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Abstract
Statistical model improvement consists of model calibration, validation, and refinement techniques. It aims to increase the accuracy
of computational models. Although engineers in industrial fields are expanding the use of computational models in the process of
product development, many field engineers still hesitate to perform statistical model improvement due to its practical aspects.
Therefore, this paper describes research aimed at addressing three practical issues that hinder statistical model improvement in
industrial fields: (1) lack of experimental data for quantifying uncertainties of true responses, (2) numerical input variables for
propagating uncertainties of the computational model, and (3) model form uncertainties in the computational model. Issues 1 and 2
deal with difficulties in uncertainty quantification of experimental and computational responses. Issue 3 focuses on model form
uncertainties, which are due to the excessive simplification of computational modeling; simplification is employed to reduce the
calculation cost. Furthermore, the paper outlines solutions to address these three issues, specifically: (1) kernel density estimation
with estimated bounded data, (2–1) variance-based variable screening, (2–2) surrogate modeling, and (3) a model refinement
approach. By examining the computational model of an automobile steering column, these techniques are shown to demonstrate
efficient statistical model improvement. This case study shows that the suggested approaches can actively reduce the burden in
statistical model improvement and increase the accuracy of computational modeling, thereby encouraging its use in industry.

Keywords Statisticalmodel improvement .Uncertaintycharacterization .Uncertaintypropagation .Model refinement .Statistical
model calibration . Statistical validation . Automobile steering column

1 Introduction

Computer-aided engineering (CAE) plays a vital role in de-
signing engineered products. To substitute expensive experi-
ments, in CAE, a computational model that imitates a real
engineered product is examined to predict performances of
interest. The increased use of CAE requires a more accurate
prediction capability in computational models. Because vari-
ous sources of uncertainties in physical properties, geometric
tolerances, and modeling can degrade the accuracy of compu-
tational models, scholars have developed statistical ap-
proaches to deal with these uncertainties (Oberkampf and
Trucano 2002) (Anderson et al. 2007) (Roy and Oberkampf
2010) (Fang et al. 2012) (Mousaviraad et al. 2013) (Park et al.
2016) (Wang et al. 2018) (Lee et al. 2019a). Statistical model
improvement, which includes calibration, validation, and re-
finement, aims to enhance the prediction capability of compu-
tational models. Model calibration is used to improve the pre-
diction capability of a computational model by estimating the
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statistical parameters of unknown input variables; this mini-
mizes the prediction errors of the computational model
(Aeschliman et al. 1995) (Kennedy and O'Hagan 2001)
(Campbell 2006) (Youn et al. 2011) (Buljak and Pandey
2015). To confirm the validity of a calibrated result, model
validation presents a judges of the accuracy of a calibrated
computational model (Bayarri et al. 2007) (Ferson et al.
2009) (Wang et al. 2009) (Oberkampf and Roy 2010) (Liu
et al. 2011) (Park et al. 2016). If it is possible for a computa-
tional model to have model form uncertainties, model refine-
ment is used to reveal the main errors in the modeling and,
subsequently, to revise the model accordingly (Xiong et al.
2009) (Youn et al. 2011) (Oh et al. 2016).

Despite the efforts of scholars, engineers in industrial fields
still face limitations in their ability to apply statistical model
improvement. One issue is that statistical model improvement
requires high-quality data for an accurate representation of
uncertainties. However, experiments can be expensive.
Engineers can spend considerable amounts of time in compu-
tational analysis when developing a product. This is a signif-
icant issue, especially for products with a limited timeline for
development. Even though engineers can simplify computa-
tional modeling to reduce the required computational calcula-
tion, model simplification can result in invalid modeling in-
formation that can degrade the accuracy of the computational
model. A computational model that examines the vibrational
behaviors of an automobile steering column is an example of
the model of a real-world engineered product that suffers from
these issues. For statistical model improvement in this case,
engineers would require numerous specimens of the steering
column of interest, as well as a long period of time for repeated
impact testing. The computational model needs expensive cal-
culations for the eigenvalue problem in model analysis. While
simplified modeling is an option, it cannot ensure the required
level of prediction accuracy. For engineers in industry, time
constraints typically do not allow the model form uncertainties
to be revealed through trial and error, which could maintain
the simplicity of the model.

Some researchers have tried to apply their research ideas to
industrial models to address issues related to engineered in-
dustrial environments (Youn et al. 2011) (Deng et al. 2013)
(Lee et al. 2016). Youn et al. devised a hierarchical model
calibration approach to consider different failure mechanisms
in an engineered system (Youn et al. 2011). The authors tried
to calibrate a cellular phone model; however, the possibility of
model form uncertainties in the model was not considered.
Deng et al. developed an online Bayesian updating strategy
and applied it to soft industrial sensors (Deng et al. 2013).
Because five input variables and seven unknown input vari-
ables exist in performance responses, the cost for characteri-
zation of output uncertainties is lower than that of the automo-
tive steering column examined in the present study. Lee et al.
developed a P-box approach and a new area metric to quantify

epistemic uncertainties (Lee et al. 2016). The authors used 54
pieces of experimental data for statistical model calibration of
a passenger car—this is a large amount of data—which would
limit applications of this method in the field. The large amount
of experimental data is due to the need to minimize the statis-
tical errors in the experimental data for the demonstration of
the proposed idea. Overall, the research has concentrated on
demonstrating the suggested ideas through industrial models
and has not fully considered the issues that would limit the
applicability of approaches in industrial environments.

To address the issues that emerge in real-world engineering
settings, it is necessary to identify the reasons for the issues
that arise and to suggest appropriate techniques to address
these issues. Therefore, this paper discusses the reasons for
the principal issues that remain in statistical model improve-
ment that result in its low utility in practice in engineering
fields. This paper thus focuses on the practical issues caused
by the limited environment of the product development pro-
cess in industrial fields. This research introduces statistical
model improvement techniques that can address current issues
in statistical models in real-world industry settings.

The rest of this paper is organized as follows. Section 2 first
provides an overview of statistical model improvement.
Section 2 continues with a description of the practical issues
that arise when examining the statistical model improvement
of an automobile steering column model. The automobile
steering column model is used as an industrial example to
highlight the issues that arise when pursuing statistical model
improvement in industrial environments. Section 3 introduces
statistical techniques to solve the issues outlined in Section 2.
To validate the effectiveness of the suggested solutions,
Section 4 outlines a case study of an automobile steering col-
umn model. Section 5 summarizes the overall research and
outlines the conclusions.

2 Practical issues of a vibration analysis model
of an automobile steering column

This section explains three issues that currently limit statistical
model improvement, using an automobile steering column as
a model for vibration analysis. Section 2.1 provides an over-
view of the statistical model improvement process. Section 2.2
introduces an automobile steering column model as an indus-
trial example. Section 2.3 provides a detailed explanation of
the issues surrounding statistical model improvement in the
industry by examining the model of an automobile steering
column.

2.1 Overview of statistical model improvement

Statistical model improvement is a collective term used to
describe technologies related to the enhancement of
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computational model accuracy. As mentioned in the
Introduction, statistical model improvement includes statisti-
cal model calibration, validation, and refinement. Figure 1
summarizes the process of statistical model improvement
(Youn et al. 2011). The steps in the rectangular boxes present
statistical activities used in the model improvement process.
The ellipses denote required information and results (e.g.,
computational model, statistical information of unknown in-
put variables and experimental data) of each activity.
Statistical model improvement consists of six steps: (1) uncer-
tainty characterization, (2) uncertainty propagation, (3) calcu-
lation of a calibration metric, (4) finding optimal variables, (5)
validity check, and (6) model refinement. When computation-
al models include unknown parameters of input variables, the
statistical model improvement process starts with the model
calibration step. Otherwise, the process skips the model

calibration and conducts a validity check first. When the com-
putational model has physically incorrect assumptions, cali-
brated estimates of the unknown parameters of the input var-
iables are unable to show the validity. In this case, the com-
putational model requires a model refinement. The specific
role and purpose of each step are explained as follows:

1) The first step is uncertainty characterization, which is
designed to quantify uncertainties in the experimental
data (Trucano et al. 2002). Mean and standard devia-
tion can be descriptors to quantify uncertainties of giv-
en data. The probability density function (PDF) is a
comprehensive and global method to represent the un-
certainty (Mahadevan and Haldar 2000) (Roy and
Oberkampf 2010). Generally, statistical model im-
provement uses the PDF to deal with uncertainties in
a global domain.

Fig. 1 Framework of statistical
model improvement (Youn
et al. 2011)
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2) The second step is uncertainty propagation, which is
used to quantify uncertainties in the computational re-
sponses (Pettit 2004) (Roy and Oberkampf 2010)
(Mousaviraad et al. 2013). The uncertainty propagation
considers the uncertainties that stem from uncertainties in
the input variables, such as material properties and geo-
metric tolerances. Simulation-based methods and numer-
ical integration based methods are representative ap-
proaches that can be used for uncertainty propagation
(Hurtado and Barbat 1998) (Rahman and Xu 2004)
(Youn et al. 2008) (Fang et al. 2012).

3) The third step is the calculation of a calibration metric to
evaluate the discrepancy between the experimental and
computational responses. Likelihood or probability resid-
ual can be used as a calibration metric in a statistical
manner (Lee et al. 2018) (Oh et al. 2019). The objective
of model calibration is to find the statistical parameters of
the input variables that minimize the discrepancy quanti-
fied by the calibration metric.

4) The fourth step is model calibration to find optimal
values of statistical parameters of unknown input vari-
ables in the computational model. Among various deter-
ministic and statistical approaches for model calibration,
this paper utilizes optimization-based model calibration
(Lee et al. 2018, 2019b). In this approach, an optimization
problem is formulated to estimate statistical moments of
unknown input variables that minimize the discrepancy
of the experimental and computational responses. The
value of the calibration metric can be an objective func-
tion in the optimization problem. It is worth noting that
the optimization-based approach is a deterministic pro-
cess since the optimal solution derived from the
optimization-based approach is a deterministic value.
However, the model improvement method in this paper
is defined as a statistical approach because the method
deals with uncertainties of responses over the whole pro-
cess. When computational models include model form
uncertainties, which arise mainly due to incorrect as-
sumptions or excessive simplification, model calibration
fails to find reasonable estimates of the statistical mo-
ments of the unknown input variables. The model refine-
ment step can revise the leading cause of the model form
uncertainties. To avoid a failure of model calibration, ex-
act computational modeling and simplification of as-
sumptions based on reasonable physics are required.

5) The fifth step is validity check, which is used to verify the
validity of computational responses (Oberkampf and Roy
2010). Statistical validation consists of examining the val-
idation metric and decisionmaking. The validation metric
quantifies the coincidence or the discrepancy between the
experimental and computational responses. The valida-
tion metric is technically different from the calibration
metric in that it should give information of model validity

even in constrained cases, such as where there is a limited
number of data or where the experimental data is given in
different environments. Validation metrics include the ar-
ea metric and Bayes factors (Oberkampf and Trucano
2002) (Rebba et al. 2006) (Liu et al. 2011). Using the
validation metric value, the statistical validation step is
used to determine the validity of the calibrated model.
In decision making, hypothesis testing is generally used.

6) The sixth step is model refinement, which explores and
revises the root causes of invalid modeling in the compu-
tational model (Deng et al. 2013) (Oh et al. 2016). When
the model calibration fails, the objective function of the
optimization for model calibration does not decrease, re-
gardless of the optimization formulation. The estimates of
the statistical moments of the unknown input variables
fail to satisfy the desired level of validity in the statistical
validation step. In the statistical model improvement pro-
cess, model refinement is of great importance because
model errors interrupt the goal of statistical model im-
provement to find an exact solution for the statistical pa-
rameters of the input variables and decrease the reliability
of the improved solution.

2.2 Introduction of the case study: a vibration analysis
model of an automobile steering column

An automobile steering column is a device that helps a driver
to change the driving direction of an automobile. One issue in
the design of an automobile steering column is the desire to
reduce the resonated vibration transferred from the engine or
the roadway. Transferred vibration may make drivers uncom-
fortable. The design of an automobile steering column is
based on the understanding of vibrational behaviors to avoid
resonance. Therefore, the purpose of a computational model
for an automobile steering column is to analyze the natural
frequency and mode shape of the vibrations. In this paper, we
focus on natural frequencies matched to specific mode shapes
that arise when a steering wheel vibrates in three axial bending
directions. This approach is based on prior knowledge from
industrial experts who designed the automobile steering col-
umn (offered to us via personal communication). These engi-
neers have found that the vibrating strength of axial bending
modes is the most powerful. The target modes of the natural
frequency are the 1st, 2nd, and 4th modes. The 3rd mode of
the natural frequency is not considered because it has a twist-
ing mode shape.

Figures 2 and 3 show an automobile steering column and
the computational model of an automobile steering column,
respectively. An automobile steering column consists of two
sub-components: a steering wheel and a column assembly.
Figures 2a and 3a show a steering wheel and Figs. 2b and
3b show a column assembly. The full steering column and
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its computational model are shown in Figs. 2c and 3c, respec-
tively. For computational modeling, Hypermesh 13.0 software
is used as a preprocessor. Required for exact computation are
298,458 nodes and 214,268 elements. To save computational
costs, a computational model simplifies the geometric com-
plexity of a real product. For example, the bolting system is
simplified as a rigid body element (RBE2). The airbag in the
middle of the steering wheel is simplified as a lumped mass
with no geometric inputs. The geometry of the wheel cover
uses shell elements, which only considers thicknesses as a
geometric input variable.

Using the simplified steering column model, Autodesk
Nastran 2018 is employed for a solver and post-processor.
The automobile steering column model takes 575.66 s for
the calculation of the natural frequencies and mode shapes.
The complex design of an automobile steering column re-
quires a significant amount of computational cost for analysis.
Despite the calculation cost, however, the computational re-
sponses of the model are severely mismatched with experi-
mental data. Therefore, the model requires statistical model
improvement. Section 4 explains the process of applying sta-
tistical model improvement in detail.

2.3 Issues in statistical model improvement
in industrial fields

This section describes three major issues that arise when
performing statistical model improvement in industrial engi-
neering models: (1) the issue of a lack of experimental data is

discussed in Section 2.3.1, (2) the computational cost for un-
certainty propagation of computational responses is outlined
in Section 2.3.2, and (3) model form uncertainties are exam-
ined in Section 2.3.3.

2.3.1 Issue 1: Lack of experimental data for quantifying
the uncertainties of true responses

Variations in true responses are influenced by numerous sorts
of uncertainty sources. Uncertainty sources include material
properties of specimens, experimental environments, or mea-
surement errors. Random experiments, repeated experiments
in the same environment, can consider a variety of uncertainty
sources in the experiments. For example, experiments with
numerous specimens can give insight into the uncertainties
of material properties and geometry. Likewise, a repeated
number of experiments can allow consideration of measure-
ment errors. However, in real-world settings, during the prod-
uct development process, it is difficult to prepare numerous
specimens or repeat tests. Overall, the excessive cost of ran-
dom experiments is a disadvantage in statistical model
improvement.

Uncertainty characterization can be performed either in a
parametric or nonparametric way. Parametric approaches esti-
mate the best fit of the distribution type and its parameters,
usually based on exact information of the distribution type and
sufficient data (Mahadevan and Haldar 2000). Kang et al. stat-
ed in their paper that the data more than 30 can follow the
parametric distribution (Kang et al. 2017). The nonparametric

(a) (b) (c)

Fig. 2 An automobile steering
column: a Steering wheel. b
Column assembly. c Entire
steering column

(a) (b) (c)

Fig. 3 An automobile steering column model: a Steering wheel. b Column assembly. c Entire computational model of the steering column
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approach overcomes the absence of sufficient number of data
set and types of distribution. One commonly used nonpara-
metric approach is kernel density estimation (KDE), which
models a distribution directly from data without using a spe-
cific type of distribution or parameter. However, the original
KDE approach sometimes models a PDF of uneven shape
using limited data, due to its high modeling flexibility, even
though the true distribution is a smooth distribution.
Accordingly, uneven densities of KDE can lead to the identi-
fication of incorrect “optimal” solutions from optimization-
based model calibration. To overcome this problem, Kang
et al. developed a kernel density estimation with estimated
bounded data (KDE-ebd) that can use both experimental data
and bound information. It thus estimates a more accurate and
conservative PDF than the original KDE even using insuffi-
cient data (Kang et al. 2018). Further, Moon et al. proposed an
input distribution model using a bootstrap method in KDE,
which selects an optimal bandwidth of the input variable from
the CDF of the bandwidth of the input variables obtained by
bootstrap estimation. Since this method can yield a reliable input
distribution (Moon et al. 2019a), it can be applied to the statistical
model validation (Moon et al. 2019b).

In this study, we prepared three steering wheels and three
column assemblies to show the possibility of a successful
model improvement process with limited cost. Considering
different combinations of the two sub-components, a total of
9 combinations of the automobile steering column were ex-
amined in the experiments. With each combination of the
automobile steering column, impact tests were performed five
times, and the five experimental data were averaged to repre-
sent the natural frequency of each combination. Overall, 9
points of experimental data were available for uncertainty
characterization. For a successful model improvement process
with 9 experimental data, we employed a special technique
that has a smooth density shape and simultaneously satisfies
the accuracy requirement.

2.3.2 Issue 2: numerous input variables for propagating
uncertainties of a computational model

Modeling of an engineered product includes diverse individ-
ual design specifications. This is a complex and sophisticated
process that requires a combination of numerous components.
To complement all specifications, computational models re-
quire a large number of input variables. For the uncertainty
propagation of the computational model, it is a significant
burden to consider all uncertainties of input variables.
Meanwhile, uncertainty propagation is the most frequently
performed process in statistical model improvement.
Uncertainty propagation is necessary for every attempt to
quantify the discrepancy between the experimental and com-
putational responses. Therefore, reducing the computation
cost for uncertainty propagation is an important issue.

To alleviate the calculation time of the computational mod-
el, a surrogate model is generally substituted for the original
computational model (Zhao et al. 2011) (Manfren et al. 2013)
(Wu et al. 2018). A surrogate model is a numerical model for
which calculation time is much shorter than the computational
model with CAE. However, when using a surrogate model,
minimizing the number of input variables in the model is
recommended to ensure accuracy (Schuëller and Jensen
2008). Furthermore, the amount of computational response
data for a surrogate model increases with the number of input
variables. Overall, reducing the number of input variables is of
great importance to reduce the computational cost for uncer-
tainty propagation.

In the case of the automobile steering column model,
Table 1 summarizes detailed information for all input vari-
ables. The table categorizes input variables into material prop-
erties, geometry, and boundary condition. Each variable prop-
erties of the materials, such as elastic modulus, density, and
Poisson’s ratio, has six input variables because of the six types
of materials (e.g., steel, aluminum, polyurethane) used to pro-
duce the steering column. Variable properties of geometry
include the thicknesses of the six shell elements. In the case
of the boundary condition, stiffness of the three main linkage
components (e.g., bush, bearing, and spring) is considered.
Overall, the automobile steering column model has 46 input
variables.

2.3.3 Issue 3: Model form uncertainties in the computational
model

Model form uncertainties originate from a misunder-
standing of the modeling knowledge required for an
exact computational model. The model form uncer-
tainties designate all sources of modeling error, such
as wrong assumptions, excessive simplification in the
computational model, and inaccurate surrogate model-
ing. In industrial fields, engineers simplify the compu-
tational model as much as possible to improve the

Table 1 Information about the input variables in the steering columnmodel

Categories Variable properties Number of
variables

Materials Elastic modulus 6
Poisson’s ratio 6
Density 6

Geometry Thickness 7
Boundary condition Four bushes (three-directional stiffness) 12

Four bearings (two-directional stiffness) 8
Spring (one-directional stiffness) 1

Total 46
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computation speed. In this simplification process, exces-
sively simplified modeling can induce model form un-
certainties. Given this modeling tendency in real-world
industrial settings, this paper only focuses on model
form uncertainties that arise from a computational mod-
el, such as wrong assumptions and excessive simplifica-
tion. In a case with surrogate modeling errors, these
errors can be managed by the construction of surrogate
models with an accurate method.

In computational responses, model form uncertainties
generate biased errors. Without revising the sources of
model form uncertainties, the calibrated values of statis-
tical parameters of unknown input variables may exces-
sively shift to physically impossible values to comple-
ment biased errors. In the optimization of model cali-
bration, the objective function does not decrease, re-
gardless of the optimization formulation. The estimates
of the statistical moments of unknown input variables
fail to satisfy the desired level of validity in the statis-
tical validation. Thus, model refinement is designed to
identify and eliminate the major source of model form
uncertainty to prevent the failure of model calibration
and to obtain a reasonable estimate of the statistical
parameters of the unknown input variables.

In the modeling of the automobile steering column,
an airbag located in the steering wheel is simplified as a
lumped mass, without detailed geometric modeling.
Furthermore, the airbag is modeled with a rigid body
element, and the fixed point of the airbag is different
from a real specimen. A variety of material properties in
the steering column is simplified to representative steel.
Even numerous simplified modeling become potential
sources of model form uncertainty, it is not advisable
to fix all the sources due to calculation costs. Therefore,
for engineered product design, an effective way must be
found to physically find the most effective source of
model form uncertainties.

3 Solutions to the issues of statistical model
improvement for an automobile steering
column

Section 3 provides suggested solutions to the issues ex-
plained in Section 2. Section 3.1 introduces an uncer-
tainty characterization method, kernel density estimation
with estimated bounded data (KDE-ebd), for the issue
of the lack of experimental data. Section 3.2 describes
variable screening and surrogate modeling to address the
issue of numerical input variables in uncertainty propa-
gation. Section 3.3 presents a model refinement method
for the issue of model form uncertainties.

3.1 Solution 1: Kernel density estimation
with estimated bounded data (KDE-ebd)

KDE-ebd was recently developed to improve the original
KDE by combining it with interval representation using esti-
mated intervals from given data (Kang et al. 2018). The orig-
inal KDE method uses given data only to obtain a kernel
density function; in contrast, KDE-ebd uses both given and
bounded data that are randomly selected within the estimated
intervals of the uniform distribution. KDE-ebd can be used
whether or not the information about the bounds is given. If
there is no bound information, KDE-ebd can estimate the
bounds from the given data based on statistical interval esti-
mation theory; otherwise, KDE with bounded data (KDE-bd)
can use the known boundary values. The estimated kernel
density function using KDE-ebd is expressed as:

bf xð Þ ¼ 1

ntot � htot ∑
n

i¼1
K

x−Xebdi
htot

� �
ð1Þ

where Xebdi is i-th total data, which combines the given and
the estimated bounded data for i = 1,…,n, i.e., Xebd = [X,
ebd], where X and ebd denote given and bounded data, re-
spectively. ntot is the number of total data samples, htot is the
optimal bandwidth for the total data, and K(·) is a kernel func-
tion. The estimated bounded data are randomly generated
from a uniform distribution with intervals that are estimated
by interval representation. The bounded data is added to the
given data until the additional bounded data does not affect the
shape of the kernel density function. The estimated intervals, l
and u, are calculated by:

l; uf g ¼ bb− bb−ba
α

1
n
;baþ bb−ba

α
1
n

" #
ð2Þ

where ba and bb are point estimators of a uniform distribution
for given data, and α is a significance level for the interval
estimation of a uniform distribution.

Compared with KDE-ebd, it is possible for KDE to gener-
ate a PDF that more accurately represents the given data set.
However, KDE may estimate an uneven density shape, such
as in the case of a multimodal distribution for an extremely
small amount of data. Multimodal PDF is not useful for vibra-
tional analysis of an automobile steering column, because it is
impossible to have two different values of the natural frequen-
cy in a mode. From the perspective of model calibration, the
optimization algorithm has difficulty in finding an optimum to
fit a PDF of computational performance with an unevenly
shaped PDF that is derived from the experimental data.
Since the estimated bounded data supplements the data defi-
ciency, KDE-ebd can model PDF with a smooth density
shape, which can yield more easily convergent model calibra-
tion. Subsequently, the merits of KDE-ebd in improving
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statistical models in situations with limited data are as follows:
(1) it can increase the modeling accuracy even with limited
data, (2) it can improve the efficiency of model calibration by
smoothing the PDF of the experimental data, and (3) it can
lead to a conservative analysis and design results, regardless
of the quality of the data, because the input and output distri-
butions are modeled as heavy-tailed distributions (Kang et al.
2019b).

3.2 Solution 2: variable screening and surrogate
model

To address the problem of the computational expense of un-
certainty propagation, this research applies two approaches:
(1) variance-based variable screening and (2) surrogate
modeling with Kriging. Section 3.2.1 explains variance-
based variable screening and Section 3.2.2 introduces surro-
gate modeling with Kriging.

3.2.1 Variance-based variable screening

Variable screening can reduce the dimension of computational
responses by considering only effective input variables while
maintaining the accuracy of the computational responses
(Hamby 1994) (Frey and Patil 2002) (Lee et al. 2019c).
Variable screening analysismethods can be categorized into local
and global approaches (Campolongo et al. 2007) (Iooss and
Lemaître 2015). Local approaches, such as one factor at a time
(OAT) or elementary effects (EE), are not suitable for this study.
From the perspective of statistical model improvement, statistical
model calibration and validation requires the effectiveness of
sensitivity analysis in a large boundary of unknown input vari-
ables to find an optimal set of unknown input variables.
Therefore, global approach is appropriate for the statistical model
improvement. Numerous global sensitivity analysis methods,
such as the Sobol method or the correlation ratio, only consider
the effectiveness of input variables toward the output responses.
The statistical model improvement process, however, requires
the effectiveness of the uncertainties of input variables toward
the uncertainties of output responses. Therefore, this study
adopted the efficient variable screening method outlined in the
following paper (Cho et al. 2014).

The efficient variable screening is an integration of the
absolute discrepancy between a PDF of the computational
responses with all input variables and a PDF with all variables
except for k-th input variable, expressed as:

ek ¼ ∫∞−∞ f k yð Þ−g yð Þj jdy ð3Þ
where ek is an area difference between fk(y) and g(y). fk(y)
indicates a PDF of a prediction response y without the effect
of the k-th variable, by fixing the value of the input variable to

a deterministic value. g(y) denotes a prediction response PDF
considering the effects of all variables. When the k-th variable
has a large effect on a prediction response, the shape of fk(y)
becomes narrow and tall, as compared with g(y). As a result,
the change of the PDF shape results in the area difference
between fk(y) and g(y).

In addition, the assessment of the effects of input variables
can give a guideline for selecting unknown variables. In such
a case, the most effective input variables can be unknown
variables, with an assumption that more influential input var-
iables can induce more significant errors in computational
responses, when the prior information of input variables is
incorrect. In the case study of an automobile steering column
examined here, the authors selected unknown variables based
on variable screening analysis. Section 4.1.2 provides a de-
tailed explanation.

3.2.2 Surrogate modeling with Kriging

Surrogate modeling reduces the computational cost of the re-
sponse evaluations when expensive CAE analysis is required.
Surrogate modeling becomes essential because the statistical
model improvement process requires repeated evaluations of
the responses. Surrogate modeling includes polynomial chaos
expansion (PCE), Kriging, or support vector machine (SVM)
groups (Hu andMahadevan 2016). The PCE group is practical
because it is simple to perform; however, it is inaccurate for
non-Gaussian cases (Schuëller and Jensen 2008). SVM is
mainly used in the field of machine learning as a classification
tool. Recently, studies have begun to apply SVM to surrogate
modeling (Roy et al. 2019). Kriging is an interpolation-based
approach, which is one of the most efficient and accurate
surrogate modelingmethods for highly nonlinear performance
functions (Krige 1951) (Wang 2003) (Clarke et al. 2005) (Marrel
et al. 2008) (Lee et al. 2011) (Zhao et al. 2011) (Kang et al.
2019a). The basic idea is to estimate the computational responses
using a weighted summation of neighborhood data points, con-
sidering spatial relationship. Estimation of a computational re-
sponse at x0 with Kriging is formulated as:

bz x0ð Þ ¼ ∑
N

i¼1
λi x0ð Þz xið Þ ð4Þ

where z(xi) is the i-th computational response data point used
for Kriging, and λi is a weight of the i-th computational re-
sponse data point, indicating spatial correlation. N denotes the
number of computational response data points. The objective
of Kriging estimation is to calculate the optimal λi, satisfying
two conditions:

E ε x0ð Þð Þ ¼ E bz x0ð Þ−z x0ð Þ
� �

¼ 0 ð5Þ

min
λ

Var ε x0ð Þð Þ ¼ Var bz x0ð Þ−z x0ð Þ
� �

ð6Þ
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Equation (5) is for unbiased prediction, and Eq. (6) is to
minimize the variance of errors. ε(x0) is the discrepancy be-
tween the real computational response, and the estimated
computational response derived from Kriging. bz x0ð Þ denotes
the estimation of the computational responses by
Kriging; z(x0) signifies the real computational response.
Var(·) represents variance. Depending on the stochastic as-
sumption, the type of Kriging method for estimating the opti-
mal λi can be different.

For the case of an automobile steering column model, the
natural frequency of the complicated structures is generally
highly nonlinear, which is sensitive to the change of input
variables (Gholizadeh 2013). Therefore, the Kriging method
deals with highly nonlinear response surfaces of the natural
frequency for an automobile steering column to reduce the
computational cost for uncertainty propagation. This paper
uses the universal Kriging method that assumes the computa-
tional responses follow a general functional mean with an
intrinsic random process, which has zero mean. Detailed de-
scription of universal Kriging is referred by the following
papers (Armstrong 1984) (Stein and Corsten 1991)
(Zimmerman et al. 1999).

3.3 Solution 3: Model refinement

Model refinement is an essential step in that this process di-
rectly removes the underlying cause of model form uncertain-
ty. There has been little achievement in academic research
towards considering the model form uncertainties in a system-
atic framework. Xiong et al. stated in their paper that personal
experience in modeling gives an intuition for model refine-
ment; however, this is not an applicable process for practical
settings. Therefore, model refinement, introduced in this pa-
per, aims to explore the most effective root causes of invalid
modeling via a systematic approach (Oh et al. 2016).

The model refinement selects the most invalid sources
based on experts’ opinion and numerically quantified criteria.
The process involves three steps: (1) model invalidity analy-
sis, (2) an invalidity reasoning tree, and (3) invalidity sensi-
tivity analysis. Model invalidity analysis is a brainstorming
step, which gathers all possible invalid sources. This step al-
lows asmany invalid sources as possible. The second step is to
develop an invalidity reasoning tree that selects only potential
invalid sources from among all sources gathered in Step 1. For
the selection of invalid sources, related experts should identify
the proper reasons for invalidity, from the conceptual, mathemat-
ical, and computational perspective. Invalidity sensitivity analy-
sis quantitatively evaluates the importance of invalid sources of
computational modeling. A decision matrix is one useful tool for
comparing all candidates of the invalid sources of modeling

(Dieter 1991). Oh et al. suggested a weighted decision matrix
that considers the importance of each criterion bymultiplying the
weight values (Forman and Gass 2001) (Oh et al. 2016). In this
step, engineers in the field can define criteria and weights for
quantification appropriate for their situation.

As mentioned in Section 2.3.3, industrial engineers use
simplified computational models to increase the speed of cal-
culation or the efficiency of the modeling. The majority of
modeling errors arise from the simplification of computational
models, rather than a lack of modeling knowledge. Therefore,
invalid modeling should be selectively improved by consider-
ing the situation and the standards required for each industrial
field to ensure that an unconditionally exact and complicated
model is not implemented. In addition to the model refinement
method, other statistical approaches to deal with the invalidity
of a computational model have been developed (Kennedy and
O'Hagan 2001) (Xiong et al. 2009) (Qiu et al. 2018). Bias
correctionwith a Bayesian calibration framework can quantify
the number of errors that are due to the invalidity of a com-
putational model (Kennedy and O'Hagan 2001) (Arendt et al.
2012) (Xi et al. 2013). To precisely quantify the biased errors,
this method requires numerous experimental data samples
from a diverse domain of design variables. Because this study
deals with the problems that arise from an insufficient amount
of data, this approach is not considered here.

4 Industrial demonstration: A case study of an
automobile steering column

Section 4 describes the process of statistical model improve-
ment and results for the model case study of an automobile
steering column. As mentioned in Section 2.2, the target
modes of the natural frequency are the 1st, 2nd, and 4th
modes. Among these three modes, the 1st and 4th mode of
the natural frequency is used in model calibration; the 2nd-
mode natural frequency is used for model validation.
Section 4.1 describes the first trial of statistical model im-
provement. Because of the unrecognized model form uncer-
tainties, the calibration result from the first trial failed to find a
valid solution. Therefore, Section 4.2 provides the second trial
of statistical model improvement that is implemented after
performing model refinement.

4.1 First trial of statistical model improvement

Section 4.1 explains the first trial of the statistical model im-
provement process. Section 4.1.1 explains the procedure of
the random experiment and the results of uncertainty charac-
terization. Because the statistical information of thickness and
density of wheel covers are unknown, the process starts with

Industrial issues and solutions to statistical model improvement: a case study of an automobile steering... 1747



statistical model calibration to estimate the unknown statistical
parameters. Section 4.1.2 describes uncertainty propagation
results using variable screening and surrogate modeling.
Section 4.1.3 introduces the calibration metric used in this
study. Section 4.1.4 presents the statistical model calibration
result. As the calibrated model shows an invalid result,
Section 4.1.5 illustrates the model refinement process.

4.1.1 The first step: uncertainty characterization
with a random experiment

The random experiment step can consider a variety of uncer-
tainties in an experiment. Uncertainty sources of the automobile
steering column model include material properties, geometric
figures, the combination of sub-components (e.g., steering wheel
and column), and measurement errors. Three specimens of an
automobile steering wheel and column assembly were used to
consider the uncertainties of material properties and geometric
figures. To consider the uncertainty caused by the assembly of
each subcomponent, 9 different combinations of three steering
wheels and three steering columns, respectively, are utilized.
Measurement errors are reduced by averaging experimental data
with repeated experiments five times. For these random experi-
ments, an LMS SCADAS mobile system is used to observe
vibrational signals for modal testing. Test Lab software gives
the frequency response function and measured natural frequency
values using a signal processing tool.

Using this experimental data, the KDE-ebd method char-
acterizes uncertainties. The research outlined in this paper
used a critical intersection area of 0.95 and a significance level
for an interval estimation of 0.1, as suggested by Kang et al.
(Kang et al. 2018). Figure 4 shows a comparison of the un-
certainty characterization results from both the KDE and
KDE-ebd methods, using 9 experimental data acquired from
9 different steering column combinations. PDFs estimated by
KDE for the 1st-mode frequency (Fig. 4b) and the 4th mode

frequency (Fig. 4c) show uneven shape. The points of exper-
imental data seem to be separated into two parts due to an
insufficient amount of data. The KDE-ebd method smooths
the uneven shape of the PDFs caused by the lack of experi-
mental data; KDE does not smooth the shape, as shown in
Fig. 4. In the case of the 2nd mode frequency, the estimated
PDFs derived from both KDE and KDE-ebd are similar be-
cause experimental data for the 2nd-mode frequency are well-
distributed and follow a regular-shaped PDF.

4.1.2 The second step: uncertainty propagation with variable
screening and surrogate modeling

For variable screening of the input variables, the area differ-
ences from Eq. (3) are used to evaluate the effect of each input
variable on the 1st, 2nd, and 4th mode of the natural frequen-
cies. To normalize the area metric values with respect to three
modes of natural frequencies, each area metric is divided by
the sum of the area metrics of all input variables as:

Nek ¼
ek

∑n
i¼1ei

ð7Þ

where Nek denotes a normalized area metric and n is the num-
ber of all input variables in the steering column model. Four
input variables with the largest normalized area metric values
are summarized in Table 2 which shows that the thickness of
the ECU bracket and the elastic modulus of the column frame

Table 2 Normalized area metric of each mode frequency

1st mode 2nd mode 4th mode

Thickness of the ECU bracket 0.4058 0.0247 0.4388

Elastic modulus of column frame 0.3944 0.6831 0.3136

Elastic modulus of the wheel frame 0.0059 0.0198 0.0551

Density of the heatsink 0.0598 0.0029 0.0044

(a) (b) (c)

Fig. 4 Uncertainty characterization of experimental data: (a) 1st-mode natural frequency, (b) 2nd-mode natural frequency, (c) 4th-mode natural frequency
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have dominant effects on the natural frequencies. Therefore,
the thickness of the ECU bracket and the elastic modulus of
the column frame are considered as unknown input variables.

A surrogate model is constructed to substitute for the
automobile steering column model. The important thing is
that the selected unknown input variables should be con-
sidered in constructing the surrogate model to find opti-
mal parameters of the unknown input variables using this
surrogate model in the model calibration process.
Therefore, surrogate models are generated with four input
variables: the thickness of the ECU bracket, the elastic
modulus of the column frame, thickness, and the density
of wheel covers. When generating a Kriging model, this
study adopted a Gauss function as a correlation function
and the first-order polynomial function. A pattern search
algorithm optimized the hyper parameters of the Kriging.
Table 3 is the result of a root-mean-square error (RMS) of
the Kriging model with 50 test sample points. In this
paper, the Kriging modeled the computational responses
in a global domain because the DOE points for the
Kriging model covered the entire domain of the model
calibration. The model calibration domain is defined by
the bounds of the input variables. Therefore, once the
kriging model is constructed, it can be used in the model
calibration.

4.1.3 The third and fourth step: Calculation of the calibration
metric and model calibration

Given the uncertainties of the experimental data and compu-
tational responses, this section quantifies the discrepancy be-

tween the two responses using a calibration metric. In this
paper, model calibration algorithm adopted probability resid-
ual as a calibration metric (Lee et al. 2018) (Oh et al. 2019)
which is given as:

PR yexpjθ
� �

¼ ∫∞−∞Pyexp yð Þ−Pypre yjθð Þ dy ð8Þ

where yexp denotes the PDF of experimental data and Pypre

yjθð Þ denotes the PDF of computational responses. θ repre-
sents the statistical parameters of unknown input variables.
The probability residual quantifies the difference between ex-
perimental and computational PDFs. The advantage of prob-
ability residual in the optimization of model calibration is that
minimal and maximum values are zero and two, whatever
responses we consider. The optimal value of the calibration
metric can give intuition about the success or failure of model
calibration before the validity check step. To consider the 1st
and 4th mode of natural frequencies simultaneously in statis-
tical model calibration, a multi-objective optimization is per-
formed. To formulate a multi-objective optimization, the over-
all calibration metric for an objective function of optimization
is shown as:

min
θ

PR yexp1 jθ
� �

þ PR yexp4 jθ
� �h i

ð9Þ

where yexp1 and yexp4 denote experimental data of the 1st and

4th-mode natural frequencies, respectively.
For nonlinear optimization of natural frequency prob-

lems, this paper applies a sequential quadratic program-
ming algorithm (SQP). To implement the SQP algorithm,
“fmincon” in-build code in MATLAB software is adopted.
Table 4 describes the distribution type, bounds of the sta-
tistical parameters (e.g., mean and standard deviation),
initial values, and optimized values for each input variable
Hess’s paper and the ‘Total Materia’ database provide
guidance on the distribution types (Hess et al. 2002)
(Total Materia 2019). The decision of the bound of statis-
tical parameters requires physical and empirical sense. In-
depth physical knowledge and experiences on the compu-

Table 4 Calibrated statistical parameters of unknown input variables of the 1st trial of statistical model calibration

Unit Distribution
type

Bound Initial Calibrated

Mean Standard deviation Mean Standard
deviation

Mean Standard
deviation

Density of the wheel cover MPa Uniform [0.50, 1.50] [0.08, 0.24] 1.00 0.16 0.60 0.09
Elastic modulus of column frame MPa Normal [102,500.00, 307,500.00] [7790.00, 23,370.00] 205,000.00 15,580.00 137,747.40 8887.96
Thickness of the wheel cover mm Lognormal [2.75, 8.25] [0.09, 0.26] 5.50 0.18 8.18 0.26
Thickness of the ECU bracket mm Lognormal [1.60, 4.80] [0.07, 0.20] 3.20 0.14 4.07 0.08

Table 3 RMS of the Kriging—1st trial

1st mode 2nd mode 4th mode

RMS 0.1174 0.1109 0.2982
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tational models and related mechanics help determining
the bound.

4.1.4 The fifth step: validity check

For a quantitative check of the validity of the calibrated result,
an area metric with a u-pooling method is employed. The area
metric with a u-poolingmethod is known as an efficient metric
for use when there is an insufficient amount of experimental
data (Liu et al. 2011) (Oh et al. 2016). The equation is as
follows:

d Pexp;Ppre

� � ¼ ∫∞−∞ Pexp yð Þ−Ppre yð Þ�� ��dy ð10Þ

where Pexp and Ppre represent the PDF of experimental data
and computational responses, respectively. y denotes perfor-
mances of interest. In this paper, the 2nd mode of the natural
frequency is applicable. The u-pooling method deals with the
cumulative density function (CDF) of the u-value defined by
the probability density of the experimental data and computa-
tional responses, as shown in

ui ¼ Ppre yið Þ ð11Þ

where P denotes the CDF of the computational responses and
yi presents i-th data. yi can be either experimental or compu-
tational data. Using the u-value, the area metric with the u-
pooling method is formulated as:

U ¼ ∫10 G uexp
� �

−G upre
� ��� ��du ð12Þ

where G(uexp) is an empirical CDF of u-values by experimen-
tal data and G(upre) presents the CDF of the u-value by the
computational responses.

Figures 5 and 6 show the PDF of the calibrated computa-
tional responses and the validity of each mode. In Figs. 5b and
6b), the graph of the black line illustrates the PDF of the area
metric values for the 9 data. This graph is obtained from the
areametric calculation by 100,000 sets of randomly sampled 9
numbers of data. The u-values of the 9 data are sampled within
[0, 1] because the u-value is a cumulative probability density.

The value of the area metric for the 1st natural frequency is
calculated as 0.0890, as shown in Fig. 5b with the star mark
(*).The threshold of the area metric at 95% confidence level is
0.1818, which is denoted by the red line. Overall, the calibrat-
ed result can guarantee the validity at a 95% confidence level,

(a) (b)

Fig. 5 Validity of 1st mode
frequency: (a) PDF, (b) Validity
check with area metric

(a) (b)

Fig. 6 Validity of 4th mode
frequency: (a) PDF, (b) Validity
check with area metric
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because the calculated area metric (e.g., 0.0890) is lower than
the area metric determined as the criteria (e.g., 0.1818). The
value of the areametric for the 4th natural frequency, however,
is calculated as 0.4995 as shown in Fig. 6b with the star mark
(*). This response is invalid because the value is larger than
the threshold (e.g., 0.1818). Therefore, the computational
model requires a model refinement.

4.1.5 The sixth step: Model refinement

Model refinement reveals the invalid modeling sources that
cause severe errors of the 4th mode of the natural frequen-
cy. The overall step of model refinement came from the
following paper (Oh et al. 2016). First, model invalidity
analysis gathers candidates of invalid modeling with an
affinity diagram, as presented in Table 5. Second, an inval-
idity reasoning tree, as shown in Fig. 7, reveals the theo-

retical reasons from the perspective of conceptual, mathe-
matical, and computational modeling. It was determined to
ignore the candidate-related geometry of the airbag and
steering wheel cover, because the natural frequency is
mainly related to mass and stiffness. Therefore, three can-
didates of invalid modeling sources are considered: (1)
simplified material properties in each part in the column
assembly, (2) location of the airbag in the steering wheel,
and (3) the modeling type of the airbag. The final step is an
invalidity sensitivity analysis to evaluate the effects of in-
valid modeling candidates. To evaluate the effects, the re-
searchers used a weighted decision matrix, shown in
Table 6. Table 6 consists of criteria, magnitude (e.g., Mi

j

), standardized magnitude (e.g., Sij ), and rating.

The criteria include correctness, robustness, computa-
tional cost, and implementation cost with weights allo-

Table 5 Affinity diagram of an
automobile steering column
model

Modeling type Candidates for invalid modeling

Material
behavior

- Material properties for different sorts of steel used in the column assembly are simplified as
representative properties of steel in a computational model

Constraint - Constraint location of the airbag is different from the real specimen

- Rigid constraint of an airbag does not reflect reality

Geometry - Modeling simplification of an airbag as a lumped mass

- Shell (Plate) assumption of the steering wheel cover is not proper

Possible sources of an invalid model

Conceptual modeling Mathematical modeling Computational modeling

Constraint
Constraint: 

Change the tied location of an 

airbag

Boundary condition 

discretization:

Change the location of RBE2 

element

Constraint: 

Revise the rigid body model of 

the airbag with a spring

Boundary condition 

discretization:

Release the D.O.F of the 

RBE2 element

Material 

behavior

Governing equation:

Modify material properties of 

different steels for each 

component

Initial condition discretization:

Add material properties card 

of different steels and match to 

each component

Fig. 7 Invalidity reasoning tree of
an automobile steering column
model
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cated according to importance. The weights follow Oh’s
paper (Oh et al. 2016). To quantify the magnitude of
“correctness” criteria, the authors adopted the following
equation:

Mi
1 ¼

E yexp
h i

−E ypre xð Þ
h i��� ���

E yexp
h i ð13Þ

where E[·] is an expected value, yexp presents the ex-
perimental data, ypre denotes a computational response
after revising the invalid modeling source, and x denotes
a mean vector of initial unknown input variables.
Robustness considers the number of newly added input
variables by the refinement of each invalid source. To
revise the invalid modeling source of candidate 1, we
can specify the material properties of five parts in the
column assembly. Therefore, the magnitude of robust-
ness for candidate 1 is five. For candidate 2, there is
no need to adopt another input variable. For candidate
3, we can change the modeling type of the airbag from
a rigid-body model to a spring-element model.
Therefore, the stiffness of the airbag is adopted. The
cost of computation and implementation measures the
time for computation of the revised model and imple-
mentation of modeling revision in minutes. The smaller
values of all magnitudes give better impacts on model
refinement. This study only quantified the magnitude of
four criteria in a deterministic sense, considering the
calculation cost in engineering fields. The quantification
can be robust and accurate in a statistical manner.
Research on fast and accurate approaches in a statistical
manner is required in the future.

Standardized magnitude adjusts the magnitude values
of all criteria from zero to one. It follows the equation:

Sij ¼ 1−
Mi

j

max Mi
1;M

i
2;M

i
3

� � ð14Þ

where max Mi
1;M

i
2;M

i
3

� �
denotes the maximum value of

magnitude among the magnitudes of three candidates.
max Mi

1;M
i
2;M

i
3

� �
divides Mi

j for s tandardizat ion.

Furthermore, the standardized term is subtracted from
one for the smaller magnitude to give better impacts
on model refinement. Rating is a multiplication of
weight and Sij. The summation of all ratings gives the

overall sensitivity of each candidate. Based on the sum-
marized results, shown in Table 6, the authors deter-
mined to revise candidate 3. The rigid body model of
an airbag is modeled as a spring element.

4.2 Second trial of statistical model improvement

Using the revised computational model, this section re-
peats the statistical model improvement process.
Section 4.2.1 describes statistical model calibration.
Using the calibrated result, Section 4.2.2 explains the
validity check process. Overall, the second trial of the
statistical model improvement process succeeded in

Table 6 Weighted decision matrix for an automobile steering column model

Criteria Weight Candidate 1 Candidate 2 Candidate 3

M1
j S1j Rating M2

j S2j Rating M3
j S3j Rating

Correctness (j = 1) 0.56 0.33 0.13 0.07 0.38 0.00 0.00 0.07 0.82 0.46

Robustness (j = 2) 0.14 5.00 0.00 0.00 0.00 1.00 0.14 1.00 0.80 0.11

Computation

(j = 3) 0.21 7.33 0.00 0.00 5.00 0.32 0.07 3.00 0.59 0.12

Implementation

(j = 4) 0.09 10.00 0.00 0.00 5.00 0.50 0.05 5.00 0.50 0.05

Sensitivity 0.07 0.25 0.74

Table 7 RMS of the Kriging—2nd trial

1st mode 2nd mode 4th mode

RMS 0.2363 0.0898 0.3376
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finding optimal parameters for the unknown input
variables.

4.2.1 The second and fourth step: surrogate modeling
and statistical model calibration

The second trial model calibration uses the same exper-
imental data, as explained in Section 4.1.1. The charac-
terized uncertainties of the experimental data are the
same as those in Fig. 4. In case of uncertainty propa-
gation, however, we should consider another unknown
input variable. This is because stiffness of the airbag is
newly modeled after the model refinement process, and
the parameter information about the stiffness of the
airbag was inaccurate. Therefore, the second trial of
statistical model calibration estimates statistical parame-
ters of five unknown input variables. Furthermore, the
surrogate model is remodeled to consider the newly
added unknown input variable in the statistical model
calibration. The Kriging model is newly generated with
the Gauss correlation function and zeroth order of a
polynomial function. The RMS with 50 test sample
points are listed in Table 7.

Using the same SQP algori thm described in
Section 4.1.4, statistical model calibration estimates the
statistical parameters of unknown input variables.
Table 8 provides calibrated statistical parameters of the
unknown input variables.

4.2.2 The fifth step: Validity check

Figures 8 and 9 provides the results of the validity
check for the 1st and 4th mode of the natural frequency.
The values of the area metrics for the 1st and 4th nat-
ural frequencies are calculated as 0.0726 and 0.0824, as
shown by star marks in Figs. 8b and 9b. The result
shows the validity because area metric values are lower
than the threshold (0.1818).

To show the validity in other modes, 2nd-mode fre-
quency is adopted. The result of the validity check is
shown in Fig. 10. Overall, the calibrated result of
Table 8 can guarantee the validity at a 95% confidence
level, because the calculated area metric (e.g., 0.1557) is
lower than the area metric determined as the criteria
(e.g., 0.1818).

Table 8 Calibrated statistical parameters of unknown input variables of the 2nd trial of statistical model calibration

Unit Distribution
type

Bound Initial Calibrated

Mean Standard deviation Mean Standard
deviation

Mean Standard
deviation

Density of the wheel cover MPa Uniform [0.50, 1.50] [0.08, 0.24] 1.00 0.16 1.45 0.11
Elastic Modulus of the column frame MPa Normal [102,500.00, 307,500.00] [7790.00, 23,370.00] 205,000.00 15,580.00 295,000.02 15,579.97
Thickness of the wheel cover mm Lognormal [2.75, 8.25] [0.09, 0.26] 5.50 0.18 3.79 0.09
Thickness of the ECU bracket mm Lognormal [1.60, 4.80] [0.07, 0.20] 3.20 0.14 4.27 0.07
Stiffness of the airbag N/mm Normal [500.00, 1500.00] [15.50, 46.50] – – 986.54 15.50

(a) (b)

Fig. 8 Validity check of the 1st-
mode natural frequency: (a) PDF
of the calibrated computational
responses, (b) Validity check with
the area metric
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5 Conclusion

This paper discussed three issues that hinder the wide-
spread use of statistical model improvement in industry
and offers solutions to these issues. First, in industrial
settings, the number of experimental data may be insuf-
ficient for statistical modeling. Lack of experimental da-
ta results in erroneous uncertainty characterization. To
solve this issue, KDE-ebd was adopted to mitigate an
over-fitted PDF for scarcely distributed data, in a man-
ner similar to a regular-shaped PDF. Second, the numer-
ous input variables increase the number of computation-
al analyses required for uncertainty propagation.
Therefore, variable screening was used to select effec-
tive numbers of input variables for uncertainty propaga-
tion. And, the Kriging method was adopted to substitute
a sophisticated computational model for reducing the
calculation time required for the computational re-
sponses. Finally, the model form uncertainties in the
computational model seriously reduced the accuracy of
the computational responses. To address this issue, mod-
el refinement was used to systemically search for the

invalid sources of modeling and selectively revise them
to improve model prediction.

The statistical model improvement process has a lim-
itation in that a systematic approach for determining the
bound of statistical parameters of unknown parameters
in model calibration is not provided. This job requires
the knowledge and experience of related mechanics.
This issue remains a valuable study in the future.
Furthermore, the improved computational model enabled
by statistical model improvement does not guarantee
validity of the global design space. For the use in de-
sign activities, additional statistical validation at the new
design point is required (Jung et al. 2016) (Jung et al.
2016). To further develop the statistical model improve-
ment process, a validity check in the global design
space will be included in the future work.

Statistical model improvement techniques are efficient
tools to ensure high fidelity of computational predic-
tions in industrial fields. Therefore, the paper focused
on issues related to the significant amount of time need-
ed for statistical model improvement for industrial engi-
neers. By examining the statistical model improvement

(a) (b)

Fig. 9 Validity check of the 4th-
mode natural frequency: (a) PDF
of the calibrated computational
responses, (b) Validity check with
the area metric

(a) (b)

Fig. 10 Validity check of the 2nd-
mode natural frequency: (a) PDF
of the calibrated computational
responses, (b) Validity check with
the area metric
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process of an automobile steering column model case
study, this paper demonstrated the effectiveness of the
proposed techniques. Once a computational model is
evaluated as a valid model, field engineers can expand
the use of computational models in other designs to
predict performances of interest for various engineered
products with high confidence. Eventually, the statistical
model improvement process can lead to reliable designs
in industrial fields, while offering reduced cost and
shortening product development times.
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Replication of results For readers interested in the specific process of
statistical model improvement, Section 4 explains the basic principle of
overall techniques. Kang’s paper can give comprehensive information
about KDE-ebd (Kang et al. 2018). Equation (3) shows the main idea
of code implementation for variable screening. The authors used the
DACE MATLAB toolbox for universal Kriging (Lophaven et al. 2002).
Section 4.1.3 includes the specific code implementation of the SQP opti-
mization for statistical model calibration. Equations (12), (13), and (14)
give the area metric with u-pooling for statistical model validation. The
experimental data of natural frequency and the finite element model of the
automobile steering column geometry is proprietary and protected.
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