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Abstract
This study presents a novel computational framework for designing optimal dissipative (damping) metamaterials under
time-dependent loading conditions at finite deformations. In this framework, finite strain computational homogenization
is integrated with a density-based multimaterial topology optimization. In addition, a thermodynamically consistent finite
strain viscoelasticity model is incorporated together with an analytical path-dependent sensitivity analysis. Optimization
formulations with and without stiffness and mass constraints are considered, and various new damping metamaterial designs
are obtained that combine soft viscoelastic and stiff hyperelastic material phases. Multiscale stability analysis using the
Bloch wave analysis and rank-1 convexity checks is also carried out to investigate stability of the optimized designs. Stability
analyses demonstrate that the inclusion of voids or soft material phases can make a metamaterial more prone to lose micro
and macro-stability. Furthermore, the concept of tunable metamaterials is explored wherein metamaterial’s response is
steered towards a stable deformation path by tailoring the design with a preselected micro buckling mode.

Keywords Dissipative metamaterials · Multimaterial topology optimization · Viscoelasticity · Hyperelasticity · Nonlinear
homogenization · Multiscale stability

1 Introduction

Mechanical metamaterials with tailored functionalities have
received considerable attention in recent years due to the
unprecedented progress in additive manufacturing technolo-
gies (Gibson et al. 2014; Gao et al. 2015). In essence,
these metamaterials are obtained by carefully designing the
underlying material microstructure, and the exotic proper-
ties of these metamaterials are dependent on the tailored
material microstructures rather than on the material’s chem-
ical constitution. While many metamaterials have been
obtained by experimental design and trial-and-error meth-
ods (Surjadi et al. 2019), advanced computational methods
based on multiscale mechanics and mathematical optimiza-
tion can provide a rigorous framework for designing such
metamaterials (Sigmund 1994). This study is concerned
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with the design of optimized metamaterials with desir-
able damping and stiffness properties under finite strains
using nonlinear homogenization and topology optimization
methods.

Homogenization theories, starting with the pioneering
work of Hill (1972) and Mandel (1972), provide a rigorous
mathematical framework for predicting the effective prop-
erties of composites based on analysis of the underlying
metamaterial microstructure. For comprehensive reviews of
homogenization theories and various computational aspects,
the readers are referred to Saeb et al. (2016) and Blanco
et al. (2016). While homogenization analysis under small
deformations is straightforward, the consideration of stabil-
ity under finite strain homogenization is nontrivial (Gey-
monat et al. 1993). As shown in previous studies (Geymonat
et al. 1993; Triantafyllidis et al. 2005), both microscale
stability (leading to short wavelength bifurcations) and
macroscale stability (i.e., loss of macroscopic rank-1 con-
vexity associated with long wavelength bifurcations) can
be lost under finite deformations. Topology optimization,
first proposed by Bendsøe and Kikuchi (1988), on the other
hand, seeks optimummaterial layout to minimize/maximize
predefined objectives, and these methods have undergone
significant progress and are now routinely used in engineering
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designs (Sigmund and Maute 2013; Deaton and Grandhi
2014). Combining with asymptotic homogenization theory,
Sigmund (1994) first used topology optimization in material
design and optimization. Following Sigmund’s work, a large
amount of research has been devoted to the discovery of
novel metamaterials with a wide range of properties, such as
extreme thermal expansion (Sigmund and Torquato 1997),
extreme bulk and shear modulus (Gibiansky and Sigmund
2000; Huang et al. 2011), desirable band-gaps (Sigmund
and Jensen 2003), negative Poisson’s ratio (Sigmund 1994)
and optimal plastic energy dissipation (Alberdi and Khan-
delwal 2019b) and damping characteristics (Andreassen and
Jensen 2014; Asadpoure et al. 2017; Yun and Youn 2018),
among others. Though promising, the metamaterial design
by inverse homogenization based topology optimization is
mostly restricted to small deformation regime. Design via
inverse homogenization under finite deformation is chal-
lenging due to a number of issues, including the difficulties
in the nonlinear finite element analysis (FEA), where the
mesh distortion can occur in low/intermediate density ele-
ments that would prevent the convergence in FEA (Buhl
et al. 2000). The other challenge is related to the validity of
nonlinear homogenization due to the presence of potential
multiscale, i.e., micro and macro scale, instabilities (Gey-
monat et al. 1993; Triantafyllidis et al. 2005), as mentioned
above. Recently, some efforts have been made in designing
metamaterials at finite strains (Nakshatrala et al. 2013; Kato
et al. 2018; Zhang and Khandelwal 2019a).

Metamaterials with optimal damping and stiffness
properties are needed in many applications for energy
dissipation and vibration control in aerospace, automotive,
mechanical, and civil engineering (Hagood and von Flotow
1991; Rao 2003; Nakra 1998). Energy dissipation in
these metamaterials is due to the viscoelastic behavior
of the underlying material. Most of the previous studies
on viscoelastic metamaterial design have been confined
to the small strain regime wherein frequency domain
analyses under steady-state conditions are considered
(Andreassen and Jensen 2014; Yi et al. 2000; Chen and
Liu 2016; Huang et al. 2015). This is a rather restrictive
design framework, since arbitrary time-dependent loadings,
such as pulse, irregular cyclic loadings, etc., cannot
be considered. Extension to time domain is not trivial,
however, due to the path-/time-dependent design sensitivity
analysis (Michaleris et al. 1994), and only in the recent
studies efforts have been made to incorporate consistent
and accurate path-/time-dependent sensitivities in design
optimization (Alberdi et al. 2018b; Zhang et al. 2017; Li
et al. 2018; Ivarsson et al. 2018; Bogomolny and Amir
2012; Li et al. 2017; Nakshatrala and Tortorelli 2015;
Nakshatrala and Tortorelli 2016; Alberdi and Khandelwal
2017; Alberdi and Khandelwal 2019a). Another important

restriction is due to the small strain assumption that has been
considered in the previous studies on design of viscoelastic
metamaterials. As has been demonstrated in previous
studies with hyperelastic materials (Buhl et al. 2000; Jung
and Gea 2004; Zhang et al. 2018; Wallin et al. 2018),
nonlinear designs under finite strains can be significantly
different from linear designs. This is critical since damping
metamaterials such as viscoelastic metamaterials can
undergo large deformations during a loading process. As
a result, designs based on small strain assumptions can
lead to suboptimal or even misleading designs. Moreover,
nonlinear metamaterial designs should also account for
macro and micro instabilities (Zhang and Khandelwal
2019a; Triantafyllidis and Schraad 1998), which is a non-
issue in the design of viscoelastic metamaterials under small
strains.

To address the aforementioned challenges, a computa-
tional design framework is proposed in this study for the
design of optimal damping metamaterials at finite strains
based on nonlinear homogenization and density-based mul-
timaterial topology optimization. This work is inspired by
the previous studies (Zhang et al. 2015; Zhang and Khandel-
wal 2019b), where it has been demonstrated that combining
softer viscoelastic material with stiffer elastic material can
vastly improve the damping performance of a structure or
material. The main contributions of this work are as follows:
(a) An effective design framework is achieved by combining
a series of methods, models, and techniques including finite
strain homogenization analysis that enables a clear transi-
tion from the microstructural behavior to the macroscale
properties, a thermodynamically consistent finite strain
viscoelasticity model with analytical path-dependent sen-
sitivities, multimaterial optimization formulations, and an
adaptive linear energy interpolation scheme for mitigating
mesh distortion issues; (b) parametric studies are conducted
for providing important insights on the damping metama-
terial design; (c) multiscale stability investigations on the
optimized designs based on Bloch wave analysis and rank-1
convexity checks are carried out, and the use of short-
wavelength buckling mode for obtaining a tunable design
performance is numerically demonstrated. Stability inves-
tigations are only carried out as post-design checks and
stability constraints are not directly included in the opti-
mization process. The rest of the paper is organized as
follows: in Section 2, finite deformation homogenization
method is reviewed. In Section 3, finite strain viscoelastic
model is presented. Sections 4 and 5 give the density-based
multimaterial topology optimization formulations and path-
dependent sensitivity analysis, respectively. Section 6 shows
illustrative numerical examples, which is followed by multi-
scale stability investigations in Section 7. Final remarks and
conclusions are given in Section 8.
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2 Finite deformation homogenization

Finite deformation homogenization theory is used for
describing the overall macroscale response of metamaterials
with periodic microstructures. To this end, a representative
unit cell (RUC) is considered that characterizes the
underlying periodic microstructure of a metamaterial. Based
on homogenization theory, this RUC can be used to describe
the overall macroscale metamaterial behavior (Saeb et al.
2016). For example, Fig. 1 shows the deformation of a bulk
of metamaterial with microstructure characterized by the
periodic arrangement of a unit cell that can be taken as RUC.
To fulfill the scale separation assumptions, the characteristic
length of RUC should be much smaller than the dimensions
of the macroscale continuum body (Saeb et al. 2016). Note
that an overbar is used for denoting variables at macroscale,
e.g., X and x are the position vectors of a material point
in the initial and current configurations, respectively, at
macroscale, while X and x are position vectors of a material
point in the initial and current configurations, respectively,
at microscale.

At macroscale, the initial configuration �0 is mapped to
the current configuration �t by a nonlinear deformation ϕ,
i.e., x(t) = ϕ(X, t) at X ∈ �0, t ∈ R

+. The resulted
deformation gradient field at macroscale is F (X, t) =
I + ∇u, where u is the macroscopic displacement field
satisfying x(t) = X + u(t) and ∇ represents the gradient
operator w.r.t. the macroscale coordinates X. At microscale,
the initial configuration of RUC is denoted by �

μ
0 that

consists of solid part B0 and void part H0, i.e., �
μ
0 =

B0∪H0, which is mapped to the current configuration�
μ
t (=

Bt ∪Ht ) by a nonlinear deformation ϕ. In the deformation-
driven homogenization framework, deformation of the
microstructure is driven by a local deformation F (X, t)

of the macro-continuum associated with the point X at

macroscale. That is, with the macroscopic deformation
gradient F as the input, the microscale problem is solved for
the homogenized/macroscopic stress and tangent moduli. In
FE2 formulation (Saeb et al. 2016), the micro-problem is
defined and solved at each integration point in the macro-
problem and the two problems are solved in a nested
way. In the current study, the macroscopic deformation
F (X, t) with t ∈ R

+ is prescribed at certain fixed X ∈
�0, without referring to any specific macro-problem. The
macroscopic material properties are then evaluated under
this deformation mode. Thus, the explicit dependence on X

is omitted in further discussions.
The microscopic displacement field u(X, t) over the

RUC domain �
μ
0 is assumed to be driven by a prescribed

macroscopic deformation F (t), i.e.,

u(X, t) = (
F (t) − I

)
.X + ũ(X, t) (1)

where ũ(X, t) is defined as the displacement fluctuation
field. The microscopic deformation gradient can be
expressed as

F (X, t) = F (t) + ∇Xũ(X, t) (2)

where ∇X denotes the gradient operator w.r.t. the
microscale coordinates X. Following Hill (1972), the macro
deformation gradient F is assumed to be fully described by
the kinematics on the boundary of RUC

F (t) = I + 1

V

∫

∂�
μ
0

u(X, t) ⊗ N(X)dS (3)

which, combined with a rigid-body translation removal
constraint, i.e.,

∫
B0

u(X, t)dV = 0, constitutes the
kinematical admissibility constraints for the microscale
displacement field of the micro-problem (de Souza Neto
et al. 2015). Here, V is the volume of the domain �

μ
0 and

N the unit normal vector on the boundary ∂�
μ
0 . Note that

Fig. 1 Illustration of the
deformation of periodic solid.
The motion ϕ of the RUC
associated with a material point
X at macroscale is driven by the
macroscopic deformation ϕ (or
F )

elacsorc i
M

elacsorca
M

Initial configuration Current configuration
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∂B0 = ∂�
μ
0 ∪ ∂H0 where ∂(�) denotes the boundary of

�. As a result, the kinematically admissible displacement
fluctuation field ũ(X, t) is defined in a functional space
Vmin

Vmin =
{
ũ(X, t)

∣
∣∣ũ(X, t) ∈ H 1(B0), t

∈ R
+,

∫

B0

ũ(X, t)dV = 0,

∫

∂�
μ
0

ũ(X, t) ⊗ N(X)dS = 0

}

(4)

where the constraint
∫
B0

ũ(X, t)dV = 0 is for removing
rigid-body translation and the constraint

∫
∂�

μ
0

ũ(X, t) ⊗
N(X)dS = 0 is obtained by substituting (1) into (3),
which implicitly suppresses the rigid-body rotations. The
functional space H 1(B0) = {v|vi ∈ L2(B0), ∂vi/∂Xj ∈
L2(B0), i, j = 1, 2, ..., d} and L2(B0) represents the space
of square integrable functions defined on B0 and d is the
number of space dimensions. The subscript min means
that this set of constraints is the minimal set required for
kinematical admissibility. It has been shown in de Souza
Neto et al. (2015) that this set of constraints corresponds
to the constant traction boundary conditions. Additional
constraints can be introduced in a consistent way that may
lead to periodic boundary conditions or linear displacement
boundary conditions (de Souza Neto et al. 2015).

The micro-to-macro transition is governed by the
principle of multiscale virtual power (de Souza Neto et al.
2015), which is expressed as, ∀ t ∈ R

+

P : δF = 1

V

∫

B0

P : δFdV ∀ δF ∈ Lin, δũ ∈ V ⊆ Vmin

(5)

where P and P are the macro and micro 1st Piola-Kirchhoff
(PK) stress tensors, respectively, and the space of virtual
kinematically admissible fluctuation field δũ is identical to
that of the kinematically admissible fluctuation field ũ, V ,
which is a subspace of Vmin. Equation (5) can be seen as the
variational form of the Hill-Mandel condition (Hill 1972;
Mandel 1972) that states the incremental internal energy
equivalence between the macroscale and microscale. In (5),
inertia and body forces have been assumed zero and the
interested readers are referred to Ref. (de Souza Neto et al.
2015) for further extensions to dynamic cases.

The stress homogenization relation

P = 1

V

∫

B0

PdV = 1

V

∫

∂B0

t0 ⊗ XdS ≡ 1

V

∫

∂�
μ
0

t0 ⊗ XdS

with t0 = P .N (6)

and the microscale equilibrium equation
∫

B0

P : ∇Xδũ dV = 0 ∀ δũ ∈ V (7)

can be obtained from (5) by choosing δũ = 0 and
δF = 0, respectively. Note that the second equality
in (6) can be proved using divergence theorem and the
fact that ∇X.P = 0 (Saeb et al. 2016), while the third
equality is due to the traction-free void boundaries, i.e.,
t0 = 0 on ∂H0. For dissipative constituent materials, the
homogenized/macroscopic mechanical dissipation rate per
unit reference volume is assumed to be defined by the
volume average

Dint = 1

V

∫

B0

Dint dV (8)

where Dint (X, t) represents the energy dissipation rate per
unit reference volume at microscale.

2.1 Periodic boundary condition

As the underlying metamaterial microstructure is assumed
to be periodic with repeating unit cells (Fig. 1), periodic
boundary conditions are used to evaluate the homogenized
response. In this study, 2D plane strain problems are
considered in the numerical implementations where no
microscale fluctuations are on the out-of-plane surface.
However, all the presented methods can be canonically
extended to 3D cases. For a 2D RUC, the boundary can
be decomposed into a pair of negative and positive sides,
denoting as ∂�

μ−
0 and ∂�

μ+
0 , respectively (see Fig. 2),

where points on the positive side can be reached by
translating the corresponding points on the negative side
using a periodic lattice vector a1 or a2 or ±(a1 ± a2). For
periodic boundary conditions, the displacement fluctuations
on the negative side is equal to the corresponding ones on
the positive side, i.e.,

ũ+ = ũ− on ∂�
μ
0 (9)

which can be proved to automatically satisfy the constraint
in (3). Hence, the kinematically admissible displacement
fluctuation field considering periodic boundary condition is
defined in a functional space V

V =
{
ũ(X, t)

∣∣
∣∣ũ(X, t) ∈ H 1(B0), t ∈ R

+,

∫

B0

ũ(X, t)dV = 0,

ũ+(t) = ũ−(t) on ∂�
μ
0

}
(10)

and the micro-problem is completely defined by (5).
For a given discretized RUC (Fig. 2), the constraints in

(9) are given by

ũ+
q = ũ−

q q = 1, 2, ..., m (11)
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Fig. 2 Geometries and
partitioning of boundary nodes
of discretized microstructures of
RUC (blue color denotes the
negative nodes and red color
denotes the positive nodes)

(a) Square RUC (b) Hexagonal RUC

where m pairs of nodes lying on the negative and positive
boundary sides are identified. The rigid-body translation
constraint can be equivalently replaced by fixing one
arbitrary point, e.g., ũo = 0 in B0. Thus, the discretized
functional space Vh is defined by

Vh =
{
ũ(X, t)

∣
∣∣ũ(X, t) ∈ H 1(B0), t ∈ R

+, ũo = 0,

ũ+
q = ũ−

q (q = 1, 2, ..., m)
}

(12)

2.2 Principle of multiscale virtual power with
Lagrangemultiplier: discrete form

Given a discretized microstructure, the principle of mul-
tiscale virtual power together with the periodic boundary
conditions can be formulated in a variational form with
constraint-free variational spaces using the Lagrange multi-
plier method. To this end, the constrained variational form
in (5) is considered where the Lagrange multipliers are
introduced to enforced the boundary conditions [(12)] as
follows:

−V (P : δF ) +
∫

B0

P : δF dV − δλT uo − λT δuo

−
m∑

q=1

δμT
q

[
u+

q − u−
q − (F − I ).Lq

]

−
m∑

q=1

μT
q

[
δu+

q − δu−
q − δF .Lq

]
= 0

∀ δF ∈ Lin, δu, δλ, δμ (13)

where λ and μ = [μ1, ..., μm]T are the Lagrange
multipliers, and the constraints are restated in terms of
the displacement field u(X, t) instead of fluctuation field
ũ(X, t). Note that uo(t) = 0 is equivalent to ũo(t) = 0
in the sense of removing rigid-body translation. The vector
Lq in (13) represents the translation vector that satisfies
X+

q = X−
q + Lq where X+

q and X−
q are the coordinates

of the nodes on a pair of positive and negative sides (see
Fig. 2).

2.2.1 Interpretation of Lagrangemultipliers

The Lagrange multipliers λ and μ can be interpreted
as discrete nodal forces on the boundary. For instance,
assuming δF = 0, δλ = 0, δμ = 0, and δu = c0 (with c0
being constant in B0) in (13) gives λT c0 = 0. Therefore,

λ = 0 (14)

has to be satisfied, which means that for a self-equilibrated
system, fixing one arbitrary point for removing rigid-body
translation does not create any reaction forces. Next, taking
δF = 0, δλ = 0, and δμ = 0 with δu(X) = A0.X in B0

where A0 ∈ Lin (a constant 2nd-order tensor) in (13), it can
be shown that
⎛

⎝
∫

B0

P dV −
m∑

q=1

μq ⊗ Lq

⎞

⎠ : A0 = 0 ∀ A0 ∈ Lin (15)

where μq and Lq (q = 1, ..., m) are both vectors (or 1st-
order tensors) while P and A0 are 2nd-order tensors. Since
A0 can be chosen arbitrarily, it follows from (6) and (15)
that

P = 1

V

∫

B0

P dV = 1

V

m∑

q=1

μq ⊗ Lq (16)

which when combined with (6)3 shows that μq represents
the traction force at node q. Therefore, it can be seen that
the homogenized stress can be computed from the Lagrange
multipliers μ.

2.3 Finite element formulation

The rigid-body translation and periodic boundary con-
straints can be expressed in matrix-vector forms as

M1u = 0 and M2u − h = 0 (17)
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with matrices M1 and M2, and vector h constructed such
that

uo = M1u

u+ − u− = M2u

h =
⎡

⎢
⎣

(F − I ).L1
...

(F − I ).Lm

⎤

⎥
⎦ = [LM ]

([
F
]− [I ]

)

=

⎡

⎢⎢
⎢
⎢⎢
⎣

X̃1 0 Ỹ1 0
0 X̃1 0 Ỹ1
...

...
...

...
X̃m 0 Ỹm 0
0 X̃m 0 Ỹm

⎤

⎥⎥
⎥
⎥⎥
⎦

2m×4

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

F 11

F 21

F 12

F 22

⎤

⎥⎥
⎦−

⎡

⎢⎢
⎣

1
0
0
1

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

(18)

where u is the global nodal displacement vector, u+ =
[
u+
1 , ..., u+

m

]T
, and u− = [

u−
1 , ..., u−

m

]T
includes m

nodal displacements defined on the positive and negative

boundary sides, respectively. Lq =
[
X̃q, Ỹq

]T
is the

translational vector from the qth node on the negative side
to the qth node on the positive side. The expression of h

vector is written for 2D case in (18).
Considering the unknown variables to be solved as u, λ,

and μ, the resulting set of nonlinear constrained equilibrium
equations, from (13), can be written as

R(u, λ, μ) =
⎡

⎣
R1(u, λ, μ)

R2(u)

R3(u)

⎤

⎦

=
⎡

⎣
F int (u) − MT

1 λ − MT
2 μ

−M1u

−M2u

⎤

⎦+
⎡

⎣
0
0
h

⎤

⎦=0

(19)

where F int represents the global internal force vector
defined by

F int (u) =
nele

A
e=1

F e
int with F e

int =
∫

�e

BT P dV (20)

where B is the shape function derivative matrix, �e

represents the eth element integration domain satisfying

B0 =
nele⋃

e=1
�e and nele are the total number of elements

in the RUC. In the topology optimization, with the design
domain defined as the RUC, a fictitious domain approach is
adopted in which void area H0 is also included in FEA and

is assigned vanishing material properties, i.e.,�μ
0 =

nele⋃

e=1
�e.

The nonlinear system in (19) is solved using the Newton-
Raphson (NR) method and the Jacobian matrix, which is

needed for NR solver, can be calculated as

J T =

⎡

⎢
⎢⎢
⎢
⎣

∂R1
∂u

∂R1
∂λ

∂R1
∂μ

∂R2
∂u

∂R2
∂λ

∂R2
∂μ

∂R3
∂u

∂R3
∂λ

∂R3
∂μ

⎤

⎥
⎥⎥
⎥
⎦

=
⎡

⎣
KT −MT

1 −MT
2−M1 0 0

−M2 0 0

⎤

⎦ (21)

where the term KT = ∂F int /∂u is the tangent structural
stiffness matrix calculated by

KT = ∂F int

∂u
=

nele

A
e=1

ke
T (22)

in which the element tangent stiffness matrix ke
T is obtained

by the F-bar formulation given in Section 4.5 and is not
symmetric.

2.4 Homogenized stress and tangent moduli

Using (16)2 and the definition of matrix [LM ] given in (18),
the homogenized stress P is computed as

[
P
] = 1

V
[LM ]T μ (23)

where the bracket outside P means that it is arranged in a
4 × 1 vector form, similarly as [F ] used in (18).

The 4th-order tensor homogenized tangent moduli A is
defined by

A = ∂P

∂F
(24)

and can be rephrased in a matrix form as
[
A

]
=

∂
[
P
]
/∂
[
F
]
, which is of size 4 × 4 for 2D case. From

(23), it is clear that
[
A

]
is determined by the derivative of

Lagrange multiplier μ with respect to F . To this end, the
set of global equilibrium equation (19) is perturbed at the
equilibrium state by a perturbation �F , i.e.,

⎡

⎣
KT −MT

1 −MT
2−M1 0 0

−M2 0 0

⎤

⎦

⎡

⎣
�u

�λ

�μ

⎤

⎦+
⎡

⎣
0
0

LM

⎤

⎦[�F
] = 0

(25)

which results in
⎡

⎣
�u

�λ

�μ

⎤

⎦ = −J−1
T

⎡

⎣
0
0

LM

⎤

⎦
[
�F

]
(26)

Combining (24) with (23) and (26), it can be shown that

[
A

]
= − 1

V

[
L̂M

]T
J−1

T

[
L̂M

]
(27)
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where the matrix
[
L̂M

]
is of size (N + 2 + 2m) × 4 and is

defined by

[
L̂M

]
=
⎡

⎣
0N×4

02×4

[LM ]2m×4

⎤

⎦ (28)

where N is the number of total DOFs in the displacement
field, i.e., the size of u vector.

3 Finite strain viscoelastic model

The finite strain viscoelastic model proposed by Reese and
Govindjee (1998) is adopted in this study. This model is
based on a thermodynamically consistent framework, and
therefore, the energy dissipation through viscous effects is
clearly defined in the model. As compared to other finite
strain viscoelastic formulations, e.g., Holzapfel (1996) and
Holzapfel and Simo (1996), where inequilibrium pertur-
bations are assumed to be infinitesimal, this model can
accommodate large perturbations away from the equilib-
rium states. Moreover, due to thermodynamic consistency,
this model is free from dynamic instabilities, as shown
by Govindjee et al. (2014). The model is briefly reviewed
below and the implementation details can be found in
Appendix A.

3.1 Free energy

The finite strain viscoelastic model assumes multiplicative
split of the deformation gradient

F = F e.F v (29)

where F e represents the elastic deformation gradient and
F v denotes the inelastic deformation gradient resulting from
the viscous motion. The free energy is considered to be
additively decomposed into stored equilibrium state (ψeq )
and non-equilibrium state (ψneq ) energies, i.e.,

ψ(C, F v) = ψeq(C) + ψneq(F v−T .C.F v−1
) (30)

where C = F T .F is the right Cauchy-Green strain tensor.
For isotropic materials, the free energy can be equivalently
expressed in terms of b = F .F T and be � F e.F eT as

ψ(b, be) = ψeq(b) + ψneq(be) (31)

where be represents the Finger tensor corresponding to the
elastic deformation F e.

3.2 Thermodynamics and flow rules

The energy dissipation rate per unit reference volume (Dint )
is non-negative during any deformation process and is

expressed in the form of Clausius-Planck inequality as

Dint = τ : d − ψ̇ =
(
τ − 2 ∂ψeq

∂b
.b − 2 ∂ψneq

∂be .be
)

: d

−2 ∂ψneq

∂be .be :
(
1
2Lv

[
be
]
.be−1

)
≥ 0 (32)

where d � sym(l) with l � Ḟ .F−1. Equation (32) leads to
the following relationships

τ = τ eq + τneq

τ eq = 2
∂ψeq

∂b
.b and τneq = 2

∂ψneq

∂be .be (33)

where the Kirchhoff stress tensor τ is symmetric and τ eq

(or τneq ) is coaxial with b (or be).
Considering the arbitrariness of rates d and Lv

[
be
]
, this

gives

Dint = −τneq :
(
1
2Lv

[
be
]
.be−1

)
≥ 0

with Lv

[
be
]
� F .

( ˙
F−1.be.F−T

)
.F T (34)

To fulfill (34), a quadratic form is often used, i.e.,

−1

2
Lv

[
be
]
.be−1 = D : τneq (35)

where D is a fourth-order positive definite isotropic tensor
defined by

D = 1

2ηd

P
s
dev (36)

where P
s
dev � I

s
4 − 1

3I ⊗ I is the fourth-order symmetric
deviatoric projection tensors (see the context following
(B.30) for the definition of I

s
4). In (36), only the energy

dissipation due to isochoric deformations is considered
since many viscoelastic materials such as polymers are
nearly incompressible and the energy dissipation due to
volumetric deformations is limited. The extension to include
volumetric viscosity is straightforward and can be found in
Reese and Govindjee (1998). The relaxation time (τ ) near
thermodynamic equilibrium state is given by τ = ηd/μ,
where μ is the initial shear modulus of the non-equilibrium
part of the viscoelastic response.

3.3 Viscoelastic energy dissipation

Using (34) and (35), the energy dissipation rate per unit
reference volume can be calculated as

Dint = τneq : D : τneq (37)

WithDint considered as energy dissipation at microscale,
the homogenized/macroscopic energy dissipation rate per
unit reference volume (8) can be calculated as

Dint = 1

V

∫

B0

τneq : D : τneq dV (38)
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which leads to a total energy dissipation per unit macro-
scopic reference volume under a loading process during
time t ∈ [0, T ]

Wd = 1

V

∫

T

∫

B0

τneq : D : τneq dV dt (39)

4 Density-basedmultimaterial topology
optimization

Topology optimization seeks the optimal material layout
within a given design domain. In the density-based frame-
work, the domain is discretized by a finite element (FE)
mesh where each element is assigned with single/multiple
density variable(s) representing the presence or absence of
the material candidate(s). For example, with three phases
(material-0, material-1, and material-2), each element is
assigned with two density variables ρ1 and ρ2, where ρ1
indicates if material-0 is present (ρ1 = 0) or absent (ρ1 = 1)
and ρ2 denotes the proportion of material-1 as compared to
material-2 within ρ1 percentage of solid, i.e., ρ2 = 1 means
full of material-1 while ρ2 = 0 means full of material-2.
For design involving void and two solid phases, for instance,
material-0 can be taken as the void phase. Moreover, in
order to use gradient-based optimization algorithms, the dis-
crete density variables are relaxed to continuous values, i.e.,
ρ1, ρ2 ∈ [0, 1].

4.1 Topology optimization formulation

With the aim of designing metamaterials with optimal
damping properties, the objective is to maximize the
homogenized total dissipated energy densityWd (39). Three
optimization formulations are considered in this study to
design such metamaterials.

Optimization formulation-1 (OF-1):

min f0(x1, x2) = −Wd

s.t. f1(x1) = Vf (x1)/VT − 1 ≤ 0

0 ≤ xe
1 ≤ 1, 0 ≤ xe

2 ≤ 1, e=1, 2, ..., nele (40)

Optimization formulation-2 (OF-2):

min f0(x1, x2) = −Wd

s.t. f1(x1, x2) = 1 −
[
A0

]

11
/k ≤ 0

f2(x1, x2) = 1 −
[
A0

]

44
/k ≤ 0

0 ≤ xe
1 ≤ 1, 0 ≤ xe

2 ≤ 1, e=1, 2, ..., nele (41)

Optimization formulation-3 (OF-3):

min f0(x1, x2) = −Wd

s.t. f1(x1, x2) = Mf (x1, x2) − 1 ≤ 0

0 ≤ xe
1 ≤ 1, 0 ≤ xe

2 ≤ 1, e=1, 2, ..., nele (42)

In the above formulations, x1 and x2 denote the design
variables that are mapped to the density variables ρ1 and ρ2,
respectively, through the density and projection filters; nele

is the total number of elements in the design domain;
[
A0

]

ij

represents the ij component of the matrix
[
A

]
defined

in (27) evaluated at the initial undeformed state whereas
k stands for the predefined macroscopic required initial
stiffness value. Vf (x1) and Mf (x1, x2) represent the total
volume fractions and the total mass fractions of material-1
and material-2, respectively, calculated as

Vf (x1) = 1

V

nele∑

e=1

ρe
1ve (43)

Mf (x1, x2) = 1

M∗
nele∑

e=1

[ ω0(1 − ρe
1) + ω1ρ

e
1ρ

e
2

+ω2ρ
e
1(1 − ρe

2)]ve (44)

where ve denotes the volume of eth element, ω0, ω1, and ω2

are the physical densities of the three phases and M∗ is the
allowable upper limit on the total mass. VT in (40) denotes
the upper bound of Vf (x1) set in the constraint.

Remarks For nonlinear metamaterials, the stiffness varies
along the loading process due to the nonlinear nature of
the system. To achieve a better control over a designed
metamaterial stiffness, the stiffness constraints can include
the homogenized tangent moduli at all loading steps. This
can be achieved by constraining the components in the
homogenized tangent moduli A given by (27) at each step;
however, this will also result in increased computational
cost. For simplification, in (41), only the initial metamaterial
stiffness A0 is considered in the stiffness constraint. This
initial stiffness represents the metamaterial’s stiffness in the
undeformed state where the contributions to stiffness by the
viscous mechanisms are not present.

It can be seen that there is no volume or mass constraint
in OF-2 and also in OF-1 when it is used for two phase,
i.e., hyperelastic and viscoelastic, metamaterial design. This
is in contrast with the traditional stiffness design, where
volume or mass constraint has to be included for generating
discrete topologies. There are two underlying reasons for
this behavior. First, unlike the traditional stiffness design
where fully solid phase leads to the highest stiffness
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and including void phase decreases the stiffness, in the
energy dissipation designs considered in this study, fully
viscoelastic phase may not lead to the best design and
incorporating non-dissipative stiffer hyperelastic phase can
yield better designs. Second, the penalizations used in the
material interpolation schemes (i.e., the penalization power
p in (51) and (52) is greater than 1) also make the mixture
of the two phases inefficient in both stiffness as compared
to hyperelastic phase and in energy dissipation as compared
to viscoelastic phase.

4.2 Density and projection filters

Density filter – periodic formulation
Density filter (Bourdin 2001; Bruns and Tortorelli 2001),

which is adopted to address the mesh dependency and
checkerboarding issues, can be expressed in a matrix form
as

ρ̃1 = Wx1 and ρ̃2 = Wx2 (45)

where ρ̃1 and ρ̃2 are the vectors containing the filtered
design variables; W is the filtering matrix that can be
expressed in component form as

Wij = wijvj∑nele

j=1wij vj

with wij = max
(
rmin − d

(
Xi , Xj

)
, 0
)

(46)

where rmin is the filter radius andXi denotes the coordinates
of the centroid of ith element. The distance between points
Xi and Xj should take the spatial periodicity of the RUC
into account, i.e.,

d
(
Xi , Xj

) = min
L∈Q

∥
∥Xi − (

Xj + L
)∥∥

2

with Q �
{

L

∣
∣
∣∣ L =

d∑

i=1

ciai , ci ∈ Z

}

(47)

where Z stands for the set of integers.
Heaviside projection filter
Due to the averaging effect brought by the density

filter, the boundaries of optimized design tend to be blurry.
To achieve discrete designs, Heaviside projection filter

(Wang et al. 2011) is used, where the filtered design fields
are projected by the following filter operations

ρe
1 =

tanh(β̂η) + tanh
(
β̂(ρ̃e

1 − η)
)

tanh(β̂η) + tanh
(
β̂(1 − η)

)

and ρe
2 =

tanh(β̂η) + tanh
(
β̂(ρ̃e

2 − η)
)

tanh(β̂η) + tanh
(
β̂(1 − η)

)

e = 1, 2, ...nele (48)

where β̂ controls the slope of the Heaviside function while
η determines the cutoff location.

4.3 Multimaterial interpolation scheme

As intermediate densities are allowed, i.e., ρ1, ρ2 ∈
[0, 1], appropriate material interpolation scheme has to be
constructed for the representation of material properties
of mixtures, i.e., ρ1 ∈ [0, 1] and/or ρ2 ∈ [0, 1]. The
properties of the three considered materials are listed in
Table 1. As shown, all material candidates, except for
void phase, are nearly incompressible. Depending on the
choice of candidates for material-0, two different material
interpolation schemes are used.

4.3.1 Material-0: void phase

When void phase (ρ1 = 0) is included, the mixture
with ρ1 < 1 (∀ ρ2) will lead to a compressible
composite. An appropriate material interpolation dealing
with incompressibility for this case has been proposed in
Zhang and Khandelwal (2019b) and is adopted in this study.
For completeness, this scheme is presented in this section.
The material interpolation is carried out on the free energy
of the material phases

ψ(ρ1,ρ2,b,be)=ψ0(ρ1, b) + ψ1(ρ1, ρ2, b) + ψ2(ρ1, ρ2, b, be) (49)

where ψ0, ψ1, and ψ2 denote the interpolated free energy
of the material-0 (void phase), material-1 (hyperelastic
phase), and material-2 (viscoelastic phase), respectively.
Free energy of the material-0 (compressible void phase) is
interpolated as

ψ0(ρ1, b) = (
1 − ρ

pe

1

) (
ψ̂0(b) + ψ̃0(b)

)
(50)

where ψ̂0 and ψ̃0 are the volumetric and isochoric
contributions, respectively. Free energy of the material-1
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Table 1 Constitutive model parameters

Material-0

1st candidate: void phase (Ogden with N = 1) 2nd candidate: hyperelastic phase (Ogden with N = 1)

μ1 = 4.17 × 10−8 MPa, α1 = 2 μ1 = 0.08 MPa, α1 = 2

→ μ = 4.17 × 10−8 MPa → μ = 0.08 MPa

κ = 5.56 × 10−8 MPa κ = 3.97 MPa

Material-1

Hyperelastic phase (Ogden with N = 1)

μ1 = 4.17 MPa, α1 = 2 → μ = 4.17 MPa

κ = 207.11 MPa

Material-2

Viscoelastic phase (Reese and Govindjee 1998)

Equilibrium part

Ogden (N = 3) :
μ1 = 0.1379MPa, α1 = 1.8

μ2 = −0.04827MPa, α2 = −2

μ3 = 0.01034MPa, α3 = 7

⎫
⎪⎬

⎪⎭
→ μ = 0.20857 MPa

κ = 10.35898MPa

Non-equilibrium part

Ogden (N = 3) :
μ1 = 0.3544MPa, α1 = 1.8

μ2 = −0.12405MPa, α2 = −2

μ3 = 0.0265738MPa, α3 = 7

⎫
⎪⎬

⎪⎭
→ μ = 0.53602 MPa

κ = 26.6222MPa

τ = 17.5 (sec)

(hyperelastic phase) is interpolated as

ψ1(ρ1, ρ2, b) = ρ
p

2

[
ζ κ(ρ1)ψ̂1(b) + ζμ(ρ1)ψ̃1(b)

]
(51)

where the volumetric (ψ̂1) and isochoric contributions (ψ̃1)
are separately interpolated. Next, the free energy of the
material-2 (viscoelastic phase) is interpolated as

ψ2(ρ1, ρ2, b, be) = ψ
eq

2 (ρ1, ρ2, b) + ψ
neq

2 (ρ1, ρ2, b
e) with

ψ
eq

2 (ρ1, ρ2, b) = (1 − ρ2)
p
[
ζ κ (ρ1)ψ̂

eq

2 (b) + ζμ(ρ1)ψ̃
eq

2 (b)
]

ψ
neq

2 (ρ1, ρ2, b
e) = [

ε + (1 − ε)(1 − ρ2)
p
]

�
[
ζ κ (ρ1)ψ̂

neq

2 (be) + ζμ(ρ1)ψ̃
neq

2 (be)
]

(52)

where the volumetric (ψ̂eq

2 , ψ̂
neq

2 ) and isochoric contribu-
tions (ψ̃eq

2 , ψ̃
neq

2 ) are separately interpolated for both the
equilibrium and non-equilibrium contributions. The penal-
ization parameters pe > 1 and p > 1 are used for penalizing
the intermediate densities and mixtures. A quadratic form
is used for the volumetric energies (ψ̂0, ψ̂1, ψ̂

eq

2 , and
ψ̂

neq

2 ) and the Ogden model is used to formulate isochoric

components (ψ̃0, ψ̃1, ψ̃
eq

2 , and ψ̃
neq

2 ), i.e.,

ψ̂(b) = 1

2
κ(J − 1)2 and

ψ̃(b) =
N∑

q=1

μq

αq

(
λ̂

αq

1 + λ̂
αq

2 + λ̂
αq

3 − 3
)

(53)

with J = √
det(b) and λ̂a = J−1/3λa where λa (a =

1, 2, 3) are the principal stretches (i.e., the eigenvalues of√
b). For non-equilibrium strain energies ψ̂

neq

2 and ψ̃
neq

2 ,
the input variable b is replaced with be and accordingly J is
replaced with J e and λ̂a are replaced with λ̂e

a = J e−1/3λe
a

(a = 1, 2, 3), the elastic principal stretches. The initial shear
modulus which is defined by μ � 1

2

∑N
q=1 μqαq can be

used together with the initial bulk modulus κ to determine
initial Poisson’s ratio. In material interpolation, from (49) to
(52), the interpolation can be seen as conducted on material
parameters κ and μq (q = 1, . . . , N). In this way, for the
non-equilibrium strain energy, the viscosity ηd = τμ is
also interpolated, where the relaxation time τ is assumed as
a fixed constant. It is noted that even though the material
interpolation on the non-equilibrium strain energy in (52)3
can be put outside the strain energy, the calculation of be is
based on a set of coupled nonlinear constitutive equations
with interpolated parameters (see Appendix A).

The interpolation functions ζ κ(ρ1) and ζμ(ρ1) in (51)
and (52) are evaluated using material parameters according
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to the phase to which it is attached and are defined based on
the E-ν interpolation rule proposed in Zhang et al. (2018)
wherein the functions ζ κ(ρ1) and ζμ(ρ1) are determined by

ζ κ(ρ1) = κ(ρ1)

κ0
and ζμ(ρ1) = μ(ρ1)

μ0
(54)

where the bulk modulus κ(ρ1) and shear modulus μ(ρ1)

are related to Young’s modulus E(ρ1) and Poisson’s ratio
ν(ρ1) by κ(ρ1) = E(ρ1)/[3(1 − 2ν(ρ1))] and μ(ρ1) =
E(ρ1)/[2(1 + ν(ρ1))]. Here, κ0 and μ0 are the initial bulk
and shear modulus of the solid material phase, respectively.
Young’s modulus E(ρ1) and Poisson’s ratio ν(ρ1) are
interpolated using the E-ν interpolation scheme as

E(ρ1) =
{

ρ
pe

1 E0, for ψ1 and ψ
eq

2[
ε + (1 − ε)ρ

pe

1

]
E0 for ψ

neq

2

ν(ρ1) = [
εv + (1 − εv)

(
1 − (1 − ρ1)

pν
)]

ν0 (55)

where E0 and ν0 are initial Young’s modulus and Poisson’s
ratio, respectively, of the solid phase; εν is the lower bound
parameter for Poisson’s ratio and is chosen as εν = 0.4
and pν is the penalization power. In addition, a non-zero
lower bound parameter ε = 10−3 is included in the non-
equilibrium energy to avoid singularities in the interpolated
viscous moduli D where term 1/ηd is present.

4.3.2 Material-0: soft incompressible hyperelastic phase

When material-0 is chosen to be incompressible hypere-
lastic phase (2nd candidate of material-0 in Table 1), the
mixture with ρ1 < 1 (∀ ρ2) still remains nearly incom-
pressible. As a result, the incompressibility is not relaxed
for the intermediate densities, and a three-phase material
interpolation scheme similar to the one proposed by Sig-
mund and Torquato (1997) is used. In this case, the material
interpolation in (50) is replaced by

ψ0(ρ1, b) = (1 − ρ1)
pe

(
ψ̂0(b) + ψ̃0(b)

)
(56)

for penalization on material-0, and (54) is replaced by

ζ κ(ρ1) ≡ ζμ(ρ1) =
{

ρ
pe

1 for ψ1 and ψ
eq

2[
ε + (1 − ε)ρ

pe

1

]
for ψ

neq

2

(57)

Equation (55) is not needed in this case.

4.4 FEmesh distortion

The convergence of NR solver is affected by FE mesh
distortions, and mesh distortions are exacerbated in
topology optimization under finite deformation when void
regions are considered within a fictitious domain approach
(Buhl et al. 2000; Wang et al. 2014). This is due to the fact
that void regions are modeled with elements of vanishing

stiffness. However, these low stiffness elements can undergo
severe distortions, preventing FEA from converging. This
convergence issue can be mitigated by the linear energy
interpolation scheme proposed in Wang et al. (2014), which
was later extended to an adaptive scheme in Zhang et al.
(2018). The main idea of this scheme is to interpolate
between the linear and nonlinear kinematics based on
the solid/void density field. For instance, with ρ1 = 0
representing void phase, the deformation gradient F is
interpolated using the solid/void density variable ρ1 as

F = I + γ∇Xu with γ (ρ1) = exp(βρ1)

exp(cβ) + exp(βρ1)

(58)

where c and β are interpolation parameters. Following
Zhang et al. (2018), the element internal force is modified to

F e
int =

∫

�e

γBT P dV +
∫

�e

(1 − γ 2)BT
L[C : ε] dV (59)

where BL denotes the derivative of the shape functions of
a regular 4-node element, ε = ∇s

Xu represents the small
strain measure, and C is the linear isotropic elastic moduli
determined by interpolated Young’s modulus E(ρ1) =[
εE + (1 − εE)ρ

pL

1

]
E0 and constant Poisson’s ratio ν =

0.2 , where εE = 10−8 and E0 = 2μ0(1 + ν) with μ0 to
be chosen identical to that of the initial shear modulus of
hyperelastic material, and pL is the penalization power. The
remaining parameters are β = 120 and c = 0.08, where c is
adaptively updated (if needed) using the scheme proposed
in Zhang et al. (2018). It should be noted that for fully solid
designs, e.g., two solid-phase designs and three solid-phase
designs, the stiffness of each material phase is high enough
for avoiding excessive mesh distortions, and this strategy is
not incorporated in these cases.

4.5 F-bar element formulation

For FEA, F-bar element formulation (de Souza Neto et al.
1996) is adopted to avoid volumetric locking, where the
deformation gradient F is modified to

F b = r1/2F (in-plane part) with r = detF 0

detF
(60)

where F 0 is the deformation gradient evaluated at the
centroid of the element, and the in-plane part is obtained
by removing all terms related to the out-of-plane quantities
such as Fi3 and F3i where i = 1, 2, 3. As a result, the 1st
PK stress tensor is modified to

P = r−1/2P b (in-plane part) (61)

where the pair (F b, P b) serves as the input-output of
the material subroutine. Note that both F and F 0 in
(60) are evaluated based on the interpolated displacement
field when the linear energy interpolation scheme (see
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(58) in Section 4.4) is included. Further details on the
implementation and performance of F-bar elements can be
found in de Souza Neto et al. (1996). It should be mentioned
that the resulted structural tangent stiffness matrixKT is not
symmetric with the F-bar element formulation.

5 Path-dependent sensitivity analysis

The path-dependence of the viscoelastic material behavior
leads to a path-dependent sensitivity calculation. Adjoint
method is used for sensitivity analysis, since the number
of design variables far exceeds the number of objective
and constraint functions. The calculations follow the adjoint
sensitivity analysis framework proposed in Michaleris et al.
(1994), which was adopted and expanded in many recent
studies on topology optimization with inelastic materials
(Alberdi et al. 2018b; Bogomolny and Amir 2012; Kato
et al. 2015; Nakshatrala and Tortorelli 2015; Wallin et al.
2016; Ivarsson et al. 2018).

5.1 Adjoint formulation

The adjoint function is constructed as

F̂ = F(û
1
, ..., ûn

, v1, ..., vn, ρ1, ρ2)

+
n∑

k=1

γ kT
Rk(û

k
, û

k−1
, vk, vk−1, ρ1, ρ2)

+
n∑

k=1

ηkT
H k(û

k
, û

k−1
, vk, vk−1, ρ1, ρ2) (62)

where F represents the objective (or constraint) function,
û

k and vk are the solution and auxiliary variables at step k

and are determined by the corresponding global equilibrium
(Rk = 0) and local constitutive equations (H k = 0), γ k and
ηk are the corresponding adjoint variables, and the density
variables ρ1 and ρ2 are functions of the design variables
x1 and x2 through mappings by the density and projection
filters. The goal of sensitivity analysis is to calculate the
derivatives dF/dx1 and dF/dx2. In the following, the
computation of the derivatives dF/dρ1 and dF/dρ2 are
elaborated and the simple chain rules by dρ1/dx1 and
dρ2/dx2 due to density and projection filters are omitted.

Since equilibrium and constitutive equations are always
satisfied irrespective of the density variables ρ1 and ρ2, it is
obvious that dF̂ /dρ1 ≡ dF/dρ1 and dF̂ /dρ2 ≡ dF/dρ2.
Taking derivatives of F̂ with respect to ρ1 (or ρ2) and
eliminating all the terms that contain the implicit derivative
dû

k
/dρ1 and dvk/dρ1 (k = 1, ..., n) yields

dF̂

dρ1
= dF

dρ1
+

n∑

k=1

(

γ kT ∂Rk

∂ρ1
+ ηkT ∂H k

∂ρ1

)

(63)

where the adjoint variables γ k and ηk are calculated in a
backward order from the following system of equations:

step n :
⎧
⎨

⎩

∂F
∂ûn + γ nT ∂Rn

∂ûn + ηnT ∂H n

∂ûn = 0

∂F
∂vn + γ nT ∂Rn

∂vn + ηnT ∂H n

∂vn = 0

step k (k = n − 1, ..., 2, 1) :
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂F

∂ûk + γ k+1T ∂Rk+1

∂ûk + ηk+1T ∂H k+1

∂ûk

+γ kT ∂Rk

∂ûk + ηkT ∂H k

∂ûk = 0

∂F
∂vk + γ k+1T ∂Rk+1

∂vk + ηk+1T ∂H k+1

∂vk

+γ kT ∂Rk

∂vk + ηkT ∂H k

∂vk = 0

(64)

Finally, all the explicit derivatives needed to complete the
adjoint sensitivity calculation using (63) are

For F : ∂F

∂ρ1
,

∂F

∂ρ2
,

∂F

∂û
k
,

∂F

∂vk

For Rk : ∂Rk

∂ρ1
,

∂Rk

∂ρ2
,

∂Rk

∂û
k
,

∂Rk

∂û
k−1

,
∂Rk

∂vk
,

∂Rk

∂vk−1

For H k : ∂H k

∂ρ1
,

∂H k

∂ρ2
,

∂H k

∂û
k

,
∂H k

∂û
k−1

,
∂H k

∂vk
,

∂H k

∂vk−1

(65)

For the purpose of sensitivity analysis, the solution
variables (û) are chosen as the displacement field and
Lagrange multipliers, i.e., û≡ [u λ μ)]T , while the auxiliary
variables (v) are chosen to include elastic Finger tensor
be. Corresponding constraints are the global equilibrium
equations for û and local constitutive equations for be,
which are formulated as

Rk =
⎡

⎣
F k

int (u
k) − MT

1 λk − MT
2 μk

−M1u
k

−M2u
k

⎤

⎦+
⎡

⎣
0
0
hk

⎤

⎦ = 0

with F k
int (u

k) =
nele

A
e=1

F ek

int (66)

and F ek

int =
nipt∑

s=1

[
γBT

es
P k

es
+(1−γ 2)BT

L,es
[C : εk

es
]
]
wes

H k =

⎡

⎢⎢
⎢
⎢⎢
⎢
⎣

H k
1

...
H k

e
...
H k

nele

⎤

⎥⎥
⎥
⎥⎥
⎥
⎦

= 0 with H k
e =

⎡

⎢
⎢⎢
⎢
⎢
⎣

H k
e1

H k
e2

H k
e3

H k
e4

⎤

⎥
⎥⎥
⎥
⎥
⎦

(67)

and H k
es

= be − betr . exp[−2�tA]
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where Bes and BL,es are the shape function derivative
matrices for finite and small strains, respectively. The
subscript e means the eth element and the subscript s

means the sth quadrature point, and wes is the weight
of the sth quadrature point in the eth element. There are
nipt (= 4) quadrature points in each element. The local
constitutive equation H k

es
(67)3) defined at sth quadrature

point in eth element at step k is obtained by using the
backward exponential map-based integrator of the rate (35)
(see Appendix A). In (67)3, betr � F etr .F etr T with F etr =
F δ .F e

k−1 and F δ � F .F−1
k−1, and A � D : τneq where the

current step notation k and quadrature index s are omitted.
It is noted that due to the symmetry of be tensor, only the
symmetric part of be is included in H k

es
. The calculation of

the derivatives in (65) is given in Appendix B. A verification
of the sensitivity analysis is provided in Appendix C.

Remarks As mentioned in Section 4.4, for no-void designs,
e.g., two solid-phase and three solid-phase designs, the
linear energy interpolation is excluded. In these cases, γ ≡
1 in (66).

It is possible that a small perturbation on the design
might lead to a design that needs a different number of time
steps in the FEA due to the adaptivity of the NR solver.
As there is always a solution to the underlying mechanics
problem at any time under the specified loading and
boundary conditions, there is no theoretical differentiability
issue. The only issue is that due to the nonlinearity of the
problem solutions cannot be obtained via large or fixed
time steps in the NR solver, and the time-step size might
need to be adaptively changed in order to find the solution.
However, this does not lead to non-differentiability of the
cost and/or constraints functions. Thus, when computing the
sensitivities of the cost or constraints with respect to the
design variables, the potential change of the time-step size
in an analysis is not crucial.

6 Numerical examples

In the following examples, the material candidates consid-
ered in the multimaterial topology optimization are given
in Table 1. When considering finite deformations, continua-
tion is usually needed to avoid analysis failure during early
optimization iterations when the design is evolving from
the initial intermediate density design. The employed con-
tinuation scheme incrementally updates pe and p from 1
to 3, pL from 4 to 6, and pν from 3 to 1, with an incre-
ment/decrement of 0.1 every 20 iterations. This increased
penalization of pL compared to pe is done so that the
optimizer does not use low-density values to exploit small

deformation kinematics. The optimization runs up to 450
iterations after which a Heaviside projection, i.e., (48), is
initiated with η = 0.5, and β̂ is increased from 1 to 10 with
an increment of 1 every 20 iterations. The optimization is
terminated at 670 iterations in total. Note that the projection
is used only to resolve the boundaries of the design, after a
clear topology has already emerged after 450 iterations.

In nonlinear FEA, the NR scheme with an adaptive step-
size strategy is used and convergence is assumed when the
energy residual drops below 10−12 (Crisfield 1991). The
Method of Moving Asymptotes (MMA) (Svanberg 1987)
is used as an optimizer with default parameter settings.
All the design domains—with square, parallelogram, and
hexagonal unit cells—are discretized by a 80 × 80 FE
mesh with density filter radius rmin = 0.0375 for all
problems (spanning over 3 elements for square domain).
These different unit cell shapes all have a side length of
1, which results in different areas, e.g., Area (square) = 1,
Area (45◦ parallelogram) = 0.707, Area (60◦ parallelogram)
= 0.866, and Area (hexagon) = 2.598. All the numerical
computations are carried out in a Matlab-based in-
house finite element library CPSSL-FEA developed at the
University of Notre Dame.

Numerical examples presented in the following sections
can be divided into three categories: The first category
(Sections 6.2 – 6.7) considers two solid-phase designs with
material-1 (hyperelastic phase) and material-2 (viscoelastic
phase) using optimization formulation OF-1 (Sections 6.2
– 6.6) or OF-2 (Section 6.7), and ρ1 ≡ 1 is not updated
during optimization and the total material volume constraint
is not activated. The initial design for the first category
is chosen as shown in Fig. 3a, unless otherwise stated.
The second category (Section 6.8) considers three phase
designs with void chosen for material-0 (see Section 4.3.1)
and uses optimization formulation OF-1. The initial design
for this case is shown in Fig. 3b. The third category
(Section 6.9) considers three solid-phase designs with a
soft hyperelastic material chosen for material-0 and uses
optimization formulation OF-3 with the initial design shown
in Fig. 3c.

6.1 Macroscopic deformation gradient loading F(t )

The proposed framework can account for different types of
time-dependent loading such as harmonic loading, pulse-
like loading, or other waveforms. For illustration purposes,
harmonic loading is considered in the following numerical
examples. The macroscopic deformation gradient F (t) is
prescribed in the deformation-driven framework. Without
loss of generality, the macroscopic rigid-body rotation is
ignored (R = I ) and the principal macro stretch ratios λa(t)

are at a fixed angle θ with respect to the standard Euclidean
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(a) Two solid-phase design (b) Three phase with void design (c) Three solid-phase design

M-1

M-2

= 1

= 0.3

= 1, = 0.7

M-0

M-1

M-2

= 0.5

= 0.3

= 0.5, = 0.7

M-0

M-1

M-2

= 0.5

= 0.3

= 0.5, = 0.7

Fig. 3 Initial RUC designs (M-0: Mateial-0, M-1: Material-1, M-2: Material-2)

bases {ea}, i.e.,
F (t) = U(t) = QF

Q
(t)QT

=
[ (

λ1 cos2 θ + λ2 sin2 θ
)
sin θ cos θ(λ1 − λ2)

sin θ cos θ(λ1 − λ2)
(
λ1 sin2 θ + λ2 cos2 θ

)
]

(68)

where F
Q

(t) = diag
(
λ1(t), λ2(t)

)
and Q the bases

transformation matrix expressed as

Q(θ) =
[
cos θ − sin θ

sin θ cos θ

]
(69)

Since all solid phases are considered to be nearly
incompressible, without void, the composite material should
still exhibit incompressibility. Thus, it is assumed that
λ1(t) = λ(t) and λ2(t) = 1/λ(t), which result in
an isochoric deformation mode. Moreover, cyclic loading
is considered with the logarithm of the principal stretch
following a sinusoidal function, i.e.,

F
Q

(t) =
[

λ(t) 0
0 1/λ(t)

]
with

λ(t) = �
α(t)

and α(t) = sin 2πf t (70)

where � represents the magnitude of the principal stretch.
The loading frequency f = 0.009s−1 with time duration
t ∈ [0, 1/f ], i.e., one cycle, is used, unless stated otherwise.
The frequency f is chosen such that the energy dissipation
achieves the maximum value with the chosen material
parameters for the viscoelastic phase (material-2 in Table 1).

6.2 Dependence on the loadingmagnitude

The first example investigates the effect of loading
magnitude on the optimized metamaterial topologies.
The loading parameters are θ = 45◦ with various
magnitudes � ∈ {1.2, 1, 4, 1.8, 2.0}. The design
optimization considers two phases, material-1 (hyperelastic)
and material-2 (viscoelastic), with ρ1 ≡ 1. The optimized
metamaterial designs are provided in Table 2. Since
material-1 represents a hyperelastic material (red color) that
is much stiffer than the material-2, which is viscoelastic
(blue color), the inclusion of material-1 helps to localize

deformation in dissipative material-2 region, which finally
increases the energy dissipation capacity (Zhang and
Khandelwal 2019b). This can be seen from the deformed
shapes and energy dissipation distributions in Table 2,
and as a result the proportion of material-1 increases as
the loading magnitude decreases. Moreover, the geometric
nonlinear effects, which can be observed in the hysteresis
response, increases as the loading magnitude increases. The
optimization histories demonstrate that smooth convergence
can be obtained within the proposed framework.

6.3 Initial design influence

As compared to structural design optimization, where an
initial design can be taken as one with homogeneous density
distribution, the metamaterial design has to start from non-
homogeneous design. If homogeneous density distribution
is used, the design sensitivities would be equal to each other,
as the homogenized properties are optimized under periodic
boundary conditions. This example is used to demonstrate
the dependence of the optimized topology on the initial
design in the optimization. With the loading condition given
in (70) with � = 1.4 and θ = 0◦ (again ρ1 ≡ 1),
the results shown in Table 3 demonstrate that starting
from different initial designs leads to different optimized
designs, as expected. This result shows that multiple local
minima exist due to the non-convexity of the optimization
problem. Also, by comparing these results, it can be seen
that the initial design-3 is a better choice for this case in
terms of the energy dissipation capacity. Thus, in practice,
different initial designs can be considered for designing
such metamaterials.

6.4 Different unit cell geometries

For periodic metamaterial designs, the basic unit cell shape
is first chosen, which specifies the periodicities of the
designed metamaterial. For 2D case, for example, the most
general unit cell shape is parallelogram with two sides as the
two periodic lattice vectors (Podestá et al. 2019). Square and
hexagon can be seen as special cases of a parallelogram unit
cell. Depending on the angle of parallelogram, different unit
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Table 2 Optimized RUC topologies for different loading magnitudes

“Vol(VE)” denotes the volume fraction of the viscoelastic phase
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Table 3 Optimized RUC topologies starting with different initial designs
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Vol(VE) 0.518 0.505 0.475 0.616

0.3855 0.3853 0.3938 0.3554

cell shapes can be adopted. The proposed framework can be
used with different unit cell geometries. To illustrate this,
a square, two parallelograms (45◦ and 60◦), and a hexagon
unit cells are used in design optimization. For loading, the
macroscopic deformation gradient with� = 1.4 and θ = 0◦
is used. The optimized designs for different unit cells are
shown in Table 4. From this result, it can be seen that
the square unit cell leads to a design with the least energy
dissipation (Wd ) as compared to other unit cells. This result
suggests that different unit cells can be examined in practice
in order to achieve desirable optimized designs.

6.5 Designs under different loadings

This example shows the metamaterial designs for different
macroscopic deformations. Again, ρ1 ≡ 1 and the
macroscopic deformations F (t) with magnitude � = 1.4
and different orientations (θ ) (68) – (70) are considered.
The results are presented in Table 5, where the third column
corresponds to the maximization of the energy dissipation
under two orientations, one with θ = 0◦ and the other one
with 45◦, i.e., Wd ≡ Wd

(
F (θ = 0◦)

)+Wd

(
F (θ = 45◦)

)
.

This means that two FEAs and sensitivity analyses are
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Table 4 Optimized RUC topologies with different RUC shapes
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Vol(VE) 0.505 0.434 0.475 0.479

0.3853 0.4137 0.4067 0.4013

required for one optimization step in this case. As expected,
different types of macro deformations correspond to
different optimized designs. Moreover, as the results show,
the energy dissipation is Wd = 0.2472 for F (θ = 0◦)
design under the F (θ = 45◦) loading, while Wd = 0.3097
for θ = 45◦ design under the F (θ = 0◦) loading. Thus, the
optimality of a design under multiple loading scenarios can
be balanced, as demonstrated in the last column in Table 5.

6.6 Dependence on the loading frequency

This example examines whether the optimality of the design
changes towards the loads of the same type but with
different frequencies. To begin with, a uniaxial test of one
element filled with material-2 (viscoelastic phase) is carried

out (see Fig. 4). The uniaxial load considers three cycles
with different frequencies, e.g., 0.001 s−1 (f1), 0.009 s−1

(f2), and 0.05 s−1 (f3). The corresponding hysteretic results
are shown in Fig. 5, where it can be seen that as frequency
increases it takes more time for the response to settle into
steady state. Besides, the material stiffness increases with
the increase of frequency due to the viscous effect. The
unit cell optimization results for � = 1.4 and θ = 0◦ are
given in Table 6, where again ρ1 ≡ 1. As can be seen,
different optimized topologies are obtained for different
loading frequencies. Moreover, as these designs are only
local optima, although good local optima as continuation
strategies are used, the global optimality of the designs
cannot be ensured for a given frequency. Thus, the results
shown in Table 6 cannot conclusively affirm the dependency
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Table 5 Optimized RUC topologies for different types of loadings
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Vol(VE) 0.505 0.513 0.586

0.3853 0.3943 0.3739 ( = 0°) 0.3800 ( = 45°)

of the optimized designs on the loading frequency. For
instance, the design optimized for frequency f1 outperforms
other designs for frequency f1 and also frequency f2, but
not for frequency f3. However, the results still suggest
dependency of optimized designs on the loading frequency.
Furthermore, as for high loading frequencies, more time is
needed for the response to settle into steady state, Table 7
examines the optimized topologies with three cycles. As
demonstrated in Table 7, in this test case, no obvious

difference can be observed as compared to the results with
one loading cycle.

6.7 Initial stiffness constraint

Depending on the application at hand, damping metamate-
rials with adequate stiffness may be needed for other func-
tionalities. Hence, it is important for a design framework to
be able to incorporate stiffness constraints. Compared to a

Fig. 4 Uniaxial test of a 4-node
element with F-bar formulation

10 mm

1.5

Thickness 1 mm
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(a) = 0.001 s-1 (b) = 0.009 s-1 (c) = 0.05 s-1

Fig. 5 Hysteresis loops at different loading frequencies

linear system, where stiffness remains constant during load-
ing process, the stiffness of nonlinear systems changes, due
to both material and geometric nonlinearities. In this study,
the initial elastic moduli of a homogenized metamaterial
is used for applying stiffness constraints. The initial stiff-
ness represents the stiffness that a metamaterial exhibits at
the start of loading when no deformation has occurred. The
optimization formulation OF-2 (41) is adopted with ρ1 ≡ 1
and various k values to explore how the stiffness constraints
affect the optimized metamaterial topologies. The loading
condition is prescribed with � = 1.4 and θ = 0◦. Figure 6
shows the optimization histories with various stiffness con-
straints, i.e., none, k = 30, 40 and 50. As can be seen,
due to the increase in the stiffness constraint, the objec-
tive function value gets deteriorated. The resulted optimized

topologies are given in Table 8, where the proportion of the
soft viscoelastic phase (material-2) decreases as the stiffness
requirement increases, as expected. Figure 7 shows how the
stiffness indicators [A]11 and [A]44 changes during loading
process, where note that [A]11 ≡ A1111 and [A]44 ≡ A2222.
The clear discontinuity in the curve slope at the first load-
ing step is due to the fact that the initial stiffness does not
include the stiffness from the non-equilibrium energy that
accounts for viscous effect.

6.8 Designs with void phase

While bi-material designs that combine softer viscoelas-
tic phase with stiffer hyperelastic phase help in improving
energy dissipation, the metamaterial is fully dense. Includ-

Table 6 Optimized RUC
topologies for different loading
frequencies (one cycle)

Note: f1 = 0.001, f2 = 0.009, f3 = 0.05 (Unit: s−1)
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Table 7 Optimized RUC
topologies for different loading
frequencies (three cycles)

ing void phase in a design can help achieving metamaterials
with overall lower material usage. In this example, to con-
sider this case, voids are introduced as a third phase, i.e.,
material-0 in (49). Using optimization formulation OF-1,
which constrains the overall material volume fraction, with
both ρ1 and ρ2 vectors as design variables, optimized meta-
materials with voids are obtained. The loading condition
again considers (70) with � = 1.4 and θ = 0◦. More-
over, in this case, the symmetries of the design along the
horizontal and vertical as well as two diagonal lines are
enforced, which results in a design domain occupying only
one-eighth of the original unit cell domain (see Fig. 8).
The optimization results with different total material vol-
ume fractions, VT = 0.5, 0.55, 0.7, and 0.8, are shown in
Table 9. The deformed shapes of each design at two loading
peaks of one cycle are plotted together with the hystere-
sis loops. As mentioned in Section 4.4, it is important to
note that including void phase can lead to mesh distortion
issues, which needs changes as shown in (58) and (59).
Figure 9 shows the updates of the cutoff parameter c in
(58) for optimization with VT = 0.5. Besides the fact that
smaller step size in the adaptive NR solver has to be used
due to mesh distortions, an extra number of FEAs are also
needed in order to achieve convergence due to c parameter
updates (Fig. 9). Furthermore, stability issues are not con-
sidered during the optimization process, and both the micro
and macro-stability can be lost during the loading process.
Such stability issues will be discussed in Section 7.3.2.

Fig. 6 Convergence of optimizations with different stiffness con-
straints (None, k = 30, 40, 50)

6.9 Lightweight design with light-soft fillers

As mentioned in the last example and shown in Section 7, a
metamaterial may lose stability when voids are introduced
in the design. To improve the design stability, this
section investigates replacing voids with a light and
soft incompressible hyperelastic phase. Thus, the overall
purpose is to achieve lightweight designs with improved
metamaterial stability. Using the optimization formulation
OF-3 with the 2nd candidate chosen as material-0 in Table 1
and material physical densities ω0 = 30, ω1 = 200, and
ω2 = 100, the optimization results under the same loading
condition, i.e., � = 1.4 and θ = 0◦, are given in Table 10
for various weight constraints wherein material-0 is shown
in yellow. This result shows that when the weight constraint
is relaxed, more softer hyperelastic phase is replaced with
the viscoelastic phase. The volume of the stiffer hyperelastic
phase increases little due to its high physical density. As will
be shown in Section 7.3.3, only the design with M∗ = 70
loses stability during the loading process.

7Multiscale stabilities

For periodic metamaterial designs based on nonlinear
homogenization, an important assumption is that a single
unit cell can serve as a representative unit cell during
the entire loading process. For finitely strained periodic
metamaterials, this assumption, however, does not always
hold (Geymonat et al. 1993). Upon loading, buckling can
happen with wavelengths possibly across arbitrary scales,
which can lead to a change of the periodicity of the
underlying microstructure or even macroscopic localization,
i.e., loss of rank-1 convexity of the homogenized material.
For rate-independent materials, the multiscale stability
has been investigated in the past (Geymonat et al. 1993;
Triantafyllidis et al. 2005; Triantafyllidis and Schraad
1998; Triantafyllidis and Maker 1985). As shown in
(Triantafyllidis et al. 2005), the micro-stability can be
studied by the Bloch analysis in which only one unit cell
is analyzed by the Bloch wave representation of a buckling
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Table 8 Optimized RUC
topologies with different
stiffness constraints

mode, while the macro-stability can be examined by a rank-
1 convexity check on the homogenized tangent moduli. The
multiscale stability under rate-dependent material behavior,
however, is not well established, although the more general
Lyapunov method can be used for stability investigation
in dynamic cases (Govindjee et al. 2014). In this study,
the viscous effects, which account for rate dependency, is
neglected in the stability examinations and the multiscale
stability checks are carried out based on the methods
proposed in (Triantafyllidis et al. 2005).

7.1 Microscale stability

For rate-independent solids, the stability is governed by the
Hill’s stability criterion (Hill 1958), which states that the
principal solution branch ceases to be stable if the functional

β(λ) defined by

β(λ) = infv Q(v; R
d) with

Q(v; �0) �
∫
�0

∇v∗:A:∇v dV
∫
�0

∇v∗:∇v dV
(71)

loses positive definiteness. In (71), v is taken from
the kinematically admissible displacement variation space
H 1

0 (�0) for the corresponding macroscale boundary value
problem. For periodic solids of infinite extent (�0 → R

d ),
v is taken from locally integrable, bounded functions that
ensures the finiteness of the ratio Q (Triantafyllidis et al.
2005). The symbol ∗ denotes the complex conjugate and
λ stands for the load parameter, which in this study can
be taken as identical to the macroscopic stretch ratio λ

(Section 6.1). The tensor A represents the tangent moduli

Fig. 7 Homogenized tangent
moduli A1111(t) and A2222(t)

during the loading process

(a)  No stiffness constraint (b)  = 30 

(c) = 40 (d) = 50
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Symmetric lines

Design domain

Fig. 8 Geometric symmetry illustration

under the loading parameter λ with the same periodicity as
one unit cell. It was shown in (Geymonat et al. 1993) that
this infimum β(λ) can be computed through Bloch wave
analysis, where the calculation is carried out within one unit
cell �μ

0 and is expressed as

β(λ) = inf
k
inf
u

Q
(
vB(k, u); �

μ
0

)
with

vB(k, u) = eik.Xu (72)

where vB is the Bloch wave function representing the
eigenmode and u is periodic functions with the same
periodicity as the unit cell, while the wavevector k is
chosen in the 1st Brillouin zone (BZ) in the reciprocal space
spanned by the reciprocal bases bi (i = 1, ..., d) defined
by ai .bj = 2πδij (Kittel and McEuen 1996). For a square
unit cell, for example, the 1st BZ can be simply chosen as
ki ∈ [0, 1), i = 1, ..., d with k = ∑

i kibi .

7.2 Macroscale stability

As a measure of the macroscopic stability, the strict rank-
1 convexity of the homogenized tangent moduli ensures the
absence of discontinuities in the deformation gradient field
on the macroscale. It is assessed by examining the positive
definiteness of the ellipticity indicator B(λ) defined by

B(λ) = min
m,M

(m ⊗ M) : A : (m ⊗ M) (73)

where m and M span over all possible directions with
‖m‖ = ∥∥M

∥∥ = 1. When there is a discontinuous
deformation corresponds to the loss of strict rank-1
convexity, i.e., B(λ) = 0, the corresponding minimizing
vector M represents the normal to the curves across which
the jump discontinuities appear and m determines the
nature of the discontinuous mode, i.e., simple shear if m

is orthogonal to M or pure splitting if m is parallel to M

or mixture otherwise (Ortiz et al. 1987). Also, as shown in
Geymonat et al. (1993), the loss of strict rank-one convexity
corresponds to a long wavelength microscale buckling, i.e.,

B(λ) = 0 if β(λ; k → 0) = 0 (74)

Remark It is worth noting that two physically different
types of buckling modes exist in the neighborhood of k = 0,
i.e., the long wavelength mode with k → 0 that leads to
the loss of rank-1 convexity of the homogenized tangent
moduli at the macroscale, and the highly localized buckling
mode with k = 0 which has the same periodicity as one
unit cell. The following relationship was also established in
Geymonat et al. (1993)

β(λ) ≤ β(λ; k → 0) ≤ β(λ; k = 0) (75)

which states that the short wavelength instabilities always
precede the long wavelength instabilities which in turn
precede the highly localized ones. Interested readers are
referred to Refs. (Geymonat et al. 1993; Triantafyllidis et al.
2005; Alberdi et al. 2018a) for further theoretical details and
numerical implementations.

7.3 Examples: Stability investigation
of the optimized topologies

All the examples presented in Sections 6.2, 6.3, 6.8, and 6.9
are examined for their multiscale stabilities during the
loading process. For two solid-phase (bi-material) and three
solid-phase designs, all the optimized topologies except
one, i.e., the first design in Table 10, are stable on both
macro and micro scales, while for three phase designs with
voids, all topologies lose both macro and micro stabilities
during the loading. To illustrate these stability issues, three
designs are discussed in details. To this end, the multiscale
stability analysis is carried out as follows: (a) discrete
designs of the optimized unit cells are obtained by applying
a discrete Heaviside projection filter with cutoff located at
ρ1 = ρ2 = 0.5, followed by which the void elements are
removed from the FE mesh; (b) the macroscale stability is
examined via rank-1 convexity check by slowly increasing
the loading factor λ (≡ λ) with load step size �λ = 0.01
up to the target magnitude until B(λ) ≤ 0 at every π/720
radian increment in both m and M space; and (c) the
microscopic stability is investigated using the Bloch wave
analysis which seeks k ∈ 1st BZ for which β(λ) < 0,
where the 1st BZ, i.e., k = (k1, k2) ∈ [0, 1) × [0, 1),
is discretized with a 100 × 100 uniform mesh together
with 100 × 100 uniform meshes in three refined zones
(0, 0.001) × (0.001, 1], (0.001, 1] × (0, 0.001), and
(0, 0.001) × (0, 0.001).

7.3.1 Two solid-phase designs

The optimized topologies in Sections 6.2 and 6.3 are
examined for their multiscale stabilities during the applied
loading. These results indicate that both micro and macro
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Table 9 Optimized RUC topologies for different total material volume fractions
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Fig. 9 History of cutoff parameter c updates

stabilities are preserved during the loading process. For
example, the rank-1 convexity curves of the third design
in Table 3 are shown in Fig. 10, which demonstrates the
macroscale stability, where Bα � min

m
(m ⊗ M) : A :

(m ⊗ M) with M = [cosα sinα]T and α ∈ [0, π).

7.3.2 Three phase with void designs

With void phase in the design, all the optimized topologies
in Section 6.8 lose both micro and macro stabilities during
the applied loading. As an illustration, Fig. 11 shows the
microscale stability surface obtained through Bloch analysis
and the macroscale stability curve by rank-1 convexity
analysis of the second design in Table 9 at macro loading
λ = 1.07. In this case, βk � inf

u
Q(vB(k, u); �

μ
0 )

computed at each discretized point k in the 1st BZ serves
as the micro-stability indicator. To detect the critical points,
stability checks are carried out with a fixed loading step
size of �λ = 0.01. This study does not intend to find
the numerically exact 1st critical point, but serves to
demonstrate the potential instabilities that exist due to the
geometric nonlinearities. Table 11 reports the detected 1st
critical loads for all designs in Table 9.

7.3.3 Three solid-phase designs

With void replaced by soft hyperelastic material phase, the
multiscale stability is seen to be significantly improved.
As shown in the results in Table 12, only the first design
in Table 10 loses stability at λ = 1.37 which is close
to the target loading magnitude 1.4, while all the other
designs are stable during the loading process. Figure 12
shows the microscale stability surface and macroscale rank-
1 convexity curve at the critical step λ = 1.37.

7.4 Tailored stable metamaterials

Instead of considering instabilities as a potential drawback,
they can also be utilized to tailor metamaterial designs.
Indeed, in recent years, pattern transformations due to
microscale instabilities have been used for achieving
desired mechanical properties (Kochmann and Bertoldi
2017). Though promising, it is not yet clear how the
stability response can be explicitly controlled during the
optimization process. As demonstrated in Section 7.3,
without incorporating multiscale stability constraints in the
design phase, both macro and micro stabilities can be lost.
This poses additional challenges on the homogenization, as
the wavelength of the buckling mode, and therefore, the
fundamental unit cell is not a priori known. However, if a
metamaterial design can be appropriately tailored to harness
multiscale instabilities, then rich mechanical behavior can
be obtained.

In this section, an illustrative example is presented to
show the use of microscale instabilities for tailoring a
metamaterial design. The basic idea is to create a design
for which the first microscale bifurcation mode is separated
from the other higher modes, and the first microscale
bifurcation mode is then use to tailor the metamaterial
design. To illustrate this idea, a metamaterial with unit cell
design (Design-A) shown in Fig. 13a is considered, where
the red and blue phases represent hyperelastic phase (with
κ = 518.02 MPa, μp = 10.43 MPa, αp = 2, N = 1) and
viscoelastic phase (material-2 in Table 1), respectively. This
design is subjected to uniaxial loading during which the
macroscopic deformation F = diag(λ1, λ2) is applied such
that the principal stretch λ2 along vertical axis is prescribed
and the other principal stretch λ1 along the horizontal axis
is determined by the condition P 11 = 0. The results of
the multiscale stability analysis for this design are shown
in Fig. 13b. In this case, the 1st bifurcation occurs at
microscale, i.e., short wavelength buckling, with buckling
mode periodic in terms of 2 × 2 unit cells, as shown in
Fig. 13c.

This 2 × 2 buckling mode is used to tailor the
metamaterial design by applying a perturbation in this mode
on the Design-A in Fig. 13a. The resulted metamaterial
design (Design-B) still remains periodic but with an
enlarged unit cell, as shown in Fig. 14a. The response of this
new metamaterial Design-B (Fig. 14b) shows no bifurcation
during the loading process, as compared to the response
of Design-A. The deformed shape of Design-B in Fig. 14c
shows that the deformation of this design follows the
added buckling mode. Moreover, the homogenized energy
dissipation per cycle per unit volume of Design-B is 6.627×
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Table 10 Optimized RUC topologies for different total material weights
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(a) Unit cell (fully 

discrete)

(b) Macroscale stability (compression along 

vertical axis, )

(c) Macroscale stability (compression along 

horizontal axis, )

= 1.20

= 1.25
= 1.30

= 1.35
= 1.40

= 0.8357
= 0.8000 = 0.7714

= 0.7429
= 0.7143

Fig. 10 Macroscale stability of the third design in Table 3

(a) Unit cell (fully discrete) (b) Microscale stability surface (c) Macroscale stability

Fig. 11 Loss of both micro and macro stabilities at λ = 1.07 of second design in Table 9

Table 11 1st bifurcation loads
for different designs in Table 9

Table 12 1st bifurcation loads
for different designs in Table 10

Designs

1st bifurcation load 1.37 N/A N/A N/A

Note: N/A implies no instabilities occurred during the loading process.
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(a) Unit cell (fully discrete) (b) Microscale stability surface (c) Macroscale stability

Fig. 12 Loss of both micro and macro stabilities at λ = 1.37 of first design in Table 10

(a) Design-A: Unit cell FE mesh (b) Uniaxial stretch-stress curve (c) Buckling mode

1st bifurcation point

Tension

Compression

Fig. 13 Uniaxial response of a Design-A

(a) Design-B: Unit cell FE mesh (b) Uniaxial stretch-stress curves (c) Deformed shape at 

Perfect unit cell

2 2 unit cells with imperfection

Fig. 14 Uniaxial response of the tailored metamaterial (Design-B)
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10−3, which is even higher than the energy dissipation of
the Design-A following principal branch, i.e., 4.087×10−3.
This example demonstrates that a metamaterial design can
be tailored to have a stable response by carefully designing
the microstructure. However, a direct consideration of
multiscale stability in the design optimization process needs
further investigations.

8 Conclusions

In this study, a computational framework is presented for
designing damping metamaterials at finite deformations
based on the nonlinear deformation-driven homogenization
and density-based multimaterial topology optimization. The
main idea is to combine a soft viscoelastic material phase
with a stiffer hyperelastic phase to achieve a metamaterial
with improved damping performance. The inclusion of
void or lighter hyperelastic phase is also investigated
for a lightweight damping metamaterial design. In the
proposed framework, a thermodynamically consistent finite
strain viscoelastic model is incorporated together with F-
bar formulation for addressing volumetric locking. An
analytical path-dependent sensitivity analysis is considered
within a nonlinear homogenization framework. Numerical
issues related to mesh distortions is addressed using an
adaptive linear energy interpolation scheme. Based on
the numerical studies carried out in this work, a number
of observations can be made: (a) To achieve desired
optimal designs, various unit cell shapes (periodicities) and
different initial designs should be explored since they both
influence optimized designs; (b) both loading frequency
and magnitude may influence an optimized metamaterial
design; (c) multiple loading scenarios can be incorporated
in the optimization process to a design metamaterial for
more than one deformation mode; (d) stiffness constraints
based on the initial homogenized tangent moduli can be
used for an effective stiffness control; (e) multiscale stability
analysis reveals that the inclusion of void or soft material
phases can make a metamaterial more prone to lose micro
and macro stability.

The concept of tuning metamaterial’s performance
using a desired buckling mode is also explored, wherein
a buckling mode is incorporated into metamaterial’s
design, which in turn steers the response towards the
preferred stable deformation path. The resulting damping
performance is improved compared to the one following the
unstable principal branch. However, it should be noted that
this design is not optimized for energy dissipation, since it
is not obtained through optimization. Future work should
investigate direct consideration of rate-dependent multiscale
stability in the design of nonlinear metamaterials.
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Appendix A: Finite strain viscoelasticity
model implementation

In this appendix, numerical implementation of the finite
strain viscoelastic model is presented. In the context of
strain-driven finite element analysis, given data at an
integration point: F k and be

k at previous step k, and F at
current step k +1, the goal is to find the unknown variables:
P , be and the consistent tangent moduli at the current step
k + 1. Note that the subscript k + 1 for the current step, the
element number, and integration point number are removed
for clarity. In addition to standard tensor notations, the
following nonstandard tensor notations are used:

(A � B)ijkl � AilBjk

(A � B)ijkl � AikBlj

(A � B)ijkl � AikBjl

(A� B)ijk � AimkBmj (A.1)

(A� B)ijkl � AimklBmj

where A and B are any 2nd-order tensors and A and A are
any 3rd- and 4th-order tensors, respectively.

The viscoelastic model consists of equilibrium and
non-equilibrium parts. The equilibrium part is handled
in the same way as the hyperelastic model. For the
non-equilibrium part, the material interpolation cannot be
applied outside the material subroutine since the internal
variable be is not known and has to be solved from a
set of nonlinear constitutive equations where interpolated
material parameters are used. In the following derivations,
the material parameters κ , μq , and ηd are interpolated based
on the material interpolation given in Section 4.3.

A.1 Integration of rate equations

The internal variable given in (35) is integrated using the
exponential map integrator (Weber and Anand 1990). With
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Lv[be] = F .
˙

Cv−1.F T where Cv = F vT .F v , (35) can be
written as

˙
Cv−1 = −2F−1.(D : τneq).F .Cv−1 (A.2)

Using the backward exponential integrator, (A.2) is
integrated as

Cv−1 = exp[−2F−1.(D : τneq).F�t].Cv
k
−1 (A.3)

where the subscript k denotes the term evaluated at the
last time step tk , with the time interval �t = tk+1 − tk .
Noticing that exp[Y−1.Z.Y ] = Y−1. exp[Z].Y for any 2nd-
order tensor Y and Z (Y is invertible) and the relation
be = F .Cv−1.F T , (A.3) can be simplified to

be = exp[−2�tA].betr with A = D : τneq (A.4)

with betr = F etr .F etrT

where F etr � F δ .F e
k and F δ =

F .F−1
k . Due to the isotropy, the non-equilibrium stress τneq

and the tensor be are coaxial, which results in the coaxiality
of tensor betr with τneq and be. As a result, it is possible
to express the evolution rule in the principal space. Denote
the elastic principal stretch at the current step as λe

a , while
λe

a
tr (a = 1, 2, 3) for the trial step, which are the square-

root of the eigenvalues of tensors be and betr , respectively.
The non-equilibrium principal stresses are denoted by τ

neq
a ,

which are the eigenvalues of the tensor τneq . Employing
logarithmic strain, where εe

a� ln λe
a and εe

a
tr � ln λe

a
tr ,

(A.4) can be expressed in the principal space as

εe
a − εe

a
tr + �t

2ηd

(
τ

neq
a − pneq

) = 0 , a = 1, 2, 3 (A.5)

where pneq = (τ
neq

1 +τ
neq

2 +τ
neq

3 )/3 represents the pressure
which equals 1

3 tr (τ
neq).

A.2 Stress tensor and consistent tangent moduli

For the non-equilibrium part, since the elastic Finger tensor
be is not known, the non-equilibrium Kirchhoff stress τneq

and be have to be calculated by using Eq. (33)3 and (A.5).
This set of nonlinear equations are solved using Newton-
Raphson (NR) method. Due to the coaxiality of be and τneq ,
(33)3 can be expressed in the principal space as

τ
neq
a = λe

a

∂ψneq

∂λe
a

, a = 1, 2, 3 (A.6)

with the principal space spanned by Ge
a which are the same

as Ge
a
tr that span the principal space of betr (see (A.4)).

Combining (A.5) and (A.6), the unknown variables τ
neq
a and

εe
a are solved using the Newton-Raphson method. Taking

τ
neq
a as implicit functions of εe

a determined by (A.6), the
unknown variables are reduced to εe

a and the set of nonlinear

equations to be solved becomes

Rεe =
⎡

⎣
εe
1

εe
2

εe
3

⎤

⎦−
⎡

⎣
εe
1
tr

εe
2
tr

εe
3
tr

⎤

⎦+ �t

2ηd

⎡

⎢
⎢
⎣

2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

τ
neq

1

τ
neq

2

τ
neq

3

⎤

⎥
⎥
⎦=0

(A.7)

with the Jacobian matrix calculated, by employing (A.6), as

dRεe

dεe
=
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

+ �t

2ηd

⎡

⎢
⎢⎢⎢
⎣

2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3

⎤

⎥
⎥⎥⎥
⎦

⎡

⎢⎢
⎢
⎣

dτ
neq
1

dεe
1

dτ
neq
1

dεe
2

dτ
neq
1

dεe
3

dτ
neq
2

dεe
1

dτ
neq
2

dεe
2

dτ
neq
2

dεe
3

dτ
neq
3

dεe
1

dτ
neq
3

dεe
2

dτ
neq
3

dεe
3

⎤

⎥⎥
⎥
⎦

dτ
neq
a

dεe
b

= κ(2J e − 1)J e +
N∑

q=1

1

9
μqαq

[(
λ̂eαp

1 + λ̂eαp

2 + λ̂eαp

3

)
(A.8)

−3
(
λ̂eαp

a + λ̂eαp

b − 3λ̂eαp

a δab

)]

where κ , μq , and αq (q = 1, ..., N) are parameters related
to the non-equilibrium strain energy. Tangent modulus for
the non-equilibrium part is obtained as

A
neq
ijkl = JF−1

jma
neq
imknF

−1
ln with

Janeq = ∂τneq

∂betr : (I � betr)− τneq � I (A.9)

where the derivative ∂τneq/∂betr is computed using chain
rule

∂τneq

∂betr = ∂τneq

∂εetr
: ∂εetr

∂betr (A.10)

in which εetr = ∑3
a=1 εe

a
trGe

a and the term ∂τneq/∂εetr

can be derived from the (A.6) and (A.7) following the
procedure given in de Souza Neto et al. (2011). The term
∂εetr/∂betr is computed in the same way, since εetr and
betr are coaxial.

Appendix B: Explicit derivatives required
for the adjoint sensitivity analysis

For the objective and constraint functions, beside the energy
dissipation (f0 = −Wd ) which depends on the solution and
auxiliary variables, all the other constraints, e.g., material
volume constraint and initial stiffness constraint, are only
functions of the density field and their sensitivities are not
path-dependent, and thus easy to compute. This appendix
gives the derivatives that are used in the path-dependent
sensitivity calculation of f0. For illustration purposes, the
material interpolation scheme assuming void phase for
Material-0 (Section 4.3.1) is considered in the sensitivity
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derivation in this appendix. In the following derivations, the
tensor form and matrix-vector form are both utilized for
notational simplicity and the appropriate form should be
clear from the context. Moreover, to simplify the derivation
process, the following functions are defined

g1(ρ1) = 1 − ρ
pe

1

g2(ρ1, ρ2) = ρ
p

2 ζ κ(ρ1)

g3(ρ1, ρ2) = ρ
p

2 ζμ(ρ1)

g4(ρ1, ρ2) = (1 − ρ2)
pζ κ(ρ1)

g5(ρ1, ρ2) = (1 − ρ2)
pζμ(ρ1)

g6(ρ1, ρ2) = [ε + (1 − ε)(1 − ρ2)
p]ζ κ(ρ1)

g7(ρ1, ρ2) = [ε + (1 − ε)(1 − ρ2)
p]ζμ(ρ1) (B.1)

where the functions ζ κ(ρ1) and ζμ(ρ1) are evaluated
using the associated material parameters, e.g., g2(ρ1, ρ2)

and g3(ρ1, ρ2) are evaluated using Material-1 parameters,
g4(ρ1, ρ2) and g5(ρ1, ρ2) are using equilibrium part of
the viscoelastic material (Material-2), while g6(ρ1, ρ2)

and g7(ρ1, ρ2) are based on non-equilibrium part of the
viscoelastic material.

B.1 Derivatives of f0

After time and spatial domains discretization, the homog-
enized energy dissipation defined in (39) can be approxi-
mated by

f0 = −Wd ≈ − 1

V

n∑

k=1

nele∑

e=1

nipt∑

s=1

τ
neq
es

: D : τ
neq
es

�tkwes

(B.2)

where D depends on the density variables ρe
1 and ρe

2; τ
neq
es

is the Kirchhoff stress of the non-equilibrium viscoelastic
phase at sth integration point in eth element; and �tk =
tk − tk−1 is the time interval between step (k − 1) and step
k. This leads to

∂f0

∂û
k

= 0 , k = 1, 2, ..., n (B.3)

The derivatives ∂f0/∂ρ1 and ∂f0/∂ρ2 are arranged as

∂f0

∂ρ1
=
[

∂f0

∂ρ1
1

∂f0

∂ρ2
1
... ∂f0

∂ρ
nele
1

]
and

∂f0

∂ρ2
=
[

∂f0

∂ρ1
2

∂f0

∂ρ2
2
... ∂f0

∂ρ
nele
2

]
(B.4)

with their components computed based on chain rule as

∂f0

∂ρe
A

= − 1

V

n∑

k=1

nipt∑

s=1

(
τ

neq
es

: ∂D

∂ρe
A

: τ
neq
es

(B.5)

+ 2
∂τ

neq
es

∂ρe
A

: D : τ
neq
es

)
�tkwes , A ∈ {1, 2}

with
∂D

∂ρe
A

= −τμ
neq

0

2η2d

∂g7

∂ρe
A

P
s
dev (B.6)

and
∂τ

neq
es

∂ρe
A

= ∂g6

∂ρe
A

[

2
∂ψ̂neq

∂be .be

]

+ ∂g7

∂ρe
A

[

2
∂ψ̃neq

∂be .be

]

(B.7)

where μ
neq

0 is the initial shear modulus of the non-
equilibrium viscoelastic solid phase, ηd is the interpolated
value, and ψ̂neq and ψ̃neq are the volumetric and isochoric
non-equilibrium viscoelastic strain energy of solid phase.

The derivative ∂f0/∂vk is arranged as

∂f0

∂vk
=
[

∂f0

∂vk
1

∂f0

∂vk
2
... ∂f0

∂vk
nele

]
with

∂f0

∂vk
e

=
[

∂f0
∂vk

e1

∂f0
∂vk

e2

∂f0
∂vk

e3

∂f0
∂vk

e4

]
(B.8)

where
∂f0

∂vk
es

= − 1

V
2τneq

es
: D : ∂τ

neq
es

∂be �tkwes (B.9)

where element number and integration point indices on
elastic Finger tensor be are avoided with the understanding
that the derivative ∂τ

neq
es

/∂be is evaluated at the sth
integration point inside eth element.

B.2 Derivatives of Rk

Due to the linear energy interpolation (Section 4.4) and
F-bar formulation (Section 4.5), the 1st PK stress P is
computed as

P = r−1/2P b with P b = P b
0+P b

1+
(
P

b,eq

2 + P
b,neq

2

)

(B.10)

where r = r(ρ1, u) is a function of ρ1 and u, and P b
0,

P b
1, P

b,eq

2 , and P
b,neq

2 are 1st PK stresses contributed from
different material phases, where the superscript “b” is used
to denote that they are evaluated based on F b. Based on this,
it is straightforward that

∂r

∂ρ1
= ∂r

∂F
: ∂F

∂ρ1
+ ∂r

∂F 0
: ∂F 0

∂ρ1
with

∂r

∂F
= −rF−T and

∂r

∂F 0
= rF−T

0 and

∂F

∂ρ1
= ∂γ

∂ρ1
∇Xu and

∂F 0

∂ρ1
= ∂γ

∂ρ1
∇0

Xu (B.11)
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where ∇0
X denotes the gradient operator evaluated at the

centroid of the element. Also,

∂r
∂u

= ∂r
∂F

: ∂F
∂u

+ ∂r
∂F 0

: ∂F 0
∂u

with

∂F
∂u

= γB and ∂F 0
∂u

= γB0 (B.12)

where B and B0 are the shape functions derivative
matrices evaluated at the integration point and the centroid,
respectively. Besides, due to the dependence of F b on ρ1
and u, the following derivatives are obtained

∂F b

∂ρ1
= 1

2 r
−1/2 ∂r

∂ρ1
F + r1/2 ∂F

∂ρ1
and

∂F b

∂u
= 1

2 r
−1/2F ⊗ ∂r

∂u
+ r1/2 ∂F

∂u
(B.13)

B.2.1 Derivatives of ∂Rk/∂ρ1 and ∂Rk/∂ρ2

The explicit dependence of Rk on ρ1 comes from the
linear energy interpolation parameter γ (ρ1) as well as
the interpolated constitutive model parameters. Thus, the
derivative ∂Rk/∂ρ1 is computed as

∂Rk

∂ρ1
=
⎡

⎢
⎣

∂F k
int

∂ρ1
0
0

⎤

⎥
⎦ with

∂F k
int

∂ρ1
=

nele

A
e=1

∂F k
int,e

∂ρ1
with

∂F k
int,e

∂ρ1
=
[

∂F k
int,e

∂ρ1
1

...
∂F k

int,e

∂ρ
nele
1

]
where

∂F k
int,e

∂ρ
j

1

= 0 if j �= e and

∂F k
int,e

∂ρe
1

=
nipt∑

s=1

BT
es

(
∂γ

∂ρe
1
P k

es
+ γ

∂P k
es

∂ρe
1

)

wes

+
nipt∑

s=1

BT
L,es

[
−2γ

∂γ

∂ρe
1
(C : εes ) + (1 − γ 2)

(
∂C

∂ρe
1

: εes

)]
wes

with

∂P

∂ρ1
= −1

2
r− 3

2
∂r

∂ρ1
P b + r− 1

2

(
∂P b

∂ρ1

∣
∣∣∣
F b fixed

+ ∂P b

∂F b
: ∂F b

∂ρ1

)

(B.14)

where
∂P b

∂F b
= A

b
0 +A

b
1 +A

b,eq

2 −P
b,neq

2 �F b−1
(B.15)

in whichAb
0,A

b
1, andA

b,eq

2 are the tangent moduli evaluated
from each constitutive model with material interpolation,
i.e., Ab

0 � ∂P b
0/∂F b, Ab

1 � ∂P b
1/∂F b and A

b,eq

2 �
∂P

b,eq

2 /∂F b; ∂P b

∂ρ1

∣
∣
F b fixed is computed by

∂P b

∂ρ1

∣
∣∣∣
F b fixed

= ∂P b
0

∂ρ1

∣
∣∣∣
F b fixed

+ ∂P b
1

∂ρ1

∣
∣∣∣
F b fixed

+
(

∂P
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2

∂ρ1
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∣
F b fixed

+ ∂P
b,neq

2
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∣
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(B.16)

where

∂P b
0

∂ρ1

∣
∣∣
∣
F b fixed

= ∂g1

∂ρ1

(
P̂

b

0,s + P̃
b

0,s

)

∂P b
1

∂ρ1

∣∣
∣
∣
F b fixed

= ∂g2

∂ρ1
P̂

b

1,s + ∂g3

∂ρ1
P̃

b

1,s

∂P
b,eq

2

∂ρ1
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∣
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= ∂g4
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∂P
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= ∂g6

∂ρ1
P̂
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2,s + ∂g7

∂ρ1
P̃
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2,s (B.17)

where “s” in the subscript denotes that the term is evaluated
with the non-interpolated solid material parameters. Again,
the upper hat denotes the volumetric part while upper tilde

denotes the isochoric part, e.g., P̂
b,eq

2,s = ∂ψ̂
eq

2 /∂F b, where

ψ̂
eq

2 is evaluated with solid phase parameters. It should be

noted that in sensitivity analysis the calculation of P̂
b,neq

2,s

and P̃
b,neq

2,s are based on ψ̂
neq

2 (be) and ψ̃
neq

2 (be) where
solid material phase parameters are used, however, the
computation of be is based on the interpolated material
parameters. Since be is chosen as independent variable, its
dependence on ρ1 and ρ2 fields is not explicitly accounted.
On the other hand, the dependence of Rk on ρ2 comes from
the constitutive model parameters. As a result, the derivative
∂Rk/∂ρ2 is computed as

∂Rk

∂ρ2
=
⎡

⎢
⎣
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int
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0
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B.2.2 Derivatives of ∂Rk/∂ ûk and ∂Rk/∂ ûk−1

The derivative ∂Rk/∂û
k is derived as

∂Rk

∂û
k

=
⎡

⎢
⎣

∂F k
int

∂uk −MT
1 −MT

2−M1 0 0
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e

=
nipt∑
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γBT
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(

r− 1
2
∂P b

∂F b
: ∂F b

∂u
− 1

2
r− 3

2 P b ⊗ ∂r

∂u

)

wes

+
nipt∑
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(1 − γ 2)BT
L,es

[C]BL,es wes (B.19)

where the term ∂P b/∂F b is calculated in (B.15). Also, Rk

does not depend on û
k−1 explicitly and

∂Rk

∂û
k−1

= 0 (B.20)

B.2.3 Derivatives of ∂Rk/∂vk and ∂Rk/∂vk−1

Since in the free energy only ψ
neq

2 (be) depends on the
auxiliary variable (v ≡ be), the derivative ∂Rk/∂vk can be
derived as

∂Rk

∂vk
=
⎡

⎢
⎣

∂F k
int

∂vk

0
0

⎤
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...
∂F k

int,e

∂vk
nele

]

where
∂F k

int,e

∂vk
j

= 0 if j �= e and (B.21)

∂F k
int,e

∂vk
e

=
[

∂F k
int,e

∂vk
e1

∂F k
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∂vk
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∂vk
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with
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= γBT
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wes

where
∂P k
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∂vk
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= r−1/2
[
∂τneq

∂be � F b−T
]

Without dependence of Rk on vk−1

∂Rk

∂vk−1
= 0 (B.22)

B.3 Derivatives ofHk

B.3.1 Derivatives of ∂Hk/∂ρ1 and ∂Hk/∂ρ2

The derivatives ∂H k/∂ρ1 and ∂H k/∂ρ2 are obtained as

∂H k
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1
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with
∂H k
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and

∂betr

∂F b
= I �
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e
k−1.F

bT

δ
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+
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F b
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� I
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δ (B.25)

in which τ̃
neq
a = τ

neq
a − pneq is the isochoric part

of the principal non-equilibrium Kirchhoff stress and the
relationship betr = F b

δ .b
e
k−1.F

bT

δ with F b
δ � F b.F b−1

k−1
is used in the derivation (where F b is at step k), and the
derivative ∂τ̃

neq
a /∂ρe

A is calculated by

∂τ̃
neq
a

∂ρe
A

= ∂g7

∂ρe
A

τ̃
neq
a,s (B.26)

where the subscript “s” in τ̃
neq
a,s means that it is computed

from the solid phase.
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B.3.2 Derivatives of ∂Hk/∂ ûk and ∂Hk/∂ ûk−1

The derivative ∂H k/∂û
k is obtained as

∂H k

∂û
k

=
[
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∂uk 0 0
]

with
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=
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Similarly, the derivative ∂H k/∂û
k−1 is obtained in the same

way but with

∂H k
es

∂uk−1
e

= −
(

∂betr

∂F b
k−1

: ∂F b
k−1

∂uk−1

)

� exp[−2�tkA] (B.28)

B.3.3 Derivatives of ∂Hk/∂vk and ∂Hk/∂vk−1

The derivative ∂H k/∂vk is obtained as

∂H k

∂vk =
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(B.29)

∂H k
es

∂vk
es

= I
s
4 − betr .

∂

∂be (exp[−2�tkA]) (B.30)

∂

∂be (exp[−2�tkA]) = ∂

∂τneq
(exp[−2�tkA]) : ∂τneq

∂be

(B.31)

where I
s
4 is the symmetric identity 4th-order tensor, i.e.,

I
s
4 � 1

2 (I � I + I � I ), I → second-order identity tensor
and the derivatives ∂(exp[−2�tkA])/∂τneq and ∂τneq/∂be

are computed in the principal space. Finally, the derivative
∂H k/∂vk−1 is formulated in the same way as ∂H k/∂vk , but
with

∂H k
es

∂vk−1
es

= − ∂betr

∂be
k−1

� exp[−2�tkA] where

∂betr

∂be
k−1

= 1

2
(F b

δ � F b
δ + F b

δ � F b
δ ) (B.32)

Appendix C: Verifications of the
path-dependent sensitivity analysis

In this appendix, the path-dependent sensitivity calculation
given in Section 5 and Appendix B is verified for two
types of material interpolations as given in Section 4.3
for different candidates chosen for material-0. The first
verification, referred to as verification-1, considers the
material interpolation given in Section 4.3.1 with void phase
chosen as material-0. The second verification, referred to
as verification-2, considers the material interpolation in
Section 4.3.2 with a soft hyperelastic phase chosen as
material-0.

C.1 Sensitivity verification-1: Void for material-0

For verification-1, a parallelogram-shaped RUC with a
random design shown in Fig. 15a is used. The density
vectors ρ1 and ρ2 are plotted in Fig. 15c. The macroscopic
deformation loading considers (68) to (70) with θ = 0◦,
� = 1.4, f = 0.009s−1, and t ∈ [0, 1/f ]. The sensitivity
comparison between the proposed adjoint method and the
central difference method (with perturbation �ρ1 = �ρ2 =
10−6) is shown in Fig. 16 where good matches can be
observed with relative error around 10−6 to 10−8. Here, the
relative error is computed as the absolute value of the ratio
of the difference between the central difference results and
the adjoint results to the central difference results.

C.2 Sensitivity verification-2: Soft hyperelastic
phase for material-0

For verification-2, a hexagon-shaped RUC with prescribed
design shown in Fig. 15b is used. The design is with the
same density vectors ρ1 and ρ2 shown in Fig. 15c. The
macroscopic deformation loading considers (68) to (70)
with θ = 45◦, � = 1.4, f = 0.009s−1 and t ∈ [0, 1/f ].
The sensitivity comparison between the proposed adjoint
method and the central difference method (with perturbation

1451



G. Zhang and K. Khandelwal

(a) RUC for verification-1

Material-0

Material-1

Material-2
1 102

11

91 100

1 10

11

91 100

Material-0

Material-1

Material-2

(b) RUC for verification-2 (c) Density variables

Fig. 15 Designs for sensitivity verifications

Fig. 16 Sensitivity comparison
between the adjoint method and
the central difference method
for verification-1

(a) Sensitivities (c) Sensitivities 

(b) Relative errors in (d) Relative errors in 

Fig. 17 Sensitivity comparison
between the adjoint method and
the central difference method
for verification-2

(a) Sensitivities (c) Sensitivities 

(b) Relative errors in (d) Relative errors in 
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�ρ1 = �ρ2 = 10−6) is shown in Fig. 17 where again good
matches can be observed with relative error around 10−6 to
10−8.

References

Alberdi R, Khandelwal K (2017) Topology optimization of pres-
sure dependent elastoplastic energy absorbing structures with
material damage constraints. Finite Elem Anal Des 133:42–61.
https://doi.org/10.1016/j.finel.2017.05.004

Alberdi R, Khandelwal K (2019a) Bi-material topology optimization
for energy dissipation with inertia and material rate effects
under finite deformations. Finite Elem Anal Des 164:18–41.
https://doi.org/10.1016/j.finel.2019.06.003

Alberdi R, Khandelwal K (2019b) Design of periodic elastoplastic
energy dissipating microstructures. Struct Multidiscip Optim
59(2):461–483. https://doi.org/10.1007/s00158-018-2076-2

Alberdi R, Zhang G, Khandelwal K (2018a) A framework for
implementation of rve-based multiscale models in computational
homogenization using isogeometric analysis. Int J Numer Meth-
ods Eng 114(9):1018–1051. https://doi.org/10.1002/nme.5775

Alberdi R, Zhang G, Li L, Khandelwal K (2018b) A unified
framework for nonlinear path-dependent sensitivity analysis in
topology optimization. Int J Numer Methods Eng 115(1):1–56.
https://doi.org/10.1002/nme.5794

Andreassen E, Jensen JS (2014) Topology optimization of periodic
microstructures for enhanced dynamic properties of viscoelastic
composite materials. Struct Multidiscip Optim 49(5):695–705.
https://doi.org/10.1007/s00158-013-1018-2

Asadpoure A, Tootkaboni M, Valdevit L (2017) Topology opti-
mization of multiphase architected materials for energy dis-
sipation. Comput Methods Appl Mech Eng 325:314–329.
https://doi.org/10.1016/j.cma.2017.07.007

Bendsøe MP, Kikuchi N (1988) Generating optimal topolo-
gies in structural design using a homogenization method.
Comput Methods Appl Mech Eng 71(2):197–224.
https://doi.org/10.1016/0045-7825(88)90086-2

Blanco PJ, Sánchez PJ, de Souza Neto EA, Feijóo RA (2016)
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