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Abstract
Time-dependent global reliability sensitivity can quantify the effect of input variables in their whole distribution ranges on the
time-dependent failure probability. To efficiently estimate it to help researchers control the time-dependent failure probability, a
novel method is proposed. The proposed method transforms the estimation of unconditional-conditional time-dependent failure
probabilities into that of the unconditional-conditional probability density functions (PDFs) of the minimum of time-dependent
performance function. Firstly, the minimum of time-dependent performance function is evaluated by adaptive Kriging, and its
unconditional-conditional fractional moments are estimated by multiplicative dimensional reduction method (M-DRM). Then,
the maximum entropy (MaxEnt) constrained by these fractional moments is used to estimate the unconditional-conditional PDFs,
on which the unconditional-conditional time-dependent failure probabilities can be obtained. Finally, the one-dimensional
Gaussian quadrature is applied to estimate the time-dependent global reliability sensitivity indices. Due to the high efficiency
of adaptive Kriging for estimating the minimum of time-dependent performance function, the avoidance of dimensional curse by
M-DRM, and the high efficiency of MaxEnt constrained by fractional moments for estimating PDF, the proposed method can
reduce the computational cost dramatically.

Keywords Time-dependent . Global reliability sensitivity . Kriging . Multiplicative dimensional reduction . Maximum entropy .
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1 Introduction

Reliability is the probability that a structure performs its intended
function over a specified period of time under specified service

conditions. According to whether the performance of the struc-
ture is time-dependent or not, reliability can be classified into
time-independent reliability and time-dependent one. Time-
independent reliability, i.e., static reliability, does not consider
the effect of time, in which the reliability (or failure probability)
remains constant over time. In contrast, the time-dependent reli-
ability analysis takes the effect of time under consideration. In
engineering applications, for instance, over the service life of the
Thermal Barrier Coating of aircraft engines, the stresses and
strains of the Thermal Barrier Coating are time-variant (Miller
1997). Many structures also experience time-varying random
motion errors due to random dimensions (tolerances), clearances,
and deformations of structural components (Dubowsky et al.
1984; Dupac and Beale 2010). Other examples, such as the sys-
tem of wind turbines, hydrokinetic turbines, and the aircraft tur-
bine engines, the turbine blade loading always varies over time.
Likewise, the wave loading acting on offshore structures fluctu-
ates randomly with time (Nielsen 2010; Kuschel and Rackwitz
2000). For the above structures, the failure probability is a func-
tion of time and in general, increased with time, it is named as
time-dependent failure probability, which can be used tomeasure
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the probability that a structure performs its designed function
over its service time.

Time-dependent reliability analysis methodologies can be
simply classified into two categories. The first one includes
the extreme value methods (also named as quasi-static
methods) (Chen and Li 2007; Li et al. 2007; Wang and
Wang 2012), which firstly transforms the time-dependent
problem into the time-independent one by estimating the ex-
treme value of time-dependent performance function, then,
uses the time-independent reliability analysis methods, such
as the first-order reliability method, second-order reliability
method and so on, to estimate the time-dependent failure
probability. The second category consists of the first-passage
methods (Jiang et al. 2017; Andrieu-Renaud et al. 2004; Hu
and Du 2013), which directly uses the first-passage time or the
first time to failure to judge whether the failure occurs or not
over the time under consideration.

Recently, the surrogate model–based methods are a promis-
ing way to improve the accuracy and efficiency for estimating
time-dependent failure probability, and the Kriging surrogate
model is a well-used one. The Kriging model–based methods,
for estimating the time-dependent failure probability, include the
double-loop strategies and single-loop strategies. The technolo-
gy of double-loop Krigingmethod (Wang andWang 2015; Ling
et al. 2019; Hu and Du 2015; Ling and Lu 2020) is constructing
an inner loop Kriging model to estimate the minimum of time-
dependent performance function with respect to the time param-
eter, and constructing an outer loop Kriging model for the ex-
treme value surface of time-dependent performance function to
estimate the time-dependent failure probability. The single-loop
Kriging method (Ling and Lu 2020; Hu and Mahadevan 2016)
treats the time parameter as a random variable distributed in the
time interval, then, directly builds a Kriging model for the actual
time-dependent performance function to estimate the time-
dependent failure probability. The application results (Ling and
Lu 2020) of these two methods show that the single-loop
Kriging algorithm needs a smaller number of model evaluations
than the double-loop Kriging algorithm. However, for compli-
cated problems, extremely those with small failure probability or
the time interval under consideration is too large, the single-loop
Kriging algorithm is more time-consuming than the double-loop
Kriging algorithm, because the candidate sample pool size of
single-loop Kriging algorithm is larger than that of the double-
loop Kriging algorithm. As aforementioned, the double-loop
Kriging method for estimating time-dependent failure probabil-
ity has to estimate the extreme value of time-dependent perfor-
mance function with respect to the time parameter in the inner
loop. Wang et al. (Wang and Wang 2015) used the one-
dimensional Kriging model to approximate the time-dependent
performance function at a specified sample, then, the well-
trained one-dimensional Kriging model is applied to estimate
the minimum of time-dependent performance function at this
sample. Ling et al. (Ling et al. 2019) employed the derivative

method to estimate the minimum of time-dependent perfor-
mance function.

Sensitivity analysis aims at studying “how uncertainty in the
model output can be apportioned to different source of uncertainty
in the model input” (Saltelli et al. 2004), it can be sorted into two
classes, i.e., local sensitivity analysis and global sensitivity anal-
ysis. Local sensitivity analysis (Campolongo et al. 2011) mainly
focuses on estimating the partial derivative, therefore, it only pro-
vides sensitivity information at the nominal point where the de-
rivative is calculated, and it cannot reflect the effect of input
variables in their whole distribution domains on themodel output.
Compared with the local sensitivity analysis, global sensitivity
analysis (Xiao et al. 2018; Aven 2016) can measure the effect
of input variables in their entire distribution ranges on model
output. According to the results of global sensitivity analysis,
researchers can effectively reduce the uncertainty ofmodel output
by allocating more resources (people, time, and financial budges,
etc.) to the most important input variable and simplify the model
through fixing the unimportant input variables at their nominal
values (Xiao and Lu 2017). In the past few decades, many global
sensitivity analysis methods have been proposed. For example,
Sobol and others used the variance-based global sensitivity indi-
ces (Sobol 2001; Yun et al. 2018a; Zhang et al. 2017; Yun et al.
2017a) to quantify the contributions of input variables’ variances
to the variance ofmodel output. Borgonovo and others developed
the moment-independent global sensitivity indices (Borgonovo
2007; Feng et al. 2018; Yun et al. 2018b) to measure the effect
of input uncertainty on the distribution of model output. Cui and
others developed the global reliability sensitivity indices (Cui
et al. 2010; Yun et al. 2017b; Wei et al. 2016; Shi et al. 2017)
to measure the effect of input variables in their whole distribution
domains on the probability of failure.

Structural reliability analysis is more interested in reliability or
failure probability. Thus, it is necessary to study the effect of
input variables in their whole uncertainty domains on the failure
probability. Inspired by this idea, Cui et al. (Cui et al. 2010)
proposed the failure probability–based global sensitivity analysis,
i.e., global reliability sensitivity analysis, it is defined as the ex-
pectation of the square of the difference between the uncondi-
tional failure probability and conditional failure probability. The
global reliability sensitivity technique is especially useful for
reliability-based design. Wei et al. (Wei et al. 2016) and Shi
et al. (Shi et al. 2017) extended the global reliability sensitivity
technique to the time-dependent problem. Time-dependent glob-
al reliability sensitivity index is defined as the expectation of the
square of the difference between the unconditional time-
dependent failure probability and conditional time-dependent
failure probability. Wei et al. (Wei et al. 2016) transformed the
estimation of time-dependent global reliability sensitivity into
that of the time-dependent variance-based global sensitivity
about the indicator function of the failure region, then, used the
envelope function method to estimate it. Shi et al. (Shi et al.
2017) estimated the time-dependent global reliability sensitivity
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based on the extreme value of time-dependent performance func-
tion, where the sparse grid technique combined with the fourth-
moment method, and the dimensional reduction method com-
bined with the maximum entropy are employed.

This paper aims at analyzing the time-dependent global
reliability sensitivity to direct how to control the failure prob-
ability of structure effectively. The proposed method is a
double-loop strategy, it is based on the Gaussian quadrature
and transformation of the estimation of unconditional-
conditional time-dependent failure probabilities into that of
unconditional-conditional probability density functions
(PDFs) of the minimum of time-dependent performance func-
tion. The inner loop of the proposed algorithm is to estimate
the minimum of time-dependent performance function at the
Gaussian grid point. Then, the unconditional-conditional frac-
tional moments of the minimum are evaluated, on which the
unconditional-conditional PDFs of the minimum of time-
dependent performance function are solved. After that, the
unconditional-conditional time-dependent failure probabili-
ties can be estimated by taking univariate integral about the
unconditional-conditional PDFs. Finally, the time-dependent
global reliability sensitivity indices are obtained by the
Gaussian quadrature in the outer loop. The proposed method
includes three particular strategies:

(1) The minimum of time-dependent performance function at
the Gaussian grid point is solved by the one-dimensional
adaptive Kriging method. A learning function, which is
different from that in Ref. (Wang and Wang 2015), con-
sidering the local exploration and global exploration at the
same time with a balance factor, is employed by this pa-
per. It can efficiently select the significant sample point
providing the maximum improvement to the prediction
quality to update the Kriging model.

(2) Based on the minimum of time-dependent performance
function, the unconditional-conditional fractional mo-
ments of it are efficiently estimated by the multiplicative
dimensional reduction method (M-DRM) (Zhang and
Pandey 2013). The application of M-DRM makes the
computational cost grow linearly with the dimensionality,
hence, the dimensional curse is avoided to some extent.

(3) The unconditional-conditional PDFs of the minimum of
time-dependent performance function are estimated by
the maximum entropy (MaxEnt) theory constrained by
the unconditional-conditional fractional moments
(Zhang and Pandey 2013).

The innovations of this paper are concluded as follows:

(1) Up to the authors’ knowledge, there is no work about
using adaptive Kriging to estimate the time-dependent
global reliability sensitivity.

(2) The M-DRM can estimate the unconditional-conditional
fractional moments of the minimum of time-dependent
performance function, simultaneously, by using the same
group of Gaussian grids. This property reduces the total
computational cost for estimating time-dependent global
reliability sensitivity.

(3) The learning function employed by this paper for con-
structing the Kriging model is different from that in Ref.
(Wang and Wang 2015), which can construct a Kriging
model quickly and precisely.

Obviously, the computational cost of the proposed method
only consumes in the process for estimating the minimum of
time-dependent performance function at the Gaussian grid
point. Since the M-DRM releases the dimensional curse, the
MaxEnt theory constrained by fractional moments can effi-
ciently approximate the PDF, and the adaptive Kriging meth-
od can quickly estimate the minimum of time-dependent per-
formance function, therefore, the proposed method reduces
the computational cost for estimating time-dependent global
reliability sensitivity dramatically.

This paper is organized as follows. Section 2 reviews the
time-dependent global reliability sensitivity. The proposed
strategy for efficiently estimating the time-dependent global
reliability sensitivity is shown in section 3. Several examples
are presented in section 4 to demonstrate the efficiency and
accuracy of the proposed method for estimating time-
dependent global reliability sensitivity. Section 5 gives the
conclusions.

2 Time-dependent global reliability
sensitivity

In the time-dependent problem, the performance function of
the structure is not only determined by the stochastic uncer-
tainties but also governed by the time-variant uncertainties
such as loading conditions and component deterioration.
Denote the performance function involving random variables
X = {X1, X2, ⋯, Xn}

T (n represents the number of random
input variables) and time parameter t as Y = g(X, t). The failure
event occurs if the time-dependent performance function sat-
isfies g(X, t) ≤ 0, and the structure is safe when g(X, t) > 0. The
time-dependent failure probability over time interval [t0, ts] is
defined as follows

Pf t0; tsð Þ ¼ Prob g X ; tð Þ≤0;∃t∈
h
t0; ts

in o
ð1Þ

where t0 is the initial time when the structure is put into oper-
ation, and ts denotes the endpoint of the investigated time-
interval. Prob{·} represents the probability operator, and “∃”
means “there exists.”
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The time-dependent performance function g(X, t) can be
seen as a compound function involving the random variables
X in the probabilistic space Rn and the time parameter t in the
time interval [t0, ts]. When the input variables X are fixed at
their realization values x ∈ Rn, g(x, t) is a univariate function
about t. Equation (1) shows that the structure is failed if there
exists an instant t ∈ [t0, ts] satisfies g(x, t) ≤ 0. That is to say, the

structure at realization x is failed if min
t∈ t0;ts½ �

g x; tð Þ
� �

≤0, where-

as for min
t∈ t0;ts½ �

g x; tð Þ
� �

> 0 the structure is safe. Thus, the

time-dependent failure probability can be expressed as fol-
lows

Pf t0; tsð Þ ¼ Prob min
t∈ t0;ts½ �

g X ; tð Þ
� �

≤0
� �

ð2Þ

Equation (2) implies that the key to estimate the time-
dependent failure probability Pf(t0, ts) is to find the minimum
of time-dependent performance function within [t0, ts] when X
take their realization values x according to their joint PDF
fX(x). For the sake of concision, this paper denotes

min
t∈ t0;ts½ �

g X ; tð Þ
� �

as gmin(X).

In order to measure the importance of model inputs X on
the time-dependent failure probability Pf(t0, ts), define the
time-dependent global reliability sensitivity index as follows

δ
P f

X i
¼ ∫þ∞

−∞ Pf t0; tsð Þ−Pf jX i t0; tsð Þ� �2 f X i
xið Þdxi

¼ EX i P f t0; tsð Þ−Pf jX i t0; tsð Þ� 	2 ð3Þ

where f X i
xið Þ is the marginal PDF of variable Xi, EX i �½ � is the

expectation operator about Xi, and P f jX i
t0; tsð Þ is the condi-

tional time-dependent failure probability when Xi is fixed, it
can be expressed as

Pf jX i t0; tsð Þ ¼ Prob min
t∈ t0;ts½ �

g X −i;X i; tð Þ
� �

≤0
� �

ð4Þ

where X−i = {X1, X2, ⋯, Xi − 1, Xi + 1, ⋯, Xn}
T denotes the

vector of all input variables except Xi.
It is seen that the time-dependent global reliability sensitiv-

ity δ
P f

X i
i ¼ 1; 2;⋯; nð Þ reflects the average effects of the input

variables Xi(i = 1, 2,⋯, n) over their distribution domains on

the time-dependent failure probability. The higher δ
P f

X i
is, the

more important Xi is to the time-dependent failure probability.

3 Proposed method for estimating δ
P f

X i

The unconditional and conditional time-dependent failure
probabilities also can be estimated by Eqs. (5) and (6),
respectively,

Pf t0; tsð Þ ¼ ∫0−∞ f Ymin
yminð Þdymin ð5Þ

Pf jX i t0; tsð Þ ¼ ∫0−∞ f YminjX i
yminð Þdymin ð6Þ

where Ymin = gmin(X) denotes the unconditional minimum of
time-dependent performance function, Ymin ∣ Xi = gmin(X−i,
Xi) is the conditional minimum of time-dependent perfor-
mance function when Xi is fixed. f Ymin

yminð Þ and f YminjX i

yminð Þ are the unconditional and conditional PDFs of uncon-
ditional minimum Ymin and conditional minimum Ymin ∣ Xi,
respectively.

Substituting Eqs. (5) and (6) for Eq. (3), Eq. (7) can be
obtained,

δ
P f
X i

¼ ∫þ∞
−∞ ∫0−∞ f Ymin

yminð Þdymin−∫
0
−∞ f YminjX i

yminð Þdymin

n o2
f X i

xið Þdxi
ð7Þ

In this paper, the Gaussian quadrature is employed to esti-
mate the one-dimensional integral with respect to Xi in the
outer loop of Eq. (7). Suppose the Ni-point Gaussian quadra-
ture is adopted for Xi, and the corresponding Gaussian points

and weights of Xi are denoted as x mð Þ
i m ¼ 1; 2;⋯;Nið Þ and

p mð Þ
i m ¼ 1; 2;⋯;Nið Þ, respect ively. Then, the t ime-

dependent global reliability sensitivity index shown in Eq.
(7) can be estimated by Eq. (8),

δ
P f
X i
≈ ∑

m¼1

Ni

p mð Þ
i � ∫0−∞ f Ymin

yminð Þdymin−∫
0
−∞ f Ymin

yminð Þdymin

h i2� �
¼ ∑

m¼1

Ni

p mð Þ
i � P f t0; tsð Þ−P f jx mð Þ

i
t0; tsð Þ

h i2� � ð8Þ

Equation (8) implies that the key to estimate the time-

dependent global reliability sensitivity δ
P f

X i
i ¼ 1; 2;⋯; nð Þ is

to estimate the unconditional PDF f Ymin
yminð Þ and conditional

PDF f Yminjx mð Þ
i

yminð Þ when Xi fixed at its Gaussian point

x mð Þ
i q ¼ 1; 2;⋯;Nið Þ. To efficiently estimate the uncondi-
tional PDF f Ymin

yminð Þ and conditional PDF f Yminjx mð Þ
i

yminð Þ,
the MaxEnt theory constrained by fractional moments is
employed.

3.1 MaxEnt constrained by fractional moments for
estimating f Ymin

yminð Þ and f Yminjx mð Þ
i

yminð Þ

Combining the MaxEnt theory based on fractional moments
constraint (Zhang and Pandey 2013) with the Lagrangian
function and Kullback-Lerbler cross-entropy theory, the ap-
proximate unconditional PDF f Ymin

yminð Þ is derived as

bf Ymin
yminð Þ ¼ exp − ∑

r

k¼0
λk yminð Þαk

� �
ð9Þ
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in which λ = {λ0, λ1, λ2, …, λr}
T and α = {α0, α1, α2, …,

αr}
T are the Lagrangean multiplier vector and the fractional

vector related to the fractional moments, respectively. α0 = 0

a n d λ0 ¼ log ∫Yminexp − ∑
r

k¼1
λk yminð Þαk

� �
dymin


 �
. T h e s e

parameters can be solved by the following optimization
process

Find : λ ¼ λ0;λ1;λ2;⋯;λrf gT and α ¼ α0;α1;α2;…;αrf gT

Minimize : I λ;αð Þ ¼ log ∫Ymin x mð Þ
ij exp − ∑

r

k¼0
λ

0
k yminð Þα0

k

� �
dymin


 �
þ ∑

r

k¼0
λ

0
kM

α
0
k

Ymin x mð Þ
ij

8<: ð10Þ

where Mαk
Ymin

is the αkth order fractional moment of Ymin.
Similarly, the approximate conditional PDF f Yminjx mð Þ

i
yminð Þ

can be derived as

bf Yminjx mð Þ
i

yminð Þ ¼ exp − ∑
r

k¼0
λ

0
k yminð Þα

0
k

� �
ð11Þ

in which the parameters can be estimated by Eq. (12),

Find : λ
0 ¼ λ

0
0;λ

0
1;λ

0
2;…;λ

0
r

n oT
and α

0 ¼ α
0
0;α

0
1;α

0
2;…;α

0
r

n oT

Minimize : I λ
0
;α

0
� 


¼ log ∫Yminjx mð Þ
i
exp ∑

r

k¼0
λ

0
k yminð Þα

0
kdymin

� �
 �
þ ∑

r

k¼0
λ

0
kM

α
0
k

Yminjx mð Þ
i

8>>>>>>><>>>>>>>:
ð12Þ

where M
α
0
k

Yminjx mð Þ
i

is the α
0
k th order fractional moment of

Yminjx mð Þ
i .

Apparently, for estimating the unconditional-conditional
PDFs f Ymin

yminð Þ and f Yminjx mð Þ
i

yminð Þ, it is necessary to evalu-

ate the unconditional-conditional fractional moments Mαk
Ymin

k ¼ 1; 2;⋯; rð Þ and M
α
0
k

Yminjx mð Þ
i

k ¼ 1; 2;⋯; rð Þ at the first.

3.2 M-DRM for estimating Mαk
Ymin

and M
α
0
k

Yminjx mð Þ
i

The multidimensional minimum function Ymin = gmin(X) can
be expressed as a product of multiple univariate functions by
employing the M-DRM strategy (Zhang and Pandey 2013),

gmin Xð Þ≈ gmin μð Þ½ �n−1 ∏
n

i¼1
gmin μ1;…;μi−1;X i;μiþ1;…;μn

� �
¼ gmin μð Þ½ �n−1 ∏

n

i¼1
gmin X i;μ−ið Þ

ð13Þ
in which μ = {μ1, μ2,⋯, μn}

T is the mean vector of inputs X,
μ−i = {μ1, …, μi − 1, μi + 1, …, μn}

T is the mean vector of all
the input variables except Xi.

Suppose the input variables are independent with each oth-
er, so that the joint PDF of input variables can be expressed as

f X xð Þ ¼ ∏
n

i¼1
f X i

xið Þ. Then, the unconditional fractional mo-

ment Mαk
Ymin

can be estimated by Gaussian quadrature,

Mαk
Ymin

¼ ∫X gmin xð Þ½ �αk f X xð Þdx
≈∫X gmin μð Þ1−n ∏

n

l¼1
gmin xl;μ−lð Þ


 �αk

∏
n

l¼1
f X l

xlð Þdxl
� �

≈ gmin μð Þ½ �αk−αkn ∏
n

l¼1
∫X l gmin xl;μ−lð Þ½ �αk f X l

xlð Þdxl
� �

≈ gmin μð Þ½ �αk−αkn ∏
n

l¼1
∑
q¼1

Nl

p qð Þ
l gmin x qð Þ

l ;μ−l

� 
h iαk

( ) ð14Þ

Substituting the fractional momentsMαk
Ymin

estimated by Eq.

(14) for Eq. (10), the parameters λ = {λ0, λ1, λ2,…, λr}
T and

α = {α0, α1, α2, …, αr}
T can be obtained, and the uncondi-

tional PDF f Ymin
yminð Þ can be solved by Eq. (9).

The conditional fractional moment M
α
0
k

Yminjx mð Þ
i

also can be

estimated by Gaussian quadrature,

Mαk
Y
minjx mð Þ

i

≈∫X −i gmin μð Þ½ �1−ngmin x mð Þ
i ;μ−i

� 

∏
n

l¼1;l≠i
gmin xl;μ−lð Þ

" #a;k

f X −i
x−ið Þdx−i

¼ ∫X −i gmin μð Þ½ �1−ngmin x mð Þ
i ;μ−i

� 

∏
n

l¼1;l≠i
gmin xl;μ−lð Þ

" #a;k

∏
n

l¼1;l≠i
f X l

xlð Þdx−l
� �

¼ gmin x mð Þ
i ;μ−i

� 
h ia;k
gmin μð Þ½ �a;k−a;kn ∏

n

l¼1;l≠i
∫X l gmin xl;μ−lð Þ½ �a;k f X l

xlð Þdxl
� �

≈ gmin x mð Þ
i ;μ−i

� 
h ia;k
gmin μð Þ½ �a;k−a;kn ∏

n

¼1;l≠i
∑
q¼1

Nl

p qð Þ
l gmin x qð Þ

l ;μ−l

� 
h ia;k( )

ð15Þ

Comparing Eq. (14) with Eq. (15), it is seen that the terms

g m i n ( μ ) a n d gmin x qð Þ
l ;μ−l

� 

l ¼ 1; 2;⋯; i−1; iþ 1;⋯; n; q ¼ 1; 2;⋯;Nlð Þ in Eq. (15)
have been estimated in the process for estimating the uncon-
ditional fractional moments Mαk

Ymin
in Eq. (14). That is to say,

these terms in Eq. (15) can be obtained without any extra
model evaluations. Thus, to estimate the conditional fractional

moment M
α
0
k

Yminjx mð Þ
i

, it only needs to estimate

gmin x mð Þ
i ;μ−i

� 

i ¼ 1; 2;⋯; n;m ¼ 1; 2;⋯;Nið Þ, and th is

term also has been evaluated in the process for estimating
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Mαk
Ymin

in Eq. (14). Hence, the conditional fractional moments

M
α
0
k

Yminjx mð Þ
i

can be estimated by repeatedly using the results of

the process for estimatingMαk
Ymin

, i.e., this process can be com-

pleted and no extra model evaluation is needed. After

obtaining M
α
0
k

Yminjx mð Þ
i

, the conditional PDF f Yminjx mð Þ
i

yminð Þ can

be derived by the MaxEnt theory constrained by M
α
0
k

Yminjx mð Þ
i

.

The last issue that should be addressed is how to estimate
the minimum of time-dependent performance function, and
this paper adopts the adaptive Kriging to solve this problem.

3.3 Adaptive Kriging for estimating gmin(X)

O n c e t h e G a u s s i a n p o i n t s x mð Þ
i

i ¼ 1; 2;⋯; n;m ¼ 1; 2;⋯;Nið Þ of inputs are determined, it

has to find the minimum response gmin x mð Þ
i ;μ−i

� 

at each

p o i n t x mð Þ
i ;μ−i

� 

¼ μ1;…;μi−1; x

mð Þ
i ;μiþ1;…;μn

� 

. To

achieve this goal, the one-dimensional Kriging model gK

x mð Þ
i ;μ−i; t

� 

for the actual time-dependent performance func-

tion g x mð Þ
i ;μ−i; t

� 

at each point x mð Þ

i ;μ−i

� 

is constructed.

3.3.1 One-dimensional Kriging model for approximating
g x mð Þ

i ;μ−i; t
� 


Deno te the samp le s o f t ime pa rame te r a s T ¼
t1 ¼ t0; t2;⋯; tn−1; tNt ¼ tsf gT (Nt is the number of time sam-

ples), which are evenly distributed over the time interval [t0,

ts]. Given the point x mð Þ
i ;μ−i

� 

in the probabilistic space, the

responses of time-dependent performance function are

g x mð Þ
i ;μ−i; t j

� 

j ¼ 1; 2;⋯;Ntð Þ. A one-dimensional re-

sponse surface for the actual time-dependent performance

function g x mð Þ
i ;μ−i; t

� 

can then be approximated using the

Kriging method, it is expressed as follows

gK x mð Þ
i ;μ−i; t

� 

¼ β x mð Þ

i ;μ−i

� 

þ Z tð Þ ð16Þ

in which β x mð Þ
i ;μ−i

� 

is the global mean of the one-

dimensional Kriging model gK x mð Þ
i ;μ−i; t

� 

. Z(t) is the error

term, it is a stationary Gaussian process with zero mean.

Suppo s e t h e t r a i n i ng s amp l e s e t i s T trainð Þ ¼

t trainð Þ
1 ; t trainð Þ

2 ;⋯; t trainð Þ
M

n oT
(M is the number of training

samples), the corresponding true responses of time-
dependent performance function are

g trainð Þ ¼ g x mð Þ
i ;μ−i; t

trainð Þ
j

� 

; j ¼ 1; 2;⋯;M

n oT
. Construct

the Kriging model gK x mð Þ
i ;μ−i; t

� 

for actual time-dependent

performance function g x mð Þ
i ;μ−i; t

� 

by using (T(train), g-

(train)), then, the prediction mean μK(t) and variance σ2
K tð Þ at

an arbitrary point t ∈ T, obtained by the Kriging model

gK x mð Þ
i ;μ−i; t

� 

, are shown in Eqs. (17) and (18), respectively,

μK tð Þ ¼ bβ x mð Þ
i ;μ−i

� 

þ rT tð ÞR−1 g trainð Þ−bβ x mð Þ

i ;μ−i

� 

1

n o
ð17Þ

σ2
K tð Þ ¼ bσ2

Zf1þ 1TR−1r tð Þ−1� 	T
1TR−11
� �−1h i

1TR−1r tð Þ−1� 	
−rT tð ÞR−1r tð Þg

ð18Þ

where

bβ x mð Þ
i ;μ−i

� 

¼ 1TR−11

� �−1
1TR−1g trainð Þ ð19Þ

bσ2
Z is the process variance for Z(t), it is shown as follows

bσ2

Z ¼
g trainð Þ−bβ x mð Þ

i ;μ−i

� 

1

n oT
R−1 g trainð Þ−bβ x mð Þ

i ;μ−i

� 

1

n o
M

ð20Þ

1 is a M × 1 vector filled with 1, R is a M × M matrix of
correlation function between each pair of points in the training

sample set, and Rij ¼ R t trainð Þ
i ; t trainð Þ

j

� 

i; j ¼ 1; 2;⋯;Mð Þ is

shown in Eq. (21),

R t trainð Þ
i ; t trainð Þ

j

� 

¼ exp −w t trainð Þ

i −t trainð Þ
j

� 
2
� �

ð21Þ

in which w is the unknown correlation parameter, it can be
obtained by the maximum likelihood estimation method
(Jones et al. 1998),

bw ¼ arg min
w

Rj j 1Mbσ2

Z

� �
ð22Þ

r tð Þ ¼ R t; t trainð Þ
1

� 

;Rðt; t trainð Þ

2 Þ;⋯;Rðt; t trainð Þ
M Þ

n oT
i s a

M × 1 vector of the correlations between candidate points t ∈

T and the M training points t trainð Þ
1 ; t trainð Þ

2 ;⋯; t trainð Þ
M

n oT
.
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3.3.2 Adaptive sampling strategy

It is noted that the posterior distribution of Kriging model gK

x mð Þ
i ;μ−i; t

� 

is gK x mð Þ

i ;μ−i; t
� 


∼N μK tð Þ;σ2
K tð Þ� �

. Consider

the following loss function L(t)

L tð Þ ¼ g x mð Þ
i ;μ−i; t

� 

−gK

�
x mð Þ
i ;μ−i; t


h i2
ð23Þ

The expectation of the loss function L(t) is

ð24Þ

Fig. 1 The variation of maximum
bias and Kriging prediction
variance

Table 1 Samples of inputs

x1 x2 ⋯ xn

x 1ð Þ
1 ;μ−1

� 

x 1ð Þ
1

μ2 ⋯ μn

x 2ð Þ
1 ;μ−1

� 

x 2ð Þ
1

μ2 ⋯ μn

⋮ ⋮ ⋮ ⋮ ⋮

x N1ð Þ
1 ;μ−1

� 

x N1ð Þ
1

μ2 ⋯ μn

x 1ð Þ
2 ;μ−2

� 

μ1 x 1ð Þ

2
⋯ μn

x 2ð Þ
2 ;μ−2

� 

μ1 x 2ð Þ

2
⋯ μn

⋮ ⋮ ⋮ ⋮ ⋮

x N2ð Þ
2 ;μ−2

� 

μ1 x N2ð Þ

2
⋯ μn

⋮ ⋮ ⋮ ⋮ ⋮

x 1ð Þ
n ;μ−n

� �
μ1 μ2 ⋯ x 1ð Þ

n

x 2ð Þ
n ;μ−n

� �
μ1 μ2 ⋯ x 2ð Þ

n

⋮ ⋮ ⋮ ⋯ ⋮

x Nnð Þ
n ;μ−n

� �
μ1 μ2 ⋮ x Nnð Þ

n

μ μ1 μ2 ⋯ μn
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where E[·] and Var[·] are respectively the expectation operator
and variance operator.

The first term g x mð Þ
i ;μ−i; t

� 

−μK tð Þ

h i2
in Eq. (24) is the

prediction bias, it represents the average difference between
the true response and predicted response. The second term σ2

K
tð Þ in Eq. (24) is the prediction variance of the Kriging model.

The last term Var g x mð Þ
i ;μ−i; t

� 
h i
in Eq. (24) represents the

intrinsic noise of the data, which is independent with the
Kriging model, thus, it can be ignored when constructing the

Kriging model. Therefore, the expected improvement EI(t) of
the Kriging model at point t ∈ T can be expressed as follows

ð25Þ

In the adaptive sampling process, the bias term acting as
local exploitation is estimated by the leave-one-out cross-
validation approach shown in Eq. (26), the variance term

Fig. 2 The flowchart of adaptive Kriging for estimating gmin x mð Þ
i ;μ−i

� 


(1) Input the Gaussian

points and weights.

(2) Construct the

sample set of inputs.

(3) Estimate the minimum of time-dependent performance

function at samples in step (2) by the adaptive Kriging method.

(4) Estimate the unconditional-conditional fractional

moments based on these minimum values.

(5) Estimate the unconditional-conditional PDFs

of the minimum values.

(6) Estimate the unconditional-conditional

time-dependent failure probabilities.

(7) Estimate the time-dependent global

reliability sensitivity indices.

Fig. 3 The flowchart of the proposed method for estimating δ
P f
X i

i ¼ 1; 2;⋯; nð Þ
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acting as global exploration is obtained directly by the con-
structed Kriging model.

bias2 tð Þ≈ 1

M
∑
M

j¼1
μK tð Þ−μ − jð Þ

K tð Þ
h i2

ð26Þ

in which μ − jð Þ
K tð Þ denotes the predicted response for g

x mð Þ
i ;μ−i; t

� 

at point t ∈ T, it is obtained by the Kriging model

fitted by all M training samples except t trainð Þ
j ∈T trainð Þ.

Substituting Eq. (26) for Eq. (25) and introducing the bal-
ance factor α, the expected improvement of Kriging model at
point t ∈ T can be reorganized as

EIαCV tð Þ ¼ α � bias 2 tð Þ þ 1−αð Þ � σ2
K tð Þ

¼ α � 1

M
∑
M

j¼1
μK tð Þ−μ − jð Þ

K tð Þ
h i2( )

þ 1−αð Þ � σ2
K tð Þ ð27Þ

in which α is

α ¼
0:5 q ¼ 1

0:99� min 0:5�
g x mð Þ

i ;μ−i; tMþq−1

� 

−μK tMþq−1

� �h i
bias2 tMþq−1

� �
24 35q > 1

8>><>>:
ð28Þ

where q denotes the qth iteration of the adaptive Kriging
method.

The new training sample tnew for time parameter can be
determined by the following optimization process, which will
be evaluated and used to update the Kriging model.

tnew ¼ argmax
t∈T

EIαCV tð Þ ð29Þ

The Kriging model gK x mð Þ
i ;μ−i; t

� 

will be updated itera-

tively until the maximum expected improvement is less than a

critical value, and in this paper, the critical value is 0.01. Once
the sufficiently precise Kriging model is obtained, the mini-

mum of time-dependent performance function g x mð Þ
i ;μ−i; t

� 

can be obtained by gmin x mð Þ

i ;μ−i

� 

¼ min

t∈T
μK tð Þ.

To illustrate the difference between bias term in Eq. (26)
and prediction variance, the Goldstein-price function shown
in Eq. (30) is taken as an example.

g X 1;X 2ð Þ ¼ 1þ X 1 þ X 2 þ 1ð Þ2 19−14X 1 þ 3X 2
1−14X 2 þ 6X 1X 2 þ 3X 2

2

� �� 

� 30þ 2X 1−3X 2ð Þ2 16−32X 1 þ 12X 2

1 þ 48X 2−36X 1X 2 þ 27X 2
2

� �� 

ð30Þ

in which X1 and X2 are mutually independent and the deign
space is [−2, 2]2.

In this example, 10 initial training samples are used to
construct the initial Kriging model, the number of test points
(the size of candidate sample pool) is 105, and the learning
function in Eq. (27) (extended to two-dimensional problem) is

Table 2 Input samples of numerical example

x1 x2

1 x 1ð Þ
1 ;μ2

� 

2.9286 4

2 x 2ð Þ
1 ;μ2

� 

3.22888 4

3 x 3ð Þ
1 ;μ2

� 

3.5 4

4 x 4ð Þ
1 ;μ2

� 

3.77112 4

5 x 5ð Þ
1 ;μ2

� 

4.0714 4

6 x 1ð Þ
2 ;μ1

� 

3.5 3.4286

7 x 2ð Þ
2 ;μ1

� 

3.5 3.72888

8 x 3ð Þ
2 ;μ1

� 

3.5 4

9 x 4ð Þ
2 ;μ1

� 

3.5 4.27112

10 x 5ð Þ
2 ;μ1

� 

3.5 4.5714

Table 3 Minimum
values at the samples in
Table 2

Sample MCS Proposed

1 0.943692 (50) 0.943691 (6)

2 1.146890 (50) 1.146889 (6)

3 1.347547 (50) 1.347546 (6)

4 1.564825 (50) 1.564825 (6)

5 1.823398 (50) 1.823398 (6)

6 0.988729 (50) 0.988729 (6)

7 1.179570 (50) 1.179570 (6)

8 1.347547 (50) 1.347546 (6)

9 1.512010 (50) 1.512010 (6)

10 1.690659 (50) 1.690658 (6)
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used to select the new training samples to update the Kriging
model.

At different test points, the bias term and prediction variance
term are different and it is unpractical to plot the bias term and
prediction variance term at every test point, therefore, this paper
only plots the maximum bias and maximum prediction vari-
ance varying with the number of training points. Just as dem-
onstrated in Fig. 1, the number of initial training samples for
constructing the initial Kriging model is 10, and the number of
newly added training samples is 90. It is seen that at the early
stage (the number of training samples is small), the bias term
and prediction variance term are large, and the bias term is
larger than the prediction variance term (except at the initial
point). Then, the number of training samples is increasing
and both of bias and prediction variance are decreasing.

3.4 Implementation of the proposed method for
estimating δ

P f

X i

S t e p 1 : D e t e r m i n e t h e s a m p l e s x mð Þ
i ;μ−i

� 

i ¼ 1; 2;⋯; n;m ¼ 1; 2;⋯;Nið Þ where the minimum gmin

x mð Þ
i ;μ−i

� 

of time-dependent performance function should

be estimated. These samples are listed in Table 1, which are
composed of the Gaussian quadrature grid points of inputs.

It is noted that the total number of samples for input ran-
dom variables is

N ¼ 1þ ∑
o

i¼1
Ni−1ð Þ þ Σn

i¼oþ1Ni Ni ¼ 1; 3; 5; 7;⋯

1þ Σn
i¼1 NiNi ¼ 2; 4; 6; 8;⋯

8<:
ð31Þ

where o is the number of inputs which have symmetric distri-
butions, and n − o is the number of residual inputs with none-
symmetric distributions.

Eq. (31) implies that the number of input samples N grows
linearly with the dimensionality n, and this property avoids the
curse of dimensionality to some extent.

Step 2: Estimate the minimum gmin x mð Þ
i ;μ−i

� 

of time-

dependent performance function for samples in Table 1 by
the adaptive Kriging method described in section 3.3. The

flowchart of adaptive Kriging method for estimating gmin

x mð Þ
i ;μ−i

� 

is shown in Fig. 2.

Step 3: Estimate the unconditional-conditional fractional

moments Mαk
Ymin

and M
α
0
k

Yminjx mð Þ
i

.

A f t e r o b t a i n i n g t h e m i n imum gmin x mð Þ
i ;μ−i

� 

i ¼ 1; 2;⋯; n;m ¼ 1; 2;⋯;Nið Þ by the adaptive Kriging
method, the unconditional-conditional fractional moments

(Mαk
Ymin

andM
α
0
k

Yminjx mð Þ
i

) can be obtained by theM-DRMmethod

demonstrated in section 3.2.
Step 4: Estimate the unconditional PDF f Ymin

yminð Þ and
conditional PDF f Yminjx mð Þ

i
yminð Þ by the MaxEnt theory based

on fractional moments Mαk
Ymin

and M
α
0
k

Yminjx mð Þ
i

, respectively.

Step 5: Estimate the unconditional-conditional time-depen-
dent failure probabilities Pf(t0, ts) and Pf jX i t0; tsð Þ by using the
integral about the unconditional and conditional PDFs f Ymin

yminð Þ and f Yminjx mð Þ
i

yminð Þ (Eqs. (5) and (6)), respectively.

Step 6: Estimate the time-dependent global reliability sen-

sitivity δ
P f

X i
i ¼ 1; 2;⋯; nð Þ by Eq. (8).

Table 5 Result comparison for numerical example

Method Pf(10, 20) δ
P f

X 1
δ
P f

X 2
Neval

MCS 0.0293 (0.0262) 6.879 × 10−3 3.919 × 10−3 1.5 × 105

DL-AK-MCS 0.0293 (0.0258) 6.302 × 10−3 3.689 × 10−3 347

SL-AK-MCS 0.0284 (0.0262) 6.582 × 10−3 3.939 × 10−3 48

Proposed k = 5, r = 3 0.0290 6.857 × 10−3 4.007 × 10−3 54

k = 5, r = 4 0.0287 6.924 × 10−3 4.012 × 10−3 54

k = 5, r = 5 0.0301 6.994 × 10−3 4.067 × 10−3 54

k = 3, r = 4 0.0281 6.806 × 10−3 3.831 × 10−3 30

k = 4, r = 4 0.0291 6.885 × 10−3 4.002 × 10−3 54

Table 4 The fractional moments
estimated by M-DRM and MCS r = 3 r = 4 r = 5

MCS {0.58, 0.98, 3.46}T {0.75, 1.00, 2.04, 0.78}T {1.58, 1.00, 1.26, 0.25, 1.13}T

M-DRM {0.83, 1.00, 1.74}T {0.77, 1.00, 1.85, 0.78}T {1.19, 1.00, 1.13, 0.18, 1.07}T
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From the steps demonstrated above, it is seen that the
model evaluations are produced in step 2 for estimating
the minimum of time-dependent performance function.
The flowchart of the proposed method for estimating

t ime-dependent global re l iabi l i ty sensi t iv i ty δ
P f

X i

i ¼ 1; 2;⋯; nð Þ is shown in Fig. 3.

4 Discussions

It is seen that the proposed algorithm depends on three
specific technologies, i.e., adaptive Kriging, MaxEnt based
on fractional moments and M-DRM. That is to say, the
accuracy and efficiency of the proposed algorithm rely on
these three methods.

(1) Since the adaptive Kriging is responsible for estimat-
ing the minimum of time-dependent performance
function, thus, if the minimum of time-dependent per-
formance function is estimated precisely, it implies
the adaptive Kriging is well-trained.

(2) It is noted that the computational cost is only pro-
duced in constructing the Kriging model for

estimating the minimum of time-dependent perfor-
mance function, thus, the efficiency of adaptive
Kriging determines the efficiency of the whole pro-
posed algorithm.

(3) The accuracy of M-DRM for estimating fractional mo-
ments affects the accuracy of the proposed algorithm for
estimating time-dependent global reliability sensitivity. It
is noted that the M-DRM only concerns the mean value
term gmin(μ) and univariate terms gmin(Xi, μ−i)(i = 1, 2,
⋯, n), it ignores the cross terms. Thus, if the cross-terms
of the original function are important, the M-DRM will
produce a large estimation error.

(4) If the order of moment is larger than two, i.e., α > 2,
although the M-DRM for estimating fractional mo-
ment introduces large estimation error, the PDF esti-
mate maybe accurate, since the higher-order moment
has little effect on the accuracy of PDF estimation.
This issue will be demonstrated in the examples.

(5) The fraction and Lagrangean multiplier in Eqs. (9) and
(11) should be estimated by optimization strategy. It also
affects the accuracy of the proposed algorithm. The selec-
tion of optimization strategy, initial point of the optimiza-
tion strategy, etc., have a large impact on the final result.

(6) The number of Gaussian grids influences the efficiency
and accuracy of the proposed algorithm. Note that the k-
point Gaussian quadrature will provide an exact answer
if the integrand is a polynomial of order 2k − 1 or less.
Theoretically, if k increases, the efficiency of the pro-
posed algorithm will decrease, whereas the accuracy of
the proposed algorithm will increase.

T

T

c

x

y
z h

(a) (b)

Fig. 5 Transport aircraft wing. a
Cross-sectional view. b Top view

Fig. 4 Spar and rib configuration of the transport aircraft wing

Fig. 6 Loading on the wing
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Table 6 Distribution parameters
of input variables Input variable Distribution type Mean value Variation coefficient

Loading at the root Pr(N/m
3) Normal 4.53 × 103 0.05

Allowable stress σf(N/m
2) Normal 4 × 108 0.05

Chord length of root cr(m) Normal 7.62 0.01
Tip/chord ratio c0/cr Normal 0.4 0.01
Depth/chord ratio h/c Normal 0.12 0.01
Thickness of the wing T(m) Normal 8.9 × 10−3 0.1

Table 7 Input samples of the transport aircraft wing

x1 x2 x3 x4 x5 x6

1 x 1ð Þ
1 ;μ−1

� 

3882.8895 4 × 108 7.62 0.4 0.12 0.0089

2 x 2ð Þ
1 ;μ−1

� 

4222.9566 4 × 108 7.62 0.4 0.12 0.0089

3 x 3ð Þ
1 ;μ−1

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

4 x 4ð Þ
1 ;μ−1

� 

4837.0434 4 × 108 7.62 0.4 0.12 0.0089

5 x 5ð Þ
1 ;μ−1

� 

5177.1105 4 × 108 7.62 0.4 0.12 0.0089

6 x 1ð Þ
2 ;μ−2

� 

4530 3.4286 × 108 7.62 0.4 0.12 0.0089

7 x 2ð Þ
2 ;μ−2

� 

4530 3.72888 ×

108
7.62 0.4 0.12 0.0089

8 x 3ð Þ
2 ;μ−2

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

9 x 4ð Þ
2 ;μ−2

� 

4530 4.27112 ×

108
7.62 0.4 0.12 0.0089

10 x 5ð Þ
2 ;μ−2

� 

4530 4.5714 × 108 7.62 0.4 0.12 0.0089

11 x 1ð Þ
3 ;μ−3

� 

4530 4 × 108 7.4022966 0.4 0.12 0.0089

12 x 2ð Þ
3 ;μ−3

� 

4530 4 × 108 7.51670328 0.4 0.12 0.0089

13 x 3ð Þ
3 ;μ−3

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

14 x 4ð Þ
3 ;μ−3

� 

4530 4 × 108 7.72329672 0.4 0.12 0.0089

15 x 5ð Þ
3 ;μ−3

� 

4530 4 × 108 7.8377034 0.4 0.12 0.0089

16 x 1ð Þ
4 ;μ−4

� 

4530 4 × 108 7.62 0.388572 0.12 0.0089

17 x 2ð Þ
4 ;μ−4

� 

4530 4 × 108 7.62 0.3945776 0.12 0.0089

18 x 3ð Þ
4 ;μ−4

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

19 x 4ð Þ
4 ;μ−4

� 

4530 4 × 108 7.62 0.4054224 0.12 0.0089

20 x 5ð Þ
4 ;μ−4

� 

4530 4 × 108 7.62 0.411428 0.12 0.0089

21 x 1ð Þ
5 ;μ−5

� 

4530 4 × 108 7.62 0.4 0.1165716 0.0089

22 x 2ð Þ
5 ;μ−5

� 

4530 4 × 108 7.62 0.4 0.11837328 0.0089

23 x 3ð Þ
5 ;μ−5

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

24 x 4ð Þ
5 ;μ−5

� 

4530 4 × 108 7.62 0.4 0.12162672 0.0089

25 x 5ð Þ
5 ;μ−5

� 

4530 4 × 108 7.62 0.4 0.1234284 0.0089

26 x 1ð Þ
6 ;μ−6

� 

4530 4 × 108 7.62 0.4 0.12 0.00635727

27 x 2ð Þ
6 ;μ−6

� 

4530 4 × 108 7.62 0.4 0.12 0.007693516

28 x 3ð Þ
6 ;μ−6

� 

4530 4 × 108 7.62 0.4 0.12 0.0089

29 x 4ð Þ
6 ;μ−6

� 

4530 4 × 108 7.62 0.4 0.12 0.010106484

30 x 5ð Þ
6 ;μ−6

� 

4530 4 × 108 7.62 0.4 0.12 0.01144273
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5 Examples

In this section, the proposed strategy is applied to several
examples for the sake of illustration. The first example is a
simple numerical example with two random variables. The
second example is a case with respect to the transport aircraft
wing structure, and the third one is an engineering case with
implicit performance function.

5.1 Numerical example

The time-dependent performance function of the structure is
characterized as follows,

g X ; tð Þ ¼ X 2
1X 2−5X 1t þ X 2 þ 1ð Þt2

25
ð32Þ

in which the input variables X1 and X2 are independent normal
variables, X1~N(3.5, 0.2

2) and X2~N(4, 0.2
2). The time inter-

val under consideration is [0,5].

The samples x mð Þ
i ;μ−i

� 

i ¼ 1; 2;m ¼ 1; 2;⋯; 5ð Þ of input

variables of this example are listed in Table 2, which are ob-
tained from the five-point Gaussian quadrature about the in-
puts. Since the input variables follow normal distributions,
thus, the mean value point μ = {μ1, μ2}

T = {3.5, 4}T is equiv-
alent to the middle Gaussian point (samples 3 and 8 in
Table 2), and it only needs to estimate arbitrary one sample
of them to obtain gmin(μ). Therefore, the number of “useful”

samples of this example is N ¼ 1þ ∑
2

i¼1
5−1ð Þ ¼ 9.

To evaluate the time-dependent global reliability sensitivity
for this example, it has to estimate the minimum of time-
dependent performance function at samples in Table 2. The
estimated minimum value at each sample point is listed in
Table 3, in which the values in the brackets denote the number
of time-dependent performance function evaluations. Since
the computational cost of the proposed algorithm only pro-
duces in the process for estimating the minimum of time-
dependent performance function, thus, it can be seen that the
total number of model evaluations of the proposed method for
estimating time-dependent global reliability sensitivity is 54.
It is obvious that the adaptive Kriging algorithm accurately
estimates the minimum of time-dependent performance func-
tion with less computational cost compared with MCS.

After obtaining the minimum of time-dependent perfor-
mance function, the unconditional-conditional PDFs f Ymin

yminð Þ and f YminjX i
yminð Þ can be obtained by the MaxEnt the-

ory based on the unconditional-conditional fractional mo-
ments constraint. To measure the approximation errors of the
fractional moments using M-DRM, this paper lists the mo-
ments estimated by M-DRM and MCS at r ∈ {3, 4, 5} (r
denotes the number of fractions). For r = 3, the fractions of
fractional moments (the orders of the fractional moments)

Table 8 Minimum values at the samples in Table 7

Sample MCS Proposed

1 1.571927 (100) 1.571927 (11)
2 1.445343 (100) 1.445343 (11)
3 1.347377 (100) 1.347377 (11)
4 1.261849 (100) 1.261849 (10)
5 1.178963 (100) 1.178963 (11)
6 1.154905 (100) 1.154905 (10)
7 1.256052 (100) 1.256052 (10)
8 1.347377 (100) 1.347377 (11)
9 1.438703 (100) 1.438703 (11)
10 1.539850 (100) 1.539850 (11)
11 1.308883 (100) 1.308883 (11)
12 1.329112 (100) 1.329112 (11)
13 1.347377 (100) 1.347377 (11)
14 1.365643 (100) 1.365643 (11)
15 1.385872 (100) 1.385872 (11)
16 1.366904 (100) 1.366904 (11)
17 1.356572 (100) 1.356572 (11)
18 1.347377 (100) 1.347377 (11)
19 1.338306 (100) 1.338306 (11)
20 1.328401 (100) 1.328401 (11)
21 1.308883 (100) 1.308883 (11)
22 1.329112 (100) 1.329112 (11)
23 1.347377 (100) 1.347377 (11)
24 1.365643 (100) 1.365643 (11)
25 1.385872 (100) 1.385872 (11)
26 0.962432 (100) 0.962432 (10)
27 1.164727 (100) 1.164727 (10)
28 1.347377 (100) 1.347377 (11)
29 1.530028 (100) 1.530028 (11)
30 1.732323 (100) 1.732323 (11)

Table 10 Result comparison for transport aircraft wing

Pf(10, 20) Cov[Pf(10, 20)](%) Neval

MCS 0.0124 3.98 3.5 × 107

DL-AK-MCS 0.0140 2.66 1044

SL-AK-MCS 0.0130 2.75 301

Proposed k = 5, r = 3 0.0123 – 270

k = 5, r = 4 0.0126 – 270

k = 5, r = 5 0.0121 – 270

k = 3, r = 5 0.0123 – 141

k = 4, r = 5 0.0128 – 261

Table 9 The moments estimated
by M-DRM and MCS r = 3 r = 4 r = 5

MCS {0.35,1.00,5.79}T {1.60, 0.96, 1.75, 0.79}T {1.34, 1.00, 1.27, 0.34, 1.12}T

M-DRM {0.51,1.01,2.15}T {0.87,1.00,1.98,0.81}T {1.04, 1.00, 1.23, 0.23, 1.15}T
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obtained by the optimization strategy are α = {−2.02, −0.06,
3.76}T, for r = 4, the fractions of fractional moments obtained
by the optimization strategy are α = {−1.02, 0.0056, 2.26,
−0.87}T, and for r = 5, the fractions of fractional moments

obtained by the optimization strategy are α = {1.49, −0.002,
0.78, −6.40, 0.42}T. The corresponding fractional moments
Mαi

Ymin
i ¼ 1; 2;⋯; rð Þ estimated by M-DRM and MCS for r

∈ {3, 4, 5} are listed in Table 4.

Fig. 8 The undercarriage
structure

rP f rc 0 / rc c /h c T

f

i

P
X

Fig. 7 Time-dependent global reliability sensitivity of transport aircraft wing structure
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It is seen that, at r = 3, the fractional moment M 3:76
Ymin

esti-

mated by MCS is 3.46, but the result obtained by M-DRM is
1.74, it means that the M-DRM estimates this fractional mo-
ment with large error. Comparing the results in Table 4, it also
can be noted that, if the absolute value of the order of the
moment is larger, the error of M-DRM for estimating the
fractional moment tends to be larger.

Then, the unconditional-conditional time-dependent failure

probabilities can be obtained by Pf t0; tsð Þ ¼ ∫10 f Ymin
yminð Þd

ymin and P f jX i t0; tsð Þ ¼ ∫10 f YminjX i
yminð Þdymin, respectively.

Finally, the time-dependent global reliability sensitivity is
shown in Table 5 (the value in the bracket represents the var-
iation coefficient), in which MCS denotes the Monte Carlo
simulation, DL-AK-MCS denotes the double-loop adaptive
Kriging combined with MCS (Wang and Wang 2015), and
SL-AK-MCS denotes the single-loop adaptive Kriging com-
bined with MCS (Hu andMahadevan 2016).Neval denotes the
total number of time-dependent performance function evalu-
ations for estimating the time-dependent global reliability
sensitivity.

To measure the effects of k (the number of Gaussian points)
and r (the number of fractions) on computational efficiency
and accuracy, the time-dependent global reliability sensitivity
estimates under different k and r are provided. It is seen that
the proposed method can obtain the similar results as the ref-
erence methods, and variable X1 has larger contribution to the
time-dependent failure probability compared with X2.

It also can be concluded that the number of fractions r has
no effect on computational efficiency, but has an effect on
computational accuracy, the number of Gaussian points has
an effect on computational efficiency and accuracy. At case k
= 3 and r = 4, the proposed algorithm is the most efficient
method compared with MCS, DL-AK-MCS and SL-AK-
MCS.

It is seen from Table 4 that if the absolute value of the order
of the moment is large, the estimation error ofM-DRMwill be
large compared with MCS. At case r = 3, the orders of the
moments are α = {−2.02, −0.06, 3.76}T, the last one 3.76 is
larger than two, thus, although the fractional moment obtained
by M-DRM is far away from that obtained by MCS, the final
result in Table 5 (including time-dependent failure probability
and time-dependent global reliability sensitivity) is similar as
that estimated by MCS.

5.2 A transport aircraft wing structure

This section considers a representative wing structure used in
Refs. (Venter and Sobieszczanksi 2004; Acar and Haftka
2005). The wing is chosen as a typical long-range transport
aircraft wing in the Boeing 767 class, the geometric details of
it are obtained from Venter and co-workers (Venter and
Sobieszczanksi 2004). A simple sketch of the transport aircraft

wing geometry (Venter and Sobieszczanksi 2004) is given in
Fig.4. Figure 5(a) is the cross-sectional view of the transport
aircraft wing where T, h and c are the thickness, the depth and
the chord of the wing, respectively. Figure 5(b) is the top view
of the wing where b is the span and b = 40(m).

The wing is subject to elliptical load (see Fig. 6) distribu-
tion of magnitude equal to the 40% (for each side, totally
80%) of 2.5 times (load factor) take-off gross weight of the
aircraft. The effective (load carrying) chord length is taken as
45% of the actual chord corresponding to front spar located at
15% chord and the rear spar is located at 60% of the chord.
The wing depth/chord ratio is taken as 85% of its maximum
value since the depth/chord ratio changes chordwise (Acar
and Haftka 2005).

In this contribution, denote the input vector as X = {Pr, σf,
cr, c0/cr, h/c, T}

T, where X1 = Pr is the loading at the root, X2 =
σf is the allowable stress, X3 = cr is the chord length of root, X4

= c0/cr is the tip/chord ratio, X5 = h/c is the depth/chord ratio
and X6 = T is the thickness of the wing. The parameters and
distributions of input variables are listed in Table 6. In this
transport aircraft wing example, the location in the x-axis
can be viewed as time parameter t and t ∈ [10, 20], thus, this
example can be viewed as a generalized time-dependent
problem.

g

t
Fig. 9 The evolution of time-dependent performance function with time
parameter

Table 11 Distributions of input variables for the undercarriage structure

Input variable Mean Standard deviation Distribution type

μA 0.1 0.001 Normal

μB 0.1 0.001 Normal

μC 0.1 0.001 Normal

μE 0.1 0.001 Normal

r0(m) 0.0175 0.0001 Normal
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To analyze the time-dependent global reliability sensitivity
for the transport aircraft wing, it has to obtain the failure mode
of the wing at the first. This contribution uses the maximum
stress that does not exceed the allowable stress to construct the
performance function of the wing.

The chord length c(X, t) of the wing is

c X ; tð Þ ¼ cr
c0
cr

� �
þ 1−

c0
cr

� �
t

b=2


 �
ð33Þ

the wing depth h(X, t) is

h X ; tð Þ ¼ cr
h

c X ; tð Þ
� �

c0
cr

� �
þ 1−

c0
cr

� �
t

b=2


 �
ð34Þ

the moment of inertia IZ(X, t) is

IZ X ; tð Þ ¼ 1

2
c X ; tð ÞTh2 X ; tð Þ ð35Þ

the wing loading P(t) and wing area A(t) are respectively
shown in Eqs. (36) and (37),

P tð Þ ¼ Pr 1−
t

b=2

� �2
" #

ð36Þ

A tð Þ ¼ 1

2
c X ; tð Þ þ c0½ �t ð37Þ

Table 12 Input samples of the undercarriage structure

x1 x2 x3 x4 x5

1 x 1ð Þ
1 ;μ−1

� 

0.097143 0.1 0.1 0.1 0.0175

2 x 2ð Þ
1 ;μ−1

� 

0.0986444 0.1 0.1 0.1 0.0175

3 x 3ð Þ
1 ;μ−1

� 

0.1 0.1 0.1 0.1 0.0175

4 x 4ð Þ
1 ;μ−1

� 

0.1013556 0.1 0.1 0.1 0.0175

5 x 5ð Þ
1 ;μ−1

� 

0.102857 0.1 0.1 0.1 0.0175

6 x 1ð Þ
2 ;μ−2

� 

0.1 0.097143 0.1 0.1 0.0175

7 x 2ð Þ
2 ;μ−2

� 

0.1 0.0986444 0.1 0.1 0.0175

8 x 3ð Þ
2 ;μ−2

� 

0.1 0.1 0.1 0.1 0.0175

9 x 4ð Þ
2 ;μ−2

� 

0.1 0.1013556 0.1 0.1 0.0175

10 x 5ð Þ
2 ;μ−2

� 

0.1 0.102857 0.1 0.1 0.0175

11 x 1ð Þ
3 ;μ−3

� 

0.1 0.1 0.097143 0.1 0.0175

12 x 2ð Þ
3 ;μ−3

� 

0.1 0.1 0.0986444 0.1 0.0175

13 x 3ð Þ
3 ;μ−3

� 

0.1 0.1 0.1 0.1 0.0175

14 x 4ð Þ
3 ;μ−3

� 

0.1 0.1 0.1013556 0.1 0.0175

15 x 5ð Þ
3 ;μ−3

� 

0.1 0.1 0.102857 0.1 0.0175

16 x 1ð Þ
4 ;μ−4

� 

0.1 0.1 0.1 0.097143 0.0175

17 x 2ð Þ
4 ;μ−4

� 

0.1 0.1 0.1 0.0986444 0.0175

18 x 3ð Þ
4 ;μ−4

� 

0.1 0.1 0.1 0.1 0.0175

19 x 4ð Þ
4 ;μ−4

� 

0.1 0.1 0.1 0.1013556 0.0175

20 x 5ð Þ
4 ;μ−4

� 

0.1 0.1 0.1 0.102857 0.0175

21 x 1ð Þ
5 ;μ−5

� 

0.1 0.1 0.1 0.1 0.0172143

22 x 2ð Þ
5 ;μ−5

� 

0.1 0.1 0.1 0.1 0.01736444

23 x 3ð Þ
5 ;μ−5

� 

0.1 0.1 0.1 0.1 0.0175

24 x 4ð Þ
5 ;μ−5

� 

0.1 0.1 0.1 0.1 0.01763556

25 x 5ð Þ
5 ;μ−5

� 

0.1 0.1 0.1 0.1 0.0177857
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Then, the bending momentM(X, t) at any x-location can be
expressed as

M X ; tð Þ ¼ 4Prcrb
c0
cr

� �
t4

12b2
þ 1−2

c0
cr

� �
t5

20b3
þ c0

cr
−1

� �
t6

30b4


 �
ð38Þ

Finally, the time-dependent performance function of this
transport aircraft wing can be expressed as Eq. (36),

g X ; tð Þ ¼ σ f

M X ; tð Þ h X ; tð Þ=2½ �
IZ X ; tð Þ

ð39Þ

If g(X, t) ≤ 1, the wing structure is failed, and the wing
structure is safe for others.

The samples x mð Þ
i ;μ−i

� 

i ¼ 1; 2;⋯; 6;m ¼ 1; 2;⋯; 5ð Þ

of input variables of the transport aircraft wing are listed in
Table 7 (takes the five-point Gaussian quadrature as an exam-
ple). The number of “useful” samples of this transport aircraft

wing example is N ¼ 1þ ∑
6

i¼1
5−1ð Þ ¼ 25.

The estimated minimum of the time-dependent perfor-
mance function at each sample point in Table 7 is listed in
Table 8, it can be seen that the total number of model evalu-
ations of the proposed method for estimating the time-
dependent global reliability sensitivity is 270.

Then, the unconditional-conditional fractional moments
and PDFs of the minimum of time-dependent performance
function should be estimated. To measure the approximation
errors of the fractional moments using M-DRM, the fractional
moments estimated by M-DRM and MCS at r ∈ {3, 4, 5} are
provided. For r = 3, the fractions of fractional moments ob-
tained by the optimization strategy are α = {−0.04, −0.02,
5.3}T, for r = 4, the fractions of fractional moments obtained
by the optimization strategy are α = {1.55, −0.16, 1.82,
−0.81}T, and for r = 5, the fractions of fractional moments
obtained by the optimization strategy are α = {0.96,
−0.0018, 0.79, −4.14, 0.38}T. The fractional moments esti-
mated by M-DRM and MCS for these three cases are listed
in Table 9. It also can be concluded that, generally, the esti-
mation error of M-DRM for estimating the fractional moment
is increase with the increase of the absolute value of the order
of the moment.

Table 10 provides the results of time-dependent failure
probability obtained by various methods, in which Cov[·] de-
notes the variation coefficient. According to the results in
Table 10, it can be concluded that the proposed method is
more efficient than the reference methods while the same ac-
curacy is kept.

The time-dependent global reliability sensitivity results are
listed in Fig. 7. It can be seen that the thickness T has the
largest contribution to the time-dependent failure probability
of the transport aircraft wing, followed by allowable stress σf
and the loading at the root Pr. The chord length of the root cr,
the tip/chord ratio c0/cr, and the depth/chord length h/c have
little effect on the time-dependent failure probability of the
transport aircraft wing. For this example, the DL-AK-MCS
and SL-AK-MCS methods have large estimation errors, but
the proposed algorithm processes good approximation
accuracy.

Table 13 Minimum values at the samples in Table 11

Sample MCS Proposed

1 1.049513 (30) 1.049500 (8)

2 1.048457 (30) 1.048457 (9)

3 1.040539 (30) 1.040539 (10)

4 1.049513 (30) 1.049430 (9)

5 1.049513 (30) 1.049506 (8)

6 1.030319 (30) 1.030360 (7)

7 1.007441 (30) 1.007588 (9)

8 1.040539 (30) 1.040539 (10)

9 1.049511 (30) 1.049487 (9)

10 1.049513 (30) 1.049265 (4)

11 1.049514 (30) 1.049393 (9)

12 1.049514 (30) 1.049396 (9)

13 1.040539 (30) 1.040539 (10)

14 1.028448 (30) 1.028467 (10)

15 1.023687 (30) 1.023682 (9)

16 1.041847 (30) 1.041847 (9)

17 1.040728 (30) 1.040729 (10)

18 1.040539 (30) 1.040539 (10)

19 1.039333 (30) 1.039333 (10)

20 1.035191 (30) 1.035173 (8)

21 1.045071 (30) 1.045071 (11)

22 1.041971 (30) 1.041971 (10)

23 1.040539 (30) 1.040539 (10)

24 1.040188 (30) 1.040188 (9)

25 1.040182 (30) 1.040291 (10)

Table 14 The fractional moments
estimated by M-DRM and MCS r = 3 r = 4 r = 5

MCS {1.00, 0.91, 0.98}T {0.93, 1.01, 1.03, 1.03}T {1.03, 1.00, 1.04, 0.82, 1.02}T

M-DRM {0.61,0.73,1.89}T {1.02, 0.99, 1.77, 0.63}T {1.37, 1.00, 1.32, 0.17, 1.13}T
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5.3 The undercarriage retraction and extension
system

The main component of an undercarriage is demonstrated
in Fig. 8. In retraction, if the load supported by the under-
carriage retraction and extension system exceeds the

driving force provided by the hydraulic system, the oil flux
in the speed regulating valve of the hydraulic system will
rapidly decrease to 0, and the velocity of the undercarriage
retraction and extension system will decrease to 0, then, this
system cannot complete the retraction task. According to
this fact, the time-dependent performance function of the

g
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PDF
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5r

g

PDF

Fig. 10 The PDF estimation of
the minimum of time-dependent
performance function
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undercarriage retraction and extension system can be con-
structed as follows,

g X ; tð Þ ¼ FD−FL X ; tð Þ ð40Þ
where X = {μA, μB, μC, μE, r0}

T are the random inputs, in
which μA, μB, μC and μE denotes the friction factors for
joint points A, B, C, and E. r = r0 − vt represents the radius
of latch at point D, where r0 is the initial radius of latch at
point D, and the latch is gradual abrasion with time t, the
abrasion velocity is v = 5 × 10−4(m/year), and the service
time of this undercarriage structure is t ∈ [0, 10](year). FD

denotes the driving force provided by the hydraulic system,
and FL(X, t) represents the load subjected by the undercar-
riage retraction and extension system at the retraction pro-
cess, it is obtained by the ADAMS software. The distribu-
tion types and parameters of the input variables are listed in
Table 11.

The evolution of the time-dependent performance function
with the time parameter is shown in Fig. 9, in which the dif-
ferent curves denote the evolution of time-dependent perfor-
mance function with the time parameter on the random vari-
ables fixed at different points. It is seen that, generally, the
time-variant performance function is a non-linear function
with single peak with respect to the time parameter.

The samples x mð Þ
i ;μ−i

� 

i ¼ 1; 2;⋯; 5;m ¼ 1; 2;⋯; 5ð Þ

of input variables of the undercarriage retraction and exten-
sion system are listed in Table 12 (takes the five-point
Gaussian quadrature as an example). The number of “useful”
samples of this undercarriage retraction and extension system

is N ¼ 1þ ∑
5

i¼1
5−1ð Þ ¼ 21.

The estimated minimum of time-dependent performance
function at each sample point in Table 12 is listed in
Table 13, it can be seen that the total number of model eval-
uations of the proposed method for estimating the time-
dependent global reliability sensitivity is 187.

Then, the unconditional-conditional fractional moments
and PDFs should be estimated by M-DRM and MaxEnt, re-
spectively. To measure the approximation errors of the frac-
tional moments using M-DRM, this paper lists the moments
estimated by M-DRM and MCS at r ∈ {3, 4, 5}. For r = 3, the
fractions of fractional moments obtained by the optimization
strategy are α = {0.01, −2.43, −0.44}T, for r = 4, the fractions
of fractional moments obtained by the optimization strategy
are α = {−1.80, 0.37, 0.72, 0.70}T, and for r = 5, the fractions
of fractional moments obtained by the optimization strategy
are α = {0.82, −0.0013, 0.96, −5.13, 0.41}T. The fractional

Table 15 Result comparison for undercarriage retraction and extension
system

Pf(0, 10) Cov[Pf(0, 10)] Neval

MCS 0.0431 0.0211 6 × 106

DL-AK-MCS 0.0426 0.0212 412

SL-AK-MCS 1 × 10−5 1 298

Proposed k = 5, r = 3 0.0489 – 187

k = 5, r = 4 0.0528 – 187

k = 5, r = 5 0.0343 – 187

k = 3, r = 5 0.0146 – 104

k = 4, r = 5 0.0266 – 187

f

i

P
X

A B C E 0r
Fig. 11 Time-dependent global reliability sensitivity of undercarriage structure
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moments estimated by M-DRM and MCS for these three
cases are listed in Table 14.

The estimation of unconditional PDF of the minimum of
time-dependent performance function at different number of
fractions (i.e., r = 3, r = 4, and r = 5) is shown in Fig. 10, which
is obtained by MCS combined with MaxEnt. In Fig.10, the
different curves in the same figure denote the PDF estimation
of the minimum of time-dependent performance function at
different initial values of the optimization process in Eq. (10).
It is seen that the PDF estimation is sensitive to the initial
value of the optimization process, and if the initial value is
“bad”, the estimation of PDF may be far away from its true
statistic characteristic. And the number of fractions also has
impact on the accuracy of PDF estimation.

Table 15 provides the results of time-dependent failure
probability obtained by various methods. Figure 11 illustrates
the time-dependent global reliability sensitivity obtained by
different methods. It is seen that for this example, the time-
dependent failure probability estimates obtained by DL-AK-
MCS and the proposed algorithm at case k = 5 and r = 3 are
close to the result estimated by MCS. The SL-AK-MCS and
other cases of the proposed algorithm process large estimation
error. The large error of the proposed algorithm mainly comes
from: (1) The estimation error of M-DRM for estimating frac-
tional moments. (2) The optimization process in MaxEnt for
estimating PDF introduces large estimation error. Figure 11
implies that the friction factor μB has the largest impact on
time-dependent failure probability.

6 Conclusions

This contribution focuses on conducting the time-dependent
global reliability sensitivity analysis, which can help re-
searchers control the time-dependent failure probability. A
novel method for estimating the time-dependent global reli-
ability sensitivity is proposed. It firstly transforms the estima-
tion of time-dependent unconditional-conditional failure prob-
abilities into that of unconditional-conditional PDFs of the
minimum of time-dependent performance function. The pro-
posed method is a double-loop strategy. In the inner loop, the
minimum of time-dependent performance function is effi-
ciently estimated by adaptive Kriging, in which a new learn-
ing function is employed to iteratively select new training
sample to update the Kriging model. Based on these minimum
values, the unconditional-conditional fractional moments are
obtained by M-DRM, and the unconditional-conditional
PDFs are solved by MaxEnt constrained by these
unconditional-conditional fractional moments. The
unconditional-conditional time-dependent failure probabili-
ties are evaluated by taking integral about the unconditional-
conditional PDFs. Finally, the time-dependent global

reliability sensitivity is obtained by the Gaussian quadrature
in the outer loop.

The proposed method evaluates the time-dependent perfor-
mance function only in the process for estimating the mini-
mum of time-dependent performance function, and it can re-
duce the computational cost dramatically due to: (1) The adap-
tive Kriging is applied to estimate the minimum of time-
dependent performance function. (2) The M-DRM can esti-
mate the unconditional-conditional fractional moments simul-
taneously. (3) The MaxEnt based on fractional moments con-
straint can efficiently approximate the unconditional-
conditional PDFs of the minimum of time-dependent perfor-
mance function. The results of the examples illustrate that the
proposed method can efficiently estimate the time-dependent
global reliability sensitivity, but for highly nonlinear problem
(M-DRM will ignore the cross term), or the number of frac-
tions is large (the optimization process will introduce large
approximation error), the result obtained by the proposed al-
gorithm may have large approximation error.
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