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Abstract
This paper presents an adaptive discretization strategy for level set topology optimization of structures based on hierarchical
B-splines. This work focuses on the influence of the discretization approach and the adaptation strategy on the optimization
results and computational cost. The geometry of the design is represented implicitly by the iso-contour of a level set function.
The extended finite element method is used to predict the structural response. The level set function and the state variable
fields are discretized by hierarchical B-splines. While first-order B-splines are used for the state variable fields, up to third-
order B-splines are considered for discretizing the level set function. The discretizations of the design and the state variable
fields are locally refined along the material interfaces and selectively coarsened within the bulk phases. For locally refined
meshes, truncated B-splines are considered. The properties of the proposed mesh adaptation strategy are studied for level
set topology optimization where either the initial design is comprised of a uniform array of inclusions or inclusions are
generated during the optimization process. Numerical studies employing static linear elastic material/void problems in 2D
and 3D demonstrate the ability of the proposed method to start from a coarse mesh and converge to designs with complex
geometries, reducing the overall computational cost. Comparing optimization results for different B-spline orders suggests
that higher interpolation order promote the development of smooth designs and suppress the emergence of small features,
without providing an explicit feature size control. A distinct advantage of cubic over quadratic B-splines is not observed.

Keywords Topology optimization · Level set · XFEM · Adaptive mesh refinement · Truncated hierarchical B-splines

1 Introduction

Following the seminal work of Bendsøe and Kikuchi
(1988), topology optimization has become, over the last
decades, a reliable and efficient design tool in various
application fields (see Sigmund and Maute (2013) and
Deaton and Grandhi (2014)). In general, an optimization
problem is formulated to find the optimal material
distribution, within a design domain, that maximizes a
given objective while satisfying some given constraints
on the geometry and/or the physical response. In specific
regions of the design domains, the state variable fields may
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exhibit large gradients or discontinuities. Additionally, the
design variable fields may have to resolve complex shapes,
intricate material arrangements, or extremely thin features.
In these cases, an increased mesh resolution is necessary to
achieve a sufficient accuracy of both the physical responses
and the geometry description. Most topology optimization
approaches operate on uniformly refined meshes, for which
extreme resolution requirements can lead to a drastic
increase in computational cost since the number of design
and state degrees of freedom (DOFs) are increased. Hence,
there is a need for efficient adaptive strategies in topology
optimization.

In the 1980s, Bennet and Botkin (1985) and Kikuchi et al.
(1986) explored mesh adaptation in combination with shape
optimization. Their objective was to avoid the distortions of
the finite element mesh arising from shape modifications
and thus to control the quality of the finite element solution.
Later, Maute and Ramm (1995) and Maute et al. (1998) and
Schleupen et al. (2000) performed topology optimization
and used separate models for the design and the analysis
to allow for more flexibility in the optimization process.
In these works, the effective design space is adapted at
each optimization step with respect to the current material
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distribution, to decrease both the number of finite elements
in the analysis model and the number of design variables
used for the geometry description. Ever since, adaptive
topology optimization has been an active research topic, as
it can provide both precise geometry representations and
accurate mechanical responses at a reduced computational
cost, substantially speeding up the design process.

Working with density-based approaches and solving
compliance minimization problems, several adaptive strate-
gies for topology optimization have been proposed. Costa
and Alves (2003) carried out a refinement-only approach
based on a density criterion. After a given number of
optimization steps, the material and boundary elements
are refined using h-adaptivity, i.e., the elements are split
into smaller ones (see Yserentant (1986) and Krysl et al.
(2003)). As no coarsening is introduced in the void regions
and as no regularization is used, the optimization leads to
mesh dependent designs that differ from the ones obtained
with uniformly refined meshes. Stainko (2006) developed a
refinement criterion based on a regularization filter indicator
that locates the material interface. In this case, h-refinement
is only applied around the interface and a reduced number
of elements is generated during the optimization process.
Extending the previous approaches, Wang et al. (2010)
introduced mesh coarsening in the void regions, allowing
for further cost reduction and achieving designs that only
slightly differ from uniform ones. A similar approach is
adopted in Nana et al. (2016) using unstructured meshes
and in Nguyen-Xuan (2017) using polygonal elements. Also
exploiting h-refinement, Bruggi and Verani (2011) trigger
mesh adaptivity based on error estimators; one related to the
geometric error and one to the analysis error.

In the previous approaches, the geometry description
and the analysis are strongly coupled, as both the state
and the design variables are defined on the same mesh.
Following the initial idea by Maute and Ramm (1995),
Guest and Smith Genut (2010) exploited the separation
of the geometry and the analysis fields using Heaviside
projection methods. After projection, multiple elements
are influenced by a single design variable, introducing
a redundancy in the design. The latter can be exploited
to reduce the number of design variables, and therefore
enhance computational performance. Wang et al. (2013,
2014) also refined the state and design fields separately
by using two distinct meshes adapted by h-refinement
and resorting to independent geometric and analysis error
estimator criteria.

Later on, adaptive mesh refinement strategies were
extended to other optimization techniques by, for example
Wallin et al. (2012) in the context of phase fields
and Panesar et al. (2017) for Bi-directional Evolutionary
Structural Optimization (BESO). Adaptive mesh refinement
has also been used to address stress-based optimization

problems. Salazar de Troya and Tortorelli (2018) used a
density-based approach and adapted the mesh following
a stress error estimator, while Zhang et al. (2018) used
moving morphable voids described explicitly by B-splines
and refined regions located around the design boundaries.

So far, most topology optimization approaches have
been implemented within the framework of classical finite
element, i.e., relying on low-order Lagrange interpolation
functions. Nonetheless, using B-splines or NURBS as basis
functions has become an increasingly popular approach,
along with the development of isogeometric analysis (IGA)
(see Hughes et al. (2005) and Cottrell et al. (2009)).
B-Splines are used to both describe the geometry of
a structure and solve for its mechanical responses in
IGA. From a geometry point of view, using B-splines
and NURBS facilitates compatibility with computer-aided
design (CAD) software that are based on this type of basis
functions. From an analysis point of view, using smooth and
higher order bases, such as quadratic and cubic B-splines,
leads to more accurate structural responses per DOF than
classical C0 finite element approaches (see Hughes et al.
(2008), Evans et al. (2009), and Hughes et al. (2014)).
For topology optimization, B-splines can offer additional
advantages. They tend to promote smoother designs, prevent
the development of spurious features, and limit the need
for filtering techniques. Several works successfully apply
topology optimization in combination with IGA; see for
example Dedè et al. (2012) for a phase-field approach, Qian
(2013) for a density approach, Wang and Benson (2016)
or Jahangiry and Tavakkoli (2017) for a level set approach,
Wang et al. (2017) for lattice structure designs, or Lieu and
Lee (2017) for multi-material designs. A comprehensive
review is presented in Wang et al. (2018).

Classical B-splines approaches do not allow for local
refinement, as their tensor-product structure inherently
enforces global refinement. However, in solving topology
optimization problems, local mesh adaptivity is key to
achieve both a precise description of the design boundaries
and accurate mechanical response computations while
maintaining a reasonable computational cost. Hierarchical
B-splines (HB-splines), as introduced by Forsey and Bartels
(1988), naturally support local refinement, but do not form
a partition of unity (PU), a beneficial property for numerical
purposes. Therefore, the concept was extended to so-called
truncated hierarchical B-splines (THB-splines) to recover
the PU and other advantageous properties (see Giannelli
et al. (2012)). Local adaptive mesh refinement relying on
HB-splines or THB-splines was implemented by Schillinger
et al. (2012) and Garau and Vázquez (2018).

Recently, research efforts have been dedicated to
the exploitation of B-spline refinement in conjunction
with level set topology optimization. Solving compliance
minimization problems, Bandara et al. (2016) used B-spline
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shape functions for both the geometry representation
and the analysis with immersed boundary techniques.
They proposed a global mesh refinement and coarsening
strategy based on Catmull-Clark subdivision surfaces. Wang
et al. (2019) focused on cellular structures and used B-
spline shape functions to represent the geometry of each
representative cell. In their approach, local refinement, i.e.,
cell subdivision, is achieved by knot insertion. Recently, Xie
et al. (2020) used THB-splines as interpolation functions
and the Solid Isotropic Material with Penalization (SIMP)
method to perform density-based topology optimization
with local refinement.

This paper proposes an adaptive mesh refinement
strategy using HB-splines to perform level set topology
optimization. We use a level set function (LSF) to describe
the design geometry implicitly. The structural analysis
relies on an immersed boundary technique to predict
the system responses, here the eXtended Finite Element
Method (XFEM) with a generalized Heaviside enrichment
strategy. We discretize both the design and the state variable
fields, i.e., the level set and the displacement fields,
with HB-splines. Contrary to most approaches relying on
lower order basis functions, we interpolate the design
variables with higher order B-splines. For simplicity, the
interpolation of the displacement field is restricted to first-
order functions. For local refinement, we consider truncated
B-splines. Although not widely used in the literature so
far, THB-splines satisfy the PU and form a convex hull,
allowing us to conveniently impose bounds on the design
variables. Refinement is triggered according to a user-
defined criterion, here the location of the design boundaries,
and the mesh is refined along the interfaces and coarsened
in the solid and void phases. As the design and state variable
fields are defined on the same mesh, they are refined or
coarsened simultaneously, which allows for a sufficiently
accurate resolution of both the geometry and the physical
response.

Two approaches to handle the design space in level
set topology optimization are considered: (i) seeding an
initial hole pattern and (ii) nucleating holes during the
optimization process using a combined level set/density
approach. We solve the optimization problems with
mathematical programming techniques and in particular
the Globally Convergent Method of Moving Asymptotes
(GCMMA) (see Svanberg (2002)). The required sensitivity
analysis is carried out with an adjoint formulation.

The ability of the proposed approach to generate com-
plex geometries at a reduced computational cost start-
ing from initial coarse meshes is assessed with two-
and three-dimensional topology optimization problems. By
varying the adaptive strategy and the underlying B-spline

discretization, we can characterize the influence of the mesh
adaptivity on the optimization results and the computational
cost. Our numerical study results in interesting findings.
First, the mesh adaptivity strategy influences the optimiza-
tion process. Finer initial meshes and more frequent refine-
ment operations lead to the development of more complex
geometries exhibiting thin structural members. The proper-
ties of B-splines have an impact on the generated designs
and an educated choice of the B-splines features can lead to
advantageous behaviors for topology optimization. Higher
order B-splines promote smoother geometries and tend to
eliminate small spurious features from the design. Trun-
cation allows us to conveniently handle enforcement of
bounds on the design variables. The numerical examples
also reveal that hole nucleation is crucial for the computa-
tional efficiency of the adaptive strategy, as it allows starting
the optimization process on coarser meshes.

The remainder of the paper is organized as follows.
Section 2 presents the level set description of the geometry
using B-splines. Section 3 discusses the strategies adopted
to achieve a sufficiently rich design space working with
level set topology optimization. Section 4 details the
mesh refinement and coarsening strategies, while Section 5
focuses on the construction of hierarchical B-spline bases.
The structural analysis is described in Section 6; governing
equations are detailed and the basic principles of XFEM
are recalled. Section 7 is devoted to the optimization
problem formulation, the used regularization schemes, and
the sensitivity analysis implementation. Section 8 studies
the proposed approach with 2D and 3D solid/void design
examples. Finally, Section 9 summarizes the work and
draws some conclusions.

2 Geometry description

Since the development of the level set method (LSM) by
Osher and Sethian (1988), it has been extensively used
in combination with shape and topology optimization to
implicitly describe the geometry of the design (see van Dijk
et al. (2013) and Sigmund and Maute (2013)).

A general description of the two-phase problems
addressed in this paper is given in Fig. 1. Two material
phases, A and B, are distributed over a d-dimensional
design domain Ω ⊂ R

d . Material subdomains are non-
overlapping, i.e., Ω = ΩA ∪ ΩB . The boundaries of
material subdomains A and B are denoted ∂ΩA and ∂ΩB .
Dirichlet and Neumann boundary conditions are applied to
�I

D = ∂ΩI ∩∂ΩD and �I
N = ∂ΩI ∩∂ΩN respectively, with

I = A, B. The material phases are separated by an interface
�AB = ∂ΩA ∩ ∂ΩB .
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Fig. 1 Design domain description

A LSF is used to describe the material distribution within
the design domain Ω . At a given point x in space, the design
geometry is defined as:

φ(x) < 0, ∀x ∈ ΩA,

φ(x) > 0, ∀x ∈ ΩB,

φ(x) = 0, ∀x ∈ �AB . (1)

The LSF is interpolated using B-spline shape functions
Bi(x) as:

φh(x) =
∑

i

Bi(x) φi, (2)

where φi are the B-spline coefficients. In this work, the B-
spline coefficients and corresponding shape functions are
used to evaluated nodal level set values on the integration
mesh, that is the mesh over which the weak form of the
governing equations is integrated. These nodal values are
used to interpolate the level set field linearly within an
integration element. The linear approximation within an
element simplifies the construction of the intersection of the
LSF with the element edges and does not affect the accuracy
of the analysis, as linear interpolation functions are used for
the state variable field. Further explanations about the level
set field interpolation on the analysis mesh are provided in
Section 5.

Contrary to classical approaches by Wang et al. (2003)
or Allaire et al. (2004), where the level set is updated in
the optimization process by solving Hamilton-Jacobi-type
equations, the coefficients of the LSF are here defined as
explicit functions of the design variables. They are updated
by mathematical programming techniques driven by shape
sensitivity computations.

It should be noted that, in this work, no filter is used
to widen the zone of influence of the design variables and
thus enhance the convergence of the optimization problem,
as proposed in Kreissl and Maute (2012). Proceeding this
way, the B-spline basis function support is not altered and
its influence on the optimization process and the obtained
designs can be emphasized and compared for different
B-spline orders.

3 Seeding of inclusions

The design updates in level set topology optimization is
solely driven by shape sensitivities (see van Dijk et al.
(2013)). To allow for a sufficient freedom in the design,
level set optimization techniques require either seeding
inclusions in the initial design or introducing inclusions
during the optimization process. In the context of solid/void
problem, the inclusion represents a hole.

Seeding inclusions in the initial design domain is
a commonly used strategy and has been successfully
implemented in level set topology optimization (see for
example Villanueva and Maute (2014)). Nonetheless, this
strategy leads to several difficulties. To avoid a premature
removal of holes and geometric features which may lead to
suboptimal designs, the optimization process is started from
a feasible configuration. In this case, finding a hole pattern
that satisfies the design constraints is not a trivial task.
Moreover, this strategy requires a sufficiently fine mesh
able to resolve both the physics and the design of the initial
layout, as the initial hole pattern can easily constitute the
most geometrically complex configuration over the entire
optimization process. Thus, as will be shown in Section 8,
seeding initial holes limits the computational effectiveness
of the proposed adaptive discretization strategy. Therefore,
allowing for hole seeding during the optimization process
proves to be advantageous in the context of mesh adaptivity.

Topological derivatives constitute a systematic approach
to seed new holes in the design domain during the
optimization process (see Novotny and Sokołowski (2013)
for a detailed introduction). The basic concept of evaluating
the influence, i.e., the sensitivity, of introducing an
infinitesimal hole on the objective and constraint functions
was introduced by Eschenauer et al. (1994). A finite-sized
hole is inserted at a location where the topological derivative
field associated to an objective or considered cost function is
minimal. The shape of the new hole is then optimized along
with existing domain boundaries. The reader is referred to
Sigmund and Maute (2013) or Maute (2017) for further
details. Although proven useful, topological derivatives only
provide information about where to place an infinitesimal
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hole and it remains unclear what the size and shape of a
finite-sized hole should be.

Alternatively, hole seeding during the optimization
process can be achieved by combining level set and density-
based techniques, as explored recently in Kang and Wang
(2013), Geiss et al. (2019b), and Burman et al. (2019)
or Jansen (2019). Following the single-field approach of
Barrera et al. (2019), an abstract design variable field, s(x),
is introduced with s ∈ R, 0 ≤ s(x) ≤ 1, to define both the
level set field, φ, and spatially variable material properties,
such as the density ρ and the Young’s modulus E, using a
SIMP interpolation scheme:

φ(x) = φsc (φth − s(x)) , (3)

ρ(x) =
{

0, ∀ s(x) < φth,

ρsh + (ρ0 − ρsh)
(s(x)−φth)
(1−φth)

, ∀ s(x) ≥ φth,
(4)

E(x) = E0 ρβ, (5)

where φsc is a scaling parameter that accounts for the mesh
size h and is set to φsc 	 3h . . . 5h, φth is a threshold that
defines the void/solid phases in terms of s(x) and ρsh, a
parameter that controls the minimum density in the solid
domain. The properties of the bulk material are denoted
by ρ0 and E0, and β is the SIMP exponent. The resulting
interpolation scheme is illustrated in Fig. 2. Throughout the
optimization process, the parameter φth is kept constant and
equal to φth = 0.5, while ρsh is a continuation parameter
and is gradually increased to ρsh = 1 during the process.
To avoid ill-conditioning, its initial value is set to ρsh 	
0.1 . . . 0.2, unless a smaller value is required to satisfy
an initial mass or volume constraint. Contrary to classical
density-based approaches, the density here is used primarily
for hole seeding and for convergence acceleration. A 0 − 1
material distribution is achieved through continuation on the

Fig. 2 Interpolation of the level set φ(x) and the density ρ(x) for the
combined level set/density scheme

parameter ρsh. A low SIMP exponent, e.g., β = 2.0, is used
to reduce the bias of the density method to rapidly separate
the material distribution into a solid and void phase. For the
proposed mesh adaptation strategy, we have observed that
using a low SIMP exponent promotes the formation of fine
features, especially when starting from coarse meshes.

In this paper, both approaches, i.e., the seeding of holes in
the initial design and the combined level set/density scheme,
are considered and compared.

4Mesh adaptivity

This section focuses on the strategies used to perform
hierarchical mesh refinement. First, we introduce the notion
of a hierarchical mesh. We recall the basic concepts of mesh
refinement and detail our implementation of the refinement
strategy. Finally, the considered user-defined criteria, used
to trigger mesh adaptation, are explained in detail.

4.1 Hierarchical mesh

In this work, a regular background tensor grid is used to
build hierarchical meshes. The elements of the background
grid do not carry any notion of interpolation, i.e., an element
of the background grid is not associated with B-spline bases
or Lagrange nodes. Starting from a uniform background
grid with a refinement level l0 and subdividing its elements,
elements with a higher refinement level l > l0 are created.

Formally to define a hierarchical mesh of depth n, a
sequence of subdomains Ωl is introduced:

Ωn−1 ⊆ Ωn−2 ⊆ · · · ⊆ Ω0 = Ω, (6)

where each subdomain Ωl is the subregion of Ω selected
to be refined at the level l and is the union of elements on
the level l − 1. The creation of such a refinement pattern is
illustrated in Fig. 3.

In Section 5, these subdomains Ωl , refined to a level l,
are used to create hierarchical B-spline bases to interpolate
the design and state variable fields.

4.2 Local refinement strategies

This subsection focuses on the refinement strategies used
in this paper and explains their implementation. Before
refinement is carried out by element subdivision, elements
need to be flagged for adaptation. Elements can be flagged
based on one or several user-defined criteria and on
additional mesh regularity requirements.
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Fig. 3 Hierarchical refined mesh

A complete refinement step proceeds as stated in
Algorithm 1. Initially, elements are flagged for refinement
based on user-defined criteria, as further explained in
Section 4.2.1. Additionally, elements are flagged within
a so-called buffer region, around the previously flagged
elements, so that the obtained refined mesh complies
with specific regularity requirements, as further detailed in
Section 4.2.2. Finally, a minimum refinement level lmin is
enforced and elements with l < lmin are flagged and refined.
To increase performance, flagged elements are collected in
a refinement queue first and refined afterwards.

In this paper, design and state variables are defined
on a common mesh, although the interpolation order may
differ. Thus, the discretization of both fields are adapted
simultaneously. While the proposed framework allows for

separately refining state and design variable fields, this
option is not considered here for the sake of simplicity.

After each adaptation of the mesh, the design variable
field φ, as described in (2), is mapped to the new refined
mesh through an L2 projection. The B-spline coefficients
φi,new on the new mesh are obtained from the ones on the
old mesh φi,old by solving:

∫

Ω

δφnew (φnew − φold) dΩ = 0, (7)

where

φnew = ∑
i Bi,new(x) φi,new,

φold = ∑
i Bi,old(x) φi,old.

(8)

This projection step requires an additional linear solve
for a system whose size depends on the number of design
variables of the new mesh.

4.2.1 User-defined refinement criteria

Refinement can be triggered by one or several user-defined
criteria, including geometry criteria or finite element error
indicators, although the latter are not considered here. In
this paper, refinement is applied after a given number
of optimization steps, defined by the user, and using a
purely geometric criterion, i.e., the distance to the solid-void
interfaces.

During each refinement step, an element is flagged for
refinement or for keeping its current refinement level by the
Algorithm 2. Each element mesh is flagged for refinement
depending on its nodal level set values φ. The parameter φbw

defines the bandwidth around the interface which is refined.
This allows fine-tuning the zone of refinement in addition
to the buffer introduced in Section 4.2.2. Over the course
of the optimization process, at the solid-void boundary, the
mesh is refined up to a maximum refinement level defined
for the interface lifc,max. Within the solid phase, the mesh is
refined up to a maximum refinement level lsolid,max, that is
usually equal or smaller than the interface one, lsolid,max ≤
lifc,max. The void phase is never flagged for refinement. A
minimum refinement level lmin ≥ 0 is applied. As each
refinement operation is started from the coarsest refinement
level possible, an element that is not flagged will not be
refined at all. At the beginning of the optimization, lmin is
generally set to lmin > 0. By lowering lmin throughout the
optimization process, a coarsening effect is achieved.
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In the course of the optimization process, the shape of the
solid-void interface changes and the interface may intersect
elements previously not refined. In this study, the mesh
is adapted to maintain a uniform refinement level for all
intersected elements. Although not required by the proposed
framework, this strategy is used here as it simplifies the
XFEM enrichment (see Section 6.2). The same enrichment
algorithm can be used for all intersected elements, as is the
case for uniformly refined meshes. To this end, Algorithm 1
is executed, omitting Step 2 of Algorithm 2.

4.2.2 Mesh regularity requirements

In this paper, we limit the size difference between adjacent
elements in the refined mesh, i.e., a refinement of more
than a factor 4 in 2D and 8 in 3D is not allowed. Although
not mandatory (see studies by Jensen (2016) and Panesar
et al. (2017)), this rule is adopted in most works dedicated
to adaptivity as it promotes accurate analysis results.

This requirement can be achieved by enforcing a so-
called buffer zone around elements primarily flagged for
refinement. The width of the buffer zone dbuffer for a
particular flagged element is calculated by multiplying its
size with a user-defined buffer parameter bbuffer. The width
of the buffer zone must be larger than the support size of
the considered interpolation functions. Using B-splines, it
means that bbuffer ≥ p, where p is the polynomial degree of
the used B-spline basis.

The mesh refinement procedure for building a buffer
zone is summarized in Algorithm 3. Within a refined
mesh, coarse elements are called parents; refined elements,
children. The algorithm is applied to each flagged element
and starts by determining its parent element. The refinement
status of the parent’s neighbors, i.e., elements lying within
the buffer range of the considered parent, is checked. If these
neighbors are neither refined nor flagged for refinement, the
distance dmax between the considered parent element and its
neighbors is calculated. If the distance dmax is smaller than
the buffer size dbuffer, the neighbor elements are flagged for
refinement. The algorithm is then applied recursively to all
newly flagged neighbor elements, until no extra elements
are flagged. An easy and efficient access to hierarchical
mesh information, such as neighborhood relationships, is
provided by using a quadtree and an octree data structure in
2D and 3D respectively.

5 Hierarchical B-splines

This section focuses on hierarchical B-splines for adaptively
discretizing design variable and state variable fields. First
the basic concepts of B-splines in one and multiple
dimensions are recalled. Then, the principle of B-spline
refinement and the construction of truncated and non-
truncated hierarchical B-spline bases are briefly described.
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5.1 Univariate B-spline basis functions

Starting from a knot vector 	 = {ξ1, ξ2, . . . , ξn+p+1},
for which ξ ∈ R and ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1, a
univariate B-spline basis function Ni,p(ξ) of degree p is
constructed recursively starting from the piecewise constant
basis function:

Ni,0(ξ) =
{

1, if ξi ≤ ξ ≤ ξi+1,

0, otherwise,
(9)

and using the Cox de Boor recursion formula for higher
degrees p > 0 (see de Boor (1972)):

Ni,p(ξ) = ξ − ξi

ξi+p − ξi

Ni,p−1(ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (10)

A knot is said to have a multiplicity k if it is repeated in
the knot vector. The corresponding B-spline basis exhibits
a Cp−k continuity at that specific knot, while it is C∞ in
between the knots. A knot span is defined as the half-open
interval [ξi, ξi+1). Within this context, an element is defined
as a nonempty knot span.

5.2 Tensor-product B-spline basis functions

Tensor-product B-spline basis functions Bi,p(ξ) are
obtained by applying the tensor product to univariate
B-spline basis functions. Denoting the parametric space
dimension as dp, a tensor-product B-spline basis is con-
structed starting from dp knot vectors 	m = {ξm

1 , ξm
2 , . . . ,

ξm
nm+pm+1} with pm donating the polynomial degree and nm

the number of basis functions in the parametric direction
m = 1, . . . , dp. A tensor-product B-spline basis function is
generated from dp univariate B-splines Nm

im,pm
(ξm) in each

parametric direction m as:

Bi,p(ξ) =
dp∏

m=1

Nm
im,pm

(ξm), (11)

where the position in the tensor-product structure is given
by the index i = {i1, . . . , idp } and p = {p1, . . . , pdp } is
the polynomial degree. Similar to the univariate case, an
element is defined as the tensor product of dp nonempty
knot spans. Additionally, a B-spline space V is defined as
the span of B-spline basis functions.

5.3 B-Spline refinement

Hierarchical refinement of uniform B-splines can be a-
chieved by subdivision. A univariate B-spline basis function

can be expressed as a linear combination of p+2 contracted,
translated, and scaled copies of itself:

Np(ξ) = 2−p

p+1∑

j=0

(
p + 1

j

)
Np (2ξ − j) , (12)

where the binomial coefficient is defined as:(
p + 1

j

)
= (p + 1)!

j !(p + 1 − j)! . (13)

Figure 4 shows the refinement of a quadratic univariate
B-spline basis function obtained by subdivision.

The extension of the subdivision property in (11) to
tensor-product B-spline basis functions Bp is straightfor-
ward as they exhibit a tensor-product structure:

Bp(ξ) =
∑

j

(
d∏

m=1

2−pm

(
pm + 1

jm

)
Npm (2ξm − jm)

)
,

(14)

where the indices j = {i1, . . . , idp } indicate the position in
the tensor-product structure.

5.4 Hierarchical B-splines

To build a hierarchical B-spline basis, a sequence of tensor-
product B-spline spaces is introduced:

V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ . . . (15)

Each B-spline space V l has a corresponding basis Bl .
A hierarchical B-spline basis H can be constructed

recursively based on the sequence of B-spline bases Bl that
span the domains Ωl . In an initial step, the basis functions
defined on the coarsest level, l = 0, are collected and
assigned to H0. The hierarchical B-spline basis Hl+1 is

Fig. 4 Subdivision of a quadratic B-spline basis function (black) into
p + 2 contracted B-spline basis functions of half the knot span width
(blue)
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constructed by taking the union of all basis functions B in
Hl whose support is not fully enclosed in Ωl+1 and all basis
functions B in Bl+1 whose support lies in Ωl+1. Following
Garau and Vázquez (2018), the recursive algorithm reads:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H0 =: B0

Hl+1 =: {B ∈ Hl | supp(B) �⊆ Ωl+1} ∪
{B ∈ Bl+1 | supp(B) ⊆ Ωl+1},
for l = 0, . . . , n − 2,

(16)

where the index l gives the level of refinement. Basis
functions collected in H, where H = Hn−1, are called
active, while basis functions in Bl not present in H are said
to be inactive.

A hierarchical B-spline basis H is illustrated for a one-
dimensional example in Fig. 5. The top row shows a
one-dimensional hierarchical refined mesh. Following (16)
a B-spline basis H is created through an initialization step
with all bases in the subdomain Ω0 refined to a level
l = 0. Recursively, all bases in the subdomain Ωl+1 with
higher refinement level l + 1 are added, while existing basis
functions of level l fully enclosed in Ωl+1 are discarded.

Contrary to h-refinement in classical finite element
where extra treatments, such as the introduction of
multi-point constraints, are necessary, hanging nodes in
hierarchical refined meshes are naturally handled by the
B-spline basis.

Fig. 5 Three levels of refinement on a given mesh. The refined mesh
is depicted in the top figure. The three underlying figures present the
three levels of refinement considered here. Within these three levels,
the active B-spline basis H is displayed in black, while the inactive
B-spline basis functions are displayed in gray

5.5 Truncated B-splines

A major drawback of hierarchical B-spline bases is the
loss of the PU property. The truncated hierarchical B-
spline basis constitutes an extension of the hierarchical
B-spline basis, aiming at recovering the PU principle and at
reducing the number of overlapping functions on adjacent
hierarchical levels (see Giannelli et al. (2012)). Considering
a basis function Bl , part of Bl and defined on the domain
Ωl , its representation in terms of the finer basis of level l+1
is given as:

Bl =
∑

Bl+1 ∈ Bl+1

cl+1
Bl+1

(
Bl

)
Bl+1, (17)

where cl+1
Bl+1 is the coefficient associated to a basis function

Bl+1.
As described in Giannelli et al. (2012) and Garau and

Vázquez (2018), the truncation of this basis function Bl ,
whose support overlaps with the support of finer basis
functions Bl+1, part of Bl+1 and defined on Ωl+1, is
expressed as:

truncl+1(Bl) =
∑

Bl+1 ∈ Bl+1,

supp(Bl+1) �⊆ Ωl+1

cl+1
Bl+1

(
Bl

)
Bl+1,

= Bl −
∑

supp(Bl+1)⊆Ωl+1

cl+1
Bl+1

(
Bl

)
Bl+1.

(18)

Similar to the creation of a hierarchical B-spline basis
H, a truncated hierarchical B-spline basis T is constructed
recursively, but by additionally applying the truncation in
(18) at each iteration:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T 0 =: B0

T l+1 =: {truncl+1(B) | B in T l ∧ supp(B) �⊆ Ωl+1}
∪ {B ∈ Bl+1 | supp(B) ⊆ Ωl+1},
for l = 0, . . . , n − 2.

(19)

The truncated basis T spans the same space as the non-
truncated basis H, but its underlying functions exhibit the
following properties. They are defined on smaller supports
which result in sparser stiffness matrices in a finite element
analysis. The PU property is restored which allows for the
imposition of bounds on variables. In addition, truncated
bases admit a strong stability property (see Giannelli et al.
(2014)) which enables the construction of optimal multi-
level solvers (see Hofreither et al. (2016)). However, this
property is not exploited in this paper, as the displacements
are interpolated by linear B-splines.
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Fig. 6 Comparison of univariate HB-spline (left) and THB-spline basis functions (right). The first and second levels correspond to Ω0 and Ω1

respectively, while the bottom level represents the combination of the functions on these two levels

The effect of the truncation is illustrated in Fig. 6.
Univariate truncated and non-truncated bases T and H
are juxtaposed for comparison. The comparison shows the
reduced support of the truncated B-splines. The effect of
truncation on the support of a multivariate, two-dimensional
B-spline basis is shown in Fig. 7. Truncated multivariate
B-splines present a characteristic kidney-shaped support
zone.

6 Structural analysis

Whereas the proposed adaptive discretization scheme is not
limited to any particular physics problem, in this paper, we
consider solid-void problems as illustrated in Fig. 1, where
the material subdomain A is filled with a linear elastic solid,
while the material subdomain B is void. In this section, we
present the variational form of the governing equations for

Fig. 7 Comparison of multivariate HB-spline (top) and THB-spline (bottom) supports. While the non-truncated HB-spline basis functions show
a uniform support zone, the support zone of THB-spline basis functions exhibits a characteristic kidney shape
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the linear elastic analysis model. As the XFEM is used to
discretize the state variable fields in the solid domain, the
basic principles of the method are briefly recalled.

6.1 Governing equations

We solve for static equilibrium to enforce balance of linear
momentum within the solid domain ΩA. In this work,
the total residual R, i.e., the weak form of the governing
equations, consists of four terms which are discussed
subsequently:

R = RLin + RNitsche + RGhost + RSpring. (20)

The weak form of the linear elastic governing equation
reads:

RLin =
∫

ΩA

δε : σ dΩ −
∫

�A
N

δu · tN d�, (21)

where u and δu are the displacement field and the test
function, respectively. Traction forces, tN , are applied on
the Neumann boundary, �A

N . The Cauchy stress tensor is
denoted by σ = D ε and is obtained by multiplication of
the infinitesimal strain tensor ε = 1

2

(∇u + ∇uT
)

with the
fourth-order constitutive tensor D, here for isotropic linear
elasticity.

To weakly enforce prescribed displacements on Dirichlet
boundaries, the static equilibrium in (21) is augmented with
Nitsche’s method (see Nitsche (1971)):

RNitsche = −
∫

�AB

δu · (σ · n�) d�

+
∫

�AB

δ (σ · n�) · (u − uD) d�

+γN

∫

�AB

δu · (u − uD) d�,

(22)

where uD are the displacement imposed on the Dirichlet
boundary, �A

D . The parameter γN is chosen to achieve a
certain accuracy in satisfying the boundary conditions and is
a multiple of the ratio E/h, where E is the Young’s modulus
of the considered material and h is the edge length of the
intersected elements.

Using immersed boundary techniques (see Section 6.2),
numerical instabilities arise when either the contributions
of the DOFs interpolating the displacement field on the
residual vanish and/or these contributions become linearly
dependent. These issues typically arise when the level
set field intersects elements such that small material
subdomains emerge. This results in an ill-conditioning
of the equation system and inaccurate prediction of
displacement gradients along the interface. The face-
oriented ghost stabilization proposed by Burman and
Hansbo (2014) is used in this work to mitigate this
issue. Using a virtual work–based formulation, the jump

in the displacements gradients is penalized across the
faces belonging to intersected elements by augmenting the
residual equations with:

RGhost = h γG

∑

F∈Fcut

∫

F

�δε · nF ��σ · nF � d�, (23)

where F is a specific face belonging to Fcut, the set
of element faces cut by the interface, and nF is the
outward normal to face F . The jump operator �•� computes
quantities between adjacent elements A and B as �•� =
•A − •B . The ghost penalty parameter is denoted γG

and typically takes its value in the range 0.1 . . . 0.001. In
contrast to the displacement-based formulation of Burman
and Hansbo (2014), (23) allows for different materials in
adjacent elements.

During the optimization process, isolated islands of
material can emerge and develop in the design domain. This
leads to a singular system of equations, as the rigid body
modes associated to these free-floating material islands are
not suppressed or constrained. To prevent this issue, we
adopt the selective structural spring approach proposed and
successfully implemented in Villanueva and Maute (2017),
Geiss and Maute (2018), and Geiss et al. (2019b). An
additional stiffness term is added to the weak form of the
governing equations:

RSpring =
∫

ΩA

γS kS δu · u dΩ, (24)

where the parameter γS is set to a value ranging from
0 to 1 depending on the solution of an additional
diffusion problem, so that a fictitious spring stiffness kS is
only applied to solid subdomains disconnected from any
mechanical boundary conditions. The spring stiffness kS is
set to E/h2, where E is Young’s modulus of the considered
material and h the element edge width.

6.2 The extended finite element method

The XFEM was developed by Moës et al. (1999) to model
crack propagation without remeshing. The method allows
capturing discontinuous or singular behaviors within a mesh
element by adding specific enrichment functions to the
classical finite element approximation. Here, following the
work by Terada et al. (2003), Hansbo and Hansbo (2004),
and Makhija and Maute (2014), a generalized Heaviside
enrichment strategy with multiple enrichment levels is used.
This particular enrichment enhances the classical finite
element interpolation with additional shape functions which
then results in independent interpolation into disconnected
subdomains.
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Considering a two-phase problem, the displacement field
u(x) is approximated with the Heaviside enrichment:

uh(x) =
M∑

m=1

(
H(−φ(x))

∑

i∈I �

Bi(x) uA
imδAi

ml

+ H(φ(x))
∑

i∈I �

Bi(x) uB
im δBi

ml

)
, (25)

where I � is the set of all the B-spline coefficients in
the analysis mesh, Bi(x) is the B-spline basis function
associated with the ith coefficient, and uI

im is the vector of
displacement DOF associated with the ith coefficient for
material phase I = A, B. The number of active enrichment
levels is denoted M and the Kronecker delta δIi

ml is used to
select the active enrichment level m for the ith coefficient
and material phase I . This selection ensures the satisfaction
of the PU principle (see Babuška and Melenk (1997)), as
only one set of DOFs is used to interpolate the solution
at a given point x. For simplicity, the interpolation of the
displacement field is restricted to first-order functions. The
Heaviside function H is defined as:

H(z) =
{

1, if z > 0,

0, if z ≤ 0.
(26)

Using the Heaviside enrichment, the integration of the
weak form of the governing equations has to be performed
separately on each material phase. Therefore, intersected
elements are decomposed into integration subdomains, i.e.,
into triangles in two dimensions and into tetrahedra in
three dimensions. For further details on the decomposition
approach, the reader is referred to Villanueva and Maute
(2014).

7 Optimization problem

In this paper, we focus on minimum compliance designs
considering mass either via a constraint or a component of
the objective. The optimization problem is formulated as
follows:

min
0≤s≤1

Z(s,u(s)) + cp Pp(s)/P0

+ cφ

(
Pφ (φ(s)) + P∇φ (∇φ(s))

)
/P0

s.t. MA(s)/M(s) − cm ≤ 0.

(27)

The functional Z is a weighted sum of the compliance
and the mass, both evaluated over the solid domain:

Z(s,u(s)) = ws

S(s,u(s))
S0

+ wm

MA(s)
M0

, (28)

where S is the strain energy, S0 is the initial strain energy
value, MA the mass of material phase A, M0 is the
initial mass value, and ws and wm are the weighting
factors. The perimeter associated to the domain boundary

is denoted by Pp and its initial value is P0. The penalty
functions Pφ and P∇φ are used to regularize the level
set field around and away from the interface and are
further discussed in Section 7.1. The parameters cp and
cφ are the penalties associated with the perimeter and the
regularization respectively. The mass constraint ensures that
the ratio of material phase A, MA, and the total mass, M,
is smaller or equal to cm. Note that enforcing the bounds on
the design variable s is conveniently achieved using THB-
splines as they form a convex hull, while it requires extra
handling when using HB-splines.

On purpose, we do not consider any means to control the
feature size. One goal of this paper is to study the influence
of the proposed adaptive hierarchical B-spline discretization
on the optimization results, including the ability to resolve
fine features. To allow the emergence of such features, no
feature size control is imposed.

In this work, we solve the discretized optimization
problem in the reduced space of only the design variables
by a gradient-based algorithm. For each candidate design
generated in the optimization process, the state variables are
determined by solving the discretized governing equations
(see Section 6).

7.1 Level set regularization scheme

To ensure that the spatial gradient near the solid-void
interface is approximately uniform and matches a target
gradient norm over the span [−φvt, φvt], a level set
regularization scheme is used. The scheme also enforces
convergence to a target positive φup or negative φlow value
away from the interface, as depicted in Fig. 8.

Such a scheme requires the identification of the vicinity
of the solid-void interface. The level set values are
often used for this purpose. However, unless the LSF is
constructed as an approximation or as an exact signed
distance field, this approach lacks robustness and may lead
to spurious oscillations in the level set field (see Geiss
et al. (2019a)). In this study, we do not compute a signed
distance field. Instead, we identify the proximity of a point
to the solid-void interface by building a so-called level of

Fig. 8 Target level set function
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neighborhood (LoN) I(x) of a point with respect to a point
belonging to an intersected element. The LoN is evaluated
at the nodes of the considered mesh, providing the LoN
value Ii at each node i. The approach is illustrated in Fig. 9.
The process starts with identifying intersected elements and
setting the LoN I of all nodes belonging to these elements
to one; otherwise, I is set to zero. In a recursive loop over all
elements and nodes, first the elements having a node with a
LoN value larger than 0 are flagged and then the LoN values
of nodes belonging to a flagged element are increased by
1. The region with LoN values larger than 0 widens with
the number of times the loop, NLoN, is executed. Thus, the
maximum LoN value Imax equals NLoN. The use of these
nodal LoN values is discussed below.

To promote the convergence of the level set field to a
target field, two penalty functions, Pφ and P∇φ , are added
to the optimization problem objective in (27). The first term
penalizes the difference between the level set value φ and,
depending on its sign, the lower or upper target value φtarget

away from the interface:

Pφ =
∫

Ω

α1 (1 − w)

(
φ(s)
φtarget

− sign(φ)

)2

dΩ, (29)

where φtarget is set as a multiple of the element edge size
of the initial mesh hinit, i.e., the mesh with the initial
refinement level.

The second term penalizes both the difference between
the norm of the spatial gradient of the level set field ∇φ and
a target gradient norm ∇φtarget near the interface and the
norm of the spatial gradient of the level set field ∇φ away
from the interface:

P∇φ =
∫

Ω

α2 w

( ||∇φ(s)||
||∇φtarget|| − 1.0

)2

dΩ

+
∫

Ω

α3 (1 − w) ||∇φ|| 2 dΩ,

(30)

where α1, α2 and α3 are weighting factors. The parameter
w is a measure of the distance of a point to the solid-void
interface as:

w = e−γI (I(x)/Imax−1)2
, (31)

where I(x) is the local LoN value, interpolated by the
element shape functions using the nodal Ii values. The
parameter γI determines the region around and away
from the interface in which the integrals in (29) and (30)
are evaluated. As the value of γI is increased, the area
considered to be in the vicinity of the interface, i.e., the area
where the target slope ||∇φtarget|| is promoted, shrinks. The
parameters φtarget, ∇φtarget, and γI are user-defined.

7.2 Sensitivity analysis

In this study, we compute the design sensitivities by the
adjoint approach. Let us consider an objective or constraint
function F(u(s), s) dependent on the design variables. The
derivative of this response function with respect to a design
variable si is computed as follows:

dF(u(s))
dsi

= ∂F
∂si

+ ∂F
∂u

du
dsi

, (32)

where the first term of the right-hand side accounts for the
explicit dependency on the design variables and the second
term for the implicit dependency on the design variables
through the state variables. The implicit term is evaluated
by the adjoint approach:

∂F
∂u

du
dsi

= −λT ∂R
∂si

, (33)

where R is the residual defined in (20) for the forward
analysis and λ are the adjoint responses, evaluated through:

λ = ∂F
∂u

[
∂R
∂u

]−1

. (34)

The derivatives with respect to the design variables are
evaluated following the semi-analytical approach presented

Fig. 9 Definition of the level of neighborhood (LoN)
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in Sharma et al. (2017). It should be noted that all the
stabilization parameters introduced for the forward analysis
in Sections 6.1 and 7.1 are accounted for during the
sensitivity analysis.

As truncated B-spline basis functions have smaller
support than non-truncated ones (see Fig. 6 and 7), the
zone of influence associated with a given truncated B-
spline coefficient is smaller. Therefore, the perturbation
of a truncated B-spline coefficient influences a smaller
number of nodal level set values on the integration mesh
and a reduced number of derivatives with respect to
the level set nodal values needs to be evaluated per B-
spline coefficient. Depending on the implementation of
the sensitivity analysis, this property may reduce the
computational cost.

When computing the design sensitivities with a LSM,
only the intersected elements need to be considered for
evaluating (34), as only the finite element residuals of these
elements depend on the level set field. However, when the
seeding approach presented in Section 3 is used, the residual
contributions of non-intersected elements within the solid
domain also depend on the design variables. Thus, in this
case, the partial derivative ∂R

∂u needs to be integrated over
all elements in the solid domain.

8 Numerical examples

We study the proposed level set topology optimization with
hierarchical mesh refinement with 2D and 3D examples,
focusing on minimum compliance designs considering mass
either via a constraint or a component of the objective as
defined in (27).

The state variable field, i.e., the displacement field, is
discretized in space with bilinear Lagrange quadrangular
elements for 2D, and with trilinear Lagrange hexahedral
elements for 3D design domains. The design variable field,
i.e., the level set field, is discretized with HB- and THB-
splines. The design variables are the B-splines coefficients
and are used to interpolate nodal values on the Lagrange
analysis mesh.

The optimization problems are solved by GCMMA from
Svanberg (2002) and the required sensitivity analysis is
performed following the adjoint approach described in
Section 7.2. The parameters for the initial, lower, and
upper asymptote adaptation in GCMMA are set to 0.05,
0.65, and 1.05, respectively. The optimization problem is
considered converged if the absolute change of the objective
function relative to the mean of the objective function in the
five previous optimization steps drops below 10−5 and the
constraint is satisfied.

The refinement strategy described in Section 4.2 is
adopted and the maximum refinement level for interface and

solid elements is set to lifc,max = lsolid,max = lmax = 4.
The minimum refinement level is set to lmin = 0, the size
of the coarsest mesh, the initial mesh refinement level, and
the number of iterations between two mesh adaptations are
given with each example.

The system of discretized governing equations and
adjoint sensitivity equations are solved by the direct solver
PARDISO for the 2D problems (see Kourounis et al.
(2018)), and by a GMRES algorithm for 3D problems,
preconditioned by an algebraic multi-grid solver (see Gee
et al. (2006)). A relative drop of the linear residual of 10−12

is required. This strict tolerance is imposed to reduce the
influence of the iterative solver on the optimization results.

For the first two examples, we provide detailed
comparisons between designs generated on uniformly and
adaptively refined meshes in terms of performance, a-
chieved geometries, and computational cost. Furthermore,
we investigate the influence of the B-spline interpolation by
varying the interpolation order.

The effect of applying or omitting truncation for the
B-splines is investigated for 2D examples and presented
in Appendix A. The numerical studies suggest that using
THB-splines does not affect the geometric complexity,
the performance, or the computational efficiency gains
achieved with the proposed adaptive strategy. THB-Splines
offer several advantageous properties; they form a PU, a
desirable property when solving finite element problems.
They also lead to an improved conditioning of the system
of equations and offer a convenient way to impose bounds
on design variables, i.e., an operation largely applied when
solving optimization problems. Therefore, all subsequent
optimization problems are solved using THB-splines.

Providing meaningful computational efficiency measures
for the adaptive simulations is not trivial as various factors
influence the computational cost. A simple wall-clock time
comparison is provided for the 2D examples and takes into
account both the time spent in the forward and sensitivity
analyses. It is given as the ratio between the total runtime
for the most refined uniform mesh and the total runtime for
an adaptive mesh:

Etime =

Nopt∑

k=1

t
(k)
uniform

Nopt∑

k=1

t
(k)
adaptive

, (35)

where t
(k)
uniform and t

(k)
adaptive are the runtimes for the uniform

and adaptive meshes at the optimization iteration k. Nopt is
the number of optimization steps until convergence and is
set to Nopt = min(Nopt,uniform, Nopt,adaptive).

Providing wall-clock times for all of the optimization
examples presented in the paper would not be meaningful,
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as different problem configurations of the same example
were run on different hardware due to limited availability
to dedicated computing resources. Furthermore, different
linear solvers and software implementations lead to
different dependencies of the computational time on the
number of finite element DOFs. Therefore, in addition
to a runtime comparison, if available, we measure the
computational cost in terms of the evolution of the number
of unconstrained DOFs of the finite element models during
the optimization process.

An efficiency factor Exfem is defined as the ratio
between the total number of unconstrained DOFs in the
XFEM model for the most refined uniform mesh and
the total number of unconstrained DOFs in the XFEM
model for an adaptive mesh. This measure is indicative
of the computational gains achieved for XFEM solid-void
problems and is expressed as follows:

Exfem =

Nopt∑

k=1

(
#DOFs

(k)
uniform,xfem

)ns

Nopt∑

k=1

(
#DOFs

(k)
adaptive

)ns

, (36)

where #DOFs
(k)
uniform,xfem and #DOFs

(k)
adaptive are the

numbers of unconstrained DOFs in the XFEM models for
the uniform and the adaptive meshes at the optimization
iteration k. The parameter ns is an exponent that can be
fitted to relate the number of DOFs to the computational
effort in terms of floating-point operations or wall-clock
time (see Woźniak et al. (2014)), for example when a sparse
direct linear solver is used and is set to ns = 1 for the 2D
and ns = 4/3 for the 3D cases.

Alternatively, a measure of the peak resource require-
ment Rxfem is defined as the ratio between the maximum
number of unconstrained DOFs in the XFEM model for the
uniform mesh with highest refinement level and the maxi-
mum number of unconstrained DOFs in the XFEM model
for the adaptive mesh:

Rxfem = max
(
#DOFsuniform,xfem

)ns

max
(
#DOFsadaptive

)ns
. (37)

It should be noted that for an XFEM model, the number
of unconstrained DOFs is changing in the course of the
optimization process, even on a uniformly refined mesh. For
the solid-void problems studied in this paper and because
the void domain is omitted in the analysis, the XFEM model
reduces the number of DOFs compared with a classical
FEM model. To account for these computational gains, we

define an efficiency factor Efem, indicative for solid-solid
XFEM or solid-void FEM problems, as:

Efem =

Nopt∑
k=1

(
#DOFs

(k)
uniform,fem

)ns

Nopt∑
k=1

(
#DOFs

(k)
adaptive

)ns

, (38)

where #DOFs
(k)
uniform,fem is an approximation of the number

of unconstrained DOFs for the uniform mesh with highest
refinement level at the optimization iteration k, assuming
that all DOFs are active as is the case for a classical FEM
model.

A corresponding measure of the peak resource need Rfem

is defined as follows:

Rfem = max
(
#DOFsuniform,fem

)ns

max
(
#DOFsadaptive

)ns
. (39)

The measures given by (36), (38), (37), and (39) for
estimating the gains in computational efficiency are solely
based on the costs for solving the linear finite element
system. It does not account for the costs for building the
XFEM model for initializing the linear solver, for the L2

projection of the design variable fields (see Section 4.2), for
computing the right-hand side of the adjoint system in (33),
and for the optimization algorithm. The latter computational
costs are, however, small typically when compared with
building and solving the system of governing equations.

8.1 Two-dimensional beam

As illustrated in Fig. 10, the first problem setup consists of
a solid-void 2D beam with a length L = 6.0 and a height
l = 1.0. The solid is described by a linear elastic model and
an isotropic constitutive behavior, with Young’s modulus
E = 1.0 and Poisson’s ratio ν = 0.3. The beam is supported
on its two lower corners over a length ls = 0.025 and a
pressure p = 1.0 is applied in the middle of its top span
over a length lp = 2 × 0.025. The data are provided in
self-consistent units.

The structure is designed for minimum compliance with
a mass constraint of 40% of the total mass of the design
domain. Taking advantage of the symmetry of the problem,

Fig. 10 Two-dimensional beam
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only one-half of the design domain is considered. Table 1
summarizes the problem parameters.

The compliance minimization problem, defined in (27),
is solved on uniformly and adaptively refined meshes,
considering five levels of refinement lrefine = 0, 1, 2,
3, and 4, corresponding to 30 × 10, 60 × 20, 120 ×
40, 240 × 80, and 480 × 160 element meshes. The
influence of the B-spline interpolation is investigated by
solving the same design problem with linear, quadratic,
and cubic B-spline functions. These influences are studied
separately considering the two approaches for introducing
inclusions, i.e., the initial hole seeding and the combined
level set/density scheme.

8.1.1 Design with initial hole seeding

In this subsection, the design domain is initially seeded with
holes, so that the mass constraint is satisfied at the beginning
of the optimization process. The initial configuration is
depicted in Fig. 11. The complexity of such a hole pattern
requires a rather fine initial mesh and cannot be represented
with the coarsest refinement levels lref = 0, 1. Thus, the
optimization process needs to start from a mesh with lref >

1.
Figure 12 shows the optimized designs generated on

uniformly refined meshes with lref = 2, 3, and 4 using
THB-splines and for different B-spline orders, along with
the associated mechanical performance in terms of strain
energy. The solid phase is depicted in black and the
meshes are omitted as they are uniform. The designs
generated on uniform meshes for different B-spline orders
become increasingly similar as the mesh is refined. The

Table 1 Parameter list for the 2D beam optimization problem

Parameter Value

ws 0.9

wm 0.0

cp 0.025

cφ 0.5

cv 0.4

S0 59.12

P0 6.0

φsc 5hinit

Vmax 6.0

γN 100E/h

γG 0.005

φtarget 1.5hinit

∇φtarget 0.75

Imax 1

γI 4.61

α1 = α2 = α3 0.5

performances of the designs are also rather similar. As
expected, the results show that refining the mesh allows for
a higher geometric complexity, including thinner structural
members.

Figure 13 shows the optimized designs generated on
adaptively refined meshes using linear, quadratic, and cubic
THB-splines. For each layout, the solid phase is depicted in
gray and the refined mesh is shown in the void phase. The
computational gains achieved with the adaptive strategy are
given in Table 2.

Applying hierarchical mesh refinement, the optimization
process is started with an initial uniform mesh with a
refinement level l0

ref = 2 and is refined up to a refinement
level lref,max = 4 and coarsened to a refinement level
lmin = 0. The minimum and maximum refinement levels
are updated after every 10, 25, or 50 iterations. Additionally,
the mesh is adapted to maintain a uniform refinement level
in all intersected elements, as mentioned in Section 4.2.1.
First, the designs demonstrate the ability of the method to
recover similar layouts to the ones obtained on uniform
meshes with higher mesh refinement. No significant loss is
observed regarding the level of details or the complexity of
the geometry achieved. The strain energy values are quite
similar regardless of the use of uniform or adaptive meshes.
The remaining differences in the strain energy values are not
only due to differences in the designs, but also arise from
differences in the discretization of the finite element model.

The results in Fig. 13 show, however, that the adaptive
designs are sensitive to the number of iterations after
which the refinement is applied. More frequent refinement
operations, specifically early in the optimization process,
allow for the emergence of finer features in the design.
In terms of computational efficiency, the cost reduction
with the adaptive strategy remains limited as initial
configurations require rather fine meshes, i.e., lref > 1. The
runtime ratios and the efficiency factors in Table 2 show
that the achieved gain slightly increases with the B-spline

Fig. 11 Initial hole seeding for the 2D beam. Zoom on the hole pattern
representation for the refinement levels lref = 2, 3, and 4
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Fig. 12 2D beam using uniformly refined meshes with THB-splines and initial hole seeding

order. The largest factors, in terms of runtime, efficiency,
and peak need, are achieved when the number of iterations
before refinement is increased. Performing mesh refinement
and updating the minimum and maximum refinement levels
every 50 iterations lead to the largest computational gains.
Using XFEM alone reduces the computational cost by about
50%. The adaptation strategy allows for a reduction of the
computational cost by more than 3.5 over the uniform FEM
model and by more than 1.75 over the uniform XFEM
model. The peak resource needs Rxfem and Rfem follow the
same trend.

Considering the refined meshes in Fig. 13, it is noticeable
that the refined bandwidth around the solid-void interfaces
increases in size with the order of the B-spline interpolation.
This is a direct consequence of the refined buffer zone
described in Section 4.2.2, whose size depends on the
interpolation order. For both, the uniform and adaptive
designs the influence of the B-spline interpolation order on
the designs is mainly noticeable when working with lower
order B-splines. Using a linear interpolation allows for the
emergence of finer members and details in the structure,
at the increased risk of converging to a local minimum
with inferior performance. Higher order designs tend to be

smoother and to eliminate thin members. For this 2D case,
it is noteworthy that working with linear B-splines does not
lead to any smoothness issues or irregular shapes which
might be caused by a spurious interplay between geometry
and finite element prediction.

To further investigate the influence of mesh adaptivity,
the optimization problem is solved starting from a uniform
mesh with the highest refinement level, here lref,max = 4
and using THB-splines. The mesh adaptation operation,
triggered here every 25 iterations, involves coarsening of the
mesh in void regions. The generated designs are shown in
Fig. 14 along with the ones generated on the finest uniform
mesh lref = 4. They slightly differ from the layouts obtained
on uniform meshes, but present quite similar performance
in terms of strain energy. These differences might result
from the restart of the optimization process, as the mesh is
adapted. After refinement, the level set field is mapped onto
the newly generated mesh, which might result in a slight
perturbation of the field values. Furthermore, the GCMMA
is restarted with uniform lower and upper asymptotes for
all variables which may alter the evolution of the design.
Additionally, these results show that the obtained designs
are dependent on the initial mesh refinement l0

ref.

Fig. 13 2D beam using adaptively refined meshes with THB-splines and initial hole seeding. Initial refinement level of l0
ref = 2 and maximum

refinement level of lref,max = 4
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Table 2 Performance in terms of computational cost for designs in Fig. 13

Mesh update after 10 iter. Mesh update after 25 iter. Mesh update after 50 iter.

Lin. Quad. Cub. Lin. Quad. Cub. Lin. Quad. Cub.

Nopt 1648 1158 840 1460 1158 1254 1219 1158 1137

Etime 1.77 1.66 1.69 1.87 1.84 1.83 2.05 2.01 2.28

Exfem 1.85 1.72 1.78 1.93 1.85 1.97 2.08 2.03 2.23

Rxfem 1.35 1.29 1.26 1.65 1.70 1.72 1.81 1.99 2.11

Efem 3.81 3.56 3.61 3.94 3.81 4.05 4.20 4.19 4.58

Rfem 2.38 2.31 2.22 2.92 3.03 3.05 3.21 3.56 3.74

The efficiency factors are given in Table 3. They show
that the initial refinement level affects the computational
cost. In this case, the mesh adaptivity does not provide an
actual computational gain with respect to an XFEM model,
as Exfem and Rxfem are about equal to 1.

8.1.2 Design with simultaneous hole seeding

In this section, the combined level set/density scheme,
presented in Section 3, is used to nucleate holes during the
optimization process. The combined scheme uses a SIMP
exponent β = 2.0. The density shift parameter ρsh is
initially set to 0.2 and is increased every 25 optimization
steps. In this case, the optimization process can be started
with rather coarse meshes. The minimum and maximum
refinement levels are updated every 25 iterations. All other
parameters are kept the same as in Section 8.1.1. Numerical
studies have shown that the chosen strategy for updating
the density shift parameter and the minimum/maximum
refinement levels leads to satisfactory results. Refining this
strategy or using alternate approaches may lead to improved
performance and should be explored in future studies.

Figure 15 shows the optimized designs generated on
uniformly refined meshes with lref = 1, 2, 3, and 4 using
THB-splines and considering different B-spline orders,
along with the associated performance in terms of strain
energy. The solid phase is depicted in black and the meshes
are omitted as they are uniform. For coarse meshes, the

designs exhibit different performances. The differences
in the strain energy measure disappear as the meshes
are refined. As expected, the complexity of the designs
increases with mesh refinement. Remaining differences in
both the geometry and the performance are likely caused by
the non-convexity of the optimization problem.

Figure 16 shows the optimized designs generated on
adaptively refined meshes with initial refinement level l0

ref =
1, 2, and 3 and using linear, quadratic, and cubic THB-
splines. The performance in terms of strain energy values is
provided for each design. For the adaptive designs, the mesh
refinement is depicted in the void phase and the solid phase
is represented in gray. The gains in terms of computational
cost are given in Table 4.

Using the adaptive strategy, the results clearly show
that, starting from coarser meshes, it is possible to
recover designs rather similar, in terms of geometry and
performance, to the ones obtained with finer uniform
meshes, at least up to one or two refinement level higher.
It is also noticeable that the layouts obtained with the
refinement strategy depend on the initial mesh refinement.
Finer structural members are more likely to develop and be
maintained through the optimization process as the initial
mesh is refined.

The runtime ratios and the efficiency factors are given
in Table 4. They show that more significant gains are
obtained when starting from coarser meshes, with lower
refinement levels. The adaptation strategy allows for a

Fig. 14 2D beam using adaptively refined meshes with THB-splines and initial hole seeding. Initial refinement level of l0
ref = 4 and maximum

refinement level of lref,max = 4. Only coarsening is applied to adapt the mesh
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Table 3 Performance in terms of computational cost for designs in
Fig. 14

l0
ref = 4

Lin. Quad. Cub.

Nopt 1911 1158 1131

Exfem 0.99 1.00 1.00

Rxfem 1.00 1.00 1.00

Efem 2.05 2.05 2.04

Rfem 1.77 1.78 1.77

reduction of the computational cost by more than a factor
of 3 over the uniform FEM model and by more than 1.75
over the uniform XFEM model. The achieved runtime and
efficiency factors starting from the same initial refinement
with different B-splines order match closely.

As a direct consequence of the buffer zone definition
(see Section 4.2.2), the refined meshes in Fig. 16 exhibit a
wider refined bandwidth as the interpolation order increases
from linear to cubic. As observed in the previous section
and in Figs. 15 and 16, linear B-splines can resolve finer
structural members, while keeping a smooth description of
the geometry at least in this 2D setting. Designs obtained
with quadratic and cubic B-splines are smoother and similar.

A comparison of the results from Sections 8.1.1 and 8.1.2
suggests that the ability to nucleate holes during the
optimization process is crucial to increase the computational
cost reduction achieved with mesh adaptation. Creating
an initial hole pattern requires the use of rather fine
initial meshes, which limits the computational cost savings.
Comparing the efficiency ratios in Tables 2 and 4 shows that
starting from a 120 × 40 initial mesh and refining every 25

iterations, an efficiency factor Exfem of about 2.0 is achieved
for the initial seeding approach, while a ratio of about 2.5
is obtained for the combined scheme. Moreover, although
a dependency on the initial mesh refinement is observed in
both cases, the combined level set/density scheme seems to
mitigate this dependency.

8.2 Three-dimensional beam

In this section, the previous 2D beam example is extended
to 3D. This example allows studying the influence of
the mesh adaptivity on 3D designs in terms of geometry,
performance, and computational cost. In particular, we
assess the ability of our approach to generate well-known
three-dimensional optimal members such as shear webs that
usually develop when solving optimization problems on fine
uniform meshes. For 3D designs, the dependency on the
initial hole pattern is mitigated by the ability to develop
holes in the third dimension, which might counterbalance
the performance issues encountered when using the initial
seeding approach with the refinement strategy.

Figure 17 illustrates the setup for the solid-void 3D beam
with a length L = 6.0, a height l = 1.0, and a thickness
h = 1.0. The structural response is modeled by an isotropic
linear elastic model with Young’s modulus E = 1.0 and
Poisson’s ratio ν = 0.3. The structure is supported on its
two lower sides over a length ls = 0.025 and a pressure
p = 1.0 is applied in the middle of its top span over an area
lp × h = 2 × 0.025 × 1.0. The values above are provided in
self-consistent units.

We optimize the beam for minimum compliance under
a mass constraint of 10% of the total mass of the design
domain. Taking advantage of the symmetry, we only study a
quarter of the design domain. A list of problem parameters
is given in Table 5.

Fig. 15 2D beam using uniformly refined meshes with THB-splines and simultaneous hole seeding
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Fig. 16 2D beam using adaptively refined meshes with THB-splines and simultaneous hole seeding. Initial refinement levels of l0
ref = 1, 2, and 3

and maximum refinement level of lref,max = 4

As for the 2D case, the initial hole seeding and
the combined level set/density schemes are studied. The
optimization problem in (27) is solved on uniformly
and adaptively refined meshes considering four levels of
refinements, lref = 0, 1, 2, 3, corresponding to 18 × 6 × 3,
36 × 12 × 6, 72 × 24 × 12, and 144 × 48 × 24 element
meshes. The influence of the B-spline interpolation order
is investigated by solving the same problem with linear,
quadratic, and cubic B-spline functions. All the simulations
are performed with THB-splines.

8.2.1 Design with initial hole seeding

The initial seeding of holes in the design domain is
presented in Fig. 18. This configuration satisfies the mass
constraint, but requires a rather fine initial mesh to resolve
the hole pattern, i.e., lref > 1.

The optimized designs generated on uniformly and
adaptively refined meshes are given in Figs. 19 and 20,
respectively, along with their performance in terms of strain
energy. Additionally, we depict vertical cross-sections of the
designs in blue, to visualize the layouts’ internal material
arrangement. The efficiency factors are summarized in
Table 6.

In Fig. 19, uniform meshes with levels of refinement
lref = 2 and 3 are considered, as coarser meshes cannot
resolve the initial hole pattern. The design geometries and
their performance in terms of strain energy are quite similar
for linear B-splines. Each optimized layout is characterized
by two shear webs and a truss-type structure that develops
under the loaded surface. For higher B-spline orders, similar
designs are observed only when using a finer mesh, i.e.,
lref = 3. For coarser meshes with refinement level lref = 2,
a single shear web develops in the center of the design. This
behavior suggests that the obtained design depends on both
the B-spline order and the refinement level. As the mesh
is refined, smaller members are included in the layouts,
which exhibit smoother surfaces. This can be observed in
particular for the shear webs that become thin and smooth
with mesh refinement.

Applying the refinement strategy every 25 iterations, the
optimization process is started on a uniform mesh with a
refinement level l0

ref = 2 (see Fig. 20). In the course of the
optimization process, the mesh is locally refined up to level
lref,max = 3 or coarsened to a level lmin = 0. The adaptive
strategy generates designs that display a slightly higher
geometric complexity and smoothness than the designs on
corresponding initial uniform meshes. However, they are

Table 4 Performance in terms of computational cost for designs in Fig. 16

l0
ref = 1 l0

ref = 2 l0
ref = 3

Lin. Quad. Cub. Lin. Quad. Cub. Lin. Quad. Cub.

Nopt 671 550 547 941 539 433 941 484 454

Etime 2.57 3.24 3.31 1.79 2.11 2.05 1.53 1.60 1.58

Exfem 2.91 3.58 3.69 2.15 2.54 2.70 1.66 1.79 1.82

Rxfem 4.28 4.98 5.04 3.13 3.16 3.42 1.76 1.81 1.83

Efem 5.40 6.52 6.80 4.13 4.61 4.80 3.19 3.20 3.27

Rfem 4.28 4.98 5.04 3.13 3.16 3.42 1.76 1.81 1.83
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Fig. 17 Three-dimensional beam

visibly dependent on the initial mesh refinement as the
obtained design topologies, i.e., two shear webs for linear
B-splines versus one shear web for higher order B-splines,
are similar to the ones generated on a uniform mesh with
lref = 2. The efficiency ratios are given in Table 6. They
show that a moderate reduction of the computational cost
is achieved as the optimization process with adaptivity is
started on a rather fine mesh, a reduction by a factor of about
4 over the uniform FEM model and by about 1.5 over the
uniform XFEM model.

It is interesting to note that, as for the 2D case, linear
B-splines support the development of smaller structural
features such as the beams observed for both the uniform
and the adaptive designs. At the same time, using these low-
order B-splines leads to spurious oscillations of the level set
field, which result in layouts with rough surfaces. Higher
order B-splines promote the generation of smoother designs,
as is the case for both quadratic and cubic B-splines.

8.2.2 Design with simultaneous hole seeding

In this section, holes are nucleated in the design domain
during the optimization process using the combined level

Table 5 Parameter list for the 3D beam optimization problem

Parameter Value

ws 9.0

cp 1.0

cφ 10.0

cv 0.4

P0 10.0

S0 59.12

φsc 3hinit

Vmax 3

γN 100E/h

γG 0.01

φtarget 1.5hinit

∇φtarget 0.75

Imax 1

γI 4.61

α1 = α2 = α3 0.5

Table 6 Performance in terms of computational cost for designs in
Fig. 20

l0
ref = 2

Lin. Quad. Cub.

Nopt 501 520 520

Exfem 1.26 1.64 1.43

Rxfem 2.07 3.43 2.32

Efem 3.90 5.44 4.64

Rfem 2.72 4.30 2.91

set/density scheme presented in Section 3. For the combined
scheme, the SIMP exponent β is set to 2.0. The density
shift parameter ρsh is initially set to 0.2 and is updated
every 25 optimization steps. Contrary to Section 8.2.1,
coarser meshes can be used as a starting point for the
adaptive optimization, since the initial design geometry is
not complex.

The designs obtained on uniformly and adaptively
refined meshes are shown in Figs. 21 and 22 with their
performance in terms of strain energy. Additionally, we
depict vertical cross-sections of the designs in blue, to
visualize the layouts’ internal material arrangement. Table 7
gives the design performance in terms of computational
cost.

In Fig. 21, three levels of refinement are considered lref =
1, 2, and 3. The uniform design geometries are quite similar,
as each layout is characterized by two shear webs and a
truss-type structure that develops under the loaded surface.
Also, the performance in terms of strain energy is quite
similar for the designs obtained on meshes with refinement
levels lref = 2 and 3. These results demonstrate that the
combined level set/density scheme reduces the dependency
on the initial design that was observed with the initial
hole seeding approach. Using extremely coarse meshes with
lref = 1 leads to spurious oscillations of the level set field

Table 7 Performance in terms of computational cost for designs in
Fig. 22

l0
ref = 1

Lin. Quad. Cub.

Nopt 292 209 275

Exfem 2.87 4.08 3.09

Rxfem 3.78 3.75 3.92

Efem 6.70 8.78 7.56

Rfem 3.78 3.75 3.92
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Fig. 18 Initial hole seeding for the 3D beam. Representation of the solid on the left and the void on the right

Fig. 19 3D beam using uniformly refined meshes with THB-splines and initial hole seeding

Fig. 20 3D beam using adaptively refined meshes with THB-splines and initial hole seeding. Initial refinement levels of l0
ref = 2 and maximum

refinement level of lref,max = 3
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and thus a rough solid/void interface surface. This behavior
is more strongly pronounced when using linear B-splines.

Working with an adaptive mesh, the optimization process
is started on a uniformly refined mesh with the lowest level
of refinement l0

ref = 1 and is refined up to lref,max = 3 or
coarsened to lmin = 0 (see Fig. 22). The results demonstrate
the ability of the adaptive optimization approach to create
designs similar to the ones obtained on uniform meshes
with a higher level of refinement. The designs also compare
well in terms of strain energy performance. The refinement
strategy leads to a significant reduction of the computational
cost, as the optimization is started on a coarser mesh. Table 7
shows high efficiency ratios, i.e., a reduction by a factor of
about 7 over the uniform FEM model and by about 3 over
the uniform XFEM model.

As observed in the previous section, using low-order B-
splines promotes the development of thinner features, which
is not observed with higher polynomial orders. However,
linear B-spline designs lack smoothness, even as the mesh
is refined.

The effect of hole seeding during the optimization
process is not as pronounced as in 2D. In 3D, holes can be
created more easily by effectively changing the thickness,
i.e., changing the shape in the third dimension. The main
advantage of the combined scheme lies in the ability to use
coarser meshes as a starting point for the adaptive topology
optimization, which leads to larger efficiency ratios Exfem,
i.e., around 3 for the combined scheme versus around
1.5 with the initial seeding strategy when compared with
uniform XFEM meshes.

Fig. 21 3D beam using uniformly refined meshes with THB-splines and simultaneous hole seeding
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Fig. 22 3D beam using adaptively refined meshes with simultaneous hole seeding. Initial refinement levels of l0
ref = 1 and maximum refinement

level of lref,max = 3

Both the 2D and 3D beam examples show that using
linear B-splines allows for the development of thinner
structural members. However, in the 3D case, the latter
details develop at the cost of spurious oscillations in the
level set field, leading to a rough representation of the
surface. Higher order B-splines promote the development
of smoother designs. In 2D and in 3D, the designs
generated with quadratic and cubic B-splines match
closely. Therefore, all upcoming simulations are carried
out with quadratic B-splines. They lead to smooth designs
without reducing the complexity of the geometry achieved.
Moreover, they present smaller support and a lower level
of complexity than cubic B-splines, which leads to simpler
implementation and a reduced overall computational cost.

8.3 Short beam under uniform pressure

This final example aims at demonstrating the capabilities
of the proposed mesh adaptivity to generate geometrically
complex designs with limited computational resources. The
optimization problem formulation is modified to generate
designs with increasingly lower volume fractions and
show that mesh adaptation allows for the development of
extremely thin structural members.

Fig. 23 Three-dimensional short beam under uniform pressure

We consider a short beam subject to a uniform pressure
on its top. The design domain with boundary conditions is
shown in Fig. 23 and is defined by a rectangular cuboid
with a length L = 2.0, a height l = 0.6, and a thickness
h = 1.0. The structural response is described by an isotropic
linear elastic model with Young’s modulus E = 6.9 1010

and Poisson’s ratio ν = 0.3. The presence of material is
enforced on the top of the table, where a uniform pressure
load p = 0.67 106 is applied. The structure is supported on
the side at the top corners, and on the bottom at each corner
with ls = 0.01 and hs = 0.2.

We optimize the structure for minimum compliance and
mass; no constraints are imposed. Applying the adaptive
refinement strategy, we focus on the influence of the mass

Table 8 Parameter list for the 3D short beam under uniform pressure
design optimization problem

Parameter Value

w0
s 0.5

wm 10.0

cp 0.05

cφ 5.0

cv 1.0

S0 61.93

M0 0.3

P0 3

φsc 3 hinit

γN 100 E/h

γG 0.01

φtarget 1.5 hinit

∇φtarget 0.75

Imax 1

γI 4.61

α1 = α2 = α3 0.5
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of the designs on the achieved computational cost reduction.
Taking advantage of the symmetry, we only study a quarter
of the design domain. The problem parameters are given in
Table 8 in self-consistent units.

We investigate the effect of the designs mass on the
adaptive strategy. To generate designs with various strain
energy/mass ratios, we vary the compliance weighting
parameter ws value. To prevent an overly aggressive
removal of mass early on in the optimization process, we
apply a continuation on ws , which is initially set to w0

s =
0.5 and is gradually decreased during the optimization
process to the prescribed values wfinal

s = 0.1, 0.05, 0.005,
and 0.0005. We should note that the strategy for reducing

ws impacts the computational costs. Large ws values put
more emphasis on the strain energy. Thus, stiffer structures,
using more mass, are generated, which in turn requires more
elements to be resolved at a particular refinement level.

Based on the observations made for the 2D and 3D beam
problems in Sections 8.1 and 8.2, we study this problem
with the level set/density combined scheme only, as it allows
to initiate the design process on a rather coarse mesh. The
SIMP exponent β is set to 1.5. The density shift parameter
ρsh is initially set to 0.2 and is updated every 25 optimization
steps. Furthermore, the design variable field is interpolated
with quadratic THB-splines. We consider four levels of
refinement lref = 0, 1, 2, and 3, corresponding to 24 × 14 ×

Fig. 24 Three-dimensional short beam under uniform pressure design using adaptively refined mesh with quadratic THB-splines and simultaneous
hole seeding. Initial refinement level of l0

ref = 0 and maximum refinement level of lref,max = 3
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Table 9 Performance in terms of strain energy, mass, and volume
fraction for designs in Fig. 24

wfinal
s Strain energy Mass Volume fraction

0.1 349.38 0.0232 5.57

0.05 469.24 0.0189 4.14

0.005 1442.14 0.0115 1.68

0.0005 4421.07 0.0098 1.19

12, 48×28×24, 96×56×48, and 192×112×96 element
meshes. The problem is solved using adaptively refined
meshes, starting from an initial mesh with a refinement level
l0
ref = 0 and allowing refinement up to lref,max = 3 and

coarsening to lmin = 0. Solving the problem on uniformly
refined meshes is omitted.

The designs generated on adaptively refined meshes
with decreasing volume fractions are shown in Fig. 24.
Additionally, we depict horizontal cross-sections of the
designs in blue, to visualize the layouts’ internal material
arrangement. The performance in terms of strain energy,
mass, and the volume ratios is given in Table 9. As the
mass of the design decreases, very thin structural members
are generated. These designs demonstrate the ability of the
adaptive mesh strategy to resolve fine members and details
starting from rather coarse meshes.

Table 10 gives the iteration kpeak at which the peak
number of free DOFs is reached, the peak number of free
DOFs and the number of free DOFs at the end of the
optimization process. The peak number of DOFs is similar
for each problem setup and is recorded around iteration 95,
i.e., after the second refinement step. The final number of
unconstrained DOFs shows that as the mass of the designs
becomes smaller, the associated number of free DOFs in the
system drops, leading to a reduced computational time.

Table 10 also provides the efficiency factors evaluated
with Nopt being the number of iterations to convergence.
Here, we only consider the efficiency factors with respect to
an equivalent FEM model, i.e., Efem and Rfem considering

a uniformly refined mesh with lref = 3. The efficiency ratio
Efem increases as the mass of the designs decreases, i.e.,
the lower the volume fraction, the larger the computational
saving. Since all cases start with ws = 0.5 and since the
peak DOFs count is recorded around iteration 95 for each
design, the Rfem values are almost the same for all cases.
The strategy for reducing ws could be improved to increase
the computational efficiency due to mesh adaptation.

9 Conclusions

This paper presents an adaptive mesh refinement strategy
using hierarchical B-splines to perform level set topology
optimization. The geometry of the design is described by
a LSF and the analysis is performed using the XFEM. The
problem of simultaneously achieving a precise description
of the geometry and an accurate evaluation of the physical
responses at an acceptable computational cost is addressed
by hierarchical mesh refinement, leading to an adaptive
discretization of the design and state variable fields.
After a user-specified number of optimization steps, local
refinement is performed based on a user-defined geometric
criterion, here the proximity to the solid/void interface. A
sufficient freedom in the design is ensured by considering
an initial hole seeding approach and a hole nucleation
approach based on a combined level set/density scheme.
The proposed method is applied to 2D and 3D structural
solid-void topology optimization problems considering
mass and strain energy. Optimized designs are generated
on uniformly and adaptively refined meshes and compared
in terms of geometric complexity, design performance, and
computational cost.

The numerical experiments suggest that higher order B-
splines promote the development of smooth designs and
limit the need for filtering techniques required with low-
order interpolation functions. Contrary to using coarser
meshes, higher order B-splines do not limit the ability to
represent fine members and thus do not restrict the design

Table 10 Performance in terms of computational cost for designs in Fig. 24

wfinal
s = 0.1 wfinal

s = 0.05 wfinal
s = 0.005 wfinal

s = 0.0005

kpeak 95 94 94 95

Peak # DOFs 1910815 1852155 1867655 1836490

End # DOFs 1289080 1128070 758425 758425

Nopt 218 220 252 273

Efem 23.16 25.56 31.01 32.73

Rfem 9.79 10.21 10.10 10.32
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space. Moreover, introducing truncation allows imposing
accurately bounds on the design variables.

Additionally, the numerical simulations show that the
ability to nucleate holes during the optimization is crucial
for increasing the computational advantage provided by
mesh adaptation. The initial hole seeding approach limits
the adaptive strategy performance, as rather fine meshes are
required to resolve complex initial hole patterns.

Although the choice of the initial refinement influences
the optimized designs, the numerical studies demonstrate
that the adaptive strategy allows for the development of com-
plex features, such as thin shear webs in 3D. Moreover, the
adaptive designs exhibit similar performance when compared
with the uniform ones. The evaluation of efficiency fac-
tors in terms of the number of unconstrained DOFs shows
that the adaptive strategy provides an improvement in terms
of computational cost. In general, the efficiency factors
increase both with the order of the B-spline interpolation,
with the coarseness of the initial mesh and, for 3D problems,
with a drop in the volume fraction of the optimized designs.

Future work will focus on the following: (i) exploring alter-
native refinement strategies to further increase the accuracy
and computational efficiency, and (ii) addressing problems
with more complex physics. With regard to the refinement
strategy, the method could be extended to handle the design
and state variable fields separately. Other refinement cri-
teria should be considered, such as finite element error
indicators. Additionally, the B-spline interpolation should
be extended to higher order B-splines for the state vari-
able field. Finally, as more complex physics are considered,
allowing for a more dynamic refinement approach could be
crucial to resolve, for example, transient problems.
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Appendix Hierarchical B-splines versus
truncated hierarchical B-splines

The influence of the truncation operation on the B-splines
is investigated by solving the 2D beam problem, presented
in Section 8.1, with HB-splines and THB-splines on an

adaptive mesh with an initial refinement level l0
ref = 2 and

applying the refinement operation every 25 iterations first
for the initial hole seeding approach and then for the level
set/density scheme.

It should be noted that extra treatment is required to
impose bounds on the design variables when working with
HB-splines, as they do not constitute a PU. Bounds are
enforced by clipping the variable values with the upper or
lower allowed values. The clipping operation is only applied
to the combined level set/density scheme as the density
values should remain between 0 and 1.

A.1 2D beamwith initial hole seeding

The problem setting is identical to the one presented
in Section 8.1.1, but with a comparison of HB-splines
and THB-splines. The obtained designs and corresponding
strain energy values are given in Fig. 25. The linear,
quadratic, and cubic designs only differ slightly. The
remaining differences between the designs can be explained
by the support size of the HB- and THB-splines that
differs, as shown in Fig. 7. This is further supported by the
maximum stencil size recorded for each design variables,
i.e., the maximum number of design coefficients affected by
the change in a specific design coefficient. The stencil sizes
for the HB-splines are 8, 16, and 33 for the linear, quadratic,
and cubic orders, against 2, 9, and 16 for the THB-splines.
The runtime ratios and the efficiency factors are given in
Table 11 and match closely for HB- and THB-splines.

A.2 2D beamwith simultaneous hole seeding

The problem setting is identical to the one presented in
Section 8.1.2 but with a comparison of HB-splines and
THB-splines. The obtained designs and corresponding final
strain energy values are given in Fig. 26. The designs differ
more significantly for HB- and THB-splines than when
working with level set only (see Fig. 25). These differences
can be partly explained by the maximum stencil size
difference between HB- and THB-splines, i.e., 7, 16, and 37
for linear, quadratic, and cubic HB-splines against 2, 9, and
16 for the THB-splines. On top of the stencil size mismatch,
these differences in the final designs can be explained
by the clipping operation applied to the density values
to keep them between 0 and 1 when working with HB-
splines. Clipping yields non-differentiability with respect
to the clipped values which can influence the optimization
process. The runtime ratios and the computational gain
factors are given in Table 12 and match closely for both HB-
and THB-splines.
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Fig. 25 2D beam using adaptively refined meshes with initial hole seeding. Initial refinement level of l0
ref = 2, maximum refinement level of

lref,max = 4. Comparison of HB- and THB-splines

Table 11 Performance in terms of computational cost for designs in
Fig. 25

HB-splines THB-splines

Lin. Quad. Cub. Lin. Quad. Cub.

Nopt 1385 1158 1254 1460 1158 1254

Etime 1.82 1.78 1.80 1.87 1.84 1.83

Exfem 1.93 1.83 1.97 1.93 1.85 1.97

Rxfem 1.65 1.70 1.74 1.65 1.70 1.72

Efem 3.93 3.78 4.06 3.94 3.81 4.05

Rfem 2.92 3.04 3.08 2.92 3.03 3.05

Fig. 26 2D beam using adaptively refined meshes with simultaneous hole seeding. Initial refinement level of l0
ref = 2 and maximum refinement

level of lref,max = 4. Comparison of HB- and THB-splines

Table 12 Performance in terms of computational cost for designs in
Fig. 26

HB-splines THB-splines

Lin. Quad. Cub. Lin. Quad. Cub.

Nopt 941 405 542 941 539 433

Etime 1.78 2.13 1.88 1.79 2.11 2.05

Exfem 2.16 2.71 2.52 2.15 2.54 2.70

Rxfem 3.31 3.15 3.29 3.13 3.16 3.42

Efem 4.14 4.72 4.65 4.13 4.61 4.80

Rfem 3.31 3.15 3.29 3.13 3.16 3.42
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Replication of results Upon request, the authors will provide the full
set of input parameters for each topology optimization problems
presented in the paper. Additionally, the initial meshes used for the
designs with uniform refinement and the succession of meshes created
through the optimization processes for the designs with adaptive
refinement will be provided upon request.
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Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the truncated
basis for hierarchical splines. Computer Aided Geometric Design
29(7):485–498. https://doi.org/10.1016/j.cagd.2012.03.025. Geo-
metric Modeling and Processing 2012
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