
RESEARCH PAPER

Accelerated topology optimization by means of deep learning

Nikos Ath. Kallioras1 & Georgios Kazakis1 & Nikos D. Lagaros1

Received: 13 February 2019 /Revised: 4 January 2020 /Accepted: 11 February 2020 /Published online: 30 March 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
This study is focused on enhancing the computational efficiency of the solid isotropic material with penalization (SIMP)
approach implemented for solving topology optimization problems. Solving such problems might become extremely time-
consuming; in this direction, machine learning (ML) and specifically deep neural computing are integrated in order to accelerate
the optimization procedure. The capability ofML-based computational models to extract multiple levels of representation of non-
linear input data has been implemented successfully in various problems ranging from time series prediction to pattern recog-
nition. The later one triggered the development of the methodology proposed in the current study that is based on deep belief
networks (DBNs). More specifically, a DBN is calibrated on transforming the input data to a new higher-level representation.
Input data contains the density fluctuation pattern of the finite element discretization provided by the initial steps of SIMP
approach, and output data corresponds to the resulted density values distribution over the domain as obtained by SIMP. The
representation capabilities and the computational advantages offered by the proposed DBN-based methodology coupled with the
SIMP approach are investigated in several benchmark topology optimization test examples where it is observed more than one
order of magnitude reduction on the iterations that were originally required by SIMP, while the advantages become more
pronounced in case of large-scale problems.

Keywords Topologyoptimization .Deep learning .Deepbelief networks .RestrictedBoltzmannmachines . Pattern recognition .

SIMP

1 Introduction

Since the 1970s, structural optimization has been the topic of
intensive scientific development and several methods for
achieving improved structural designs have been advocated
(Moses 1974; Gallagher and Zienklewicz 1973; Haug and
Arora 1974; Sheu and Prager 1968; Spunt 1971); structural
optimization matured from simple academic problems to be-
coming the core of contemporary design in case of extremely
complicated structural systems (Lagaros 2018). Topology op-
timization represents a material distribution numerical

procedure for synthesizing structural layouts without any
preconceived form. Many approaches have been proposed
so far, specially tailored for solving the topology optimization
problem, where the most widely used ones are the solid iso-
tropic material with penalization (SIMP) approach introduced
by Bendsøe (Bendsøe 1989; Zhou and Rozvany 1991;
Mlejnek 1992), the level set one by Wang et al. (Wang et al.
2003) and Allaire et al. (Allaire et al. 2004) and the evolution-
ary structural optimization (ESO) one and its later version,
labelled as bi-directional ESO (BESO) developed by Xie
and Steven (Xie and Steven 1992; Xie and Steven 1993), in
cooperation also with Querin (Querin et al. 1998), respective-
ly. Despite the theoretical advancements in the field, similar to
any type of structural optimization problem, serious computa-
tional obstacles arise especially when dealing with problems
requiring finer finite element (FE) mesh discretization. In or-
der to alleviate this drawback, so far, a number of parallel
computing frameworks implemented successfully in CPU
and/o r GPU envi ronments have been proposed
(Papadrakakis et al. 2001; Mahdavi et al. 2006; Duarte et al.
2015; Aage et al. 2015; Martinez-Frutos and Herrero-Perez
2016; Wu et al. 2016).

Responsible Editor: Felipe A. C. Viana

* Nikos D. Lagaros
nkallioras@yahoo.com; kzkgeorge@gmail.com;
nlagaros@central.ntua.gr

1 Institute of Structural Analysis & Antiseismic Research, Department
of Structural Engineering, School of Civil Engineering, National
Technical University of Athens, 9, Heroon Polytechniou Str.,
Zografou Campus, GR-15780 Athens, Greece

Structural and Multidisciplinary Optimization (2020) 62:1185–1212
https://doi.org/10.1007/s00158-020-02545-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02545-z&domain=pdf
http://orcid.org/0000-0001-6114-9632
mailto:nkallioras@yahoo.com
mailto:kzkgeorge@gmail.com
mailto:nlagaros@central.ntua.gr

Traditionally, computational mechanics relied on rigorous
mathematical methods and on theoretical mechanics princi-
ples. However, a few decades ago, new families of computa-
tional procedures, labelled as soft computing (SC) methods,
have been presented (Hajela et al. 1993). These methods rely
on heuristic approaches rather than on rigorous mathematics.
Although originally they were received with suspicion, in
many problems, they have turned out to be surprisingly pow-
erful, while their application is unceasingly growing. Neural
networks (NNs) belonging to machine learning (ML) and ge-
netic algorithms belonging to metaheuristics and fuzzy logic
represent the foremost well-known SC approaches. Shallow
NNs were the models used before 2006, as deep learning (DL)
was incapable to train/test data due to the lack of computing
power. Modern scientific breakthroughs in ML have offered
scientists the ability to handle problems that were considered
in the past computationally too demanding from the aspect of
processor’s power or memory consumption, while completely
new options of computer applications were proposed such as
autonomous driving and many more. During the last decade,
DL has attracted much interest due to fascinating results
achieved in the fields of natural language processing
(Collobert and Weston 2008), computer vision (Krizhevsky
et a l . 2012) , big data management (Hinton and
Salakhutdinov 2006), medical sciences (Greenspan et al.
2016) and many more. Many applications of shallow NNs
on structural optimization problems can be found in modern
literature. Adeli and Park (Adeli and Park 1995) together with
Papadrakakis et al. (Papadrakakis et al. 1998) where the first
ones that have integrated shallow NNs into the structural op-
timization procedure. Later, in the work by Papadrakakis and
Lagaros (Papadrakakis and Lagaros 2002), a shallow NN
model has also been used in reliability-based structural opti-
mization. Since then, many studies have been publishedwhere
various metamodels have been used into several formulations
of structural optimization problems: indicatively, kriging ap-
proximations in structural optimization (Sakata et al. 2003),
time history–based design optimization (Gholizadeh and
Salajegheh 2009), performance-based design (Moller et al.
2009) and many more.

In this work, a generally applicable methodology is pre-
sented for dealing with the challenging concept to accelerate
the SIMP-based solution part of topology optimization prob-
lems. In particular, deep belief networks (DBNs) are integrat-
ed into the SIMP approach aiming to reduce the computing
requirements of the topology optimization procedure thus re-
ducing drastically the necessary iterations of the SIMP ap-
proach. To the authors’ knowledge, there is only one study
in the international literature presented by Sosnovik and
Oseledets in a conference (Sosnovik and Oseledets 2017),
where a convolutional neural network was applied to topology
optimization where a metamodel is trained on 2D images in
order to predict the final 2D image. On the other hand, the

proposed DBN-based methodology has no limitations to 2D
topology optimization problems while a different deep learn-
ing approach is also used. The main advantage of the meth-
odology presented in this study is that although training is
performed once over the patterns generated for a simple 2D
test example corresponding to minimum compliance formula-
tion, the trained DBN presents extremely good performance
when implemented into any other test example with varying
loading conditions, problem size/type (2D or 3D) and optimi-
zation constraints. In particular, in all test examples considered
(2D or 3D), the number of iterations required is reduced by
more than one order of magnitude, depicting also remarkable
robustness converging to almost the same optimized objective
function value. The major advantages of the proposed meth-
odology originate from the generality of its application since it
is not affected by the characteristics of the finite element mesh
(structured or not), size type of the problem (2D or 3D formu-
lation), the solution algorithm of the approach (optimality
criteria (OC) method), method of moving asymptotes
(MMA), etc.), the objective function, the loading type (grav-
ity, thermal, acoustic, etc.) and filtering adopted. Worth men-
tioning as well a recent study by Yoo and Lee (Yoo and Lee
2017) which incorporates a dual-layer element and a variable
grouping method for accelerating the topology optimization
procedure in case of large 3D problems.

The rest of the paper is organized as follows: In the second
section, a brief presentation of topology optimization problem
and SIMP approach is presented while in the third one, re-
stricted Boltzmann machines and deep belief networks are
described. The proposed methodology is presented in detail
in the fourth section along with the training procedure follow-
ed in this work. The fifth section is devoted to the assessment
of the DBN parameters over a number of benchmark 2D test
examples chosen from the literature. The performance of the
proposed methodology is also underlined in this section in
both 2D and 3D test examples. In the last section, the con-
cluding remarks are noted.

2 Topology optimization

In order to present the framework of the proposed DBN-based
acceleration methodology and make the paper more self-
contained, a short description of the basic theoretical parts of
topology optimization problem are provided in this section.
The main objective of structural topology optimization is to
define the proper arrangement of material into the design do-
main that transfers specific loading conditions to supports in
the best possible way. It can be seen as the procedure of elim-
inating the material volume that is not of paramount impor-
tance, i.e. does not contribute to the domain’s structural resil-
ience. Topology optimization could be utilized in order to
derive the appropriate initial layout of the structural system

1186 N. A. Kallioras et al.

that is then refined bymeans of shape optimization. Therefore,
it can be used to assist the designer to outline the structural
system that satisfies the operating conditions in the best way.

The general formulation of topology optimization prob-
lems is correlated to the optimizable domain Ω, the loading
and boundary conditions as well as the volume fraction of
optimized layout, whereas the form of the optimized layout
depends on the objective function selected. Consequently, the
question under investigation is how to distribute material vol-
ume into domain Ω so as to improve a certain criterion; com-
pliance C is a commonly used one. The distribution of mate-
rial into domain Ω is controlled by the density values x dis-
tributed over the domain. More specifically, it is controlled by
design parameters that are associated to the densities xe
assigned to the FE discretization of domain Ω. The densities
(x or xe) take values in the range (0,1], where zero denotes no
material in the specific finite element. The general mathemat-
ical formulation of the topology optimization problem can be
expressed as follows:

min
x

C xð Þ ¼ FTu xð Þ s:t:
V xð Þ
V0

¼ f

F ¼ K xð Þu xð Þ
0 < xmin≤x≤1

8>><
>>:

8>><
>>: ð1Þ

where C(x) represents the compliance of the structural system;
F represents the loading conditions; u xð Þ is the corresponding
global displacement vector; V(x), V0 and f correspond to the
current/initial volume of the domain Ω and desired volume
fraction, respectively; K(x) is the stiffness matrix of the struc-
tural system for the current design x, 0 < xmin ≤ x ≤ 1 denotes
the design set of the density value.

SIMP, BESO and level set are the most well-known ap-
proaches for solving the topology optimization problem; the
proposed DBN-based acceleration methodology is integrated
with SIMP since it is among the most popular ones and be-
cause those interested can easily familiarize with, by means of
the 99 and 88 lines MATLAB codes written by Sigmund and
colleagues (Sigmund 2001; Andreassen et al. 2011).
According to the SIMP approach, the density values of the
finite elements are correlated to their Young modulus value E
as follows:

Ee xeð Þ ¼ xpeE
0
e⇔ke xeð Þ ¼ xpek

0
e ð2Þ

This power law approach was implemented by SIMP in
order to achieve results with low representation of intermedi-
ate densities; parameter p varies for each problem; usually, its
value is taken equal to 3. In the framework of SIMP approach,
the problem can be solved using a number of gradient-based
algorithms; the most common ones are the optimality criteria
method and the method of moving asymptotes. For better
understanding of both methods, the reader can refer to
(Christensen and Klarbring 2009; Svanberg 1987; Bendsoe

and Sigmund 2013). In order to avoid checkerboard patterns
and other numerical instabilities that are described in
(Sigmund and Petersson 1998), restrictions of filter type need
to be implemented during the solution of the topology optimi-
zation problem. Many types of filters have been proposed so
far; some of them are described in the works by Sigmund
(Sigmund 2007; Sigmund 1994; Sigmund 1997); the sensitiv-
ity (Bourdin 2001) and density filtering (Bruns and Tortorelli
2001) are the most often used ones.

3 Deep belief networks

Deep belief networks (DBNs) are probabilistic generative
models, which are created by combining several stochastic,
latent variables. These variables, usually referred as feature
detectors, are capable of understanding higher-order correla-
tions in training datasets. Input data and feature detectors are
grouped under a learning module like restricted Boltzmann
machines (RBMs), and a DBN is created by sequentially com-
bining several of such modules (Hinton 2009). The most im-
portant feature of DBNs is that they can be trained layer wise,
targeting at defining the correlation between the effects the
previous layer units have on the units of the next layer. Due
to this feature, deeper networks are more precise and effective
on various applications such as image recognition, natural
language processing, time series prediction and many more.

3.1 Restricted Boltzmann machines

Boltzmann machines (BMs), similarly to Hopfield nets, are
networks of fully and symmetrically connected units, which
behave as neural nets activators with on/off signals and be-
long to the class of energy-based models (Bengio 2009).
BMs were used in the past for locating hidden features in
large training datasets but their architecture was responsible
for low training speeds in networks with multiple layers of
detectors (Hinton 2007).

Restricted Boltzmann machines (Smolensky 1986; Freund
and Haussler 1992; Hinton 2002a) are probabilistic graphical
models, which can also be inferred as stochastic neural net-
works (Fischer and Igel 2012). RBMs are actually energy-
based two-layer networks where the first layer, called visible
(v), consists of a set of nodes, which are fully and symmetri-
cally connected to the stochastic nodes of the second layer,
called hidden (h). It is worth noting that connections exist only
between units belonging to different layers. A graphical rep-
resentation of an RBM can be viewed in Fig. 1 where units v1
to v7 define the visible layer while units h1 to h4 belong to the
hidden layer. The visible units represent the actual inputs of
the network while the hidden units are the feature detectors.
The energy of such a set of connections can be defined as seen
in the following expression:

Accelerated topology optimization by means of deep learning 1187

E v; hð Þ ¼ − ∑
imax

i¼1
aivi− ∑

jmax

j¼1
bjh j− ∑

imax

i¼1
∑
jmax

j¼1
vih jwij ð3Þ

where vi and bi are the state and bias of the ith visible unit, hj
and bj are the state and bias of the jth hidden unit and wij is the
weight coefficient of the connection between these units. The
energy function, similar to a cost function, is used to indicate
the quality of the state of the two-layer network formed. Then,
the state probability of the network regarding each existing
pair of visible and hidden vectors is calculated. The state of
the network with the lowest energy is the one with the highest
probability. The energy is transformed into a probability dis-
tribution according to the following expression:

p v; hð Þ ¼ 1

Z
e−E v;hð Þ ð4Þ

where Z is calculated according to (5) from the summation of
all probabilities of existing pairs:

Z ¼ ∑
imax

i¼1
∑
jmax

j¼1
e−E v;hð Þ ð5Þ

The probability p(v) for the visible vector is calculated from
the summation of all probabilities of the hidden layer vector
according to the following expression:

p vð Þ ¼ 1

Z
∑
jmax

j¼1
e−E v;hð Þ ð6Þ

As mentioned before, RBMs opposite to BMs present no
connections between units of the same layer (hidden or visi-
ble). Thus, the conditional probabilities can be calculated as
seen below:

p vjhð Þ ¼ ∏
imax

i¼1
p vijhð Þ ð7aÞ

p hjvð Þ ¼ ∏
jmax

j¼1
p hjjv
� � ð7bÞ

p vi ¼ 1jhð Þ ¼ σ ∑
jmax

j¼1
wijh j þ bi

 !
ð7cÞ

p hj ¼ 1jv� � ¼ σ ∑
imax

i¼1
wijvi þ bj

� �
ð7dÞ

where σ(x) is the logistic function: σ(x) = 1/(1 + exp(−x)).
Therefore, the derivative of the log probability of an input
vector (visible layer) with respects to wij can be calculated:

∂logp vð Þ
∂wij

¼ vih j
� �

input
− vih j
� �

model
ð8Þ

where 〈vihj〉inputand 〈vihj〉model express the frequency in which
vi and hj are on together in the training set and in the recon-
structed model, respectively (Hinton 2012). More details on
the training procedure of RBMs are given in the following
subsection.

3.2 Training procedure of DBNs

As described earlier, a DBN is created by sequentially
connecting multiple RBMs as it can be seen in Fig. 2 where
a DBN formulation consisting of four RBMs is presented. The
connections on a DBN are created based on the principal that
the hidden layer of the RBM i− 1 is also the visible layer of
the RBM i. For example, in Fig. 2, RBM1 is composed by
layer L1 which is a visible layer and L2 which is the hidden
one; accordingly for RBM2, L2 represents its visible layer and
L3 is its hidden one.

Training such a network was not very successful in the past
years until Hinton (Hinton et al. 2006) proposed a two-step
approach for training DBNs. According to this approach, the
first step is an unsupervised pre-training of each RBM sepa-
rately while the second step is a supervised fine tuning of the
network as a whole and not each RBM independently (Hinton
2012; Hinton et al. 2006). The pre-training procedure of the
RBMs is performed by using the contrastive divergence

Fig. 1 RBM network representation

1188 N. A. Kallioras et al.

algorithm (Hinton 2002b). The details of an RBM configura-
tion can be seen in Fig. 3. The RBM in Fig. 3 consists of a
visible layer v of size k and a hidden layer h of size l while the
number of connections between all nodes is equal to k × l. For
the case that i denotes a node of the visible layer and j a node
of the hidden one, wij is the weight of connection between i
and j while αi and bj are the biases of the nodes. These

parameters can be represented as a set θ = {W, a, b}. Based
on (3) and (4), the energy function and the joint probability
distribution becomes

E v; h; θð Þ ¼ − ∑
k

i¼1
aivi− ∑

l

j¼1
bjh j− ∑

k

i¼1
∑
l

j¼1
vih jwij ð9Þ

p v; h; θð Þ ¼ 1

Z
e−E v;h;θð Þ ð10Þ

while according to (6), p(v;θ) is given by

p v; θð Þ ¼ 1

Z
∑
l

j¼1
e−E v;h;θð Þ ð11Þ

and according to (8), the weight update is calculated by

∂logp v; θð Þ
∂wij

¼ vih j
� �

input
− vih j
� �

model
ð12Þ

wnew
ij ¼ wij þ e⋅Δwij ð13Þ

where e is the weight learning rate, defining the range of
desired weight changes.

The second part of the procedure represents the supervised
training for the whole network with the use of the back-
propagation algorithm (Rumelhart and McClelland 1986).
Through this part, the weights that are proposed from the
unsupervised pre-training are tuned working with the deep
neural network as a whole. Back-propagation is an iterative
procedure, which updates weight values according to the dif-
ference between a target output and the networks output for
specific weights. Conjugate gradient (CG) method is
usually used for adjusting the weights while steepest
descent or others can also be used. For example, in
the case of an RBM trained over m samples and with
outputs of size n, the weight update is

Wnew
all ¼ Wall−c⋅

∂E
∂W

ð14Þ

where

E ¼ 1

2
∑
m

i¼1
∑
n

j¼1
tij−p

i
j

� 	2
ð15Þ

and t is the target output, p is the generated output and
c is a weight learning rate factor.

Summarizing the above, worth mentioning that a DBN
network is constructed as a series of stacked RBMs.
Generally speaking, a DBN network can be used as a feature
detector and has the ability to categorize a set of inputs ac-
cording to the output classes, which are user-defined. Starting
from an input vector, sequential RBMs are able to investigate
for higher order features. Based on this characteristic, RBMs
are capable to define the classification category of input vec-
tors, according to features not visible in the initial input.Fig. 3 RBM network details

Fig. 2 DBN network representation

Accelerated topology optimization by means of deep learning 1189

4 DLTOP methodology: deep
learning–assisted topology optimization

In this section, the implementation characteristics of the pro-
posed DBN-based acceleration methodology, specially tai-
lored for dealing with topology optimization, are described
in detail. The goal of the proposed methodology is to acceler-
ate the topology optimization procedure. This is achieved by
integrating a DBN into the topology optimization procedure
that is used to predict a close-to-final density value for each
finite element of the initial domain, in conjunction with the
SIMP approach. The DBN is trained once on a typical topol-
ogy optimization problem, and then, it can be successfully
applied to any problem without taking under consideration
dimensionality, problem size, loading conditions, target vol-
ume, etc. Before describing the key steps of the proposed
DLTOP methodology, it should also be stated that both test
examples considered and training data sets built rely on the
assumption that the design domain is initialized with a uni-
form density value to all finite elements corresponding to the
volume fraction value constraint. This assumption is based on
the common initialization practice where the density value to
all finite elements is initialized with the volume fraction value.

4.1 The outline of the DLTOP methodology

Assuming, without loss of generality, that a structured finite
element mesh discretization is implemented and that the do-
main to be optimized is rectangular and is discretized into nex,
ney, nez finite elements per axis, thus the total number of finite
elements ne generated is equal to ne = nex × ney × nez.
According to the topology optimization procedure, the density
value for each of the ne finite elements is initialized and during

the optimization procedure is updated in every iteration of
SIMP approach. The fluctuation of density value di of the ith
finite element with respect to the iteration step t can be
expressed by a function with respect iteration t:

di ¼ F tð Þ
∀i∈ 1; s½ � ð16Þ

Samples of the graphical representation of this function can
be seen in Fig. 4, where it can be observed that the evolution
process varies drastically depending on the location of each
finite element in the design domain. The density fluctuation of
10 different finite elements per SIMP iteration is presented
where each finite element is represented with a different col-
our. The elements displayed are selected randomly from the
domain presented in Fig. 6 b. The initial value of the density
histories of Fig. 4 is equal to 0.4 for all elements since the
target volume is 40% of the initial one, which is a common
practice adopted when implementing SIMP (Yoo and Lee
2017; Sigmund 2001) to use uniform starting density value
for all finite elements corresponding to the volume fraction
value constraint; this is a basic assumption for the develop-
ment and application of the proposed DLTOP methodology.
Thus, every finite element is characterized by a different op-
timization history density value corresponding to a sequence
of discrete time data similar to a time series. The large number
of finite elements required by the domain discretization and
the necessary computations of the SIMP approach can lead to
severe computational demands for performing topology opti-
mization studies even on rather simple 3D design domains.
Indicatively, solving the topology optimization problem for-
mulated for a simple 3D bridge test example discretized with
83,200 finite elements requires up to 25,200 s to carry out 200
SIMP iterations while by applying a GPGPU-based

Fig. 4 Evolution of the finite
element density with respect to
the SIMP iterations

1190 N. A. Kallioras et al.

acceleration of the structural analysis procedure, the required
time is reduced to 1 h (Kazakis et al. 2017), that still remains
significant; in the test examples section, the acceleration ca-
pabilities achieved by the proposed DLTOP methodology are
discussed, where the computing time is further reduced.Worth
mentioning that significant improvements in terms of comput-
ing times have been achieved using GPGPU computing envi-
ronment, indicatively the solution of a test example discretized
with more than 27 millions of solid finite elements required
30,000 s to perform 1000 iterations (Aage et al. 2015).

The proposed methodology requires calibrating the
DBN model that as it will be described in the following
section is performed once. When a trained network is
acquired, it can be implemented to assist any topology
optimization problem. The proposed methodology repre-
sents a two-phase procedure: (i) the first one (denoted as
phase I) refers to a specific number of initial iterations
performed by SIMP and the use of the trained DBN based
on these iterations. The elements’ densities recorded over
these SIMP iterations are used as input arguments for the
DBN which then derives the optimized elements’ density;
(ii) the second one (denoted as phase II) concerns the
SIMP refinement part, where the solution of the first
phase resulted from the DBN are fine-tuned by SIMP. In
phase I, 36 SIMP iterations are performed, and then, DBN
is using them for predicting a close-to-final topology.
Phase I can be described as a discrete jump from the
initial 36 iterations of SIMP to a solution similar to the
final one. In phase II, SIMP is used for fine tuning the
DBN-proposed solution.

The flow chart of the proposed DLTOP methodology is
presented in Fig. 5 a, while the application of the two-phase
methodology in the case of a single finite element is shown in
Fig. 5 b. The abscissa of Fig. 5b represents the iterations per-
formed by SIMPwhile the ordinate corresponds to the density
value of a single finite element, randomly selected from the
example presented in Fig. 6 c. The scope of Fig. 5b is to
schematically present the goal and functionality of DLTOP.
The advantage of the proposed methodology is based on its
feature that each finite element is handled separately regard-
less of its position in the domain, loading and boundary con-
ditions of the domain, etc. Classification problems rep-
resent a challenging type of predictive models. Contrary
to regression predictive modelling, classification models
require information also on the complexity of a se-
quence dependence among the input parameters. In the
case of topology optimization, the early density values
represent the sequence dependence information that
needs to be provided as inputs to the proposed
(classification) methodology. The sequence of discrete
time data, i.e. the density value for every finite element
and the T iterations are generated by SIMP approach
and stored in matrix D presented below:

D ¼

d1;1 d1;2 : : d1;T
d2;1 d2;2 : : d2;T
: : : : :
: : : : :

dne;1 dne;2 : : dne;T

2
66664

3
77775 ð17Þ

where T denotes the maximum iterations needed by SIMP to
converge. Part of the optimization history corresponding to
the first t iterations is used in order to construct the time series
input data for training the DBN while the vector of the last
iteration of SIMP approach corresponding to the Tth column
of density matrix D is used as the target vector of DBN.

ð18Þ

4.2 Construction of the training dataset used

ML-based mathematical models make data-driven classifica-
tion decisions by using input data. These data that are used to
build the final mathematical model is usually constructed
based onmultiple datasets. In general, the classification model
is calibrated first on a series of data called training dataset;
successively, the calibrated model (also called metamodel) is
implemented in order to generate the responses for the mea-
surements in the so called validation dataset; and finally, the
test dataset is used to provide an unbiased assessment of the
final model. In this section the construction of the training
dataset for the problem at hand is described in detail.

The purpose of DBN-based classification is to recognize
and combine with the final SIMP outcome, the pattern of the
density value for all finite elements of the optimizable domain;
thus, the training/validations/testing datasets are composed of
sequences of the density values derived from the implemen-
tation of SIMP approach. In order to prove that the perfor-
mance of the DLTOP methodology is independent of the test
example used for developing the training dataset, two distinct
training datasets are generated and compared with each other.
The two datasets were constructed based on two benchmark
rather simple 2D topology optimization test examples, the
simply supported and cantilever beams, respectively. The
two tests exampled considered for constructing the training

Accelerated topology optimization by means of deep learning 1191

datasets are shown in Fig. 6 (cantilever beam Fig. 6 a and b;
simply supported beam Fig. 6 c and d).

In order to derive a well-constructed training dataset the
following values are adopted for the two training datasets test

examples: (i) two height to length ratios are implemented (i.e.
1:2 and 1:3) and (ii) eight different finite element mesh
discretizations were adopted (it should be specified that the
size of the unit finite element remains the same in all

SIMP generated input DBN output Final output

(a)

Fig. 5 DLTOP methodology: a flow chart and b implementation for single finite element

1192 N. A. Kallioras et al.

discretizations; thus, finer discretization results into larger do-
main sizes). Specifically, in order to build the datasets, the
following discretizations were used D = [DK D3K D6K

D10K D20K D40K D60K D100K]
T where DK stands for the

samples generated for a finite element mesh discretization of
the order of 1000 finite elements while D10K stands for the

samples generated for the discretization of the order of 10,000
elements. Therefore, the samples used to derive the two train-
ing datasets are composed by the iteration histories of all the
finite elements when solving by SIMP the following topology
optimization problems:

DK

1 : 2
nex ¼ 50
ney ¼ 25

1 : 3
nex ¼ 60
ney ¼ 20

8>><
>>: D10K

1 : 2
nex ¼ 145
ney ¼ 73

1 : 3
nex ¼ 180
ney ¼ 60

8>><
>>: D60K

1 : 2
nex ¼ 350
ney ¼ 175

1 : 3
nex ¼ 425
ney ¼ 142

8>><
>>:

D3K

1 : 2
nex ¼ 80
ney ¼ 40

1 : 3
nex ¼ 105
ney ¼ 35

8>><
>>: D20K

1 : 2
nex ¼ 200
ney ¼ 100

1 : 3
nex ¼ 245
ney ¼ 82

8>><
>>: D100K

1 : 2
nex ¼ 450
ney ¼ 225

1 : 3
nex ¼ 550
ney ¼ 184

8>><
>>:

D6K

1 : 2
nex ¼ 110
ney ¼ 55

1 : 3
nex ¼ 135
ney ¼ 45

8>><
>>: D40K

1 : 2
nex ¼ 285
ney ¼ 143

1 : 3
nex ¼ 350
ney ¼ 117

8>><
>>:

ð19Þ

The loading conditions used can be seen in Fig. 6 for both
test examples. The volume fraction value of the final domain
is equal to 40% of the original one and the density filter is
applied. In the first training test example, the radius chosen is
equal to two elements for all discretizations and for the second
one the radius ranges from three elements in the case of the
1000 elements discretization to 15 elements in the 10,000
elements one. The first dataset is formed by combining the
observations out of the runs carried out for the simply sup-
ported beam cases while the same procedure was followed for

the cantilever beam cases. By adding up the density time his-
tories of each discretization, a population of 240,000 samples
is acquired. By also adding the samples of the two different
height-to-length ratios, a total of 480,000 samples is created
for the cantilever beam example and another one of equal size
for the simply supported beam example. Each of the two
datasets consists of nearly 480,000 sequences and t = 36 cor-
responding to the 15% of the weighted sum of iterations with
reference to the finite element discretization. Generally speak-
ing, a favourable training dataset is composed by well-

Fig. 6 Training datasets
generation, indicative FE
discretization for a 1:2 and b 1:3
cantilever beam and c 1:2 and d
1:3 simply supported beam

Accelerated topology optimization by means of deep learning 1193

distributed representation of the patterns that are to be classi-
fied. In our case, although the values regarding the final den-
sity of finite elements range in (0, 1], comparing the two
datasets it can be seen that they represent two completely
different distributions of the density values in this range. The
simply supported beam training dataset mainly consists of
values equal to either zero or one while the cantilever beam
training dataset consists of many varying values in the range
of (0.1, 0.9]. This difference on the analogies of the classes
explains the difference in terms of performance of the two
datasets. In an effort to thoroughly examine the performance
of the proposed methodology, it is important to assess both
datasets as the outcome of the classification generated from
each one is expected to have differences.

4.3 Calibration of DBN

Every ML model, DLTOP methodology included, is struc-
tured by means of the calibration and implementation phases.
The calibration phase will be described first; the DBN part of
the DLTOP methodology is used to recognize the pattern of
the density values for each finite element relying on the initial
iterations of the SIMP approach. These patterns are classified
with reference to the final density value as obtained by SIMP
approach for each finite element of the design domain. Before
performing the training procedure, SIMP is implemented for
generating the training samples, i.e. solve specific topology
optimization problems as denoted in (19). Then, the training
dataset is formed, composed by the inputs (i.e. ne vectors
consisted of the finite elements’ densities for the first t itera-
tions) and the target outputs (i.e. a vector of size ne elements
corresponding to the densities achieved at the Tth final itera-
tion). These training samples are then used for calibrating the
DBN as described in the following expression:

ð20Þ

Thus, during the calibration phase, DBN is adjusted for
generating the non-linear transformations for each finite ele-
ment from the pattern of the first iterations t densities to the

final density dDBNi;T , i = 1, 2, …, ne. The DBN output values

represent classification of the design domains’ finite elements

with respect to the dDBNi;T density values.

4.4 Implementation of DLTOP methodology

When the calibration phase is completed, that is performed
once for each dataset, DBN metamodel can now be used in
the implementation phase together with SIMP approach for
accelerating the topology optimization procedure according to
the following expression for every test example:

DBN d½ �1:ne;1:t
� 	

⇒ d½ �1:ne;T ∀ d½ �1:ne;1:t; ne; t; T ð21Þ

The implementation phase of the DLTOP methodology is
composed by three steps: (i) in the first one, SIMP is used for
generating the sequence of t samples for each finite element of
the discretization used for the design domain; (ii) then, the

trained DBN is applied for deriving the dDBNi;T density value

for each finite element of the domain. Worth mentioning that
the computing requirements for applying DBN are small (in
the order of 1.7E−04 s on an i7-3610QM processor), but in the
case of million or even billion of finite elements it might
become significant. However, the application of DBN
metamodel is independent for each finite element and there-
fore can be performed in parallel without any interprocess
communication. (iii) In the final part of the methodology,

SIMP is fed with the dDBNi;T density values of the finite elements

of the design domain for correcting any defects of the DBN
outcome. The structure and the implementation flow chart of
the DLTOP methodology are presented in Fig. 5 a and the
pseudocode in Fig. 7, respectively. According to the
pseudocode of Fig. 7, lines #3 to #5 represent the SIMP ap-
proach of phase I, where the input data of the DBN model for
each finite element are generated. These input date are used to
feed the DBN and the optimized domain to be derived, this is
denoted in lines #7 to #9. The density values of the optimized
domain derived by the DBN are used as feedback for re-
initializing the SIMP approach of phase II in order to fine tune
the optimized domain (lines #11 to #13).

The DBN used in this study consists of three RBMs and the
framework was developed based on work by Hinton and
Salakhutdinov (Hinton and Salakhutdinov 2006). The number
of training samples is equal to the total number of finite ele-
ments generated by the domains of the topology optimization
problems of (19), i.e. ne input density vectors is equal to
480,000 while the length t of each input vector was chosen
equal to 36 recorded initial density calculations. The sizes of
the three RBMs are equal to 30, 20 and 12. Two different
classes are used, i.e. the output of the classification network
is divided into 12 classes in the first one and in 3 classes in the
second one as denoted below:

1194 N. A. Kallioras et al.

Classification Case I Classification Case II
di;T ¼ 0

di;T∈

0; 0:1ð �⇒di;T ¼ 0:05
0:1; 0:2ð �⇒di;T ¼ 0:15
0:2; 0:3ð �⇒di;T ¼ 0:25
0:3; 0:4ð �⇒di;T ¼ 0:35
0:4; 0:5ð �⇒di;T ¼ 0:45
0:5; 0:6ð �⇒di;T ¼ 0:55
0:6; 0:7ð �⇒di;T ¼ 0:65
0:7; 0:8ð �⇒di;T ¼ 0:75
0:8; 0:9ð �⇒di;T ¼ 0:85
0:9; 1ð Þ⇒di;T ¼ 0:95

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

di;T∈
0; 0:4½ �⇒di;T ¼ 0

0:4; 0:7ð Þ⇒di;T ¼ 0:50
0:7; 1½ �⇒di;T ¼ 1

8<
:

di;T ¼ 1

ð22Þ

A representation of the DBN used in the proposed meth-
odology can be seen in Fig. 8.

5 Test examples

For the purposes of this study, three groups of test examples
have been considered. The first one is composed by bench-
mark 2D test examples that have been adopted for performing
the parametric investigation with respect to the two training
datasets, RBM training parameters and different targets’ clas-
sification. The second and third groups contain three 2D and
two 3D test examples where the efficiency of the DLTOP
methodology is mainly assessed. As for the SIMP approach,
without loss of generality, OC and MMA algorithms are cho-
sen for solving the topology optimization problems at hand.
The penalization factor is taken equal to 3 and is not changed
for all test examples. Filtering is implemented by taking into
consideration the weighted derivative of the adjacent elements
for the calculation of each elements derivative in both 2D and
3D examples. Worth mentioning that no thresholding was
used in any of the test examples examined below (i.e. no
thresholding has been applied to any of the optimized domains
presented in this work). The codes used for solving the

topology optimization problem are based on the 88-line code,
its 3D variant as well as the PolyTop (Talischi et al. 2012a). It
should be underlined that the filter type and radius remain the
same in the cases examined in each test example described
below, i.e. both during the implementation of the proposed
methodology and the conventional SIMP approach. Thus, it
is confirmed that the compliance values per example are ob-
tained under exactly the same parametric conditions.

Worth mentioning is that the proposed DLTOP methodology
can easily be integrated with continuation of penalization tech-
niques as described in (Xingjun et al. 2017; Labanda and Stolpe
2015; Li and Khandelwal 2015). According to the first category
of techniques, penalization parameter p is taken equal to unity
(1.0) and multiple topology optimization problems (TOPs) are
solved through an iterative procedure. In every iteration, a TOP is
solved, the optimized domain achieved in this step is used as the

Fig. 8 DBN network representation

Fig. 7 Pseudocode of DLTOP
methodology

Accelerated topology optimization by means of deep learning 1195

initial density distribution for the next one, while p value is in-
creased until p becomes equal to the maximum value (pmax). The
proposed DLTOP methodology can easily be applied in each
TOP providing its optimized domain layout. In the second cate-
gory of techniques, where p is changing values during the topol-
ogy optimization problem (taking values from 1.0 to the maxi-
mum value pmax), DLTOP methodology can be applied to the
topology optimization problem as it is applied in the examples
presented in the present study. As DLTOP only deals with the
volume time history of each element regardless its position, the

abovementioned techniques can be applied in SIMP Phases of
DLTOP without having to retrain the network.

5.1 Description of the five 2D benchmark test
examples

Figure 9 a–e depict five 2D benchmark topology optimization
test examples that are considered in order to present the com-
putational efficiency of the DLTOP methodology and mainly
to perform the parametric investigation part. The first one

Fig. 9 Two-dimensional test
examples: a short-beam (fine), b
antisymmetric, c column, d L-
shaped and e long-beam

1196 N. A. Kallioras et al.

shown in Fig. 9 a is labelled as “short-beam (fine) test exam-
ple”, the discretization along the x and y axes is equal to nex =
800 and ney = 150, respectively, the support conditions refer to
four fixed joints placed at each corner of the domain (Fig. 9 a)
and the single loading condition refers to two concentrated

forces P along the y-axis and applied in the middle of the span
of the x-dimension as depicted in Fig. 9 a. The term “fine” is
used because subsequently the same test example is studied
using coarser FE mesh discretization. The second one shown
in Fig. 9 b is labelled as “antisymmetric test example”, the

(a)

(b)

(c)

(d)

(e)

0

50

100

150

200

250

300

350

400

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10

Ite
ra

�o
ns

CB12 SB12 SIMP

0

100

200

300

400

500

600

700

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB12 SB12 SIMP

0

100

200

300

400

500

600

700

800

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB12 SB12 SIMP

0

50

100

150

200

250

300

350

400

450

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB12 SB12 SIMP

0
100
200
300
400
500
600
700
800
900

1000

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB12 SB12 SIMP

Ite
ra

�o
ns

Ite
ra

�o
ns

Ite
ra

�o
ns

Ite
ra

�o
ns

Fig. 10 Performance of classification 12—iterations: a short-beam (fine) test example, b antisymmetric test example, c column test example, d L-shaped
test example and e long-beam test example

Table 1 RBM pre-training parameter value sets

Set ew evb ehb wc Initial momentum Epochs Final momentum

1 1.00E−02 1.00E−02 1.00E−02 1.00E−04 0.5 500 0.9
2 5.00E−02 5.00E−02 5.00E−02 1.00E−04 0.5 500 0.9
3 1.00E−01 1.00E−01 1.00E−01 1.00E−04 0.5 500 0.9
4 1.00E−03 1.00E−03 1.00E−03 1.00E−04 0.5 500 0.9
5 3.00E−01 3.00E−01 3.00E−01 1.00E−04 0.5 500 0.9
6 1.00E−02 1.00E−02 1.00E−02 1.00E−03 0.5 500 0.9
7 1.00E−02 1.00E−02 1.00E−02 1.00E−02 0.5 500 0.9
8 1.00E−01 1.00E−01 1.00E−01 1.00E−05 0.5 500 0.9
9 6.00E−01 6.00E−01 6.00E−01 1.00E−04 0.5 500 0.9
10 1.00E−02 1.00E−02 1.00E−02 5.00E−05 0.5 500 0.9

Accelerated topology optimization by means of deep learning 1197

discretization along the x and y axes is equal to nex = 400 and
ney = 400, respectively, the support conditions refer to two
fixed joints placed at the two right corners of the domain
(Fig. 9 b) and the loading condition refers to two concentrated
forces P along the x-axis and applied in the middle of the span
of the y-dimension (see Fig. 9b). The third one shown in Fig. 9
c is labelled as “column test example”, the discretization along
the x and y axes are equal to nex = 300 and ney = 500, respec-
tively, the support conditions refer to fully fixed boundary
conditions along the x-axis and starts at the 3:8 of the x-di-
mension and the loading condition refers to four concentrated
forces P along the y-axis and applied with distance equal to
1:3 of the x-dimension. The fourth test example shown in Fig.
9 d is labelled as “L-shaped test example”, the discretization
along the x and y axes are equal to nex = 400 and ney = 400,
respectively, the support conditions refer to fully fixed bound-
ary conditions along the x-axis ending at the 1:2 of the x-

dimension (Fig. 9d) and the loading condition refers to one
concentrated force P along the y-axis and applied in the 1:4 of
the y-dimension. Finally, the fifth test example shown in Fig. 9
e is labelled as “long-beam test example”, the discretization
along the x and y axes are equal to nex = 400 and ney = 100,
respectively, the boundary conditions refer to five simple sup-
ports applied along the x-axis with distance equal to 1:6 of the
x-dimension between them and the loading conditions refer to
distributed force q along the y-axis, applied on the top and
bottom of the y-dimension.

In these 2D test examples, the preference for final volume
is equal to 40% of the original domain and the filter radius is
equal to six elements for the short-beam (fine), antisymmetric,
column and long-beam test examples and two elements for the
L-shaped test example. The standard sensitivity filter is imple-
mented to all five test examples, while it should be stated that
the parametric conditions remain the same for the original

(a) (b)

(c) (d)

83

83.5

84

84.5

85

85.5

86

86.5

87

87.5

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

SIMP SB12 CB12

22.2

22.3

22.4

22.5

22.6

22.7

22.8

22.9

23

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB12 CB12

143
143.5

144
144.5

145
145.5

146
146.5

147
147.5

148

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB12 CB12

70

71

72

73

74

75

76

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB12 CB12

(e)

5.8E+05

5.8E+05

5.8E+05

5.8E+05

5.8E+05

5.9E+05

5.9E+05

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB12 CB12

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Fig. 11 Performance of classification 12—objective function value (compliance): a short-beam (fine) test example, b antisymmetric test example, c
column test example, d L-shaped test example and e long-beam test example

1198 N. A. Kallioras et al.

topology optimization and the proposed methodology. It is
worth pointing out that in the test examples shown in Fig. 9
a–c, the multiple loading vectors are applied according to
section 5.2 of the “88-line code” article by Andreassen et al.
(Andreassen et al. 2011) where it is suggested to apply each
loading vector separately and then compute the compliance by
summarizing each resulting response. For each experiment, a
record is kept regarding the total iterations needed and the
objective function value when only SIMP is used and when
acceleration by means of DBN is used.

5.2 Evaluation of parameters, training datasets
and classification types

In order to present a parametric investigation of the proposed
DLTOP methodology with reference to factors that might in-
fluence its performance, the following factors are used for
training and testing the DBN part of the DLTOP

methodology: (i) the training dataset (two are examined), (ii)
the RBM parameters (10 different sets are employed) and (iii)
the classification types (two different groups of classes are
implemented). Then, the efficiency of the above factors’ com-
binations is assessed on the five 2D benchmark topology op-
timization problems. As previously described, there are four
parameters that define the learning behaviour of RBMs and in
result the behaviour of DBNs. These parameters are the learn-
ing rates of the weights (ew), the biases of the visible nodes
evb
� �

, of the hidden nodes ehb
� �

and of the weight cost (wc).
The parameter values used in the RBM pre-training proce-

dure are presented on Table 1 along with all the training char-
acteristics. The 10 different parameter sets (PS) defined in
Table 1 are labelled as PS1 to PS10. In the back-propagation
algorithm, 50 epochs were executed with 100 CG iterations.
The selected values are in accordance with recommendations
given by Hinton in (Hinton 2012). The results of the DLTOP
methodology applied on the test examples can be witnessed in

(a) (b)

(c) (d)

(e)

0

50

100

150

200

250

300

350

400

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10

Ite
ra

�o
ns

CB3 SB3 SIMP

0

50

100

150

200

250

300

350

400

450

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB3 SB3 SIMP

0

100

200

300

400

500

600

700

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB3 SB3 SIMP

0

200

400

600

800

1000

1200

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB3 SB3 SIMP

0

100

200

300

400

500

600

700

800

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
CB3 SB3 SIMP

Ite
ra

�o
ns

Ite
ra

�o
ns

Ite
ra

�o
ns

Ite
ra

�o
ns

Fig. 12 Performance of classification 3—iterations: a short-beam (fine) test example, b antisymmetric test example, c column test example, d L-shaped
test example and e long-beam test example

Accelerated topology optimization by means of deep learning 1199

Figs. 10, 11, 12 and 13 and Tables 2, 3, 4 and 5 where SB3,
SB12, CB3 and CB12 stand for the simply supported beam
(SB) and cantilever beam (CB) datasets, respectively, with 3
and 12 classes. Specifically, Figs. 10 and 12 depict the func-
tion evaluations required for the DLTOP methodology to

converge, the two databases and two classifications with re-
spect to DBN training parameters are compared with those
needed by SIMP alone (see the green line in Figs. 10 and
12). In these figures, for each of the two databases used, the
total iterations needed for both phases of DLTOP (initial input

Table 2 Average and variance of classification 12 performance—SB dataset

Test example Iterations Objective function value

SIMP DLTOP SIMP DLTOP DLTOP-SIMP difference (%)

Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 64 − 82.82 16.22 85.99 85.00 1.55 − 1.15
Antisymmetric 425 300 − 29.48 43.58 22.60 23.00 0.70 1.77

Column 613 164 − 73.18 87.92 145.22 146.00 0.64 0.54

L-shaped 412 118 − 71.41 62.94 72.89 72.00 1.76 − 1.22
Long-beam 775 587 − 24.27 11.77 577,015.85 577,237.00 0.48 0.04

(a)

(b)

80

81

82

83

84

85

86

87

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

SIMP SB3 CB3

22

22.5

23

23.5

24

24.5

25

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB3 CB3

(c)

(d)

(e)

139

141

143

145

147

149

151

153

155

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB3 CB3

70

72

74

76

78

80

82

84

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB3 CB3

550022

600022

650022

700022

750022

800022

850022

900022

950022

PS1 PS2 PS3 PS4 PS5 PS6 PS7 PS8 PS9 PS10
SIMP SB3 CB3

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Ob
je

c�
ve

 F
un

c�
on

 V
al

ue

Fig. 13 Performance of classification 3—objective function value (compliance): a short-beam (fine) test example, b antisymmetric test example, c
column test example, d L-shaped test example and e long-beam test example

1200 N. A. Kallioras et al.

generation phase and fine-tuning phase) methodology are
compared against a typical SIMP implementation.
Figures 11 and 13 illustrate the final objective function values
achieved by DLTOP, i.e. with reference to the two databases,
two classifications and DBN training parameters; their perfor-
mances are compared with those achieved by SIMP alone (see
the green line in Figs. 11 and 13). The results concerning
average objective function value and COV, shown in
Tables 2, 3, 4 and 5, were calculated using the 10 different
sets of RBM training parameters (i.e. PS1 to PS10) as de-
scribed previously.

As it will be shown in the following investigation, compar-
ing the acceleration efficiency derived from Figs. 10 and 12, it
is clear that the use of three output classes provides signifi-
cantly better andmore stable results than 12 classes, regardless
of the training parameters of the DBN network. It is also worth
pointing out that the average computational efficiency perfor-
mance of the SB database is better than that of the CB data-
base.With respect to objective function value results as shown
in Figs. 11 and 13, it is reported that both classes achieved a
similar performance. As a general guide, it can be said that the
simply supported beam represents the optimal choice for the
database combined with three classes. In respect to re-
sults shown in Figs. 14, 15, 16, 17, 18, 19, 20, 21, 22,
23 and 24, Panel (a) depicts the final outcome of con-
ventional SIMP implementation; panel (b) shows the

output of the DBN (end of phase I) while panel (c)
represents the final output of DLTOP methodology after
SIMP fine-tuning step (end of phase II).

5.2.1 DLTOP performance for 12 classes

Before discussing the performance of DLTOP methodology
with reference to its parameters, the basis of the comparison
needs to be described. Since the objective of the proposed
methodology is the improvement of computational efficiency,
the number of iterations required by the original SIMP for
solving each problem represents the basis of comparison,
while the iterations required by the DLTOP methodology are
those required to feed the calibrated DBN (part of phase I)
plus those needed by SIMP in phase II of the methodology.
The comparison with reference to the computational perfor-
mance between the original SIMP and DLTOP is presented in
Fig. 10. Secondly, the original approaches versus the proposed
one are also compared with respect to the objective function
achieved; this is shown in Fig. 11, while Tables 2 and 3 also
show the computational efficiency and robustness of DLTOP
as the average number and variation of iterations required and
objective function achieved.

Figures 10 and 11 along with Tables 2 and 3 present the
computational performance and robustness of the proposed
DLTOP methodology for the short-beam (fine) test example.

Table 4 Average and variance of classification 3 performance—SB dataset

Test example Iterations Objective function value

SIMP DLTOP SIMP DLTOP DLTOP-SIMP difference (%)

Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 55 − 85.35 20.75 85.99 84.00 2.21 − 2.31
Antisymmetric 425 91 − 78.56 87.48 22.60 23.00 3.72 1.77

Column 613 58 − 90.57 13.08 145.22 144.00 2.58 − 0.84
L-shaped 412 186 − 54.88 173.13 72.89 74.00 5.10 1.52

Long-beam 775 217 − 71.96 43.17 577,015.85 625,716.00 11.13 8.44

Table 3 Average and variance of classification 12 performance—CB dataset

Test example Iterations Objective function value

SIMP DLTOP SIMP DLTOP DLTOP-SIMP difference (%)

Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 115 − 69.01 37.72 85.99 86.00 0.18 0.01

Antisymmetric 425 469 10.40 35.48 22.60 23.00 0.37 1.77

Column 613 446 − 27.18 52.17 145.22 146.00 0.45 0.54

L-shaped 412 316 − 23.42 36.34 72.89 71.00 0.51 − 2.59
Long-beam 775 630 − 18.68 25.59 577,015.85 576,489.00 0.03 − 0.09

Accelerated topology optimization by means of deep learning 1201

As it can be observed from Table 2, SB training dataset on
average achieved 83% reduction on the SIMP iterations; the
iterations are reduced by almost one order of magnitude from
370 iterations originally required to only 64 iterations on av-
erage (the corresponding coefficient of variation (COV) is
equal to 16%), while the maximum reduction of the iterations
is equal to 87% (see Fig. 10 a). Accordingly, CB training
dataset achieved on average 70% reduction of SIMP itera-
tions, while the maximum reduction of SIMP iterations is
equal to 77% and COV is equal to 38%. With respect to the
objective function value achieved, as it can be seen from
Table 2, with respect to the training parameter sets on average,
1.15% lower value was obtained compared with the one

originally achieved by SIMP; correspondingly the objective
function value obtained when CB dataset was used is practi-
cally equal to the original one. The optimized domain for the
short-beam (fine) test example resulted originally by SIMP is
shown in Fig. 14 a and those obtained from phases I and II of
the proposed DLTOP methodology are depicted in Fig. 14 b
and c, respectively. As it can be seen, the shapes obtained are
very similar, while the corresponding objective function
values achieved and iterations required are 85.99 and 372,
86.43 and 36, 85.86 and 43 for original SIMP, phases I and
II of DLTOP, respectively. While the density histories of ele-
ments in the centre of the domain are shown in Fig. 14 d,
where it can be seen the density values of elements’ history

Fig. 14 Optimized domain for the
short-beam (fine) test example—
classification 12: a original SIMP
(objective function 85.99,
iterations 372), b DLTOP phase I
(objective function 86.43,
iterations 36), c DLTOP phase II
(objective function 85.86,
iterations 43) and d density
histories of selected finite
elements located in the centre of
the domain

Table 5 Average and variance of classification 3 performance—CB dataset

Test example Iterations Objective function value

SIMP DLTOP SIMP DLTOP DLTOP-SIMP difference (%)

Average Variation (%) COV (%) Average COV (%)

Short-beam (fine) 372 99 − 73.49 7.94 85.99 83.00 1.66 − 3.48
Antisymmetric 425 184 − 56.73 51.27 22.60 22.00 1.67 − 2.65
Column 613 96 − 84.27 3.63 145.22 140.00 0.42 − 3.59
L-shaped 412 113 − 72.52 24.73 72.89 71.00 0.15 − 2.59
Long-beam 775 263 − 66.04 20.65 577,015.85 612,929.00 17.15 6.22

1202 N. A. Kallioras et al.

do not vary monotonously. In Fig. 14d, it can also be noticed
that the proposed methodology is able to identify those ele-
ments whose density tends to be reduced when approaching
the 36th iteration (i.e. purple and orange density lines) of
SIMP and generate the hole in the centre of the domain of
the DLTOP output.

Accordingly, the optimized domains for the antisymmetric,
column, L-shaped and long-beam test example resulted orig-
inally by SIMP and those obtained from phases I and II of the
proposed DLTOP methodology are depicted in Figs. 15, 16,
17 and18, respectively. The performance of DLTOP method-
ology for the rest of the test examples has a similar perfor-
mance; more specifically, for the SB training dataset (see
Table 2 and Figs. 10 and 11), on average the reduction of
SIMP iterations varies from 24 to 73% while the maximum
reduction achieved for all these test cases exceeds 80%, the
corresponding objective function value achieved on average is
slightly reduced. In the case of CB training dataset (see
Table 3 and Figs. 10 and 11), on average, the reduction of
SIMP iterations exceeds 15% while the maximum reduction
achieved for all these test cases exceeds 60%, the correspond-
ing objective function value achieved on average is also
slightly reduced.

In general, it should be noted that DLTOP methodology
resulted for all test cases examined to significant decrease of
iterations and with the most proper selection of RBM training

parameters the decrease exceeds 90%. It is also noticeable that
the objective function value is unaffected by the training pa-
rameters values and achieving values similar to plain SIMP
application. It was also observed that in the case of classifica-
tion 12, CB training dataset is outperformed by the SB one
both in terms of computational efficiency (reduction of SIMP
iterations) and robustness.

5.2.2 DLTOP performance for three classes

Similar parametric study is performed for the case of three
classes (see Figs. 12 and 13, Tables 4 and 5), where it is
observed that in the short-beam (fine) test example (Figs. 12
a and 13 a), the SB training dataset achieved on average 85%
reduction of SIMP iterations and the maximum one is equal to
87% (COV equal to 21%) while the objective function value
achieved is on average 2.31% lower to that originally obtained
by SIMP approach. The CB training dataset achieved on av-
erage 83% reduction of iterations with a maximum reduction
equal to 86% (COV equal to 12%) while the objective func-
tion value is on average reduced by 3.48%.

Accordingly, the performance of DLTOP methodology for
the rest of the test examples has a similar outcome; more
specifically, for the SB training dataset (see Table 4 and
Figs. 12 and 13), on average the reduction of SIMP iterations
varies from 55 to 91%while the maximum reduction achieved

Fig. 16 Optimized domain for the
column test example—
classification 3: a original SIMP
(objective function 145.12,
iterations 551), b DLTOP phase I
(objective function 149.18,
iterations 36) and c DLTOP phase
II (objective function 140.90,
iterations 15)

Fig. 15 Optimized domain for the
antisymmetric test example—
classification 3: a original SIMP
(objective function 22.64,
iterations 599), b DLTOP phase I
(objective function 22.95,
iterations 36) and c DLTOP phase
II (objective function 22.18,
iterations 37)

Accelerated topology optimization by means of deep learning 1203

for all these test cases exceeds 91%, the corresponding objec-
tive function value achieved on average is slightly increased.
In the case of CB training dataset (see Table 3 and Figs. 10 and
11), on average the reduction of SIMP iterations varies from
72 to 84%while the maximum reduction achieved for all these
test cases exceeds 85%; the corresponding objective function
value achieved on average is also slightly increased. The op-
timized domain for the antisymmetric test example resulted
originally by SIMP is shown in Fig. 15 a, and those obtained
from phases I and II of the proposed DLTOPmethodology are
depicted in Fig. 15 b and c, respectively. As it can be seen, the
forms obtained are almost identical, while the corresponding
objective function values achieved and iterations required are
equal to 22.64 and 599, 22.95 and 36, 22.18 and 37 for orig-
inal SIMP, phases I and II of DLTOP, respectively.

Summarizing the results obtained for the case of classification
3, it becomes noticeable that DLTOP methodology for all test
examples examined resulted to significant reduction of the itera-
tions depicting also remarkable performance stability with refer-
ence to the training parameters values. It is also worth noticing
that the objective function value is not influenced by these pa-
rameters. In classification 3, SB training dataset performed better
compared with CB one in terms of iteration decrease but not in
the case of objective function value and robustness where CB
database performed better than the SB one. Comparing the clas-
sification 3 with the 12 one, it can be observed that the latter one
is outperformed by the first one both in terms of computational

efficiency (reduction of SIMP iterations) and robustness for both
training datasets considered. In an attempt to explain this result, it
must be pointed out that the classification three procedure is

Fig. 18 Optimized domain for the long-beam test example—
classification 3: a original SIMP (objective function 576,936.84,
iterations 775), b DLTOP phase I (objective function 479,880.00,
iterations 36) and (c) DLTOP phase II (objective function 577,826.89,
iterations 275)

Fig. 17 Optimized domain for the
L-shaped test example—
classification 3: a original SIMP
(objective function 73.06,
iterations 186), b DLTOP phase I
(objective function 71.92,
iterations 36) and c DLTOP phase
II (objective function 71.19,
iterations 25)

1204 N. A. Kallioras et al.

significantly less demanding in terms of DBN training while the
classification 12 is not.

Additionally, it should be stated that, although it is not
guaranteed that the DBN results satisfy the volume constraint,
its violation is very limited and a single step of SIMP in phase

II is adequate to correct the required volume fraction often
leading to reduction of the objective function value (e.g. com-
pliance) compared with the typical SIMP implementation. As
a reference, it is noticeable that for a volume fraction equal to
40%, the predicted domain achieved for the short-beam (fine)
test example is equal to 38.00%, for the antisymmetric one is
equal to 39.42%, for the column one is equal to 38.70%, for
the L-shaped one is equal to 39.74% and for the long-beam
one is equal to 42.30%; the corresponding domains are those
of Figs. 14b, 15b, 16b, 17b and 18b, respectively.

5.3 Performance of DLTOP methodology in 2D test
examples

In order to assess the performance of the DLTOP meth-
odology, three 2D test examples are tested using the pa-
rameters that were identified in the previous section. The
first test example is presented to demonstrate the capabil-
ities of the proposed methodology regarding different up-
date schemes. In this example, the MMA update scheme
is used. The example used is labelled as “short-beam
(coarse) test example” described in the previous section
(see Fig. 9 a) using coarser FE mesh discretization, the
sensitivity filter radius changed to two elements and an
additional density filter with radius of two elements as
well. The new discretization along the x and y axes is
equal to nex = 150 and ney = 50, respectively, whereas
the results obtained are shown in Fig. 19. The next test
example is inspired from the two-bar problem presented
in (Sigmund and Maute 2013). The discretization along
the x and y axes is equal to nex = 50 and ney = 20, respec-
tively; the support conditions refer to fully fixed boundary
conditions along the x-axis at the base (Fig. 20 a), and the
single loading condition refers to one concentrated forces

Fig. 20 Optimized domain for the
two-bar test example—
classification 3: a original
domain, b original SIMP
(objective function 10.31,
iterations 54), c DLTOP phase I
(objective function 13.33,
iterations 5), d DLTOP phase II
(objective function 10.31,
iterations 28), e original SIMP
with threshold (objective function
25.16, iterations 5) and f
difference between DLTOP and
SIMP with threshold

Fig. 19 Optimized domain for the short-beam (coarse) test example—
MMA: a original SIMP (objective function 30.34, iterations 91), b
DLTOP phase I (objective function 29.77, iterations 36) and c DLTOP
phase II (objective function 30.33, iterations 31)

Accelerated topology optimization by means of deep learning 1205

P along the x-axis and applied in the middle of the span of
the x-dimension as depicted in Fig. 20 a. The preference
for final volume is equal to 20% of the initial domain, and
the filter applied is a density and sensitivity filter with
radius equal to 1.5 elements; the results obtained are
shown in Fig. 20 b–f. The last test example corresponds
to the serpentine beam problem presented in the PolyTop
(Talischi et al. 2012a). In particular, it corresponds to a
non-regular design domain discretized with unstructured
polygonal finite element mesh composed by 5000 ele-
ments ; the d i sc re t i za t ion was genera ted us ing
PolyMesher (Talischi et al. 2012b); the support conditions
refer to fully fixed boundary conditions along the y-axis
on the left side of the domain (see Fig. 21 a), and the
single loading condition refers to one concentrated force
P along the y-axis and applied in the pick of the span of
the y-dimension as depicted in Fig. 21a. The preference
for final volume is equal to 40% of the initial domain, and
the filter applied is a density filter as described in
(Talischi et al. 2012a) with radius equal to 0.25; the re-
sults obtained are shown in Fig. 21 b–d.

The results obtained when implementing DLTOP meth-
odology for the above-described three test examples are
presented in Table 6. In particular, regarding the short-
beam (coarse) test example, DLTOP achieved reduction
of more than 25% on the SIMP iterations required origi-
nally and the objective function value achieved is more or
less equal to that obtained by SIMP approach.
Accordingly, for the two-bar test example, DLTOP
achieved almost 40% reduction on SIMP iterations and
the objective function value achieved is equal to that orig-
inally obtained by the SIMP.

Additionally, in the two-bar test example, a threshold was
applied on the result of SIMP achieved after performing the
same number of iterations with those used as input by DLTOP
in order to witness the differences in these two applications.
The result obtained by using a threshold is presented in Fig. 20
e; the result obtained byDLTOP phase I is presented in Fig. 20
c while the difference between these two results is shown in
Fig. 20 f. In Fig. 20 f, black areas denote the elements present
in the DLTOP phase I and not in the threshold and grey areas
are the elements present in the threshold and not in the DLTOP
phase I. According to DLTOP methodology material has been
added in the outside areas of both “legs” while it has also
removed plenty of material from the inner areas as well.
This can be explained as DLTOP has identified the tendency
of these density values to increase and decrease accordingly,
leading to a result closer to the final one of just implementing
SIMP (i.e. Fig. 20 b, 54 iterations).

It can be witnessed that in the serpentine beam test exam-
ple, DLTOP achieved more than 75% reduction on the SIMP
iterations required originally and the objective function value
achieved is more or less equal to that obtained by SIMP

approach. The optimized domains for the all three test exam-
ple are shown in Figs. 19, 20 and 21 as well as the objective
functions and compliance for the original topology optimiza-
tion and phases I and II of the DLTOP.

5.4 Computational efficiency of DLTOP methodology
in 3D test examples

Given the performance evaluation of the training parameter
combination for the DBN part of the DLTOPmethodology, its

Fig. 21 Optimized domain for the serpentine beam test example—
classification 3: a original domain (Talischi et al. 2012b), b original
SIMP (objective function 391.19, iterations 267), c DLTOP phase I
(objective function 442.65, iterations 36) and d DLTOP phase II
(objective function 394.46, iterations 30)

1206 N. A. Kallioras et al.

computational efficiency is also assessed over three 3D topol-
ogy optimization test examples. The first one shown in Fig. 22
a is three-dimensional version of the L-shaped test example,
where the discretization along the x, y and z axes is taken equal
to 60, 60 and 20, resulting into 72,000 solid finite elements,
respectively; the support conditions refer to fully fixed bound-
ary conditions for the xz plane along the z-dimension, ending
at the 1:3 of the x-dimension (Fig. 22 a), and the loading
condition refers to a concentrated force P along the y-axis
applied at the 1:4 of the y-dimension and middle of the span
along the z-dimension. The second 3D test example also
shown Fig. 22 b was taken from the example examined in
(Kazakis et al. 2017). The discretization along the x, y and z

axes is taken equal to 160, 40 and 13, respectively, resulting
into 83,200 solid finite elements; the support conditions refer
to fully fixed support at the xz plane spamming from the 1:3 to
the 1.75:3 of the x-dimension and one element in each size
from the centre of the z-dimension and the loading conditions
refer to distributed loading q along that is applied on the top xz
plane along the y-dimension (as shown in Fig. 22 b). The third
3D test example shown in Fig. 22 c refers a cantilever beam.
The discretization along the x, y and z axes is taken equal to
120, 40 and 30, respectively, resulting into 144,000 solid finite
elements. The support conditions refer to fully fixed boundary
conditions on the zy plane at the left side of the beam, and the
loading conditions refer to a concentrated load along the y-

Fig. 22 Three-dimensional test
examples: a L-shaped 3D, b
bridge and c cantilever beam

Table 6 Average and variance of performance in 2D and 3D test examples

Test example Iterations Objective function value

SIMP DLTOP SIMP DLTOP

Iterations Variation (%) Value DLTOP-SIMP difference (%)

Short-beam (coarse) 91 67 − 26.37 30.34 30.33 − 0.03
Two-bar 54 33 − 38.89 10.31 10.31 0.00

Serpentine beam 267 66 − 75.28 391.19 394.46 0.84

L-shaped 3D 660 129 − 81.00 15.33 15.65 2.09

Bridge 3D 509 193 − 62.08 1,632,305.73 1,640,121.40 0.48

Cantilever beam 305 146 − 52.13 9.16 9.12 − 0.44

Accelerated topology optimization by means of deep learning 1207

axis at the right side of the beam in the middle of the z-axis (as
shown in Fig. 22 c).

In the first 3D test example, the preference for final volume is
equal to 15%of the design domain and the filter radius is equal to
1.2 elements. In the second 3D test example, the preference for
the final volume is equal to 40% of the design domain and the
filter radius is equal to 1.5 elements, and in the third 3D test
example, the final volume is equal to 20% of the design domain
and the filter radius is equal to 1.5 elements. For all test examples,
filtering was implemented using a combination of the standard
sensitivity filtering with the density one.

The results obtained when implementing DLTOP method-
ology are presented in Table 6. In particular, regarding the L-

shaped 3D test example, DLTOP achieved 81% reduction on
the SIMP iterations required originally and the objective func-
tion value achieved is basically equal to that obtained by
SIMP approach. Accordingly, for the bridge 3D test example,
DLTOP achieved 62% reduction of SIMP iterations and the
objective function value achieved is equal to that originally
obtained by the SIMP and the cantilever beam achieved 52%
reduction of SIMP iterations and the objective function value
achieved is basically equal. The optimized domain for the
bridge 3D test example resulted originally by SIMP is shown
in Fig. 23 a, and those obtained from phases I and II of the
proposed DLTOP methodology are depicted in Fig. 23 b and
c, respectively. As it can be seen, the forms obtained are

Fig. 23 Optimized domain for the
bridge test example—
classification 3: a original SIMP
(objective function to
1,632,305.73, iterations 509), b
DLTOP phase I (objective
function 1,612,500.00, iterations
36) and c DLTOP phase II
(objective function 1,640,121.40,
iterations 193)

1208 N. A. Kallioras et al.

almost identical, while the corresponding objective function
values achieved and iterations required are equal to
1,632,305.73 and 509, 1,612,500.00 and 36, 1,640,121.4
and 193 for original SIMP, phases I and II of DLTOP, respec-
tively. In addition, the optimized domain of the L-shaped 3D
example can be seen in Fig. 24 as well as the objective func-
tions and compliance for the original topology optimization
and phases I and II of the DLTOP and the optimized domain of
the cantilever beam can be seen in Fig. 25 as well as the
objective functions and compliance for the original topology
optimization and phases I and II of the DLTOP.

The computer hardware platform that was used for the
purposes of this work consists of an Intel Xeon E5-1620 at

3.70GHz quad-core (with eight threads) with 16GBRAM for
the case of CPU-based computations and NVIDIA GeForce
640 with 384 cores and 2 GB RAM for the case of GPGPU-
based computations, and the operating system was Windows
10 (64bit). For the bridge 3D test example, both sequential and
parallel test runs are carried out, and as it can be seen, the
computing time required for solving the topology optimiza-
tion problem discretized with 83,200 solid finite elements
SIMP requires up to 54,287 s to carry out 509 SIMP iterations

Fig. 25 Optimized domain for the cantilever beam test example—
classification 3: a original SIMP (objective function 9.16, iterations
305), b DLTOP phase I (objective function 7.80, iterations 36) and c
DLTOP phase II (objective function 9.12, iterations 146)

Fig. 24 Optimized domain for the 3D L-shaped test example—
classification 3: a original SIMP (objective function 15.33, iterations
660), b DLTOP phase I (objective function 13.36, iterations 36) and c
DLTOP phase II (objective function 15.65, iterations 93)

Accelerated topology optimization by means of deep learning 1209

while applying a GPGPU-based acceleration of the structural
analysis procedure the required time is reduced to 8587 s
(speedup factor of 6× for GPU when compared with CPU).
The time required by the proposed DLTOP methodology is
20,910 s if the structural analysis part of the SIMP iterations is
performed sequentially, while if a GPGPU-based acceleration
of the structural analysis is performed the computing time is
further reduced to 3256 s (speedup factor of 17× for DLTOP-
GPU when compared with SIMP-CPU).

Worth mentioning is that the computational time required
for training the network is not included in the time require-
ments described above as the network was not trained on the
specific examples or on any of the test examples presented in
the current study. Training of the network is performed only
once based on a database derived using a single test example;
the resulting metamodel through training is unique and is used
for any 2D or 3D test examples without requiring additional
training. For this reason, it would be misleading to add the
training time required ones to the comparison between SIMP
and DLTOP for every test example. Training is performed
once, and the resulting metamodel can be applied to any to-
pology optimization problems.

6 Conclusions

In this work, aiming to accelerate the topology optimization
procedure, a novel two-phase methodology that relies on
deep learning is proposed. In particular, DBNs are integrat-
ed into the SIMP approach in order to solve topology opti-
mization problems. In detail, DBN is used for discovering
higher order connections between the density values of each
finite element of the domain along the first iterations of
SIMP approach with its final outcome. DBN is trained over
two training datasets that are constructed using two typical
topology optimization test examples implementing several
discretizations. The first one (i.e. simply supported beam
test example) was found to deliver clearer but strict shapes
that in some cases might require less iterations to be refined
during phase II; however, it can derive shapes in phase I that
cannot be handled in phase II. On the other hand, the second
dataset (i.e. cantilever beam test example) is more likely to
develop shapes that would be handled more effectively by
phase II with a slight increase of the number of fine-tuning
iterations in some cases. The trained network is then applied
on various 2D and 3D topology optimization test examples
where the performance and robustness of the proposed
methodology are tested with regard to the training parame-
ters, datasets considered and classification type.

Based on the tests performed for the needs of the study, it
was observed that the proposed methodology succeeds in ac-
celerating the SIMP method in all cases regardless of the pa-
rameters and datasets used for training and the classification

type. More specifically, when the correct set of training pa-
rameters and dataset is used, the reduction of SIMP iterations
achieved is greater than 90% (i.e. more than one order of
magnitude reduction). It is also worth noticing that the pro-
posed methodology is robust in terms of objective function
value achieved as in all tests; the value of the objective func-
tion is almost equal to the one identified by the original SIMP.
Furthermore, the new methodology is generally applicable in
any shape of optimizable domain used to formulate the topol-
ogy optimization problem, regardless of the domain type (2D
or 3D), discretization (structures or unstructured), loading
conditions and SIMP approach parameters like target volume
fraction, filter size, etc. as well as methodologies like the con-
tinuation of penalization.

Funding information This research has been supported by the OptArch
project: “Optimization Driven Architectural Design of Structures” (no,
689983) belonging to the Marie Skłodowska-Curie Actions (MSCA)
Research and Innovation Staff Exchange (RISE) H2020-MSCA-RISE-
2015.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results As far as the topology optimization part, in order
to replicate the results presented above, the TOP88 2D and 3D variants
together with PolyTop++ for the case of the unstructured mesh need to be
used (that are freely available). While for the case of the deep learning
part of the work, the reader should contact the corresponding author
(nlagaros@central.ntua.gr) for providing the trained DBM network.

References

Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using
PETSc: an easy-to-use, fully parallel, open source topology optimi-
zation framework. Struct Multidiscip Optim 51(3):565–572

Adeli H, Park HS (1995) A neural dynamics model for structural optimi-
zation-theory. Comput Struct 57(3):383–390

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and level-set method. J Comput Phys 194:363–
393

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2011) Efficient topology optimization in MATLAB using 88 lines
of code. Struct Multidiscip Optim 43(1):1–16

Bendsøe MP (1989) Optimal shape design as a material distribution
problem. Struct Multidiscip Optim 1(4):193–202

BendsoeMP, Sigmund O (2013) Topology optimization: theory, methods
and applications. Springer.

Bengio Y (2009) Learning deep architectures for AI, foundations and
trends® in. Mach Learn 2(1):1–127

Bourdin B (2001) Filters in topology optimization. Int J Numer Methods
Eng 50(9):2143–2158

Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear
elastic structures and compliant mechanisms. Comput Methods
Appl Mech Eng 190(26–27):3443–3459

Christensen PW, Klarbring A (2009) An introduction to structural opti-
mization. Springer

1210 N. A. Kallioras et al.

Collobert R, Weston J (2008) A unified architecture for natural language
processing: deep neural networks with multitask learning. In: In
proceedings of the 25 international conference on machine learning
(ICML'08). Helsinki, Finland, pp 160–167

Duarte LS, Celes W, Pereira A, Menezes IFM, Paulino GH (2015)
PolyTop++: an efficient alternative for serial and parallel topology
optimization on CPUs & GPUs. Struct Multidiscip Optim 52(5):
845–859

Fischer A, Igel C (2012) An introduction to restricted Boltzmann ma-
chines. In: Progress in pattern recognition, image analysis, computer
vision and applications. Springer, Buenos Aires, pp 14–36

Freund Y, Haussler D, (1992) Unsupervised learning of distributions on
binary vectors using two layer networks. In Proceedings of the 4th
International Conference on Neural Information Processing
Systems. 912–919

Gallagher RH, Zienklewicz OC (1973) Optimum structural design: the-
ory and applications, New York, John Wiley & Sons

Gholizadeh S, Salajegheh E (2009) Optimal design of structures subject-
ed to time history loading by swarm intelligence and an advanced
metamodel. Comput Methods Appl Mech Eng 198(37–40):2936–
2949

Greenspan H, Van Ginneken B, Summers RM (2016) Guest editorial
deep learning in medical imaging: overview and future promise of
an exciting new technique. IEEE Trans Med Imaging 35(5):1153–
1159

Hajela P, Lee E, Lin CY, (1993) Genetic algorithms in structural topology
optimization. In: M.P. Bendsøe, C.A.M. Soares (eds) Topology
Design of Structures. NATO ASI Series (Series E: Applied
Sciences), Springer, Dordrecht 227, pp. 117–134

Haug EJ, Arora JS, (1974) Optimal mechanical design techniques based
on optimal control methods. In Proceedings of the 1st ASME
Design Technology Transfer Conference, New York, 65–74

Hinton GE (2002a) Training products of experts by minimizing contras-
tive divergence. Neural Comput 14(8):1711–1800

Hinton GE (2002b) Training products of experts by minimizing contras-
tive divergence. Neural Comput 14(8):1711–1800

Hinton GE (2007) Boltzmann machine. Scholarpedia. 2(5):1668
Hinton GE (2009) Deep belief networks. Scholarpedia. 4(5):5947
Hinton GE (2012) A practical guide to training restricted Boltzmann

machines. Lect Notes Comput Sci 7700:599–619
Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of

data with neural networks. Science. 313:504–507
Hinton GE, Osindero S, Teh Y (2006) A fast learning algorithm for deep

belief nets. Neural Comput 18(7):1527–1554
Kazakis G, Kanellopoulos I, Sotiropoulos S, Lagaros ND (2017)

Topology optimization aided structural design: interpolation, com-
putational aspects and 3D printing. Heliyon. 3(10):e00431

KrizhevskyA, Sutskever I, Hinton G (2012) ImageNet classification with
deep convolutional neural networks. In: In proceeding of the 25th
international conference on neural information processing systems
(NIPS'12). Lake Tahoe, Nevada, pp 1097–1105

Labanda SR, Stolpe M (2015) Automatic penalty continuation in struc-
tural topology optimization. Struct Multidiscip Optim 52:1205–
1221

Lagaros ND (2018) The environmental and economic impact of structural
optimization. Struct Multidiscip Optim 58(4):1751–1768

Li L, Khandelwal K (2015) Volume preserving projection filters and
continuation methods in topology optimization. Eng Struct 85:
144–161

Mahdavi A, Balaji R, Frecker M, Mockensturm EM (2006) Topology
optimization of 2D continua for minimum compliance using parallel
computing. Struct Multidiscip Optim 32(2):121–132

Martinez-Frutos J, Herrero-Perez D (2016) Large-scale robust topology
optimization using multi-GPU systems. Comput Methods Appl
Mech Eng 311:393–414

Mlejnek HP (1992) Some aspects of the genesis of structures. Struct
Multidiscip Optim 5(1–2):64–69

Moller O, Ricardo OF, Laura MQ, Rubinstein M (2009) Structural opti-
mization for performance-based design in earthquake engineering:
applications of neural networks. Struct Saf 31:490–499

Moses F (1974) Mathematical programming methods for structural opti-
mization, applied mechanics division. ASME. 5:35–47

Papadrakakis M, Lagaros ND (2002) Reliability-based structural optimi-
zation using neural networks and Monte Carlo simulation. Comput
Methods Appl Mech Eng 191(32):3491–3507

Papadrakakis M, Lagaros ND, Tsompanakis Y (1998) Structural optimi-
zation using evolution strategies and neural networks. Comput
Methods Appl Mech Eng 156(1–4):309–333

Papadrakakis M, Lagaros ND, Tsompanakis Y, Plevris V (2001) Large
scale structural optimization: computational methods and optimiza-
tion algorithms. Arch Comput Methods Eng (State of the art re-
views) 8(3):239–301

Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimi-
zation using a bi-directional algorithm. Eng Comput 15(8):1031–
1048

Rumelhart DE, McClelland J (1986) Parallel distributed processing: ex-
plorations in the microstructure of cognition. MIT Press, Cambridge
(Britian)

Sakata S, Ashida F, ZakoM (2003) Structural optimization using Kriging
approximation. Comput Methods Appl Mech Eng 192(7–8):923–
939

Sheu CY, Prager W (1968) Recent development in optimal structural
design. Appl Mech Rev 21(10):985–992

Sigmund O, (1994) Design of material structures using topology optimi-
zation, PhD thesis. DCAMM S-report S69 Department of solid me-
chanics. Technical University of Denmark

Sigmund O (1997) On the design of compliant mechanisms using topol-
ogy optimization. Mech strct Mach 25(4):493–524

Sigmund O (2001) A 99 line topology optimization code written in
Matlab. Struct Multidiscip Optim 21(2):120–127

Sigmund O (2007) Morphology-based black and white filters for topolo-
gy optimization. Struct Multidiscip Optim 33(4–5):401–424

Sigmund O, Maute K (2013) Topology optimization approaches a com-
parative review. Struct Multidiscip Optim 48:1031–1055

Sigmund O, Petersson J (1998) Numerical instabilities in topology opti-
mization: a survey on procedures dealingwith checkerboards, mesh-
dependencies and local minima. Struct Multidiscip Optim 16(1):68–
75

Smolensky P (1986) Information processing in dynamical systems: foun-
dations of harmony theory. In: Parallel distributed processing: ex-
plorations in the microstructure of cognition. MIT Press Cambridge,
Cambridge, pp 194–281

Sosnovik I, Oseledets I (2017) Neural networks for topology optimiza-
tion. arXiv preprint arXiv:1709.09578

Spunt L (1971) Optimum structural design New Jersey USA. Prentice
Hall, Englewood Cliffs

Svanberg K (1987) The method of moving asymptotes-a new method for
structural optimization. Int J Numer Methods Eng 24(2):359–373

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyTop: a
Matlab implementation of a general topology optimization frame-
work using unstructured polygonal finite element meshes. Struct
Multidiscip Optim 45:329–357

Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyMesher: a
general-purpose mesh generator for polygonal elements written in
Matlab. J Struct Multidiscip Optim 45(3):309–328

Wang MY, Wang X, Guo D (2003) A level set method for structural
topology optimization. Comput Methods Appl Mech Eng 192(1–
2):227–246

Wu J, Dick CH, Westermann R (2016) A system for high-resolution
topology optimization. IEEE Trans Vis Comput Graph 22(3):
1195–1208

Accelerated topology optimization by means of deep learning 1211

Xie Y, Steven G (1992) Shape and layout optimization via an evolution-
ary procedure. In Proceedings of the International Conference
Computational Engineering Science, Hong Kong

Xie Y, Steven G (1993) A simple evolutionary procedure for structural
optimization. Comput Struct 49(5):885–896

Xingjun G, Lijuan L, Haitao M (2017) An adaptive continuation method
for topology optimization of continuum structures considering buck-
ling constrains. Int J Appl Mech 9(7):1750092 –1-24

Yoo J, Lee I, (2017) Efficient density based topology optimization using
dual-layer element and variable grouping method for large 3D ap-
plications. World Congress Struct Multidiscip Optim

Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological,
geometrical and generalized shape optimization. Comput Methods
Appl Mech Eng 89(1–3):309–336

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

1212 N. A. Kallioras et al.

	Accelerated topology optimization by means of deep learning
	Abstract
	Introduction
	Topology optimization
	Deep belief networks
	Restricted Boltzmann machines
	Training procedure of DBNs

	DLTOP methodology: deep learning–assisted topology optimization
	The outline of the DLTOP methodology
	Construction of the training dataset used
	Calibration of DBN
	Implementation of DLTOP methodology

	Test examples
	Description of the five 2D benchmark test examples
	Evaluation of parameters, training datasets and classification types
	DLTOP performance for 12 classes
	DLTOP performance for three classes

	Performance of DLTOP methodology in 2D test examples
	Computational efficiency of DLTOP methodology in 3D test examples

	Conclusions
	References

