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Abstract
This study systematically investigates stiffness and buckling response of finite structures consisting of repeated unit cells of
a reference truss lattice microstructure and a topology optimized microstructure with enhanced buckling strength. Structural
stability is evaluated using linear buckling, nonlinear pre-buckling, and post-buckling analyses, subjected to two benchmark
loading cases representing uniaxial compression and shear loading. Numerical results indicate that geometric and material
nonlinearities play a surprisingly small role in uniaxial loading, whereas strong effects are seen for the shear loading case
for which the microstructure was not optimized.

Keywords Structural stability · Finite periodic structures · Linear buckling analysis · Nonlinear pre-buckling analysis ·
Post-buckling analysis

1 Introduction

Advances in additive manufacturing facilitate the fabrica-
tion of functional materials with unprecedented complex-
ity (Meza et al. 2015; Zheng et al. 2016). This leads
to increasing attention on architected materials exhibit-
ing enhanced properties and multi-functionalities and in
designing multi-level hierarchical lattice structures. Mate-
rials with exotic properties have for decades been sys-
tematically designed using topology optimization meth-
ods (Bendsøe and Sigmund 2003), covering extreme stiff-
ness (Sigmund 1994, 1995; Guest and Prévost 2006; Huang
et al. 2011), prescribed negative Poisson’s ratio (Sigmund
1995; Larsen et al. 1997; Andreassen et al. 2014; Vogiatzis
et al. 2017), programmable auxetic behaviors (Clausen et al.
2015; Wang 2018), zero and negative thermal expansion
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coefficients (Sigmund and Torquato 1997; Takezawa and
Kobashi 2017), extreme buckling strength (Neves et al.
2002; Thomsen et al. 2018), and acoustic topological insula-
tors (Christiansen et al. 2019). Recently, topology optimiza-
tion methods have been employed to design structures with
enhanced stiffness considering 3D printing infill (Wang
et al. 2016; Wu et al. 2017) ormapped first-level hierarchical
materials (Groen and Sigmund 2018; Allaire et al. 2019).

In addition to stiffness, buckling failure strength in mate-
rials or structures is also a fundamental and challenging
issue. Even though structures with 3D printing infills in Wu
et al. (2017) or mapped first-level hierarchical materials in
Groen and Sigmund (2018) and Allaire et al. (2019) do not
outperform their solid counterparts regarding stiffness, they
may possess an advantage from the buckling strength per-
spective (Clausen et al. 2016). Material instabilities may
develop with different wavelengths spanning from highly
localized modes on the microscale to long-wavelength
modes on the macro-scale, and material and geometric non-
linearities further complicate the material instability stud-
ies. Previous numerical studies have resorted to simplified
models which employ homogenization methods for separat-
ing scales (Guedes and Kikuchi 1990) and Bloch–Floquet
theory for detecting microscopic and macroscopic insta-
bilities (Geymonat et al. 1993). A general methodology
for characterizing material strength due to bifurcation fail-
ure was proposed in Triantafyllidis and Schnaidt (1993).
Later, this method was used to form analytic expressions for
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the failure surfaces of simple honeycomb microstructures
(Haghpanah et al. 2014). A wide range of material config-
urations has been investigated in search for improved buck-
ling strength, including 2D honeycombs (Triantafyllidis and
Schraad 1998), lattice structures (Meza et al. 2017), and
thin-walled structures (Rammerstorfer et al. 2006). It has
been discovered that geometric attributes play an essential
role in the material buckling strength. Topology optimiza-
tion of material strength was first studied in Neves et al.
(2002), where only cell-periodic buckling modes were taken
into account. Later, this work was extended to cover both
local and global modes via the Bloch–Floquet theory (Neves
et al. 2002). More recently, materials with enhanced buck-
ling strength (Thomsen et al. 2018) have been systemat-
ically designed using topology optimization methods for
different macro-level stress situations based on the homog-
enization theory, linear buckling (LB) analysis, and Bloch–
Floquet theory. It was shown that the optimized first-order
hierarchical materials outperform their non-hierarchical
counterparts at the cost of decreased stiffness.

It is an on-going discussion whether structures optimized
under LB analysis will perform well in reality or under
more realistic nonlinear modeling assumptions. Also, it is
not clear how a microstructure optimized under assumption
of infinite periodicity will perform in a finite strain modeled,
finite structure. Geometric and material nonlinearities
as well as boundary effects may cause stiffening or
softening effects depending on loading cases and microscale
topologies. These open ends deserve further and more
systematic investigations.

In this study, we aim at systematically investigating the
performance of finite size structures formed from different
periodic microstructures regarding stiffness and stability,
based on different buckling strength evaluation criteria.
The considered microstructures comprise a simple reference
microstructure (RMS) and a topology optimized microstruc-
ture (OMS) with enhanced buckling strength from Thomsen
et al. (2018). Two benchmark problems are formulated, i.e.,
uniaxial compression loading and shear loading. Although
the OMS was optimized for hydrostatic loading, we con-
sider the uniaxial loading case here in order to comply
with on-going experimental verification studies. The buck-
ling strength is evaluated using LB, nonlinear pre-buckling
(NPB), and post-buckling (PB) analysis. The performance
of structures with different infill periods is systematically
investigated and compared. Numerical studies confirm the
stability enhancement of the OMS in compression dom-
inated finite structures. However, the linearly predicted
indirect buckling enhancement in shear loading (not opti-
mized for) degrades or even vanishes, due to nonlinear
effects.

The remainder of the paper is organized as follows:
Section 2 presents the benchmark problems, different

approaches employed to evaluate structural buckling
strength, and the hyperelastic material law describing the
base material behavior under finite deformations. Section 3
presents the numerical results for the two benchmark prob-
lems. An extended discussion is provided in Section 4 and
conclusions are drawn in Section 5.

2 Benchmark problems and computational
methodologies for buckling evaluations

In this section, we focus on presenting the benchmark
problems considered in this study. Based on this, we present
the computational approaches used to evaluate the structural
buckling strength.

2.1 Benchmark problems and considered infills

In order to evaluate the performance of the considered
material configurations, we consider a square structure
infilled by N-by-N unit cells with a constant size of l =
10 cm and thickness of t = 1 cm. As illustrated in
Fig. 1a, the left boundary of the structure is clamped, and
the right is subjected to uniform displacements denoted
by [u0, v0]. Under above boundary conditions, a uniaxial
compression test can be mimicked by constantly reducing
u0 while keeping v0 = 0. The zero vertical deflections at
both ends are used to comply with physical compression
tests where friction between loading surfaces and samples
or an attached solid loading domain efficiently will work
as fixed vertical boundary conditions. A shear loading
test can similarly be mimicked by prescribing v0 with
free u0.

Fig. 1 a Schematic illustration of the benchmark problems for the
considered structure consisting of N-by-N unit cells with l = 10 cm
and thickness of t = 1 cm. The dark region represents one unit cell. �L

and �R represent the left and right boundaries, respectively. b RMS.
c First-order hierarchical OMS that optimizes buckling strength for
hydrostatic compression (from Thomsen et al. (2018))
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Under above defined boundary conditions, the corre-
sponding effective strain is as follows:

εxx = u0

l
, for uniaxial compression

εxy = v0

2l
, for shear loading (1)

The considered infill microstructures are the RMS in
Fig. 1b and the topology OMS with enhanced buckling
strength for hydrostatic compression from Thomsen et al.
(2018) in Fig. 1c. Hereafter, we refer to them as the
RMS and the OMS, unless otherwise stated. The first-
order hierarchical configuration OMS is represented by the
exact solution and discretization obtained in Thomsen et al.
(2018) but thresholded to a pure zero-one design where void
elements are removed for simplification of analyses.

2.2 Computational methodologies for buckling
strength evaluations

The finite element method is used to determine the critical
buckling stress for the proposed benchmark structures.
Three approaches are employed and investigated, i.e., LB,
NPB, and PB analyses.

The LB analysis here assumes perfect structures, and
hence geometric imperfections stemming from the manu-
facturing process are ignored. Under a small deformation
assumption, the static equilibrium of the benchmark prob-
lem is governed by the following:

K0u0 = 0,

u = 0, on �L,

u = [u0, v0]
T , on �R . (2)

Here, K0 is the linear stiffness matrix and u0 is the
equilibrium displacement vector. �L and �R denote the left
and right boundaries, respectively. The total reaction forces
on the right boundary are calculated using the following:

f rect =
[
f rect

x , f rect
y

]T =
⎡
⎣∑

i∈�R

f int
x,i ,

∑
i∈�R

f int
y,i

⎤
⎦

T

. (3)

Here, i refers to the nodal number and f int
x,i , f int

y,i are the
corresponding internal loads in the x- and y-direction,
respectively,

Assuming that displacements at the buckling point are
small and that stresses are proportional to the prescribed
displacements on the boundaries, the stress stiffening effects
due to mechanical loading can be evaluated in terms of
the displacements determined by linear static analysis. The
critical buckling stress is estimated by LB analysis via the
following eigenvalue problem,

[K0 + τKσ (u0)]φ = 0 (4)

where Kσ (u0) is the stress stiffness matrix obtained based
on linear elasticity (Wriggers 2008), and φ is the buckling
mode for the eigenvalue τ . The critical buckling stress factor
is estimated by the smallest eigenvalue τ1,

σ cri
xx = τ1σ̄xx = τ1

f rect
x

lt
, for uniaxial compression

σ cri
xy = τ1σ̄xy = τ1

f rect
y

lt
, for shear loading (5)

where σ̄xx and σ̄xy are the averaged stress in the x-direction
and the averaged shear stress, respectively.

Alternatively, one can perform geometric nonlinear
analysis on a perfect structure with repeated buckling
analysis, to more accurately predict the buckling strength
in the deformed state. Here, we use the total Lagrangian
approach for the description of geometric nonlinearity. The
structural equilibrium is controlled by the following:

r (u) = f int (u) = 0. (6)

Here, u is the nodal displacement vector and r (u) and
f int (u) are the corresponding residual and internal load
vectors, respectively. The internal nodal force vector is
defined by the following:

f int (u) =
∑

e

f int
e (ue) =

∑
e

∂
(∫

ve
W (ue) dv

)

∂ue

. (7)

Here, e represents the element number and W (ue) is the
stored elastic energy density defined by a hyperelastic
material law. The corresponding tangent stiffness matrix is
written as follows:

K t (u) =
∑

e

K te =
∑

e

∂f int
e

∂ue

= K (u) + Kσ (u) , (8)

where K te is the elemental tangent stiffness of element, e,
K (u) is the displacement dependent elastic stiffness matrix,
and Kσ (u) is the stress stiffness matrix stemming from the
second Piola–Kirchhoff stress.

The static equilibrium, (6), is solved iteratively using
the arc-length method in Krenk (2009) via the incremental
equation at the nth step stated as follows:

K t

(
un, αn

)
Δun = rn,

un
i = 0, i ∈ �L,

uniaxial compression:

un
x,i = αnΔu0, un

y,i = 0, i ∈ �R,

shear loading:

un
y,i = αnΔv0, i ∈ �R, (9)

Here, Δun is the incremental displacement vector and α

is the control parameter according to the applied boundary
displacements. un

x,i and un
y,i are displacements of the node

i along the x- and y-direction, respectively, Δu0 and
Δv0 are the prescribed displacement increments. Detailed
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description of the arc-length algorithm can be found
in Krenk (2009).

At each equilibrium state, an upcoming buckling point
may be predicted based on the current tangent stiffness.
Assuming the current configuration is close to the critical
point, the stress stiffness part of the tangent stiffness at the
critical point is approximated by extrapolating the nonlinear
stress stiffness from the current configuration using a factor
γ , while the elastic stiffness is assumed to not change
with additional loading (Wriggers 2008). Hence, the critical
factor can be approximated by an eigenvalue problem as
follows:

[K (u) + γKσ (u)]φ = 0. (10)

The critical buckling stress is determined by the smallest
eigenvalue of (10) and is written as follows:

σ cri
xj = γ1σ̄xj = γ1

f rect
j

lt
, j ∈ {x, y} (11)

where the definition of f rect
j is the same as in (3) for

different loading cases. Different from the linear case, the
internal force is here calculated based on finite deformations
using (7). It is remarked that γ1 > 1 indicates that the
current deformation is below the buckling point and is
stable, and γ1 < 1 indicates that the structure is beyond the
buckling point. γ1 = 1 signifies the stability limit. Hence,
the intersection between the critical buckling prediction and
the stress–strain curve is the critical buckling stress. This
procedure is called NPB analysis in this study.

In PB analysis, the same nonlinear analysis is performed
using the arc-length method, however, with the presence
of geometric imperfections. Geometric imperfections stem-
ming from the manufacturing procedure stimulate buckling
in the nonlinear analysis. The critical buckling stress can be
detected by monitoring the tangent stiffness defined by the
following:

Ēxj = Δσxj

Δεxj
, j ∈ {x, y} (12)

The buckling point in the PB analysis is defined by the
state where the structure looses considerable stiffness for
the first time. Here, we define this state as the load where
the stiffness has decreased to 20% of the initial one.

The geometric imperfections here are represented by a
set of linear buckling modes with maximum perturbation
amplitude, ϕ. The geometric imperfections are taken into
account by modifying each nodal location according to the
considered buckling modes scaled by ϕ/ |max (φ)|. Nodal
positions are equal to the sum of the original positions and
perturbations from the buckling modes.

2.3 Hyperelastic material law

We utilize a modified compressible Neo–Hookean material
law (Zienkiewicz and Taylor 2005) to describe the material
behavior under finite deformations. The corresponding
material stored energy density is written as follows:

W = 1

2
λ0 (J − 1)2 + μ0

2
(I − 3) − μ0 ln (J ) , (13)

where F is the deformation gradient and J = det (F ); I =
trace (C) with C = F T F being the right Cauchy–Green
deformation tensor; λ0 and μ0 are the Lamé parameters of
the base material.

The benchmark problems are assumed to be under
the plane stress assumption, and Young’s modulus and
Poisson’s ratio of the base material are E0 = 1 and
ν = 0.3. This corresponds to the values used in Thomsen
et al. (2018). When considering finite deformations,
it is necessary to modify the constitutive terms to
enforce zero stress in the out-of-plane direction, and thus
account for the deformation gradient in the out-of-plane
direction. The detailed implementation follows Chapter
6.2.4 in Zienkiewicz and Taylor (2005) and is not stated
here.

In the PB analysis, the convergence criterion is set to
be ‖r‖ < 10−4‖r0‖ with a maximum of 30 iterations
for each displacement increment. Here, r0 is the linear
reaction force vector resulting only from the prescribed
displacement increment. In the uniaxial compression case,
the displacement increment for the OMS is Δu0 =
0.0280 cm, and a smaller displacement increment of Δu0 =
0.0040 cm is used for the RMS since its buckling strain is
much smaller compared to the OMS. In the shear loading
case, the displacement increment of Δv0 = 0.200 cm
is employed. The increment steps are set to be 50 for
all the cases. If the arc-length method does not converge
within 30 iterations in one displacement increment step,
the displacement increment is halved, and the displacement
increment step restarts. If the arc-length method converges
and displacement increment is smaller than the initial
one, the displacement increment is doubled for the next
displacement increment.

3 Numerical results

Structures consisting of 2-by-2, 4-by-4, 6-by-6, and 8-
by-8 unit cells are considered to account for size effects
while keeping the structural size fixed. Each unit cell
is discretized by 200 × 200 4-node quadrilateral finite
elements as in Thomsen et al. (2018). The volume fraction
of the unit cells presented in Fig. 1b, c is 30%, and void
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regions are eliminated in the numerical simulations. Both
the microstructures are orthotropic and possess the same
properties along the two axial directions due to square
symmetry. First, we consider the infinitely periodic case.
Table 1 presents the effective material properties of the two
infinitely periodic materials and the corresponding material
buckling strength under uniaxial compression

(
σ cri
xx

)
and

under pure shear loading
(
σ cri
xy

)
. They are estimated by

employing the homogenization method and Bloch–Floquet
theory to capture both long- and short-wavelength buckling
modes as presented in Thomsen et al. (2018).

As seen in Table 1, the OMS exhibits smaller bulk and
Young’s moduli than the RMS, whereas it possesses much
higher shear modulus. The material buckling strength of
the OMS is 4.5 times the one of the RMS under uniaxial
compression. Figure 2 a and b display the critical material
buckling modes under uniaxial compression extrapolated
over 4-by-4 unit cells. The critical buckling mode of the
RMS is a global shear mode, whereas the one of the OMS is
an anti-periodic mode spanning two cells. It is worthwhile
mentioning that a cluster of material buckling modes in the
OMS display buckling stress very close to the critical one.

Figure 2 c and d present the critical material buckling
modes for pure shear loading. The buckling mode in the
RMS expands over two periods in the vertical direction,
while the one in the OMS is an anti-periodic mode in both
the x- and y-directions. The buckling strength enhancement
of the OMS degrades to be around 3.3 times that of the
RMS.

In the linear finite cell analysis, the effective Young’s
modulus is measured from the uniaxial compression as
EH = σxx/εxx, and the effective shear modulus is
measured from the shear loading as GH = σxy/

(
2εxy

)
.

Table 2 summarizes the effective Young’s and shear moduli
measured for the structures with different periods. For the
RMS, the measured properties converge to the effective
material properties predicted using the homogenization
method for infinite periodicity. This is not the case for the
OMS, where Young’s modulus deviates by 2% and shear
modulus by 22%. The main reason for this deviation is
the difference in effective Poisson’s ratio between the RMS
with a near-zero Poisson’s ratio and OMS with a finite
Poisson’s ratio. For zero Poisson’s ratio, the fixed vertical
displacement boundary conditions at left and right edges

Table 1 Effective material properties for the infinitely periodic
materials and material buckling stress for uniaxial compression and
pure shear stress

EH νH GH κH σ cri
xx

[
10−3

]
σ cri
xy

[
10−3

]

RMS 0.1638 0.0592 0.0024 0.0871 2.21 1.86

OMS 0.0952 0.3553 0.0162 0.0738 9.88 6.19

Fig. 2 Critical material buckling modes for infinitely periodic case,
for the unixial compression (Top: (a) and (b)) and pure shear loading
(bottom: (c) and (d))

have no effect on the macroscopic response, whereas the
opposite is the case when the Poisson’s ratio is non-zero as
in the OMS case.

3.1 Buckling evaluation for uniaxial compression

Under uniaxial compression, Fig. 3 shows the first six linear
buckling modes of the structure formed from 4-by-4 periods
of the RMS. It is seen that the critical buckling mode is the
global shear mode in accordance with the critical material
mode shown in Fig. 2. However, due to boundary stiffening
effects, the structural critical buckling strength is around
12% higher than that for the infinitely periodic case.

In the PB evaluation, we first consider the imperfection
stemming from the first buckling mode in Fig. 3 to inves-
tigate the influence of maximum perturbation amplitude on
the PB evaluation considering the maximum perturbation
amplitude of ϕ = 0.0001 denoted by the army-green line
and ϕ = 0.0005 denoted by the black line in Fig. 4. In
both cases, a small stiffening effect is observed, which leads

Table 2 Measured Young’s and shear moduli in finite structures

Infill N = 2 N = 4 N = 6 N = 8 N = ∞

EH RMS 0.1642 0.1640 0.1640 0.1639 0.1638

OMS 0.0950 0.0960 0.0963 0.0963 0.0952

GH RMS 0.0031 0.0025 0.0024 0.0024 0.0024

OMS 0.0127 0.0128 0.0128 0.0127 0.0162
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Fig. 3 First six buckling modes
obtained from the LB analysis
of the structure formed from the
RMS with corresponding
buckling stress [10−3]. Top row
from left to right: the first,
second, and third buckling
modes; bottom row from left to
right: the forth, fifth, and sixth
buckling modes

to higher buckling stress in the PB analysis than the LB
analysis represented by the blue line. The red circles in
the lines highlight the critical buckling stress. The intersec-
tion between the strain–stress curve for the perfect structure
denoted by the green dash-dot line and the corresponding
pre-buckling prediction denoted by the red dash-dot line
indicates the buckling stress from the NPB prediction. It is
seen that higher perturbation amplitude leads to a smaller
buckling stress in the PB evaluation, and that the buckling
stress is closer to the NPB prediction as the perturbation
amplitude reduces. The final deformation patterns in both
cases are same as the first buckling mode in Fig. 3. Con-
sidering that the perturbation of ϕ = 0.0001 is very small,
we fix the max perturbation amplitude to be ϕ = 0.0005,
hereafter, unless otherwise stated.

Fig. 4 Influence of imperfection amplitudes in the PB analysis. a
Evaluation results. Structural deformation pattern for b Φ = 0.0001
and c Φ = 0.0005

Figure 5 summarizes the PB evaluations for two different
geometric imperfections stemming from buckling modes in
Fig. 3, i.e., (1) the critical buckling mode; (2) an equal-
weighted superposition of the first six modes. The structure
with only the first imperfection performs slightly softer than
the one with multiple superimposed imperfections under
finite deformations. Hence, the first imperfection results
in lower critical buckling strength. The deviation of the
buckling strength in these two cases is small, however, and
final deformation patterns are equal, i.e., the global shear
mode (see Fig. 5b, c).

Next, we perform the same analysis for the optimized
infill structure to investigate the influence of imperfection

Fig. 5 a Stress–strain curves under uniaxial compression for the
benchmark problem considering different imperfections. The red
symbols indicate the critical buckling stress. b Deformation pattern
with imperfection stemming from the first buckling mode; c
deformation pattern with imperfection stemming from the equal-
weighted superposition of the first six buckling modes
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Fig. 6 First six buckling modes
from LB analysis of the
structure formed from the OMS
with corresponding buckling
stress [10−3]. Top row: from left
to right: the first, second and
third buckling mode; bottom
row from left to right: the forth,
fifth, and sixth buckling modes

patterns on the PB evaluations. In contrast to the RMS
structure, the first six buckling modes are all local modes
located at interfaces between unit cells with close valued
buckling stresses, as seen in Fig. 6. This observation
coincides with the material buckling analysis where a
cluster of buckling modes exhibits similar buckling stresses.
Moreover, the two different geometric imperfections result
in two different buckling modes in the PB evaluation, as
shown in Fig. 7b, c. Structural softening is observed for both
perturbed structures as illustrated by the reduced tangent
stiffness in the stress–strain curve. Same as for the previous
case, the second geometric imperfection leads to higher
buckling stress in the PB evaluations.

Fig. 7 a Stress–strain curves under the uniaxial compression of the
structure infilled with the OMS considering different imperfections.
The red symbols indicate the critical buckling stress; b deformation
pattern when imperfection stems from the first buckling mode; c
deformation pattern when imperfection stems from the equal-weighted
superposition of the first six buckling modes

Based on above observations, we focus on numerical
investigations considering the geometric imperfection from
the first buckling mode in the subsequent cases. Figure 8
summarizes the critical buckling stress for both structures,
obtained from the LB, PB, and NPB analyses. It is seen that
the OMS structure can undergo much larger deformations
than the RMS and that it behaves softer and buckles at
a higher stress level. For both structures, the buckling
stress predicted from the NPB analysis is higher than the
one from the LB analysis due to geometric and material
nonlinearities, and geometric imperfections result in lower
buckling stress compared to the one predicted from the
NPB analysis. However, the difference between these two
predictions is smaller for the RMS compared to the OMS.
This observation further demonstrates that the OMS is more
vulnerable to imperfections.

Fig. 8 Overall evaluations of the buckling stresses of structures formed
from the RMS and OMS using the LB, PB, and NPB analyses
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Fig. 9 First buckling modes of
the structures with different
periods with critical buckling
stress [10−3]. Top: RMS;
bottom: OMS

Figure 9 shows the critical LB modes for structures with
different numbers of infill periods and the corresponding
buckling stresses. The critical buckling mode of the RMS
structures is a global shear mode. The corresponding critical
buckling stress decreases as the unit cell number increases
and boundary stiffening effects diminish. However, for
the OMS, the critical buckling modes are local modes
dependent on the number of periods. The buckling modes
are located at the two center unit cells in the vertical
direction, but buckling modes span different unit cells in the
lateral directions. The critical buckling stress stays almost
constant as the unit cell period reaches 4, and much smaller
deviations are observed in the LB predicted buckling stress,
compared to the RMS.

Table 3 summarizes the results for the structures with
different periods of unit cells. It is seen that predicted
buckling stresses using LB, PB, and NPB analyses decrease
as the unit cell period increases for the RMS. A dramatic
decrease in the buckling stress is observed from 2-by-2 unit

Table 3 Buckling strength of the structures with different periods
of unit cells under the unixial compression evaluated using different
numerical approaches

[
10−3

]

Unit cells RMS OMS

LB PB NPB LB PB NPB

N = 2 6.34 6.86 7.10 9.56 9.48 9.56

N = 4 2.49 2.53 2.60 9.33 8.79 9.77

N = 6 2.22 2.24 2.31 9.32 9.21 9.76

N = 8 2.14 2.15 2.21 9.32 8.73 9.65

N = ∞ 2.21 − − 9.88 − −

cells to more periods because the boundary stiffening effects
are smaller as the periods increase. In general, slightly
higher buckling stress is obtained from the PB analysis than
the one from the LB analysis due to stress stiffening effects.
Moreover, the NPB analysis predicts the highest critical
buckling stress due to geometric and material nonlinearities
and lack of imperfections.

The overall assessment shows that the OMS structures
exhibit much larger buckling stress than the RMS structures,
which is in line with the linear material prediction. Hence,
it may be concluded that optimization based on linear buck-
ling analysis in this case has not overestimated the actual
nonlinear buckling response as otherwise often feared.

3.2 Buckling evaluation for shear loading

Next, we perform a similar analysis for shear loading
keeping in mind that the OMS structure was not specifically
optimized for shear loading.

Figure 10 shows the critical buckling modes for the struc-
tures formed from 4-by-4 RMSs and OMSs. The critical

Fig. 10 Critical buckling modes under shear loading from LB analysis
[10−3]. Left: RMS. Right: OMS
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buckling mode is a global shear deformation pattern for the
RMS structure. The corresponding structural buckling stress
is smaller than the material buckling stress listed in Table 1.
Only a local boundary deformation pattern is observed in
the OMS structure, where apparently, the critical buckling
mode is induced by boundary effects, which cause stress
concentrations at the lower left corner. Hence, the corre-
sponding structural buckling stress is much smaller than the
material buckling stress. The OMS structure exhibits 2.4
times the buckling strength of the RMS structure in LB
analysis. Compared to the material evaluation in Table 1,
the buckling strength enhancement in the OMS structure
degrades due to the boundary effects of the finite structures.

Figure 11a summarizes the overall evaluations from the
LB, NPB, and PB analyses. The geometric imperfections
used are the same as in the uniaxial compression case.
Hence, in the PB analysis, the considered imperfections are
fixed to be the first buckling modes shown in Fig. 10 with
the maximum perturbation amplitude ϕ = 0.0005.

Under shear loading, the OMS structure represented by
dashed lines is stiffer than the RMS structure represented by
solid lines. Deformation stiffening is observed in both struc-
tures due to the geometrically nonlinear stretching under
shear loading. For the structure with the OMS, the PB anal-
ysis stops just below the NPB predicted buckling stress. For
the structure with the RMS, no NPB prediction is available

Fig. 11 a Overall evaluations of the buckling stress for the structures
with the RMS and OMS using the LB, NPB and PB analyses under
shear loading. b Deformation pattern of the structure with the RMS. c
Deformation pattern of the structure with the OMS

because no intersection between the strain–stress curve and
pre-buckling prediction is observed. In the PB analysis, the
arc-length method is unable to find a converged solution
using the employed computational strategy mentioned at the
end of Section 2 after a certain number of increment steps.
Hence, the last converged result in the PB analysis is used
as the buckling prediction from the PB analysis. The corre-
sponding deformation patterns in Fig. 11b, c demonstrate
that both structures have buckled. Compared to the RMS
structure, the OMS structure buckles at a much smaller
shear strain. The corresponding buckling strength enhance-
ment of the OMS is much smaller, compared to the results
from the LB analysis and material prediction in Table 1.

Table 4 summarizes the critical buckling stresses based
on the LB and PB analyses. The LB predictions show that
the buckling enhancement of the OMS structure degrades
under shear loading. In the PB analysis, the last converged
stresses are used to represent the critical buckling stress. It
is seen that all the structures exhibit much higher buckling
stresses in the PB analysis than the ones from the LB
analysis, due to the geometrically nonlinear stretching
under shear loading. Moreover, the critical buckling stress
decreases as the period number increases. In contrast,
the RMS structures show much higher buckling stress in
the PB analysis than the material prediction. However,
the OMS structures exhibit much lower buckling stress
than the material prediction due to the boundary-induced
buckling modes in the finite structures. Clearly, the
predicted buckling strength from the material analysis has
diminished due to boundary effects, material nonlinearities,
and geometrical nonlinearities in particular.

4 Discussion

Our study confirms that finite structures infilled with
OMSs optimized for infinite periodicity, infinitesimal strain
assumption, and linear buckling analysis in Thomsen et al.
(2018) can effectively enhance infill buckling strength with

Table 4 Buckling strength of the structures under shear loading with
different periods of unit cells evaluated using different numerical
approaches

[
10−3

]

Unit cells RMS OMS

LB PB LB PB

N = 2 1.57 3.76 3.52 4.67

N = 4 1.47 3.88 3.58 4.46

N = 6 1.59 3.54 3.17 3.54

N = 8 1.63 2.95 2.86 3.19

N = ∞ 1.86 − 6.19 −
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small decrease in stiffness, as illustrated by the uniaxial
compression case. Hence, even if LB analysis does not take
geometric and material nonlinear effects into account, it can
effectively be used in a topology optimization process to
produce efficient infill structures. However, our study also
shows that LB predictions of shear buckling response, for
which the OMS was not optimized, is highly inaccurate
and cannot be trusted. This is not an unexpected conclusion
since a softer structure in shear yields higher deformations
that in turn cannot be predicted accurately by the linear
model. Despite this conclusion, we note that the finite
structures based on OMS still perform better in shear than
the corresponding RMS-based structures.

We remark that an isotropic buckling optimized hierar-
chical triangular microstructure was also designed in Thom-
sen et al. (2018). It may in future studies be interesting
to investigate if linear predictions of this microstructure
subjected to shear loads are more accurate than the pre-
dictions for the orthotopic structure considered here. When
only considering stiffness criteria, orthotropic infill is much
more efficient than isotropic counterparts (c.f. Groen et al.
(2019)); however, more work still needs to be done to
fully understand the connection between microscopic and
macroscopic buckling criteria.

Another direction for future research is the use of finite
deformations directly in the microstructure optimization
formulation, possibly according to theory presented in Gey-
monat et al. (1993) and Triantafyllidis and Schnaidt (1993).
Deeper investigations of geometrically nonlinear effects in
infinitely periodic structures are performed in our parallel
work (Bluhm et al. 2020).

5 Conclusion

This study has systematically investigated the performances
of simple and optimized periodic infill structures (OMS) in
terms of finite scale stiffness and buckling. The buckling
is evaluated by linear buckling, nonlinear pre-buckling,
and post-buckling analyses. Under uniaxial compression,
the simple infill structures perform relatively linearly and
buckle at small deformations. This means that all three
evaluation methods provide close predictions on the critical
buckling stress, and hence that linear buckling analysis was
sufficient as a base for the optimization in Thomsen et al.
(2018). In contrast, the buckling strength enhancement of
the OMS predicted using linear material buckling analysis
diminishes in the finite structure evaluation under shear
loading, due to boundary-induced buckling modes and
geometric and material nonlinearities. Nevertheless, the
overall evaluations indicate that buckling enhancement is
significant when aligning the OMS along the principle stress
direction compared to their simple RMS counterparts at

little decrease in stiffness, supporting the conclusions in
Thomsen et al. (2018).
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