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Abstract
The paper proposes an efficient methodology for concurrent reliability-based multi-scale design optimization (RBMDO) of
composite frames to minimize structural cost subjecting to compliance constraint. Two types of variables are systematically
considered in RBMDO, which are deterministic design variables of the frame components, the discrete fiber winding angles at
the two geometrical scales, and random parameters of material properties and loading conditions in bothmagnitude and direction.
To overcome the difficulty of highly nonlinear compliance constraint when using fiber winding angles as design variables and
improve efficiency and accuracy of RBMDO of composite frames, the improved single loop and single vector (SLSV) approach
based on modified chaos control (MCC) scheme, which is abbreviated hereafter as SLSV-MCC, is proposed, and sensitivities at
the current design point are utilized to further increase accuracy of the proposed SLSV-MCC. Six types of specific manufacturing
constraints are explicitly considered in the proposed RBMDO to reduce the risk of local failure in the laminated composite. The
deterministic multi-scale design optimization (DMDO) model is also presented and utilized for comparison to distinguish
differences between deterministic and reliability-based optimization results. Efficiency and accuracy of the proposed
SLSV-MCC are compared with the first-order reliability method (FORM) and conventional SLSV approach.
Meanwhile, the Monte Carlo simulation (MCS) method is further utilized to validate the accuracy of the proposed
RBMDO. The discrete material optimization (DMO) approach is utilized to couple two geometrical scales: macro-
scopic topology and microscopic material selection. Capabilities of the proposed RBMDO are demonstrated by
optimization of 2D and 3D composite frames. Numerical study reveals that the uncertainties in material properties
and loading conditions will lead to different macroscopic sizing and topology configurations for deterministic and
reliability-based solutions.

Keywords Reliability-based design optimization . Concurrent multi-scale design optimization . Discrete material optimization .

Single loop single vector .Modified chaos control

1 Introduction

Concurrent multi-scale design optimization provides a com-
petitive approach to realize innovative structure configuration
and lightweight design through macro-scale structural topol-
ogy and micro-scale material selection. Pioneering work of
the multi-scale optimization on hierarchical structure and ma-
terial design is found in Rodrigues et al. (2002). Then, the
hierarchical model has been extended to investigate concur-
rent material and topology optimization of three-dimensional
structures and bone tissue adaptation (Coelho et al. 2008).
State-of-the-art researches for multi-scale design optimization
of structures with cellular and porous material can be found in
Liu et al. (2008), Yan et al. (2008), Niu et al. (2009), Zuo et al.
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(2013), Andreasen and Sigmund (2012), and Deng et al.
(2013).

Laminated fibrous composite materials have been widely
used, especially in aerospace, automotive, advanced shipping,
and civil engineering, due to their superior material properties
for high specific strength and stiffness. As architecture material,
laminated composites offer a good opportunity to tailor the ma-
terial properties by adjusting the fiber ply parameters. Thus,
many researchers have recently carried out excellent works on
multi-scale lightweight design optimization of composite struc-
tures. Ferreira et al. (2013) adopted the DMO (Stegmann and
Lund 2005; Hvejsel and Lund 2011) approach to perform a
hierarchical optimization of laminated composite structures con-
sidering both fiber orientation and cross-section size/shape. For
more researches about the deterministic multi-scale design opti-
mization (DMDO) of composite material and structure, readers
can refer to Gao et al. (2013), Sørensen et al. (2014), Duan et al.
(2015), Yan et al. (2017), Duan et al. (2018, 2019a, b), Wu et al.
(2019) and Ma et al. (2020).

Uncertainties are inevitable and pervasive in simulation,
modeling, manufacturing processes, material properties, and
loading environments. Without considering uncertainties in op-
timization, the optimum design will have a high risk of failure.
Hence, reliability-based design optimization (RBDO) has been
applied to structural design optimization with multi-scale mate-
rials such as laminated composites to guarantee reliability and
robustness (Guo et al. 2009; 2015; António and Hoffbauer,
2009; Deng and Chen 2017; Shimoda et al. 2019). Recently, it
should be pointed out that Sohouli et al. (2018) investigated
RBMDOof variable stiffness composite structures with sequen-
tial optimization and reliability assessment (SORA), and hybrid
RBDO decoupled scheme to determine material and fiber
orientation. Xu et al. (2019) proposed a non-deterministic robust
topology optimization of ply orientation for multiple fiber-
reinforced plastic (FRP) materials under loading uncertainties
with both random magnitude and random direction.

Efficient but accurate reliability analysis needs to be per-
formed in reliability-based multi-scale design optimization
(RBMDO) of composite structures with many deterministic
and random design variables. Commonly, reliability analysis is
classified into two types: (1) sampling methods such as MCS
(Papadrakakis and Lagaros 2002; Cho et al. 2016), importance
sampling (IS) (Denny 2001), and latin hypercube sampling
(Helton and Davis 2003) and (2) analytical methods or most
probable point (MPP)-based methods including first-order reli-
ability method (FORM) (Chiralaksanakul andMahadevan 2005;
Shin and Lee 2014), second-order reliability method (SORM)
(Kiureghian et al. 1987; Lee et al. 2012), andMPP-based dimen-
sion reduction method (Lee et al. 2008, 2010; Kang et al. 2017;
Jung et al. 2019). Recently, Imani et al. (2018, 2019) investigated
general nonlinear state-space and data-poor environment prob-
lems with Bayesian method. Xie et al. (2017) proposed a linear
discriminant analysis classification rule to investigate

nonstationary data problem. To improve the computational effi-
ciency of conventional RBDO, Chen et al. (1997) proposed the
single loop single vector approach (SLSV), and Jeong and Park
(2017) improved SLSV by proposing the single loop single vec-
tor conjugate gradient (SLSVCG) approach using the conjugate
gradient at MPP of the previous cycles.

There are three major challenges in applying RBMDO to
composite frames: (1) the number of design variables dramat-
ically increases as the number of components in the composite
frames increases since both cross-sections of the beams in the
macro-scale and fiber winding angles in the micro-scale are
considered as independent design variables in RBMDO. (2)
When fiber winding angles are used as design variables di-
rectly, the convexity of the objective function is not guaran-
teed (Foldager et al. 1998; Duan et al. 2019a, b), which may
lead to instability and inaccuracy in convergence during reli-
ability analysis. (3) In practical applications, design guidelines
or rules, referred to as manufacturing constraints, must be
considered to reduce local failure risk in the composite struc-
ture (Bailie et al. 1997; Yan et al. 2017).

Consequently, the purpose of this paper is to propose an
efficient RBMDO for composite frames under uncertainties in
material properties and loading conditions. To enhance the sta-
bility of structural performance in a real operational environ-
ment, load uncertainties in both magnitude and direction are
considered in RBMDO. The DMO approach for multi-scale
optimization of laminated composites is adopted in RBMDO
of composite frames to overcome the non-convexity and high
non-linearity. Based on MCC scheme (Yang and Yi 2009;
Meng et al. 2015), the SLSV-MCC approach which utilizes
sensitivities at the current design point is proposed for more
efficient RBMDO of composite frames with manufacturing
constraints.

The rest of the paper is organized as follows. Review of
RBDO related to the proposed method is presented in Sect. 2.
The proposed SLSV-MCC is explained in Sect. 3. Concept and
mathematical formulation of RBMDO are introduced along
with DMDO in Sect. 4. Section 5 presents the parameterization
of the DMO approach and sensitivity analysis for the proposed
RBMDO. Explicit mathematical expressions for specific
manufacturing constraints as well as two solution strategies
are briefly described in Sect. 6. Numerical study with 2D and
3D composite frames is performed using RBMDO and DMDO
in Sect. 7. Finally, Sect. 8 concludes the paper.

2 Review of reliability-based design
optimization

2.1 Reliability-based design optimization

In comparison with deterministic design optimization, RBDO
takes into account uncertainties for variables and parameters
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that may influence the structural response. In the present re-
search, RBDO with random parameters and deterministic de-
sign variables can be mathematically formulated as

min
d

C dð ÞSubject to :
Pr Gl d;Pð Þ > 0½ �≤PTar

f l
l ¼ 1⋯ncð Þ

dL≤d≤dU

�
ð1Þ

where C(d) is the objective function; d is the deterministic
design variable vector with the upper bounds dU and lower
bounds dL, the design spaces of d are the macro-scale inner
tube radius and micro-scale artificial material density in the
two geometrical scales in this paper; P represents the random
vector; Pr[∙] is the probability function; PTar

f l
is the target prob-

ability of failure for the l-th constraint; nc is the number of the
limit functions or probabilistic constraints; and Gl(d, P) is the
l-th limit state function such that Gl(d, P) > 0 is defined as
failure. The purpose of RBDO is to find the optimum that
the probability of failure in each constraint has to be less than
the target probability of failure. In (1), the probability of fail-
ure in reliability analysis can be calculated using a multi-
dimensional integral as

Pf ≡Pr Gl d;Pð Þ > 0½ � ¼ ∫⋯∫G d;Pð Þ>0 f P pð Þdp ð2Þ

where Pf is the probability of failure and fP(p) is the
joint probability density function (PDF) of random pa-
rameter P. The limit-state function is generally trans-
formed from the original space (X-space) to the stan-
dard normal space (U-space) (Rosenblatt 1952) for easy
integration. Then, the integration in (2) can be rewritten
as

Pf ¼ Pr Gi d;Pð Þ > 0½ � ¼ ∫⋯∫g uð Þ>0 f U uð Þdu ð3Þ

where fU(u) is the joint PDF of the standard normal
variables U and g(u) is the limit-state function in U-
space. For efficient computation of (3), FORM linear-
izes g(u) at u∗, which is MPP in U-space obtained
through the Rosenblatt transformation, as

g uð Þ≅g u*
� �þ ∇gT u*

� �
U−u*
� � ð4Þ

where ∇gT(u∗) is the gradient of g(u) at u∗ and T stands
for transpose. u∗ is obtained by solving

min
u

uk k Subject to : gl uð Þ ¼ 0 l ¼ 1⋯ncð Þ ð5Þ

A reliability index βl is defined as the distance from the
origin to u∗, that is,

βl ¼ u*
�� �� ¼ u*

T
u*

� �1=2 ð6Þ

FORM estimates the probability of failure using the reli-
ability index as Φ(−βl).

Using performance measure approach (PMA) (Youn et al.
2003), (5) can be rewritten to find MPP as

max
u

gl uð Þ Subject to : uk k ¼ βt
l ¼ −Φ−1 PTar

f l

� �
ð7Þ

where βt
l is the target reliability index obtained from the target

probability of failure PTar
f l
. By applying the Lagrange multi-

plier method in (7), the general updating formula for MPP
search is derived as

u ςþ1ð Þ ¼ βt
l

∇g u ςð Þ� �
∇g u ςð Þð Þk k ð8Þ

where ς is the iteration for MPP search.

2.2 Single loop single vector approach

To eliminate the inner loop, that is, the reliability anal-
ysis loop for MPP search, SLSV approximates MPP by
utilizing the sensitivity of a performance function in the
previous design (Chen et al. 1997), and thus, the MPP
updating formula in (8) can be replaced in SLSV as

u ςð Þ ¼ μp þ βt
lσ

T
pα

ς−1ð Þwhere α ς−1ð Þ ¼ σT
p ∇g u ς−1ð Þ� �

σT
p ∇g u ς−1ð Þð Þ

��� ��� ð9Þ

where μp and σp are the mean vector of p and the
standard deviation of p, respectively. Since the approx-
imated MPP is found using the gradient from the pre-
vious design, MPP search iteration is not necessary in
SLSV. Therefore, SLSV significantly improves compu-
tational efficiency of RBDO by eliminating the inner
loop. RBDO using SLSV is formulated as

min
d

Cost dð ÞSubject to :

gl d; p kð Þ
l;MPP

� �
≤0 l ¼ 1⋯ncð Þ

p kð Þ
l;MPP ¼ μpþβt

lσ
T
pα

k−1ð Þ
l

α k−1ð Þ
l ¼ σT

p∇gl u k−1ð Þ� �
σT
p ∇gl u k−1ð Þð Þ

��� ���
264

375
37777
p¼p k−1ð Þ

l;MPP

dL≤d≤dU

8>>>>>>>>><>>>>>>>>>:
ð10Þ

where p k−1ð Þ
l;MPP is the MPP at the (k-1)-th iteration for the

l-th constraint and α k−1ð Þ
l is the normalized gradient vec-

tor of the l-th constraint. Due to the MPP approxima-
tion, the number of function evaluations in SLSV may
be similar with computational demands in deterministic
optimization. However, the approximation may cause
large error and divergence in case of highly nonlinear
performance functions because exact MPP search is replaced
with the approximation by gradient vector of previous MPP.
Therefore, these difficulties need to be alleviated while main-
taining the advantages of SLSV.
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3 Improved SLSV for efficient RBDO

As discussed in Sect. 2.2, one of the weaknesses in the single
loop RBDO using SLSV is inaccurateMPP approximation for
highly nonlinear performance functions. To maintain efficien-
cy of SLSVand overcome its inaccuracy, the modified SLSV
based on MCC is proposed to solve concurrent multi-scale
design optimization of composite frame where uncertain pa-
rameters such as material properties and loading conditions
are considered, and the cross-sections of the beam at the
macro-scale and the discrete fiber winding angles at the
micro-scale are deterministic. Accordingly, since only random
parameters exist in the design formulation, the gradient of a
performance function with respect to the random parameter is
not necessary for an optimizer since it is invariant during the
optimization. SLSV is modified to utilize the sensitivity ob-
tained in current design point without requiring additional
function evaluations, and the concept of MCC is adopted to
increase the accuracy of reliability analysis.

3.1 Improved SLSV approach based on MCC

To overcome the convergence problem in reliability analysis
for highly nonlinear functions, Yang and Yi (2009) proposed
the chaos control (CC) method. With considering the weak-
ness of CC in convex or concave performance measure func-
tions, Meng et al. (2015) proposed MCC by extending the
iterative point of the CC method to the constraint boundary
to investigate double-loop RBDO. Some new developments
of MCC can be found in Keshtegar et al. (2017) and Yang
et al. (2018) where the self-adaptive modified chaos control
(SMCC) method and the accelerated stability transformation
method (ASTM) of chaos control are proposed, respectively.
In this research, the SLSV-MCC approach is proposed to fully
exploit the potential of MCC and SLSVon accuracy and effi-
ciency, respectively. In MCC, new direction of MPP is esti-
mated as

en uςþ1
� � ¼ uςþλC f uςð Þ−uςð Þ;0<λ < 1 ð11� aÞ

uςþ1¼βt
l

en uςþ1ð Þ
en uςþ1ð Þ

��� ��� ð11� bÞ

where

f uςð Þ ¼ −βt
l
∇Ug d; uςð Þ
∇Ug d; uςð Þk k ð12Þ

where a stabilization factor λ is determined according to ei-
genvalues of the original system’s Jacobian matrix, and C is
the involutory matrix with only one element in each row and
size of n × nwhere n is the number of random variables. In this
study, an identity matrix is selected for C, and λ is set to be 0.7

based on heuristically. Note that the superscript ς in (12)
stands for the iteration in MPP search.

By adopting the concept of MCC with the stabilization
factor λ in SLSV, the MPP updating formula in (10) can be
rewritten in the proposed SLSV-MCC as

uk ¼ μpþβtσ
T en uk

� � ð13Þ

where

en uk
� � ¼ u k−1ð Þ þ λC f uk

� �
−uk−1

� � ð14Þ

and

f uk
� �¼−βt

∇Ug dk ; uk−1
� �

∇Ug dk ; uk−1
� ��� ��

" #
u¼u k−1ð Þ

MPP

ð15Þ

Note that k is iteration for design optimization of SLSV-
MCC. Since SLSV has a single loop for design optimization
without inner loop for MPP search, deterministic design
variable d is changed as the optimization proceed denot-
ed as superscript. Hence, MPP is approximated in the
SLSV-MCC using the gradient at the current MPP de-

noted as ∇Ug dk ; uk−1
� ���

u¼u k−1ð Þ
MPP

and the previous MPP

vector denoted as uk − 1.
Figure 1 illustrates differences between conventional

SLSV and the proposed SLSV-MCC specialized for RBDO
problems with random parameters only. There are two major
differences compared with conventional SLSV: (1) utilization
of gradient when deterministic design vector is dk instead of
dk − 1 and (2) application of stabilization factor λ with MCC
approach to prevent significant error on estimating MPP in-
duced by high nonlinearity. In Fig. 1, k means the iteration
number for single-loop optimization. Specifically, k-th MPP is
approximated by the gradient obtained from the (k-1)-th iter-
ation in conventional SLSV. However, in this research, the
gradient obtained in the k-th iteration can be directly used
since there is no random design variable. Meanwhile, to avoid
oscillation in MPP search and increase accuracy, the stabiliza-
tion factor used in MCC is adopted. Hence, the approximated
MPP based on the previous MPP vector and gradient at the
current MPP by SLSV is obtained as shown in Fig. 1b.

The advantage of using the gradient vector in k-th iteration
rather than (k-1)-th iteration is the improvement of better ap-
proximation on MPP. However, the gradient of performance
on current design point cannot be applied without further
function evaluations if random design variables exist since
sensitivity analysis is required at MPP.

3.2 Process of SLSV-MCC

Themain difference between SLSVand SLSV-MCC is how to
obtain a new MPP using gradient vectors as shown in green
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boxes of Fig. 2 which shows a detailed procedure for SLSV
and SLSV-MCC. In SLSV, the new MPP is approximated by
the previous information only, and in the proposed SLSV-

MCC, sensitivity analysis with respect to random parameters
at the current design point is performed in prior to approxi-
mate the new MPP by MCC. Notably, the number of function

Fig. 1 Approximation of MPP at each design point: a conventional SLSVand b proposed SLSV-MCC

Fig. 2 Flowchart of a SLSVand b proposed SLSV-MCC

2405Reliability-based multi-scale design optimization of composite frames considering structural compliance and... 



evaluations required in both algorithms is identical since there
is no random variable.

4 Reliability-based multi-scale design
optimization of composite frames

4.1 Concept of RBMDO

The concept of RBMDO under uncertainties related to mate-
rial properties and loading conditions is shown in Fig. 3.

In the macroscopic level as shown in the left part of Fig. 3,
load uncertainties in both magnitude and direction are consid-
ered in this study to consider a real operational environment.
The inner radii of circular cross-sections (ri as shown in Fig. 3)
of beam components in the frame are considered as macro-
scopic deterministic design variables. The ground structure
approach (Bendsøe and Sigmund 2013) is adopted where the
tube is deleted from the original ground frame structure when
its radius reaches the specified lower limit. Thus, both sizing
and topology optimization of macroscopic structural configu-
ration can be achieved.

In the microscopic level as shown in the right part of Fig. 3,
composite material properties, i.e., longitudinal stiffness E11,
transverse modulus E22, and shear modulus G12, are consid-
ered to be random parameters since they have the strongest
relation with structure compliance as pointed by Sohouli et al.
(2018). The DMO approach, which will be explained in Sect.
5.1, is adopted in the microscopic level to realize selection of
discrete fiber winding angles to overcome difficulty of non-
convexity and high non-linearity when the fiber winding an-
gles are directly recognized as design variables. Considering
cost and process requirements, the most commonly used dis-
crete fiber ply angles in industrial applications, i.e., [0°, ∓45°,
90°], are adopted. Composite tubes are mostly manufactured
by filament winding process (Martins et al. 2014). Mallick
(2007) suggested that 0° and 90° fiber winding angles in the
filament winding process should be implemented by 5° and
85° fiber winding angles, respectively. In this paper, assembly

of [5°, ∓45°, 85°] is considered as a set of candidate composite
fiber winding angles. The fiber winding angle is assumed to
be constant in a given ply. It should be noted that the joints
connecting composite tubes can transfer moments, and are
assumed to be infinitely stiff for the composite frames in this
study.

4.2 Mathematical formulation for DMDO and RBMDO
of composite frames

Mathematical formulations of DMDO and RBMDO for com-
posite frames to minimize structural cost while satisfying
structural compliance and manufacturing constraints are ex-
plained in this section. For both DMDO and RBMDO,
manufacturing constraints (MC1 −MC6) which will be briefly
explained in Sect. 6.1 are considered and it is assumed that
damping is neglected. The convergence measure given in
Stegmann and Lund (2005) and explained in Appendix A is
utilized for the convergence criterion in this study. As shown
in Fig. 3, the macro-scale inner tube radius (ri) andmicro-scale
artificial material density (xi, j, c) related to discrete fiber wind-
ing angles are set to be independent design variables to realize
topology and stacking sequence optimization of the two geo-
metrical scales simultaneously. Thus, DMDO for composite
frames can be formulated as

min
ri

V rið Þ ¼ ∑
Ntub

i¼1
π t

ftot
i

2

þ 2rit
ftot
i

" #
Li

Subject to :

C UK De
n ri; xi; j;c
� �� �

U
� �

≤CTar

S:T:K De
n ri; xi; j;c
� �� �

U ¼ F
ri∈ rmin; rmax½ �
xi; j;c∈ 0; 1½ �

i ¼ 1; 2;…;Ntub; j ¼ 1; 2;…; N
lay
.

2
; c ¼ 1; 2;…;Ncan

Manufacturing Constraints MC1−MC6ð Þ

8>>>>>>><>>>>>>>:

ð16Þ

where V is the structure cost of the composite frames; ri is the

inner radius of the composite tube; tetoti and Li are the current
total thickness after punishment as presented in Sect. 6.2.2 and

Fig. 3 Schematic diagram of RBMDO of composite frames (adapted from Duan et al. 2019a, b)
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length of the i-th tube, respectively; xi, j, c is the artificial
density of DMO candidate materials whose subscripts i, j,
and c denote the number of tubes, layers, and candidate ma-
terials, respectively; C and CTar denote the structure compli-
ance and its target, respectively;U and K are the displacement
vector and stiffness matrix; De

n is the element constitutive
matrix for the n-th element; Ntub, Nlay, and Ncand denote the
total number of tubes, layers, and candidate materials, respec-
tively; the ground structure approach (Bendsøe and Sigmund
2013) is adopted to realize the topology optimization. The
lower bound on the inner radius, rmin, is set to be 0.1 mm to
avoid any possible singularity of stiffness matrix for the equi-
librium function;

rmax is the upper bound of the inner radius. Because of
symmetry constraints applied on the micro-scale design

Fig. 4 Flowchart of RBMDO
with SLSV-MCC in design
optimization of composite frames
under structural compliance and
manufacturing constraints

Table 1 Material properties of the uni-directional CFRE

Property of CFRE Symbol Value Unit

Longitudinal modulus E11 1.43 × 1011 Pa

Transverse modulus E22 =E33 1.0 × 1010 Pa

In-plane shear modulus G12 6.0 × 109 Pa

In-plane shear modulus G13 5.0 × 109 Pa

Transverse shear modulus G23 3.0 × 109 Pa

Major Poisson’s ratio υ12 0.3 –

Major Poisson’s ratio υ13 0.2 –

Minor Poisson’s ratio υ23 0.52 –

Mass density ρcarbon 1800 kg/m3
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variables, only half of layers are considered as design vari-

ables, and thus j ¼ 1; 2;…; N
lay
.

2:

Unlike (16), mathematical formulation of RBMDO for
composite frames under uncertainties can be formulated as

min
ri

V rið Þ ¼ ∑
Ntub

i¼1
π t

ftot
i

2

þ 2rit
ftot
i

" #
Li

Subject to :

Pr GC ri; xi; j;c;Rmat; ζ;Rloa;η
� �

≤0
	 


≤PTar
fC

S:T:K De
n ri; xi; j;c;Rmat; ζ
� �� �

U ¼ F Rloa;η
� �

ri∈ rmin; rmax½ �
xi; j;c∈ 0; 1½ �

i ¼ 1; 2;…;Ntub; j ¼ 1; 2;…; N
lay
.

2
; c ¼ 1; 2;…;Ncan

ζ ¼ 1; 2;…;NRmat ; η ¼ 1; 2;…;NRloa

Manufacturing Constraints MC1−MC6ð Þ

8>>>>>>>>>><>>>>>>>>>>:

ð17Þ

whereGC(ri, xi, j, c, Rmat, ζ, Rloa, η) is the limit state function of
structure compliance which is expressed as C(ri, xi, j, c,
Rmat, ζ, Rloa, η)-C

Tar; Rmat, ζ and Rloa, η represent the ζ-
th and η-th random parameter of material properties and
loading condition, respectively; NRmat and NRloa are the
number of random parameters for material properties
and loading conditions, respectively; PTar

fC is the target

probability of failure for the compliance constraint. For
the numerical examples in Sect. 7, the same CTar is
used for both DMDO and RBMDO.

Structural analysis of composite frames in (16) and (17) is
performed using the modified beam finite element tool called
BEam Cross Section Analysis Software (BECAS) by Duan
et al. (2018, 2019a, b) to apply to composite frames combined
with DMO. BECAS is an analysis tool of cross sections de-
veloped by Blasques and Lazarov (2012) for anisotropic and
inhomogeneous beam sections with arbitrary geometry.

5 Discrete material optimization
and sensitivity analysis

5.1 Fundamental DMO theory

Fundamental theory of DMO used to perform DMDO and
RBMDO in (16) and (17), respectively, is briefly introduced
in this section. The DMO approach is implemented in a finite
element framework. Then, the element constitutive matrix per
layer Qe

i; j can be expressed as a weighted sum of the constitu-

tive matrices Qi, j, c of the candidate ply angles where the
superscript e refers to “element”, and the subscripts i, j, and
c refer to the i-th tube, j-th layer, and c-th candidate ply angles,
respectively. In general, for multi-layer laminates, interpola-
tion scheme can be implemented layer-wise for all layers in all
elements. The constitutive relationship for the j-th layer can be

Table 2 Uncertainty information
in material properties and loading
conditions

Number Random parameter Symbol Mean value Distribution Variation

1 Longitudinal modulus (Pa) E11 1.43 × 1011 Normal 0.1

2 Transverse modulus (Pa) E22 1.0 × 1010 Normal 0.1

3 In-plane shear modulus (Pa) G12 1.0 × 109 Normal 0.1

4 Load magnitude (N) F − 1000 Normal 0.1

5 Direction (°) θ 0 Normal 10°

Fig. 5 Initial configuration of 2D 4-beam composite frame for aDMDOwith deterministic load and bRBMDOwith uncertainties in loadingmagnitude
and direction, F = 10000; + and − denote positive and negative uncertain loading direction
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expressed as a sum over the number of candidate ply angles
Ncand as

Qe
i; j ¼ ∑

Ncand

c¼1
ωi; j;cQi; j;c ð18Þ

where ωi, j, c is the weighting function with the bound of 0 and
1 since no stiffness or mass matrix can contribute more than
the physical material properties, and negative contribution is
physically meaningless. Generalized solid isotropic material
with penalization (SIMP) for multi-material interpolation
schemes (Hvejsel and Lund 2011) is used in this paper to push
the weighting function to either 0 or 1 to obtain distinct
material selection. Then, the weighting function can be
expressed as

ωi; j;c ¼ xi; j;c
� �p ð19Þ

where p is the penalty parameter and xi, j, c is the artificial
material density of candidate ply angles which satisfies

∑
Ncand

c¼1
xi; j;c ¼ 1 ð20Þ

5.2 Design sensitivity analysis

The global structure cost in (16) and (17) is a function of ri
only. Thus, its sensitivity with respect to ri considering the
winding layer thickness punitive strategy is given by

∂V rið Þ
∂ri

¼ 2πri
ttoti

r0i

ttoti
r0i

þ 2

� �
Li ð21Þ

where ttoti is the initial total thickness of the i-th tube. The
manufacturing constraints in this study are formulated as a

Fig. 6 Optimized topology configurations of DMDO and RBMDO for 4-beam example: aDMDO, bRBMDOwith FORM, cRBMDOwith SLSV, and
d RBMDO with SLSV-MCC

Table 3 Comparison of optimization results obtained using DMDO and RBMDO

Method Cost CTar MPP [E11, E22, G12, F, θ] # of FEA calls Relative errors with MCS

DMDO 0.01278 0.12769 N.A. 233 N.A.

FORM 0.01863 0.12769 [1.3126e11, 9.9988e9, 9.9999e9, 1.1341e4, − 4.8224] 6410 2.10%

SLSV 0.01726 0.12769 [1.3101e11, 9.9940e9, 9.9998e9, 1.1387e4, − 2.7659] 1024 18.37%

SLSV-MCC 0.01888 0.12769 [1.3134e11, 9.9995e9, 9.9999e9, 1.1329e4, − 5.2212] 1088 1.78%
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series of linear inequalities or equalities. Thus, sensitivities of
all manufacturing constraints are obtained explicitly without
further derivation.

For sensitivity analysis of the structure compliance con-
straint, the semi-analytical method (SAM) (Cheng & Olhoff,
1993; Lund 1994; Blasques and Lazarov 2012) is adopted in
this work instead of directly deriving analytical sensitivities
due to its ease of derivation and implementation. SAM is
computationally efficient and thus often used for sensitivity
analysis of finite element models. This section only presents
the compliance constraint sensitivity analysis with respect to
deterministic micro-scale design variable xi, j, c. Sensitivities
of the compliance with respect to deterministic macro-scale
design variable ri can be easily obtained in a similar manner.
Assume that applied static loads are design independent, then
sensitivities of the structure compliance C in (16) and (17)
with respect to xi, j, c are given as

∂C
∂xi; j;c

¼ ∑
Nele

n¼1

∂UT
n

∂xi; j;c
KnUn þ UT

n
∂Kn

∂xi; j;c
Un þ Kn

∂Un

∂xi; j;c

� �� �
ð22Þ

whereUn is the displacement vector of element n and Kn is the
corresponding element stiffness matrix. Furthermore, using

the equilibrium conditions KnUn =F, (22) can be simplified
(see Bendsøe and Sigmund 2013) as

∂C
∂xi; j;c

¼ − ∑
Nele

n¼1
UT

n
∂Kn

∂xi; j;c
Un ð23Þ

It is possible to rewrite (23) using the element stiffness

matrix given by Kn ¼ ∫ΩnBTDnBdΩ
n where B is the strain-

displacement matrix and Ωn is the volume of the n-th finite
element as

∂C
∂xi; j;c

¼ − ∑
Nele

n¼1
UT

n ∫ΩnBT ∂Dn xi; j;c; ri
� �
∂xi; j;c

BdΩn Un ð24Þ

The SAM approach is computationally more efficient than
the overall finite difference (OFD) method since factorization
of the global stiffness matrix, which is the most time consum-
ing part in the computation, is calculated once for N design
variables whereas the stiffness matrix needs to be assembled
and factored N + 1 times for N design variables in OFD. Then,
∂Dn xi; j;c;rið Þ

∂xi; j;c are calculated using central difference as

∂Dn xi; j;c; ri
� �
∂xi; j;c

≈
Dn xi; j;c þ Δxi; j;c; ri

� �� �
−Dn xi; j;c−Δxi; j;c; ri

� �
2Δxi; j;c

ð25Þ

where Δxi, j, c is a small perturbation of xi, j, c.
The accuracy of SAM has been compared with the overall

finite difference (OFD) method with a small perturbation of
deterministic design variables. The sensitivities of compliance
constraint with respect to deterministic design variables are
not exactly obtained but the accuracy is desirable enough.

For MPP approximation in SLSV-MCC, it is necessary to
perform sensitivity analysis of the compliance constraint with

Fig. 7 Iteration history of the
objective function for DMDO and
RBMDO

Table 4 Optimum designs of macroscopic radii in DMDO and
RBMDO

Beam number DMDO FORM SLSV SLSV-
MCC

Optimal macroscopic radii ri, m

A1 rmin 0.01648 rmin 0.01657

A2 0.06079 0.04890 0.05867 0.04977
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respect to random parameters (Rmat, ζ, Rloa, η), i.e., ∂C
∂Rmat; ζ

and
∂C

∂Rloa;η
. In this study, they are calculated using the central dif-

ference method.

6 Typical manufacturing constraints
and solution strategies

Manufacturing constraints in (16) and (17) labeled as MC1 −
MC6 are briefly introduced in this section. Explicit linear
equality and inequality equations for the manufacturing
constraints are expressed in terms of xi, j, c in DMO. For more
detailed explanation on six typical manufacturing constraints of
laminated fibrous composite structures, readers can refer to Yan
et al. (2017) and Duan et al. (2019a, b).

6.1 Manufacturing constraints and numerical solution
steps

The first manufacturing constraint is contiguity constraint
with contiguity limit of CL ∈N and is formulated as a linear
inequality as

xi; j;c þ⋯þ xi; jþCL;c≤CL; jþ CL≤Nlay; MC1 ð26Þ

For any i ∈ Ntub, j ∈ Nlay, and c ∈ Ncand, it should
follow(Imani et al., 2018), and the loop should meet
the dimension of j + CL ≤Nlay. For example, if a com-
posite tube has 20 layers, i.e., Nlay = 20, and every layer has
four candidate materials, i.e., Ncand = 4, then, the total number
of contiguity constraints should be calculated as (Nlay −CL) ×
Ncand = (20 − 1) × 4 = 76, when CL = 1.

The second manufacturing constraint is the 10% rule,
which means that a minimum of 10% of plies of each candi-
date angle (5°, ∓ 45°, 85°) is required. It is frequently adopted
in engineering applications and expressed as

∑
Nlay

j¼1
xi; j;c≥0:1Nlay;MC2 ð27Þ

The third manufacturing constraint is balance constraint,
which means that angle plies (those at any angle other than
5∘ and 85∘) should occur only in balanced pairs with the same
number of +θ∘and −θ∘ plies. The parameterized linear equal-
ity constraint with respect to xi, j, c can be expressed as

Fig. 8 Iteration history of the
compliance constraint for DMDO
and RBMDO

Table 5 Optimum designs of microscopic fiber winding angles for DMDO and RBMDO

Beam Number DMDO FORM SLSV SLSV-MCC
Optimal microscopic fiber winding angles θi, j, °

A1 – (85/5/5/85/5/5/-45/5/5/45)s – (45/5/5/85/5/5/-45/5/85/5)s

A2 (85/5/5/85/5/5/-45/5/5/45)s (45/5/5/85/5/5/-45/5/85/5)s (45/5/5/-45/5/5/85/5/5/85)s (45/5/5/85/5/5/-45/5/85/5)s

s symmetrical layers

“–” means that the radius reaches its lower limit rmin
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∑
Nlay

j¼1
xi; j;þc− ∑

Nlay

j¼1
xi; j;−c ¼ 0; c≠ 5∘∪85∘ð Þ; MC3 ð28Þ

where xi, j, + c and xi, j, − c denote a positive and an accompanied
negative angle, respectively.

The fourth manufacturing constraint is damage toler-
ance constraint, which means that 5∘ ply along the axial
direction cannot be selected in the inner and outer
layers. This constraint can be expressed as the artificial
density of 5∘ candidate material in the outer surface
which is set to be zero, and the same as in the inner
surface, i.e., xi;1;c ¼ 0; xi;Nlay;c ¼ 0; c∈ 5∘½ �ð Þ, which are

combined into one equality constraint as

xi;1;c þ xi;Nlay;c ¼ 0; c∈ 5∘½ �; MC4 ð29Þ

As an alternative strategy, MC4 constraint can be also re-
alized through the micro-scale DMO material interpolation
strategy which means that the candidate material set of the
outer and inner surfaces does not contain 5∘ candidate
material.

The fifth manufacturing constraint is symmetry con-
straint, which means that the fiber winding sequence
should be symmetric with respect to the mid-plane. In
the case of the composite tube in this study, the mid-
plane specifically refers to the average radius plane of
the tube. Then, the symmetry constraint can be formu-
lated as a linear equality as

xi; j;c ¼ xi;Nlay− jþ1;c; MC5 ð30Þ

The sixth manufacturing constraint (MC6) is the normali-
zation constraint in (20) to keep physical meaning in the case
of a volume constraint or eigenfrequency optimization.

A flowchart for numerical implementation of RBMDO
with SLSV-MCC in design optimization of composite frames
in this paper is shown in Fig. 4. The detailed process of SLSV-
MCC to approximate the MPP can be referred to Fig. 2b.

6.2 Solution strategies

6.2.1 Continuation strategy

In order to obtain discrete designs in the micro-scale, a
continuation strategy for the penalization parameter p in
(19) is adopted in this paper. The initial penalty param-
eter p is set to be 1. It has been shown by Hvejsel and
Lund (2011) that p larger than 3 will not help too much
to penalize intermediate values of design variables.
Hence, p linearly increases in this study with slope of
0.5 in every ten iterations from 1 to 3.

Fig. 10 Initial configuration of 2D 14-beam composite frame for a DMDO with deterministic load. b RBMDO with uncertainties in loading magnitude
and direction, F = 10000

Fig. 9 Detailed manufacturing constraints in A2 tubes of SLSV-MCC
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6.2.2 Winding layer thickness punitive strategy

To realize topology optimization in the macro-structural scale
and reduce the number of design variables, a linear punitive
relationship between micro winding layer thickness and
macro-scale tube radius is adopted as

eti ¼ ri
r0

� t0; i∈NTub if ri < r0 ð31Þ

where eti is the single layer thickness of the i-th tube after
punishment, t0 is the initial layer thickness, and r0 is the initial
inner radius of the tube. In (31), the layer thickness will
change as the inner radius changes when ri < r0. Otherwise,
the layer thickness will be kept as t0. Based on the ground
structure approach of topology optimization, small ri means
that the tube has lower contribution to stiffness of the whole

structure, so that more material can be allocated in other tubes
to improve the stiffness. For more discussion on this strategy,
readers can refer to Duan et al. (2018, 2019a, b).

7 Numerical examples and discussions

In this section, two 2D and one 3D numerical examples are
investigated to validate effectiveness of the proposed
RBMDOwith SLSV-MCC in design optimization of compos-
ite frames. In three numerical examples, DMDO and RBMDO
with FORM and SLSVare performed as well for comparison.
MCS is utilized to validate accuracy of these methods in two
2D examples.

The specific manufacturing constraints are considered in
both DMDO and RBMDO. Considering practical engineering

Fig. 11 Optimized topology configurations of DMDO and RBMDO for 14-beam example: a DMDO, b RBMDOwith FORM, c RBMDOwith SLSV,
d RBMDO with SLSV-MCC

Table 6 Comparison of optimization results obtained using DMDO and RBMDO

Method Cost CTar MPP [E11, E22, G12, F, θ] # of FEA calls Relative errors with MCS

DMDO 0.01801 4.16679 N.A. 106 N.A.

FORM 0.02402 4.16679 [1.3141e11, 9.9850e9, 9.9997e9, 1.1365e4, 4.2850] 9280 2.15%

SLSV 0.02366 4.16679 [1.3150e11, 9.9840e9, 9.9997e9, 1.1361e4, 4.1372] 1096 4.35%

SLSV-MCC 0.02389 4.16679 [1.3148e11, 9.9828e9, 9.9997e9, 1.1364e4, 4.4309] 808 3.25%
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applications, it is assumed that each composite tube has the
same number of layers, i.e., Nlay = 20, and the 20 layers have
identical thickness of 0.1 mm in the initial design, i.e.,

ttoti =Nlay ¼ 0:1 mm. The initial value of the inner radius is r-

init = 25 mm, and the upper and lower limits are rmax = 75 mm
and rmin = 0.1 mm, respectively. The contiguity limit CL is set
as CL = 2. The fiber candidate materials are carbon fiber-
reinforced epoxy (CFRE) with orthotropic properties as
shown in Table 1. Table 2 lists uncertainty information of three
composite material properties, E11, E22, and G12, and two
loading conditions, magnitude and direction.

In three numerical examples, the target probability of
failure is set as PTar

fC ¼ 5%. The number of finite ele-

ment analysis (FEA) evaluations is used as a measure of
efficiency. MCS with 105 samples is performed consid-
ering computational costs in engineering problems. In
all methods, the same initial design variables and con-
vergence criteria are used. Considering all the
manufacturing constraints explained in Sect. 6.1, the
number of design variables in each tube is 40 which
contains 1 sizing design variable (ri) and 39 candidate
material density design variables (xi, j, c). It should be

noted that xi, j, c= Nlay
.

2

� �
� Ncand ¼ 10� 4 ¼ 40 from

the symmetry constraint, and the damage tolerance con-
straint (MC4) is realized through the micro-scale DMO
material interpolation strategy. Thus, the actual number
of xi, j, c becomes 39.

There are seven types of constraints: one reliability
compliance constraint related with random parameters
and six manufacturing constraints that are independent
of random parameters. The symmetry constraint (MC5)
and damage tolerance constraint (MC4) are realized by
design variable linking and DMO material interpolation
without 5∘ candidate material, respectively. Hence, there
are total 47 manufacturing constraints in each tube: 32
contiguity constraints (MC1) since CL = 2, 4 10% rule
constraints (MC2), 10 DMO normalization constraints
(MC6), and 1 balance constraint (MC3). With the first
2D 4-beam composite frame as example, the total num-
ber of manufacturing constraints is 94. The detailed
convergent results are presented in form of fiber wind-
ing angles and schematic diagram as in Fig. 7.

Fig. 12 Iteration history of the
objective function for DMDO and
RBMDO

Table 7 Optimum designs of macroscopic radii in DMDO and
RBMDO

Beam number DMDO FORM SLSV SLSV-
MCC

Optimal macroscopic radii ri, m

1 0.01897 0.02564 0.02603 0.02558

2 0.01513 0.02085 0.01782 0.01898

3 0.02386 0.02716 0.02316 0.02510

4 0.01099 0.00977 0.01254 0.01132

5 rmin rmin rmin rmin

6 0.01104 0.00979 0.01258 0.01134

7 0.01275 0.01143 0.01448 0.01318

8 0.01677 0.02474 0.02106 0.02171

9 0.01691 0.02552 0.01941 0.02246

10 0.01265 0.01141 0.01441 0.01309

11 0.01715 0.02639 0.01983 0.02220

12 0.01262 0.01141 0.01434 0.01287

13 0.01274 0.01143 0.01448 0.01316

14 0.01725 0.02761 0.02046 0.02217
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7.1 2D 4-beam composite frame

For the first example, a simple 2D 4-beam composite frame is
introduced for RBMDO. Its initial geometric sizes, loading, and
bounndary conditions for DMDO and RBMDO are shown in
Fig. 5a and b. Four tubes are divided into two groups as labeled
A1 and A2 in different colors. The total numbers of determin-
istic design variables, manufacturing constraints, compliance
constraints, and random parameters are 80, 94, 1, and 5, respec-
tively. The initial structural cost is V = 0.01759.

For RBMDO, three reliability analysis methods—FORM,
SLSV, and SLSV-MCC—are utilized for comparison. Table 5
presents detailed optimization results of DMDO and RBMDO
with three methods, and optimized topology configurations of
DMDO and RBMDO are shown in Fig. 6. From Table 3 and
Fig. 6, four observations can be made:

(1) The proposed SLSV-MCC shows much better efficiency
and accuracy than FORM (6410 vs 1088) and SLSV
(18.37% vs 1.78%).

Table 8 Optimum designs of microscopic fiber winding angles for DMDO and RBMDO

Beam number DMDO FORM SLSV SLSV-MCC
Optimal microscopic fiber winding angles θi, j, °

1 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/-45/5/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s

2 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/-45/5/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s

3 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/-45/5/85/5/85/5/5)s

4 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s

5 – – – –

6 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/-45/5/85/5/5)s

7 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s

8 (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/85/5/-45/5)s (45/5/5/85/5/-45/5/85/5/5)s

9 (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s

10 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s

11 (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s

12 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s

13 (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/5/-45/85/5/5)s

14 (45/5/5/85/5/5/-45/85/5/5)s (45/5/5/85/5/85/5/5/-45/5)s (45/5/5/85/5/-45/5/85/5/5)s (45/5/5/85/5/-45/5/85/5/5)s

s symmetrical layers

“–“ means that the radius reaches its lower limit rmin

Fig. 13 Iteration history of the
compliance constraint for DMDO
and RBMDO

2415Reliability-based multi-scale design optimization of composite frames considering structural compliance and... 



(2) The proposed SLSV-MCC shows similar efficiency and
accuracy as SLSV (1024 vs 1088) and FORM (2.10% vs
1.78%).

(3) Figure 6 shows that the optimized topology configura-
tions can be categorized into two types: 2-beam structure
in DMDO and SLSVand 4-beam structure in FORM and
SLSV-MCC. The detailed values of ri in all the optimum
designs are presented in Table 4.

(4) MPPs for loading direction in FORM and SLSV-MCC
(− 4.8224° and − 5.2212°) show that horizontal loading
is considered in RBMDO with FORM and SLSV-MCC
yielding 4-beam optimal structure with thicker A2 tubes

and thinner A1 tubes. On the other hand, SLSV with
relatively small MPP value in loading direction (−
2.7659°) and DMDOwith no consideration of horizontal
loading yield 2-beam optimal structure where A1 tubes
reached the lower limit and thus are eliminated.

Iteration histories of the cost and compliance constraint for
DMDO and RBMDO are presented in Figs. 7 and 8 where
histories of the initial 25 iterations are shown for clearer dem-
onstration. In Fig. 8, compliance constraints of RBMDO are
evaluated at MPP. As observed in the figures, RBMDO

Fig. 14 Initial configuration of spatial 120-beam composite frame for DMDO and RBMDO: a the top view of 120-beam composite frame, b the side
view of 120-beam composite frame for DMDO with deterministic load, and c uncertainty in loading magnitude and directions (θ1, θ2), F1 = 10,000

Table 9 Comparison of
optimization results between
DMDO and RBMDO with
SLSV-MCC

Method Cost CTar MPP [E11, E22, G12, F, θ1, θ2] # of FEA calls Relative errors
with MCS

DMDO 1.30182 0.91380 N.A. 115 N.A.

SLSV-MCC 1.55196 0.91380 [1.3134e11, 9.9999e9, 9.9999e9,
1.1328e4, 5.2671, 0.0379]

1528 2.36%
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utilizes more structure cost to satify the compliance constraint
with PTar

fC ¼ 5%. The objective function of DMDO is reduced

by 27.29% from the initial cost V = 0.01759, but the DMDO
optimumwill have higher risk of failure under uncertainties of
material properties and loading conditions. All the optimum
designs of DMDO and RBMDO well converged strictly sat-
isfying the compliance constraint.

Detailed optimal results of θi, j are presented in Table 5
which shows that all the micro-scale fiber winding angles
strictly follow the specific manufacturing constraints.
Figure 9 shows detailed manufacturing constraints on micro-
scale design variables using A2 tubes of SLSV-MCC. Because
the outer and inner layers cannot contain 5∘ candidate materi-
al, there is no 5∘ ply placed in the outer layer of the laminate.
Since CL = 2, more 5∘ candidate fiber winding angles are

selected because they are beneficial to improve axial stiffness
of the structure. However, larger CL may lead to crack prop-
agation in the laminate ultimately. So in most engineering
applications, CL is set between 2 and 3, especially in aero-
space engineering. Without the 10% rule constraint, 85∘ fiber
winding angles may not appear. The 10% rule effectively
avoids a single fiber angle to dominate excessively to make
the laminate more robust in the sense that they are less sus-
ceptible to weaknesses associated with highly orthotropic
laminates.

7.2 2D 14-beam composite frame

To further verify capability of the proposed SLSV-MCC, a 2D
14-beam composite frame is investigated. Its initial geometric

Fig. 15 Optimized topology configurations of DMDO and RBMDO with SLSV-MCC for 120-beam example: a DMDO and b RBMDO with SLSV-
MCC

Table 10 Optimum designs of
DMDO and RBMDO with
SLSV-MCC

Beam number DMDO SLSV-MCC

ri, m θi, j, ° ri, m θi, j, °

Group 1 0.07456 (45/5/5/85/5/-45/5/85/5/5)s 0.04919 (45/5/5/85/5/-45/5/85/5/5)s

Group 2 0.01768 (45/5/5/85/5/-45/5/85/5/5)s 0.05152 (45/5/5/85/5/85/5/5/-45/5)s

Group 3 0.01750 (45/5/5/85/5/85/5/5/-45/5)s 0.01587 (45/5/5/85/5/-45/5/85/5/5)s

Group 4 0.02077 (45/5/5/85/5/-45/5/85/5/5)s 0.03226 (45/5/5/85/5/-45/5/85/5/5)s

Group 5 0.01207 (45/5/5/85/5/-45/5/85/5/5)s 0.02576 (45/5/5/85/5/85/5/5/-45/5)s

Group 6 0.01116 (45/5/5/85/5/85/5/5/-45/5)s 0.03045 (45/5/5/85/5/-45/5/85/5/5)s

Group 7 0.00876 (45/5/5/85/5/-45/5/85/5/5)s 0.00790 (45/5/5/85/5/-45/5/85/5/5)s

s symmetrical layers

“–“ means that the radius reaches its lower limit rmin
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sizes, loading, and bounndary conditions for DMDO and
RBMDO are shown in Fig. 10a and b, respectively. The total
numbers of deterministic design variables, manufacturing
constraints, compliance constraints, and random parameters
are 560, 658, 1, and 5, respectively, with the initial structure
cost of V = 0.05127.

Table 6 presents detailed optimization results of DMDO
and RBMDO with three methods, and optimized topology
configurations of DMDO and RBMDO are shown in Fig.
11. For convenience of discussion, the optimized tubes are
divided into three groups which are labeled with dashed line

in green (1st-3rd tubes), blue (4th, 6th, 7th, 10th, 12nd, 13rd
tubes), and red (8th, 9th, 11th, 14th tubes), respectively.

Similarly with Example 1,

(1) FEA calls of SLSV-MCC is 808, which is much less than
FORM (# of FEA calls = 9280) with saving the compu-
tational cost about 91.28% while maintaining its accura-
cy since the relative error compared with MCS is 2.15%.

(2) Compared with SLSV, SLSV-MCC is more accurate and
even more efficient since it has less number of design
iterations.

Fig. 16 Iteration history of the
objective function for DMDO and
SLSV-MCC

Fig. 17 Iteration history of the
compliance constraint for DMDO
and SLSV-MCC
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(3) Figure 11 shows that the optimized topology configura-
tions are identical for DMDO and RBMDO. However,
their optimal designs are quite different as can be seen
from Table 7. The 5th tube has reached the lower limit
for all the approaches. To satisfy the reliability constraint,
the optimized radii of RBMDO are thicker than those of
DMDO.

Iteration histories of the cost and compliance constraint for
DMDO and RBMDO are presented in Figs. 12 and 13 where
histories of the initial 50 iterations are shown for clearer dem-
onstration. From Figs. 12 and 13 and Table 6, it can be seen
that DMDO, FORM, SLSV, and SLSV-MCC reduced the
structural cost by 64.87%, 53.15%, 53.85%, and 53.40%, re-
spectively. Figure 13 also shows that all the optimum designs
of DMDO and RBMDO well converged while strictly satis-
fying the compliance constraint. Detailed optimal results of θi,
j are presented in Table 8 which shows that all the micro-scale
fiber winding angles strictly follow the specific manufacturing
constraints. It should be pointed out that combination of wind-
ing sequences is limited due to the layer number limit and
contiguity limit.

7.3 Spatial 120-beam composite frame

Multi-scale design optimization of a spatial 120-beam
composite is introduced for the last example. Its boundary
conditions and geometric sizes are modeled according to
Huu et al. (2018) and are categorized into seven groups in
different colors as shown in Fig. 14. The total number of
deterministic design variables, manufacturing constraints,
and compliance constraints are 280, 329, and 1, respec-
tively, with the initial structure cost of V = 2.11494. The
number of random parameters is 6: 3 random material
properties, 1 loading magnitude, and 2 loading directions.
In this example, comparison between DMDO and SLSV-
MCC is performed.

Detailed optimization results and configurations of DMDO
and RBMDO with SLSV-MCC are shown in Table 9 and
Fig. 15, respectively. Table 9 shows that very accurate optimi-
zation result is obtained using RBMDO with SLSV-MCC, and
MPP value of θ1 is much larger than that of θ2. This is reason-
able because the structure is rotationally symmetrical, and thus,
uncertainty of θ2 will not affect the structural failure significant-
ly. Optimal designs of DMDO and RBDMO with SLSV-MCC
are presented in Table 10. The structural cost of SLSV-MCC is
about 19.21% higher than that of DMDO. The optimal radii of
group 1 for DMDO are much larger than those from SLSV-
MCC and other groups. The optimal structures use more mate-
rial in group 2 and group 5 in ring-in direction and group 4 and
group 6 in radial direction.

Iteration histories of the cost and compliance constraint for
DMDO and RBMDOwith SLSV-MCC are presented in Figs.
16 and 17. As observed in Fig. 16 and Table 9, the optimized
structural cost of DMDO and SLSV-MCC are reduced by
38.48% and 26.62%, respectively. Figures also show that both
DMDO and SLSV-MCC are well converged and strictly fol-
low the compliance constraint.

8 Conclusion

This paper proposes an efficient reliability analysis methodology,
SLSV-MCC, to realize RBMDO of composite frames with con-
sidering uncertainties of material properties and loading condi-
tions. Efficiency and accuracy of SLSV-MCC are comparedwith
FORM and SLSVapproaches, and the MCS method is utilized
to validate accuracy of these approaches. Planar and spatial nu-
merical examples show effectiveness of the proposed SLSV-
MCC for structural optimization to minimizing the cost and sub-
jecting to compliance constraint compared with FORM and
SLSV. It is shown from the numerical examples that the opti-
mized structure configurations between DMDO and RBMDO
are indeed different. It is also shown that specific manufacturing
constraints are strictly kept in all the numerical examples.
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Appendix A: Evaluation of convergence

The convergence measure given in Stegmann and Lund
(2005) is adopted to describe whether the optimization has
converged to a satisfactory result, i.e., a single candidate ma-
terial has been chosen in a specified element and all other
materials have been discarded. For each layer, the following
inequality is evaluated as

ωi; j;c≥ε
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
i; j;1 þ ω2

i; j;2 þ⋯þ ω2
i; j;Ncand

q
ðA� 1Þ

where ε is the tolerance, typically, ε ∈ [0.95~0.99]. If the
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inequality in (A-1) is satisfied for any ωi, j, c in the j-th layer,
then the layer is flagged as converged. The convergence assess-
ment criterion Hε is defined as the ratio between the number of

converged layersNl;tot
c and the total number of layersNl, tot. Nlay

is the number of layers in each tube, and it is assumed that each
tube has the same number of layers in the paper. Ntub is the
number of tubes in the frame structure. Thus, Nl, tot can be
expressed as the number of tubes multiplied by the number of
layers in a tube, that is, Nl, tot =Ntub ∙Nlay. Then, the conver-
gence assessment Hε can be expressed as

Hε ¼ Nl;tot
c

N l;tot ðA� 2Þ

If the tolerance is 0.95 and the optimization is fully con-
verged, i.e., Hε = 0.95 = 1, all layers have a single weight factor
that contributes more than 95% to the Euclidian norm of the
weight factors. More discussion about convergence criteria
can be found in the references (Xu et al. 2019; Duan et al.
2015).
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