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Abstract
The present paper describes a shape optimization procedure for designing running shoes, focusing on two mechanical
properties, namely, the shock absorption and the stability keeping the right posture. These properties are evaluated from two
deformations of a sole at characteristic timings during running motion. We define approximate planes for the deformations
of sole’s upper boundary by least squares method. Using the planes, we choose the tilt angle in the shoe width direction at
the mid stance phase of running motion as an objective function representing the stability, and the sunk amount at the contact
phase of running motion as a constraint function representing the shock absorption. We assume that the sole is a bonded
structure of soft and hard hyper-elastic materials, and the bonding and side boundaries are variable. In this study, we apply
the formulation of nonparametric shape optimization to the sole considering finite deformation and contact condition of the
bottom of the sole with the ground. Shape derivatives of the cost (objective and constraint) functions are obtained using the
adjoint method. The H 1 gradient method using these shape derivatives is applied as an iterative algorithm. To solve this
optimization problem, we developed a computer program combined with some commercial softwares. The validity of the
optimization method is confirmed by numerical examples.

Keywords Running shoes · Hyper-elastic material · Shape optimization · Boundary value problem · H 1 gradient method

1 Introduction

Running is one of the most popular sports in the world.
However, it has been reported that the risk of injuries
to lower extremities is greater than other sports, because
repeated loads are applied to lower extremities during run-
ning (Matheson et al. 1987). For this reason, running shoes
should not only enhance the runner’s performance but also
prevent injuries during running.

Responsible Editor: Seonho Cho

� Mai Nonogawa
mai.nonogawa@asics.com

1 Institute of Sports Science, Asics Corporation, 6-2-1,
Takatsukadai, Nishiku, Kobe 651-2271, Japan

2 Faculty of Engineering and Design, Kagawa University,
1-1, Saiwai-cho, Takamatsu, 760-8521, Japan

3 Graduate School of Informatics, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8601, Japan

Shoes have various requirement properties, such as cush-
ioning property, shoe stability, grip property, and breatha-
bility (Cavanagh 1980; Nishiwaki 2008). Especially in the
procedure designing sole of shoes, we often focus on the
cushioning property and the shoe stability. The cushioning
property means absorption of the impact from the ground
at the contact phase. It is evaluated using time derivative of
vertical ground reaction force (for instance Gard and Konz
(2004), Clarke et al. (1983), Nigg et al. (1987, 1988), and
Nigg (1980)). Meanwhile, the shoe stability means suppres-
sion of excessive foot joint motions called as pronation at
the mid stance phase. It is evaluated using the angle between
heel and lower extremity (for instance Nigg (1980),Woensel
and Cavanagh (1992), Areblad et al. (1990), and Stacoff
et al. (1992)). A sole that is made of soft material has good
cushioning property but may not have good shoe stability.
In the case of hard material, the contrary may be true.

Apparently, the sole which consists of only one material
cannot provide both good properties. Some sole designs
combining different hardness materials to improve both
properties were reported (Nakabe and Nishiwaki 2002;
Oriwol et al. 2011). These soles have a part made of hard
material on the inside from the heel to the mid foot to
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increase rigidity of the sole. The hard part can prevent
the heel to tilt towards the heel’s region and improve the
stability, while it may reduce cushioning property. However,
the shape of the hard material in the heel was rectangular.
We have not found any cases in which both the shoe stability
and the cushioning property are improved by designing the
shape of the material boundary using optimization method.

Some nonlinearities must be considered to predict
mechanical properties of running shoes. It is expected that
20% or more of strain occurs in the sole during running
since the ground reaction force in the vertical direction
is two to three times of runner’s weight (Gard and Konz
2004; Clarke et al. 1983, Nigg et al. 1987, 1988, Nigg
1980). Because of this, one has to consider geometrical
nonlinearity in predicting mechanical properties of running
shoes. The soles of running shoes should therefore be made
of multiple materials with strong nonlinearity such as resin
foams, resins, and rubbers to satisfy the various required
properties. For example, it is known that resin foams have
complicated behaviors under compressive load (Gibson and
Ashby 1980; Mills 2007) and must be modeled as some
hyper-elastic materials. In addition to this, contact condition
must be taken into account because the bottom surface of
the sole contacts with the ground at different parts from the
moment of the first contact until complete separation from
ground.

Many methods of analyzing design sensitivity of non-
linear problems have been researched over the years and
applied to a variety of design optimization problems
(Kaneko and Majer 1981; Ryu et al. 1985; Cardoso and
Arora 1988; Tsay and Arora 1990; Vidal et al. 1991; Vidal
and Haber 1993; Hisada 1995; Yamazaki and Shibuya
1998; Yuge and Kikuchi 1995). However, these methods
were applicable only to parametric or sizing optimization
problems. Focusing on nonparametric shape optimization
methods, Ihara et al. (1999) solved a shape optimization
problem minimizing the external work of an elasto-plastic
body. They evaluated the shape derivative of the cost func-
tion by the adjoint method and obtained the search vec-
tor of domain variation by the traction method (Azegami
and Wu 1996; Azegami and Takeuchi 2006) (H 1 gradi-
ent method for domain variation (Azegami 2016, 2017).
Kim et al. (2000) presented a sensitivity analysis for shape
optimization problems considering the infinitesimal elasto-
plasticity with a frictional contact condition. In their work,
the direct differentiation method was used to compute the
displacement sensitivity, and the sensitivities of various
performance measures were computed from the displace-
ment sensitivity. In updating the shape, the authors used
the so-called isoparametric mapping method (Choi and
Chang 1994). Furthermore, Tanaka and Noguchi (2004) pre-
sented a shape optimization method similar to the traction
method but described by a discrete form, and applied to

structural designs with strong nonlinearity such as a flexible
micromanipulator made of hyper-elastic material. Mean-
while, Iwai et al. (2010) presented a numerical solution to
shape optimization problems of contacting elastic bodies for
controlling contact pressure. They used an error norm of
the contact pressure to a desired distribution as an objec-
tive cost function and evaluated its shape derivative by the
adjoint method and reshaped by the traction method. In
these aforementioned works, the studies conducted focus
on basic problems, though they include geometrical and
material nonlinearities.

In this study, we propose a shape optimization method
with respect to the desired shoe stability and cushioning
property for soles of running shoes. We define the
indices to evaluate both properties and then formulate
a shape optimization problem using the indices as cost
functions. The shape derivatives of cost functions are
derived theoretically. Using the shape derivatives, shape
optimization can be performed based on the standard
procedure of H 1 gradient method (Azegami 2016).

In the following sections, we use the notation
Ws,p̄ (Ω;R) to represent the Sobolev space for the set of
functions defined in Ω that corresponds to a value of R
and is s ∈ [0, ∞] times differentiable and p̄ ∈ [1, ∞]-
th-order Lebesgue integrable. Furthermore, Lp̄ (Ω;R) and
Hs (Ω;R) are denoted by W 0,p̄ (Ω;R) and Ws,2 (Ω;R),
respectively. In addition, the notation C0,σ (Ω;R) is used to
represent the Hölder space with a Hölder index σ ∈ (0, 1].
In particular,C0,1 (Ω;R) is called the Lipschitz space. With
respect to a reflexive Sobolev space X, we denote its dual
space by X′ and the dual product of (x, y) ∈ X × X′ by
〈x, y〉. Specifically, f ′ (x) [y] represents the Fréchet deriva-
tive

〈
f ′ (x) , y

〉
of f : X → R at x ∈ X with respect to an

arbitrary variation y ∈ X. Additionally, fx (x, y) [z] rep-
resents the Fréchet partial derivative. The notation ∀ means
the word “for all”, and A · B represents the scalar prod-
uct

∑
(i,j)∈{1,...,m}2 aij bij with respect to A = (

aij

)
ij
, B =(

bij

)
ij

∈ R
m×m.

2 Sole model

Let us consider a conceptual sole model as depicted
in Fig. 1. We assume that a sole of running shoes is
composed of multiple hyper-elastic bodies and contacts
with the ground. In this paper, Ω10 and Ω20 denote three-
dimensional bounded open domains of hyper-elastic bodies
initially made of soft and hard materials for the sole, Ω30

represents a domain of hyper-elastic body for the ground,
and those that do not overlap with each other. Let Ω0 denote⋃

i∈{1,2,3} Ωi0. The domains in Fig. 1 deformed by a domain
variation, which mapping is denoted as i + φ : Ω0 →
Ω (φ) = ⋃

i∈{1,2,3} Ωi (φ) (i is the identity mapping), and
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Fig. 1 A conceptual sole model

by finite hyper-elastic deformation generated by the map i+
u : Ω (φ) = Ω (φ, 0) → Ω (φ, u) = ⋃

i∈{1,2,3} Ωi (φ, u).
The precise definitions will be introduced below.

2.1 Initial domains and boundary conditions

For the initial domains, we assume that the boundaries ∂Ωi0

(i ∈ {1, 2, 3}) of Ωi0 are at least Lipschitz continuous.
The domains Ω10 and Ω20 are bonded on the boundary
Γ120 = ∂Ω10 ∩ ∂Ω20. The domains Ω20 and Ω30 are joined
by the boundary ΓM0 ∩ ΓM∗0, where ΓM0 and ΓM∗0 denote
master and slave boundaries having possibility to contact on
∂Ω20 \ Γ̄120 and ∂Ω30, respectively. The boundary ΓD0 on
∂Ω30 \ Γ̄M∗0 is a Dirichlet boundary on which the hyper-
elastic deformation is fixed. We use the notation ΓN0 =⋃

i∈{1,2,3} ∂Ωi0 \ (
Γ̄D0 ∪ Γ̄120

)
for a Neumann boundary

and assume that a traction force pN is applied on Γp0 ⊂
∂Ω10 \ Γ̄120 ⊂ ΓN0 and varies with the boundary measure
during domain deformation, whose definition will be given
later. Moreover, ΓU0 ⊂ ∂Ω10 \ Γ̄120, which includes Γp0,
represents the boundary to observe the deformation of sole,
which will be used to define cost functions.

2.2 Domain variations

In this study, we assume that Ω0 is a variable domain. As
previously stated, the varied domain is defined as

Ω (φ) = { (i + φ) (x) | x ∈ Ω0} ,

where φ represents the displacement in the domain
variation. Similarly, with respect to an initial domain or
boundary ( · )0, ( · ) (φ) represents { (i + φ) (x) | x ∈ ( · )0}.

When the design variable φ is selected as above, the
domain of the solution to a state determination problem
(hyper-elastic deformation problem) varies with the domain
variation. Such a situation makes it difficult to apply
a general formulation of function optimization problem.
Hence, we will expand the domain of φ from Ω0 to R

3

and assume φ : R3 → R
3. Furthermore, since we will be

considering the gradient method on a Hilbert space later, a
linear space and an admissible set for φ are defined as

X =
{
φ ∈ H 1

(
R
3;R3

) ∣∣∣ φ = 0

on ΓC0 = ΓD0 ∪ ΓU0 ∪ ΓM0 ∪ ΓM∗0} , (1)

D = X ∩ C0,1
(
R
3;R3

)
. (2)

In the definition of X, the boundary conditions for domain
variation were added from the situation of the present study.
The additional condition for D was added to guarantee that
Ω (φ) has Lipschitz regularity.

3 Hyper-elastic deformation problem

In the shape optimization problem formulated later, the
solution u : Ω (φ) → R

3 of hyper-elastic deformation
problem will be used in cost functions. In this section,
we will formulate this problem according to a standard
procedure for hyper-elastic continuum.

We define a linear space and an admissible set for u as

U =
{

u ∈ H 1
(
R
3;R3

) ∣∣∣ u = 0 on ΓD0

}
, (3)

S = U ∩ W 2,2qR
(
R
3;R3

)
(4)

for qR > 3. The additional condition for S was added to
guarantee the domain variation obtained by the H 1 gradient
method introduced later being in D.

As explained in Section 2, we consider that the traction
pN acting on Γp0 deforms Ω (φ) = Ω (φ, 0) as

Ω (φ, u) = { (i + u) (x) | x ∈ Ω (φ)} .
Similarly, with respect to any other domain or bound-
ary ( · ) (φ), { (i + u) (x) | x ∈ ( · ) (φ)} is denoted as
( · ) (φ, u).

On the boundary ΓM0, having the possibility to contact
with ΓS0, we define the shortest vector from x ∈ ΓM (0, u)

to ΓM∗ (0, u) by d (u) : ΓM (0, u) → R
3 and a penetration

distance by

g (u) = −d (u) · ν (u) on ΓM (0, u) , (5)

where ν (u) is the outward unit normal vector on ΓM (0, u).
We introduce a Lagrange multiplier p : ΓM (0, u) → R

to the nonpenetrating condition g (u) ≤ 0. The physical
meaning of p ≥ 0 is the absolute value of contact pressure.
For p, a linear space and an admissible set are defined as

P = H 1
(
R
3;R

)
,

Q = P ∩ W 2,2qR
(
R
3;R

)
.

A strain used in hyper-elastic deformation problem is
defined according to the standard procedure. With respect

Shape optimization of running shoes with desired deformation properties 1537



to the mapping y = i + u : Ω0 → Ω , let the deformation
gradient tensor be

F (u) =
(

∂yi

∂xi

)
ij

=
(
∇y�)� = I +

(
∇u�)�

,

and the Green-Lagrange strain be

E (u) = (
εij (u)

)
ij

= 1

2

(
F� (u)F (u) − I

)

= EL (u) + 1

2
EB (u, u) ,

where I denotes the third-order unit matrix. EL (u) and
EB (u, v) are defined as

EL (u) = 1

2

(
∇u� +

(
∇u�)�)

,

EB (u, v) = 1

2

(
∇u� (

∇v�)� + ∇v� (
∇u�)�)

.

The definition of constitutive equation for hyper-elastic
material is started by assuming the existence of a nonlinear
elastic potential π : R

3×3 → R which gives the second
Piola-Kirchhoff stress tensor as

S (u) = ∂π (E (u))

∂E (u)
.

In this paper, we will use the Neo-Hookean model and the
hyper foam model (Dassault Systèmes 2018), in which π

are given as

π (E (u)) = e1 (i1 (u) − 3) + 1

e2
(i3 (u) − 1)2 , (6)

π (E (u)) =
∑

i∈{1,...,nH}

2μi

k2i

[
m

ki

1 (u) + m
ki

2 (u)

+m
ki

3 (u) − 3 + 1

li

(
i
−ki li
3 (u) − 1

)]
, (7)

respectively. Here, ei , ki , li , and μi denote material parame-
ters. nH represents the order for the hyper foam model. The
first and third invariants i1 (u) and i3 (u) are defined by

i1 (u) = i
−2/3
3 (u)

(
m2

1 (u) + m2
2 (u) + m2

3 (u)
)

,

i3 (u) = detF (u) ,

where m1 (u) , m2 (u), and m3 (u) are the principal values
of the right Cauchy-Green deformation tensor defined by

C (u) = F� (u)F (u) = 2E (u) + I .

The first Piola-Kirchhoff stress � (u) and Cauchy stress
� (u) can be obtained by S (u) as

� (u) = F (u) S (u) = ω (u) � (u)
(
F−1 (u)

)�
, (8)

� (u) = 1

ω (u)
F (u)S (u) F� (u) , (9)

where ω (u) represents det |F (u)|.

Based on the definitions above, we formulate the hyper-
elastic deformation problem of a sole including contact as
follows.

Problem 1 (Hyper-elastic deformation) For φ ∈ D and a
given pN having proper regularity, find (u, p) ∈ S×Q such
that

− ∇��� (u) = 0� in Ω (φ) , (10)

� (u) ν (u) = pN (u) on Γp (0, u) , (11)

� (u) ν (u) = 0 on ΓN (φ, u) \ Γ̄p (0, u) , (12)

u = 0 on ΓD0, (13)

� (u) ν (u) = −pν (u)

on ΓM (0, u) ∪ ΓM∗ (0, u) , (14)

g (u) ≤ 0, p ≥ 0, pg (u) = 0

on ΓM (0, u) . (15)

Equation (15) gives the KKT (Karush-Kuhn-Tucker)
conditions for the contact on ΓM (0, u). pN (u) in (11) is
defined as varying with the boundary measure in a domain
variation, which is defined by

pN dγ = pN (u) dγ (u) , (16)

where dγ and dγ (u) denote the respective infinitesimal
boundary measures before and after deformations.

For later use, we define the Lagrange function with
respect to Problem 1 as

LP (u, p, v)

= −
∫

Ω(φ,u)

S (u) · E′ (u) [v] dx

+
∫

Γp(0,u)

pN (u) · v (u) dγ (u)

+
∫

Γ12(φ,0)

[
u1 · {(�′ (u1) [v1] + �′ (u2) [v1]

)
ν1

}
+v1 · {(� (u1) + � (u2)) ν1}] dγ
−

∫
ΓM(0,u)

pν (u) · (vM (u) − vM∗ (u)) dγ (u) . (17)

Here, v ∈ U was introduced as the Lagrange multiplier
and ν1 is the outward unit normal to Ω10 on Γ12 (φ, u) (see
Fig. 1). To obtain (17), we multiplied (10) by v, integrated
it over Ω (φ, 0), and used (8) and the boundary conditions.
In this process, the notations

E′ (u) [v] = EL (v) + EB (u, v) = E′� (u) [v] ,

�′ (u) [v] = F ′ [v]S (u) + F (u)S′ (u) [v] ,

F ′ [v] = ∂v

∂x� ,

S′ (u) [v] = DE′ (u) [v] = S′� (u) [v] ,

were used. The operator E′ (u) [v] denotes
∑

i∈{1,2,3} (∂E/

∂ui) vi . Moreover, ui and vi (i ∈ {1, 2,M,M∗})
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denote the vectors u and v in Ωi (φ, 0) or on Γi (0, u),
respectively. In the right-hand side of (17), the integral
on the internal boundary Γ12 (φ, 0) was added to later
evaluate the shape derivative on the boundary. Moreover,
g′ (u) [vM (u) − vM∗ (u)] = ν (u) · (vM (u) − vM∗ (u)) was
used in the last term. Using LP, the weak form of Problem
1 can be written as

LP (u, p, v) = 0 ∀v ∈ U, (18)

combined with (15). This condition can be replaced by
a variational inequality as follows. When ΓM (0, u) and
ΓM∗ (0, u) contact-impact one another, the conditions p >

0 and g (u) = 0 hold. To satisfy the inequality g (u) ≤ 0,
we require the condition

g′ (u) [vM (u) − vM∗ (u)]

= ν (u) · (vM (u) − vM∗ (u)) ≤ 0

to hold. Therefore, defining

UC = {u ∈ U | g (u) ≤ 0 on ΓM (u)} , (19)

we can rewrite (18) combined with (15) to obtain the
variational inequality given by∫

Ω(φ,u)

S (u) · E′ (u) [v] dx

−
∫

Γ12(φ,0)

[
u1 · {(

�′ (u1) [v1] + �′ (u2) [v1]
)
ν1

}
+v1 · {(� (u1) + � (u2)) ν1}] dγ

≥
∫

Γp(0,u)

pN (u) · v (u) dγ (u) ∀v ∈ UC. (20)

4 Approximate planes for sole deformation

The objective of this paper is to improve the properties
of cushioning and shoe stability. In this section, we define
how to evaluate those properties. To do so, we introduce
approximate planes of sole’s deformations and show the
way to calculate them.

4.1 Definition of approximate planes

Figure 2 shows a solemodel, coordinate system (x1, x2, x3)

∈ R
3, and one of the approximate planes of deformation at

time tr with cost functions fr (r ∈ {S,C}) which will be
defined later.

Before showing the definition of the planes, we will
explain conventional methods to evaluate the shoe stability
and cushioning property. Shoe stability is evaluated by the
angle between the heel and lower extremity or between the
heel and the ground at the time of minimum of ground
reaction force in the foot length direction. Cushioning
property, on the other hand, is evaluated using the derivative

Fig. 2 a, b The least squares planes wr of displacement at tr (r ∈
{S,C})

of the vertical ground reaction force at the time of the
first peak of vertical ground reaction force. According to
experimental researches, it is thought that these values
depend on the deformation of the sole. In particular, the
displacement in x3-direction on top surface of the sole is
dominant.

Based on experience and information, we propose to
evaluate the cushioning property and shoe stability using
the parameters of the least squares approximate planes of
the displacements in x3-direction at characteristic timings
during running motion.

The foot pressure distribution on each timing is measured
experimentally using F-Scan (Tekscan, Inc.). The results
are shown in Fig. 3. Among them, we use the pressure
distributions at the times tS (Fig. 3c) and tC (Fig. 3a) for
shoe stability and cushioning property, respectively, for pN
in the static deformation problem (Problem 1). Appropriate
contact condition between the bottom surface ΓM (0, u) of
the sole and the ground ΓM∗ (0, u) is considered at each
time. We will write the two displacements obtained as the
solutions of Problem 1 as ur (r ∈ {S,C}) and components
in x3-direction as ur3.

We define the least squares approximate plane of ur3 at
each time by

wr (αr , βr , δr ) = αrx1 + βrx2 + δr , (21)

Shape optimization of running shoes with desired deformation properties 1539



Fig. 3 a–e Running motion (upper) and pressure distributions (lower) measured on the top surface of sole

for (x1, x2) ∈ R
2. Here, αr , βr , and δr are constants to express

the gradients in x1- and x2-directions and the average of
sinking in x3-direction of the approximate plane of ur3,
respectively. Those parameters are functions of ur . So, we
express them as αr (ur ), βr (ur ), and δr (ur ), respectively.

In this study, we will use αS (uS) and δC (uC) for cost
functions with respect to shoe stability and cushioning
property, respectively.

4.2 Calculation of approximate planes

The parameters αr , βr , and δr can be obtained as a solution
of a least square problem between ur3 and wr . Here, the r is
omitted for simplicity. We define the objective function for
this problem as

fU (α, β, δ) =
∫

ΓU0

(u3 − w (α, β, δ))2 dγ

=
∫

ΓU0

{
u23 + α2x2

1 + β2x2
2 + δ2

−2u3 (αx1 + βx2 + δ)

+2αx1βx2 + 2cαx1 + 2δβx2

}
dγ, (22)

where ΓU (0, u) is the boundary to observe sole deformation
(refer to Figs. 1 and 2). The least square problem can then
be written as follows.

Problem 2 (Approximate plane) For a given u3, find α, β
and δ satisfying

min
(α,β,δ)∈R3

fU (α, β, δ) .

Using the stationary conditions with partial differentia-
tions of fS by those parameters, the solution of Problem 2
can be obtained as

α =
∫

ΓU0

x1 (u3 − βx2 − δ) dγ

/∫
ΓU0

x2
1 dγ,

β =
∫

ΓU0

x2 (u3 − αx1 − δ) dγ

/∫
ΓU0

x2
2 dγ,

δ =
∫

ΓU0

(u3 − αx1 − βx2) dγ

/∫
ΓU0

dγ .

Solving the above system of equations, the parameters α, β,
and δ of the least squares planes can be expressed as

α = 1

γ

{(
c0c22 − c22

) ∫
ΓU0

x1u3 dγ

+ (c1c2 − c0c12)

∫
ΓU0

x2u3 dγ

+ (c2c12 − c1c22)

∫
ΓU0

u3 dγ

}

=
∑

j∈{0,1,2}
āj hj (u) , (23)

β = 1

γ

{
(c1c2 − c0c12)

∫
ΓU0

x1u3 dγ

+
(
c0c11 − c21

) ∫
ΓU0

x2u3 dγ

+ (c1c12 − c2c11)

∫
ΓU0

u3 dγ

}

=
∑

j∈{0,1,2}
b̄j hj (u) , (24)
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δ = 1

γ

{
(c2c12 − c1c22)

∫
ΓU0

x1u3 dγ

+ (c1c12 − c2c11)

∫
ΓU0

x2u3 dγ

+
(
c11c22 − c212

) ∫
ΓU0

u3 dγ

}

=
∑

j∈{0,1,2}
d̄j hj (u) , (25)

where

c0 =
∫

ΓU0

dγ, c1 =
∫

ΓU0

x1 dγ,

c2 =
∫

ΓU0

x2 dγ, c11 =
∫

ΓU0

x2
1 dγ,

c22 =
∫

ΓU0

x2
2 dγ, c12 =

∫
ΓU0

x1x2 dγ,

γ = c0c11c22 + 2c1c2c12 − c21c22 − c22c11 − c0c
2
12

and

h0 (u) =
∫

ΓU0

u3 dγ,

h1 (u) =
∫

ΓU0

x1u3 dγ,

h2 (u) =
∫

ΓU0

x2u3 dγ .

From here, we will denote α, β, and δ of (23), (24), and
(25) at time tr (r ∈ {S,C}) by α (ur ), β (ur ), and δ (ur ),
respectively.

5 Shape optimization problem

Using the definitions given in the previous section, we will
now formulate the shape optimization problem that we will
examine in this section. Considering the design process
of shoes, we assume that there is an ideal value δI for
the cushioning property δ (uC). Therefore, we define the
objective and constraint cost functions as

fS (uS) = α (uS) , (26)

fC (uC) = δ (uC) − δI, (27)

respectively. Using these cost functions, we construct a
shape optimization problem as follows.

Problem 3 (Shape optimization) For fS and fC of (26)
and (27), respectively, find Ω (φ) such that

min
(φ,uS,uC)∈D×S2

{fS (uS) | fC (uC) = 0, ur (r ∈ {S,C})
is the solution of Problem 1, α (ur ) , β (ur ) , and

δ (ur ) are calculated by (23), (24), and(25)} .

6 Shape derivatives of cost functions

In order to solve the shape optimization problem by a
gradient-based method, the Fréchet derivatives of the cost
functions with respect to variation of the design variable are
required. We will derive them with the Lagrange multiplier
method (the adjoint method). Using the Lagrange function
LP with respect to Problem 1 defined in (17), the Lagrange
function of fr (r ∈ {S,C}) can be defined as

Lr (φ, ur , pr , vr ) = fr (ur ) + LP (φ, ur , pr , vr ) ,

where vr was introduced as the Lagrange multiplier with
respect to Problem 1 for fr . In the Lagrange multiplier
method, the shape derivative (Fréchet derivative with
respect to domain variation) of fr is given by f̃ ′

r (φ) [ϕ]
using the notation f̃r (φ) = fr (ur (φ)), which is referred
to as the reduced cost function, and calculated via the
functional Lrφ (φ, ur , pr , vr ) [ϕ].

The shape derivative of Lr with respect to an arbitrary
variation

(
ϕ, û, p̂, v̂

) ∈ X × U × P × U of (φ, ur , pr , vr )

can be written as

L ′
r (φ, ur , pr , vr )

[
ϕ, û, p̂, v̂

]
= Lrφ (φ, ur , pr , vr ) [ϕ] + Lrurpr (φ, ur , pr , vr )

[
û, p̂

]
+Lrvr (φ, ur , pr , vr )

[
v̂
]
. (28)

Here, the third term of the right-hand side of (28) becomes

Lrv (φ, ur , pr , vr )
[
v̂
] = LP

(
φ, ur , pr , v̂

)
.

Then, if (ur , pr) is the solution of Problem 1, this term
becomes zero. The second term of the right-hand side of
(28) becomes

Lrurpr (φ, ur , pr , vr )
[
û, p̂

]
= −

∫
Ω(φ)

(
S′ (ur )

[
û
] · E′ (ur ) [vr ]

+S (ur ) · EB
(
û, vr

))
dx

−
∫

ΓM+(0,ur )

(vrM (ur ) − vrM∗ (ur ))

·p̂ν (ur ) dγ (ur )

+
{ ∑

j∈{0,1,2} āj hj

(
û
)

(r = S)∑
j∈{0,1,2} d̄j hj

(
û
)

(r = C)
, (29)

where we used the notation

ΓM+ (0, ur ) = {x ∈ ΓM (0, ur ) | p (x) > 0} ,

and the coefficients aj and dj defined in (23) and (25).
Noticing that Lrurpr = 0, for an arbitrary

(
û, p̂

) ∈ U × P ,
is the weak form of the adjoint problem below, the second
term on the right-hand side of (28) becomes zero when vr is
the solution of the following problem.
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Problem 4 (Adjoint problem for fr ) Let ur be the
solution of Problem 1 for φ ∈ D, find vr ∈ S such that

−∇��′� (ur ) [vr ] = 0� in Ω (φ) ,

�′ (ur ) [vr ] ν =
{

(ā0 + ā1x1 + ā2x2) ν3 (r = S)(
d̄0 + d̄1x1 + d̄2x2

)
ν3 (r = C)

on ΓU,

�′ (ur ) [vr ] ν = 0 on ΓN (φ) \ Γ̄U,

vr = 0 on ΓD0,

vM (ur ) = vM∗ (ur ) on ΓM+ (0, ur ) .

If (ur , pr) and vr are the solutions of Problem 1 and
Problem 4, using the formula for shape derivative of Lr

(see, for instance Delfour and Zolésio (2011, equations (4.7)
and (4.16)), we obtain the shape derivative of f̃r (φ) by

f̃ ′
r (φ)[ϕ] = Lrφ (φ, ur , pr , vr ) [ϕ] = 〈

gr , ϕ
〉

=
∫

∂Ω(φ)\Γ̄C0

gr∂Ω · ϕ dγ +
∫

Γ12(φ)

gr12 · ϕ dγ1,

(30)

where ΓC0 was defined in (1) and dγ1 denotes the
infinitesimal boundary measure on ∂Ω1

(
φ, 0R3

)
. Here, the

shape gradient for f̃r (φ) (r ∈ {S,C}) is given by

gr∂Ω = − (
S (ur ) · E′ (ur ) [vr ]

)
ν, (31)

gr12 = ∂ν1

[
ur1 · {(

�′ (ur1) [vr1] + �′ (ur2) [vr1]
)
ν1

}
+vr1 · {(� (ur1) + � (ur2)) νr1}

]
ν1, (32)

where ν1 denotes the outward unit normal on ∂Ω1 (φ, 0)
and uri (i ∈ {1, 2}) and vr1 denote ur and vr on Ωi (φ, 0)
and Ω1 (φ, 0), respectively. In the process to obtain the
result of (28) with (29) and (30), the integrals defined
over the boundary ΓC0 = ΓD0 ∪ ΓU0 ∪ ΓM0 ∪ ΓM∗0 in
(28) vanished since these boundaries are held fixed during
domain deformation ϕ ∈ X. Moreover, the terms including
the mean curvature on Γ12

(
φ, 0R3

)
also disappears due to

the fact that the terms on ∂Ω1
(
φ, 0R3

)
and ∂Ω2

(
φ, 0R3

)
which have the unit normal vectors are oppositely directed.

7 Solution to shape optimization problem

Finally, we show the solution to the shape optimization
problem given in Problem 3. Using the shape gradient gr

(r ∈ {S,C}) in (30), we can write the Lagrange function for
Problem 3 and its shape derivative as

L (φ, ur , pr , vr , vr ; r ∈ {S,C})
= LS (φ, uS, pS, vS) + λCLC (φ, uC, pC, vC) , (33)

Lφ (φ, ur , pr , vr , vr ; r ∈ {S,C}) [ϕ]
= 〈

gS, ϕ
〉 + λC

〈
gC, ϕ

〉
(34)

with respect to an arbitrary ϕ ∈ X. Here, λC ∈ R is the
Lagrange multiplier for the constraint fC (uC) = 0. The H 1

gradient method of domain variation type is formulated by
seeking ϕgr ∈ X that decreases fr with respect to iterations
k ∈ {0, 1, . . .} by the following methods.

Problem 5 (H 1 gradient method for fr ) Let aX : X ×
X → R be a bounded and coercive bilinear form in X, and
ca be a positive constant to control the magnitude of ϕgr

(r ∈ {S,C}). For gr

(
φk

) ∈ X′, find ϕgr ∈ X such that

caaX

(
ϕgr , ψ

) = − 〈
gr , ψ

〉 ∀ψ ∈ X. (35)

In this paper, we use

aX (ϕ, ψ) =
∫

Ω(φ)

{(
∇ϕT

)
·
(
∇ψT

)
+ cΩϕ · ψ

}
dx,

where cΩ is a positive constant to guarantee the coercive-
ness of the bilinear form aX. A simple algorithm for solving
Problem 3 by the H 1 gradient method is shown next.

We developed a computer program based on Algorithm 7.
In the program, a commercial finite element program
Abaqus 2018 (Dassault Systèmes) is used to solve state
determination and adjoint problems (Problems 1 and 4).
Moreover, OPTISHAPE-TS 2018 (Quint Corporation) is
used to solve the boundary value problem (Problem 5) using
the H 1 gradient method.
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Fig. 4 A cubic model simplified sole

8 Numerical example

To confirm the solvability of the shape optimization problem
(Problem 3) by the method shown in the previous section,
we will show a numerical result using a cubic model. After
that, a simple sole model will be used to demonstrate the
validity of the presented method in the design of shoe sole
such that the parameter for stability is maximized while the
parameter for cushioning property keeps an ideal value.

In the following sections, we will show the necessity of
considering the material nonlinearity in the analysis of the
cubic model, as well as the necessity of using the contact
condition in the case of a simple sole model.

8.1 Cubic model

Figure 4 shows a finite element model of a cubic body
consisting ofΩ1 = (0, 0.05)×(0, 0.05)×(0.025, 0.05) [m3]
and Ω2 = (0, 0.05)× (0, 0.05)× (0, 0.025) [m3] defined in
Fig. 1. The loading boundary Γp0 is assumed on the upper
boundary of Ω1. The pressure distributions at the times tS
and tC are assumed as follows:

pN =
{ −78e3[kPa] on (0, 0.025) × (0, 0.05) × {0.05}
0R3 on (0.025, 0.05) × (0, 0.05) × {0.05}

at time tS,

pN =
{ −78e3[kPa] on (0, 0.05)×(0.025, 0.05) × {0.05}
0R3 on (0, 0.05) × (0, 0.025) × {0.05}

at time tC,

where e3 denotes the unit vector on x3-coordinate. The
magnitude of the pressure is decided as much as equivalent
to that of the actual pressure in the running motion. The
material parameters used in ABAQUS are shown in Table 1
assuming that Ω1 and Ω2 are made of hyper foams. The

Fig. 5 a, b Optimized shapes of the cubic model

Young’s modulus eY used in the linear elastic analysis is
calculated using the material parameters in Table 1 and
Poisson’s ratio νP by 2 (1 + νP) (μ1 + μ2 + μ3) (eY = 0.78
MPa and νP = 0.3 in Ω1, and eY = 2.60 MPa and νP =
0.3 in Ω2). The finite element model is constructed with
5304 ten-node tetrahedron elements and 8485 nodes. In this
analysis, we assumed that ΓM0 = ΓM∗0 is set as ΓD0 (i.e.,
fixed), and only the material boundary Γ120 = ∂Ω10∩∂Ω20

varies.
Figure 5 shows the optimized shapes of the cubic model.

Figure 5a is the result obtained by considering the finite
deformation and material nonlinearity, while (b) is the
result obtained through linear elastic analysis. The iteration
histories of cost functions are shown in Fig. 6. The notation
fS init represents the value of fS at the initial shape. From
the graphs, it can be confirmed that both the objective
cost functions fS decreased monotonically while keeping
the constraint condition fC ≤ 0. However, the amount of
reduction is greater in the case considering the nonlinearities
than the case of linear analysis. This result demonstrates
that the linear analysis cannot follow the deformation
sufficiently (too stiff) and cannot extend to the range of the
deformation which we consider for the shoe design.

Table 1 Parameters of hyper foam used in the cubic model

Domain μ1 (MPa) α1 (-) μ2 (MPa) α2 (-) μ3 (MPa) α3 (-) D1 (-) D2 (-) D3 (-)

Ω1 0.2142 19.9765 0.05814 17.4194 0.02720 −9.4883 0.3 0.3 0.3

Ω2 0.7141 19.9765 0.1938 17.4194 0.0907 −9.4883 0.3 0.3 0.3
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Fig. 6 Iteration history of cost functions in the cubic model

For reference, we examined a finite deformation analysis
using the linear material. However, we could not continue
the analysis by mesh distortion. In addition, using the
optimized model obtained by the linear analysis shown
in Fig. 5b, we analyzed the finite deformation with the
nonlinear material and obtained the cost values fS/fS init =
0.64 and 1 + fC/δI = 1.03. From the result, it can be
confirmed that the inequality constraint fC ≤ 0 is violated.
This violation is unacceptable in the design region of shoes.

8.2 Sole model

A finite element model of a sole is constructed with eight-
node hexahedral elements as shown in Fig. 2. The model
consists of three domains colored in yellow, light blue, and
gray. The domains in yellow and light blue were modeled
by hyper foam with different hardness. For the domain
in gray, the Neo-Hookean model was used. We assumed
that Ω20 consists of the domains in light blue and gray in
which the gray domain is fixed in the domain variation.
The parameters of these models were identified based on
experimental results. We used the foot pressure distributions
as shown in Fig. 3a and c for pN. In this analysis, we
assumed that the ground Ω30 is a rigid body and fixed in the
domain variation, and contact condition between the bottom
surface ΓM (0, u) of the sole and the ground ΓM∗0 = ΓD0

with friction free is considered. For contact type in Abaqus
2018, the option ‘surface-surface’ was used. In the case
using a fixed condition, we assumed that ΓM0 = ΓM∗0 is
the fixed boundary ΓD0, and only the material boundary
Γ120 = ∂Ω10 ∩ ∂Ω20 varies.

Figure 7a shows the optimized shapes of Ω10 and Ω20

obtained by the developed program using the nonlinear
material and aforementioned contact condition. In contrast,
Fig. 7b shows the result in which the contact condition
is changed to the fixed condition on ΓM0 = ΓM∗0(=
ΓD0). The iteration histories of cost functions with respect
to the number of reshaping are shown in Fig. 8. Here,
fS init denotes the fS at the initial shape, too. From the
graphs, it can be confirmed that the objective cost function

Fig. 7 a, bOptimized sole models considering finite deformation with
nonlinear material

fS decreased monotonically while keeping the constraint
condition fC ≤ 0. This variation means that maintaining
the average sinking δI at the time tC in the contact phase,
the tilt angle α (uS) at the time tS in the mid stance phase is
minimized.

Comparing the results between the cases with contact
condition and with fixed condition, we obtained a large
reduction of fS in the case with contact condition as evident
in Fig. 8. A remarkable difference is found at the shape
of mid top surface in Ω2 (φ). In the contact case, a wavy
variation in the thickness from the heel to toe is generated
in the process of optimization, while only a small variation
is created in the fixed case. Those differences can be
considered as an effect of the contact and fixed conditions.
When the contact condition is used with respect to the
pressure distributions at the times tS (Fig. 3c), the bottom
surface of Ω2 (φ) contacts with the mid foot from the heel
and does not contact at the remaining part (Fig. 9b). This
loading condition makes intensely focused variation in the
mid top surface in Ω2 (φ). On the other hand, when the
fixed condition is used, all the bottom surface supports
the pressure by tensile and compressible forces which are

Fig. 8 Iteration history of cost functions in the sole model
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Fig. 9 a, b Contacting regions

distributed widely. As a result, it can be considered that
the shape variation becomes small and the reduction of fS
becomes small, too.

From the result that a great difference is observed between
the contact and fixed conditions, it can be concluded that the
contact condition is required in the design of sole.

9 Conclusion

In this paper, an optimized shape design problem for shoe
sole improving the shoe stability and cushioning property
was formulated using parameters of planes that approximate
the deformations analyzed by the finite element method using
the pressures measured during the running motion as external
boundary forces. In the finite element analysis, finite
deformation, nonlinear constitutive equations for hyper-
elastic materials, and contact condition between the bottom
of sole and the ground were taken into account. Using the
approximate planes, the tilt angle in the mid stance phase
and the average sinking in the contact phase were chosen
as objective and constraint cost functions, respectively. The
target boundaries to optimize were the bonded boundary of
soft and hard materials and side boundary. Numerical results
using a realistic finite element model demonstrated that the
optimized shape of the formulated problem can be obtained
by the presented method. Regarding the selection of the
parameters for objective and constraint cost functions, we
have to hear desires of running shoe developers based on
evaluation by runners.
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