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Abstract
Problems in structural optimization typically involve decisions modeled as binary variables that lead to difficult
combinatorial optimization problems. The literature presents different techniques to relax the binary variables in order to
avoid the high computational costs required by the solution of combinatorial problems. This note develops a novel relaxation
strategy to map a problem with binary variables into an equivalent problem with continuous variables. A set of theoretical
results prove the equivalence of the proposed approach and the original binary optimization problem. The strategy is applied
to the unassigned distance geometry problem, relying on the design of a new formulation for the problem. Computational
studies illustrate the benefits of the proposed relaxation.

Keywords Binary relaxation · Combinatorial optimization · Unassigned distance geometry problem ·
Nonlinear optimization

1 Introduction

Problems in the optimization of structures frequently
require the use of binary decision variables. Examples
include a nonlinear 0 − 1 formulation to minimize the
mass of load-carrying structures (Stolpe and Sandal 2018)
and the optimal design of frame structures (Van Mellaert
et al. 2018). Exact solutions to these problems require high
computational efforts, precluding the solution of large-scale
problems. A strategy to tackle the computational burden
is to relax the binary variables and devise constraints that
should induce the value of the relaxed variables to a binary
domain. An ideal relaxation technique would be able to
obtain binary solutions with easy handling constraints that
allow reducing the overall computation effort. The quest for
such an ideal relaxation technique has been the research
core in binary optimization.
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For instance, binary variables xi ∈ {−1, 1} can be relaxed
to the interval [−1, 1] by adding a set of constraints x2

i = 1
(Kochenberger et al. 2014). Another procedure relaxes the
binary variables xi ∈ {0, 1} as xi ∈ [0, 1], with the addition
of the constraints xi(xi − 1) = 0 (Kochenberger et al.
2014). A third technique is the solid isotropic material with
penalization (SIMP) method (Bendsøe 1989), for problems
with xi ∈ {0, 1} variables.

Because the SIMP may fail to obtain binary solutions
in some simple counterexamples, Martı́nez (2005) proposed
a set of conditions to overcome this issue, including the

addition of the constraint
n∑

i=1
xi ≤ V, V ∈ {1, . . . , n}.

However, the requirement of the upper bound V restrains
the domain of applications of this SIMP approach. This note
designs a new way of relaxing the binary variables that allow
avoiding the requirement of such an upper bound.

The proposed approach maps the original problem
with binary variables xi ∈ {0, 1} into an equivalent
continuous problem with relaxed variables xi ∈ [0, 1], using
supplementary continuous variables yi ∈ [0, 1] and only
one additional constraint.

The worth of the proposed relaxation is assessed using
a new formulation for the unassigned distance geometry
problem (uDGP). The uDGP searches to unveil the structure
of particles or proteins, i.e., the 3D position of each
atom (vertex) of these structures. The pieces of information
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available are the number of vertices and a list of distances
between them, which are provided by experimental
techniques such as nuclear magnetic resonance (NMR) or
X-ray (Liberti and Lavor 2018).

The main theoretical results to prove the equivalence of
the proposed approach and the original binary optimization
problem are discussed in the next section. Section 3 presents
a new formulation for the unassigned distance geometry
problem and the computational experiments. Conclusions
follow.

2 Binary relaxation

Consider the optimization problem,

max f (x); s.t. x ∈ Ω (1)

where f : Rn −→ R, Ω ⊂ R
n represents the constraint set,

and xi ∈ {0, 1}, i = 1, . . . , n the optimization variables.
The following three results show that Problem (1) can be

converted into an equivalent continuous problem adding a
single quadratic constraint.

Lemma 1 The binary variables xi in Problem (1) can
be relaxed to xi ∈ [0, 1], by adding a set of continuous
variables yi ∈ [0, 1] and a set of constraints (xi − yi)

2 = 1
(i = 1, . . . , n).

Proof Indeed, the only solutions of (xi − yi)
2 = 1 for

xi ∈ [0, 1] and yi ∈ [0, 1] are xi = 0 and yi = 1 or xi = 1
and yi = 0; whichever case, the solutions are binary.

The following lemma extends this result by showing that
the set of n constraints (xi − yi)

2 = 1 can be packed into a
single quadratic constraint.

Lemma 2 Assume the binary variables xi ∈ {0, 1} relaxed
as described in Lemma 1. The set of n quadratic constraints
(xi − yi)

2 = 1 is equivalent to the single quadratic

constraint
n∑

i=1
(xi − yi)

2 = n.

Proof Note that the maximal value of (xi − yi)
2 for xi ∈

[0, 1] and yi ∈ [0, 1] is equal to 1. Therefore, the maximal

value of
n∑

i=1
(xi − yi)

2 for xi ∈ [0, 1] and yi ∈ [0, 1] is equal

to n. In other words, the constraint
n∑

i=1
(xi − yi)

2 = n is

satisfied when each term (xi − yi)
2 reaches the maximum

value. By Lemma 1, the solution is binary.

Now consider Problem (2),

max f (x)

s.t.
n∑

i=1
(xi − yi)

2 = n

x ∈ Ω, y ∈ Ω (2)

where f : Rn −→ R, Ω ⊂ R
n, and xi ∈ [0, 1], yi ∈ [0, 1],

i = 1, . . . , n.

Theorem 1 The maximum value of Problem (2) is equal to
the maximum value of Problem (1).

Proof Lemmas 1 and 2 show that any feasible solution
for Problem (2) is binary. Theorem 1 proves the additional
result that there is a unique transformation that maps a
feasible solution for Problem (1) into a feasible solution for
Problem (2) with the same value for the objective function,
f (x), and conversely.

Assume that x̂ is a feasible solution for Problem (1).
Using the rule x̃i = x̂i and ỹi = 1 − x̂i (i = 1, . . . , n), it is
possible to build a feasible solution (x̃, ỹ) for Problem (2),
with the same value for the objective function, f (x̂).

Conversely, suppose that (x̂, ŷ) is a feasible solution
for Problem (2). From Lemmas 1 and 2, (x̃, ỹ) is binary.
Therefore, x̃ is a feasible solution for Problem (1), with the
same value for the objective function, f (x̃).

Lemmas 1, 2, and Theorem 1 show that the relaxed
Problem (2) is equivalent to the original Problem (1). The
next result proves that, under the assumption of continuity
for the function f , the quadratic constraint set can be added
to the objective function without loss of the integrality
properties.

Consider the Problem (3),

max f (x) − c · g(x, y)

s.t. x ∈ Ω, y ∈ Ω (3)

where f is continuous, g(x, y) = n −
n∑

i=1
(xi − yi)

2, c ≥ 0,

Ω ⊂ R
n, xi ∈ [0, 1], and yi ∈ [0, 1], i = 1, . . . , n.

Theorem 2 The Problem (3) is equivalent to the Prob-
lem (1) for a suitable value of c.

Proof Note that g(x, y) is continuous; also, using Lem-
mas 1 and 2, it is immediate to see that, for xi ∈ [0, 1] and
yi ∈ [0, 1], g(x, y) ≥ 0, and that g(x, y) = 0 if and only if
all xi and yi are binary. Therefore, and considering the con-
tinuity of the function f , a penalty function approach shows
that Problem (2) and Problem (3) are equivalent, for a suit-
able value of c (Luenberger and Ye 2003, Chapter 13); in
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addition, using Theorem 1, the Problem (3) is equivalent to
the Problem (1).

Another property concerning g(x, y) that can be useful
to assure global convergence of the optimization algorithms
in some of the fields of application is its concavity. Indeed,
the function g(x, y) can be expressed as g(x, y) = g(z) =
n − 〈z,A z〉, where z = [x y], A =

[
I - I
- I I

]

is a block

matrix, and I is the identity matrix of dimension n. Applying
a singular value decomposition (SVD) for matrix A,

A=
[
I - I
- I I

]

=
[√

2
2 I

√
2

2 I

−
√

2
2 I

√
2

2 I

] [
2I 0
0 0I

] [√
2

2 I −
√

2
2 I√

2
2 I

√
2

2 I

]

.

(4)

where 0 is a zero matrix of dimension n × n. Using this
result, it is straightforward to see that A has n eigenvalues
equal to 0 and n eigenvalues equal to 2. Therefore, the
matrix A is positive semidefinite, and the function g(x, y) is
concave.

The formulation for the unassigned distance geometry
problem (uDGP) proposed in the next section will illustrate
the computational benefits of these results. The advantage
of proposing a model to apply these ideas to the uDGP
is twofold: the intrinsic difficulty of the uDGP makes it a
severe testbed (Liberti and Lavor 2018), and improvements
in solution strategies for this problem have their own
worthiness, provided by applications in robotics (Porta et al.
2005; Rojas and Thomas 2013), design of structures, nano-
technology, and bio-engineering (Liberti and Lavor 2018).

3 Unassigned distance geometry problem

The uDGP (Billinge et al. 2016) seeks for the best
assignment of each vertex of a molecule to a 3D Euclidean
space, considering the number of vertices and the distance
between them (Duxbury et al. 2016). The literature about
uDGP is incipient, making it an open research area in
distance geometry (Liberti and Lavor 2018).

The proposed formulation for the uDGP merges the
problem of assigning distances to all single pairs of vertices
with the problem of positioning the vertices in the Euclidean
space. Because a distance value may occur repeatedly, each
entry of the distance list contains the value of the distance
(da, a = 1, . . . , m) and its multiplicity (ma , a = 1, . . . , m).

As the data usually comes from experimental methods,
inaccuracies and missing data should be expected. The
case addressed in the (5)–(9) considers inaccuracies in the

distance values (da) and underestimations of the distance
frequency (ma). The first aspect is handled by adding
positive and negative deviations to the distance value. The
second aspect is handled by considering the data about
multiplicity as a lower bound for ma .

The model comprises three sets of variables: xi ∈ R
k ,

representing the position of the vertices i = 1, . . . , n in the
Euclidean space of dimension k; yaij ∈ {0, 1}, assigning to
the vertices i, j the distance da ; pij ∈ R+ and nij ∈ R+,
which are, respectively, the positive or negative deviations
of da from the real distance between xi , xj .

Screening the model for some symmetries allows the
reduction in the number of variables: since the distances
between two vertices i and j are symmetrical, only one
of these distances needs to be represented; also, for i =
j , the distance between them is zero and the variable
yaij = 0.

Equations (5)–(9) summarize the mathematical model.

min
n−1∑

i=1

n∑

j=i

(pij + nij ) (5)

s.t.
n−1∑

i=1

n∑

j=i

yaij (‖xi −xj‖−da+pij −nij )=0, ∀a (6)

m∑

a=1

yaij ≤ 1, ∀i, j (7)

n−1∑

i=1

n∑

j=i

yaij ≥ ma, ∀a (8)

xi ≥ 0, nij ≥ 0, pij ≥ 0, yaij ∈ {0, 1} (9)

The objective function minimizes the sum of the positive
and negative deviations from the distance between two
vertices. The lower bound for the optimal value of the
objective function is zero; in the cases for which the lower
bound is attained, the solution delivers an exact assignment
for the data provided.

The constraint set (6) computes the positive and negative
deviations for each pair i, j assigned to the distance da .
Because the number of equations in the constraint set (6)
increases with the number of different distances da , a high
multiplicity decreases the computational cost of solving the
problem. The constraint set (7) expresses that only one
assignment of the distances to a single pair of vertices is
allowed. The constraint set (8) sets ma as the lower bound
for the multiplicity of each distance da . It should also be
observed that the binary variables yaij in the (5)–(9) play
the role of the variables xi in Problem (1).
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Using the relaxation strategy proposed in the previous
section, the model described by the (5)–(9) can be restated
as (10)–(14),

min
n−1∑

i=1

n∑

j=i

(pij + nij )

+c ·
⎛

⎝mn(n−1)

2
−

m∑

a=1

n−1∑

i=1

n∑

j=i

(yaij −waij )
2

⎞

⎠ (10)

s.t.
n−1∑

i=1

n∑

j=i

yaij (‖xi −xj‖−da+pij −nij ) = 0, ∀a (11)

m∑

a=1

yaij ≤ 1, ∀i, j (12)

n−1∑

i=1

n∑

j=i

yaij ≥ ma, ∀a (13)

xi ≥0, nij ≥0, pij ≥0, yaij ∈[0, 1], waij ∈ [0, 1] (14)

From the last result of Section 2, the inclusion of the
relaxation term in the objective function does not bring
additional difficulties to the problem. Also note that the
continuous variables waij in the (10)–(14) play the role of
the variables yi in Problem (2).

The following computational tests evaluate both models
in solving molecular conformation instances of the uDGP.
Four classes of instances with 5, 7, 10, and 20 vertices were
generated using the method proposed by Lavor (2006). Each
class contains ten instances, for which 30% of the distances
were randomly removed.

The problems were coded with the modeling language
AMPLTM (Fourer et al. 1990) and solved with the KnitroTM

package for nonlinear optimization (Byrd et al. 2006) on
a PC desktop using Linux operational system, Intel Core
i7 processor, and 16 GB of RAM. The maximum allowed
execution time was 3600 s. Preliminary computation
experiments returned 500 as a suitable value for the penalty
constant c, providing feasible solutions without causing
numerical instabilities.

Table 1 presents the computational results for the model
described by the (5)–(9), named Integer, and for the model
described by the (10)–(14), called Relaxed. The column
“Vert” gives the number of vertices for each instance; the
column “Bin Var” contains the number of binary variables
in the “Integer” model; column “Solved” gives the number
of instances solved with each model; the column “Deviat.”
presents the average deviation for the instances, computed

as
n−1∑

i=1

n∑

j=i

(pij + nij ).

The results in Table 1 show that both the Integer and
the Relaxed models provide exactly solvable approaches

Table 1 Data about instances and solutions

Integer Relaxed

Vert Bin Var Solved Deviat. Solved Deviat.

5 70 0 – 10 7.5

7 315 1 1.57 10 38.7

10 1440 0 – 8 59.7

20 25270 0 – 3 443.3

to the uDGP, an open problem for which there are only a
few heuristics available (Duxbury et al. 2016). However,
there is a clear advantage of the Relaxed model, illustrating
the benefits of relying on the binary relaxation strategy
developed in Section 2; the computation complexity of the
uDGP severely restricted the solvable instances with the
Integer approach, which could address only one out the 31
instances solved with the proposed approach.

As a final remark, note that the deviations obtained with
the Integer approach should not be compared with the
deviations obtained with the Relaxed approach in Table 1.
Indeed, not only the Integer approach could address just a
single instance out the 31 instances solved with the Relaxed
approach, but also it is not possible to assure that there exist
optimal binary solutions for all these 31 instances.

4 Conclusions

The main strength of the relaxation ideas proposed here
relies on how it achieves generality while remaining
essentially uncomplicated. The model proposed for the
unassigned distance geometry problem (uDGP) was a
severe testbed to evaluate these ideas. Being a nonlinear
and nonconvex problem with a large number of binary
variables, the uDGP has all the ingredients of a very difficult
combinatorial optimization problem. It goes without saying
that in being able to address the uDGP, the proposed
approach enlarges the perspective to solve other difficult
engineering combinatorial optimization problems with
binary variables.
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Replication of results The results presented in Table 1 can be repli-
cated by applying the mathematical models in this note and the
instance set available on the supplementary material. Additionally, an
instance generator coded in Julia and the full instance set are available
at https://github.com/petrabartmeyer/uDGP.
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