariate component X1
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for high-dimensional problems, the proposed method can be
used to predict the failure probability with good accuracy and
efficiency.

5.3 influence of nonlinearity on results
of high-dimensional case

This example is employed to show the influence of the non-
linearity of the original function on the reliability analysis
results. The performance function is given as follows
(Sadoughi et al. 2018):

Z ¼ X 2
1 þ 1

� �
X 2−1ð Þ

20
−cos

bX 1

2

� �
þ ∑

40

i¼1
X 2

i −75 ð30Þ

where Xi follows normal distributions with means of 1.5 and
standard deviations of 0.3 and the parameter b represents the
nonlinearity of Z along X1.

5.3.1 The construction of the proposed meta-model

In order to discuss influence of nonlinearity of the original
function, the proposed meta-models in the cases of b = 2, 4,
6, 8, and 10 are tested. Based on the adaptive method for
selection of the polynomial basis, the PCEs of the univariate
components can be obtained. Limited by length, only the con-
vergence histories of univariate component of X1 are present-
ed, as shown in Fig. 16, from which it can be seen that the
iteration history will be prolonged with the increase of the
nonlinearity of the original function. It should be noted that

Table 5 Results of reliability analysis from different methods

b Methods Pf Relative error Function
evaluations

2 Crude MCS 3.72 × 10−4 – 107

Full PCE – – –

Sparse PCE 3.77 × 10−4 1.34% 600

Proposed method 3.74 × 10−4 0.54% 322

4 Crude MCS 1.87 × 10−4 – 107

Full PCE – – –

Sparse PCE – – –

Proposed method 1.82 × 10−4 2.67% 324

6 Crude MCS 2.52 × 10−4 – 107

Full PCE – – –

Sparse PCE – – –

Proposed method 2.53 × 10−4 0.40% 330

8 Crude MCS 4.37 × 10−4 – 107

Full PCE – – –

Sparse PCE – – –

Proposed method 4.38 × 10−4 0.23% 336

10 Crude MCS 4.50 × 10−4 – 107

Full PCE – – –

Sparse PCE – – –

Proposed method 4.52 × 10−4 0.44% 340

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 17 PCEs of SUDRM and
MUDRM (b = 10). a PCE based
on SUDRM. b PCE based on
MUDRM

Fig. 18 Comparison of the CDFs (b = 10)

W. He et al.2062



for the case of b = 10, 3p = 52 experiment designs are used to
fit the univariate component ofX1 due to the high nonlinearity.
With the PCEs of the univariate components, the final meta-
models of the five cases can be obtained. As a representative,
the results of b = 10 are shown in Fig. 17, from which the
SUDRM-based PCE approximates the original function better
than the MUDRM-based one. The R2 of the SUDRM-based
PCE and the MUDRM-based PCE are also calculated by the

100 verification points, which are 0.9999 and 0.9882, respec-
tively. Therefore, the SUDRM-based meta-model is used for
the subsequent reliability analysis.

5.3.2 Reliability analysis

Table 5 lists the reliability analysis results of different
methods. It can be seen that full PCE is not able to complete

Fig. 19 Schematic view of
simplified model

Table 6 Statistical characteristics of input parameters

Variables Description Distribution Mean C.O.V Autocorrelation coefficient function

K1 Tensile stiffness at 3.2 m Normal 3.65 × 105 N/mm 0.1 –

K2 Tensile stiffness at 6 m Normal 3.65 × 105 N/mm 0.1 –

K3 Compressive stiffness at 3.2 m Normal 3.3 × 107 N/mm 0.1 –

K4 Compressive stiffness at 6 m Normal 3.3 × 107 N/mm 0.1 –

L1 - L15 Random loads Gaussian process 200 kPa 0.05 exp(− 0.1|ti−tj|)
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the reliability analysis of the high-dimensional problem be-
cause of unaffordable computational cost. For the case of
b = 2, both the sparse PCE and the proposed method can pre-
dict the failure probability accurately with the relative errors
below 1%. However, the sparse PCE method pays nearly
twice computational cost compared with the proposed meth-
od. For the cases of b = 4, 6, 8, and 10, sparse PCE method

needs to select interested basis from pþ40ð Þ
p!40! candidates, where

the degree of PCE, p, increases with respect to the nonlinearity
parameter, b. For example, when b = 4, it is rational to assume
p = 5 based on the prior shown in Fig. 16. Thus, the total
number of the candidates is 1,221,759. Therefore, the sparse
PCE is excessively expensive for the high-dimensional and
high-nonlinear cases. The proposed method can provide accu-
rate predictions for the failure probabilities in different cases.
It should be noted that the proposed method only employs

320–340 experiment designs to evaluate the failure probabil-
ities with the order of 10−4–10−5; therefore, the proposed
method is accurate and efficient for the high-dimensional
and high-nonlinear cases. In order to illustrate the perfor-
mance of the proposed method further, the approximated
CDF is presented in Fig. 18. Because the CDFs of the five
cases are similar, only the case of b = 10 is taken as a repre-
sentative. It can be seen that the proposed method can accu-
rately recover the probabilistic information of the stochastic
response in the whole range.

5.4 Example 4: high-dimensional structural dynamics
problem without explicit expression

The final example presents a high-dimensional structural dy-
namics case without explicit expression, which is stochastic
model of the dynamic response of an underwater vehicle (He
et al. 2019a). The underwater vehicle is approximately
modeled by Timoshenko beam, which is 13 m long and has
an annular section with the diameter of 2.11 m and the thick-
ness of 7.11 mm. The schematic view of simplified model is
shown in Fig. 19. The beam is composed of three parts, which
are connected by two nonlinear structures, and subjected to
the time-dependent loads from water. The loads only act on
the position between 0.9 and 5.6 m and are equivalent to 15
time-dependent lateral concentrated forces, Li, on the posi-
tions of 0.3 × (i + 3) m, i = 1, …,15, which are Gaussian sto-
chastic processes. Therefore, the reliability analysis of the
structural dynamics problem is essentially a time-dependent
reliability analysis problem, which can be solved by extreme
value-based method (Wang and Chen 2017). Because the
structural failure mode is controlled by the bending moment,
the limit state function is defined as

Q ¼ TM−max M 0; 0:3ð Þð Þ ð31Þ
where M(0, 0.3) is the bending moment in 0.3 s of the inter-
ested cross-section and TM is the threshold of failure, given as
195 kN m. Due to no explicit expression for M (0, 0.3), finite
element analysis is employed for the calculation. The stochas-
tic parameters in this example are listed in Table 6.

C.O.V represents the coefficient of variance

5.4.1 The construction of the proposed meta-model

To solve the time-dependent problem by extreme value-based
method, it is required to discretize the time interval, [0, 0.3 s],
by a small time step (e.g., 0.01 s). Thus, the loads, Li, can be
approximated by the following expansion optimal linear esti-
mation (Zhang et al. 2017):

L tð ≈μ tð Þ þ σ tð Þ ∑
d

k¼1

Ukffiffiffiffiffi
λk

p ΦT
kΣ ð32Þ

Fig. 21 The convergence histories at 0.1 s of univariate components K1,
K2, and L1

Fig. 20 Eigen decomposition of Li
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where Uk, k = 1, ..., d, are the independent standard normal
variables, Σ is the autocorrelation matrix, and Φk and λk are
eigenvectors and eigenvalues of Σ, respectively. Figure 20
shows the result of the eigen decomposition ofΣ, from which
it can be concluded that each random load has only one dom-
inated component, that is, Li, i = 1, 2,…, 15, can be simplified
by 15 independent standard normal random variables. Thus,
the proposedmeta-model can be employed to approximate the
bending moment of the interested cross-section at each time
node, and then the maximum bending moment in 0.3 s can be
obtained for each realization of the input random variables.

Firstly, the PCEs of the 19 univariate components at each time
node are built. Figure 21 shows the convergence histories at 0.1 s
of the univariate components of K1, K3, and L1, from which the
three univariate components can be modeled by the PCEs with
p = 4, 5, and 4. The convergence histories of the univariate com-
ponents of the K2, K4, and Li, i = 2, …, 15 are not presented
because they are similar with the results of K1, K3, and L1, re-
spectively. Secondly, with the 19 PCEs, the meta-models at 0.1 s

can be obtained based onEqs. (24) and (25). Repeating the above
steps 300 times, the meta-models at the time nodes, tn= 0.01n
(n= 1, 2, …, 300) can be obtained. Finally, the proposed meta-
model for the maximum bending moment can be constructed by
extracting the maximum of predicted values of the 300 meta-
models at each sample point. To demonstrate the accuracy of
the proposed meta-models, the responses of 100 verification
points are calculated, as shown in Fig. 22. Also, the coefficients
of determination of the SUDRM-based meta-model and
MUDRM-based meta-model are calculated by Eq. (26), say
0.9986 and 0.9999. Therefore, the MUDRM-based model is
used for reliability analysis.

5.4.2 Reliability analysis

As shown in Fig. 23, the proposed method recovers the curve
of POE of the maximum bending moment accurately com-
pared with the result of crude MCS. Table 7 presents the final
results of different methods, from which it can be seen that all
methods can obtain the accurate prediction for the failure
probability. However, considering the efficiency, the pro-
posedmethod outperforms the full PCEmethod and the sparse
PCE method. Remarkably, it can be concluded that the pro-
posed method is a good choice for high-dimensional prob-
lems, because the proposed method employs only 194 exper-
iment designs to estimate the failure probability accurately for
the complex structural dynamics problem.

(a) PCE based on SUDRM (b) PCE based on MUDRM

Fig. 22 PCEs of SUDRM and
MUDRM

Fig. 23 Comparison of the curves of POE

Table 7 Results of reliability analysis from different methods

Methods Pf Relative error Function evaluations

Crude MCS 1.18 × 10−3 – 105

Full PCE 1.20 × 10−3 1.69% 3080

Sparse PCE 1.19 × 10−3 0.85% 350

Proposed method 1.19 × 10−3 0.85% 194

Q < 0 means failure

An adaptive polynomial chaos expansion for high-dimensional reliability analysis 2065



6 Conclusion

This paper proposes a novel surrogate-basedmethod on the basis
of the concepts of polynomial chaos expansion (PCE),
dimension-reduction method (DRM), and maximum entropy
principle (MEP). Firstly, the univariate dimension-reduction
method (UDRM) is used to decompose the original function into
a series of univariate components. Then, the PCE is employed to
approximate the univariate components accurately and efficient-
ly. An adaptive method for the selection of the polynomial chaos
basis is proposed to construct the PCEs of the univariate compo-
nents. By collecting the PCEs of the univariate components in
the form of UDRM, the proposed meta-model can be obtained.
The validity of the proposed method is demonstrated by three
numerical examples and one engineering example. The follow-
ing conclusions can be obtained:

1. The adaptive method can select the polynomial chaos
basis without the prior of the degree of the PCE. With
the selected basis, the univariate components of original
function can be approximated accurately by PCE.

2. With the combination of the PCE and UDRM, the pro-
posed method can achieve the reliability analysis accu-
rately and efficiently.

3. The common reliability analysis methods, such as full
PCE and sparse PCE based on least angle regression,
may be limited by the difficulty of curse of dimension,
while the proposed method can solve the problem caused
by high-dimensional input random variables well.

Replication of results As comprehensive implementation details are pro-
vided, we are confident that the methodology in this paper is reproduc-
ible. Therefore, no additional data and code is appended. If one is inter-
ested in the methodology and needs more help for the reproduction,
please feel free to contact the corresponding author by email.
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