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Abstract
System reliability analysis with small failure probability is investigated in this paper. Becausemultiple failuremodes exist, the system
performance function has multiple failure regions and multiple most probable points (MPPs). This paper reports an innovative
method combining active learning Kriging (ALK) model with multimodal adaptive important sampling (MAIS). In each iteration of
the proposed method, MPPs on a so-called surrogate limit state surface (LSS) of the system are explored, important samples are
generated, optimal training points are chosen, the Kriging models are updated, and the surrogate LSS is refined. After several
iterations, the surrogate LSS will converge to the true LSS. A recently proposed evolutionary multimodal optimization algorithm
is adapted to obtain all the potentialMPPs on the surrogate LSS, and a filtering technique is introduced to exclude improper solutions.
In this way, the unbiasedness of our method is guaranteed. To avoid approximating the unimportant components, the training points
are only chosen from the important samples located in the truncated candidate region (TCR). The proposed method is termed as
ALK-MAIS-TCR. The accuracy and efficiency of ALK-MAIS-TCR are demonstrated by four complicated case studies.

Keywords Active learning . Krigingmodel . Small failure probability . System reliability analysis

1 Introduction

Uncertainties commonly accompany a product in reality.
Reliability analysis is required so that the safety under uncer-
tainty can be quantitatively assessed. According to the number
of failure modes, reliability analysis can be divided into the
component reliability analysis (CRA) and the system reliabil-
ity analysis (SRA). Only a single failure mode is considered in
CRA, and multiple failure modes are simultaneously consid-
ered in SRA.

Generally, reliability analysis should be transformed into
numerous times of deterministic analysis. If the performance
functions should be computed by finite element (FE) analysis,
the whole process of reliability analysis will be prohibitively
time-consuming. Therefore, developing a method which can

minimize the number of function evaluations has consistently
been the pursuit of researchers.

Generally, methods for CRA can be extended to SRA. The
first-order reliability method (FORM) is popularly used in CRA.
However, it is not unwise to directly apply FORM to SRA. The
system performance function (SPF) usually has multiple failure
regions, and the direct application of FORMwill generate a large
error. Therefore, the first-order bounding theory was proposed
(Ditlevsen 1979; Deb et al. 2009). In this theory, the system
failure probability is bounded in a bilateral closed interval, and
the bounds can be obtained from the component failure proba-
bility. In this manner, FORM can be used to obtain each com-
ponent failure probability and then the bounds of system failure
probability can be obtained. The saddle-point approximation
method was also extended to SRA based on the first-order
bounding theory (Du 2010). To improve the accuracy and effi-
ciency, the second-order bound method (Ditlevsen 1979), and
the linear programming bound method (Kang et al. 2008) were
successively proposed. However, examples have shown that the
bounds obtained by those techniques can be fairly wide, and
reliable assessment of system failure probability cannot be
achieved according to the bounds (Sues and Cesare 2005). In
addition, if all the most probable points (MPPs) have been
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located by FORM, linear approximation or quadratic response
surface can be conducted at thoseMPPs, and approximate failure
probability can be obtained by the Monte Carlo simulation
(MCS) method (Sues and Cesare 2005; Pandey 1998; Li and
Mourelatos 2009; Hu and Du 2018). Other relevant methods can
be seen in (Youn and Wang 2009; Wang et al. 2011).

Kinds of sampling methods, such as MCS method and
important sampling (IS) method, can also be applied into
SRA. SRA based on the IS method can be seen from (Dey
andMahadevan 1998). However, the number of function eval-
uations required by those methods is very large. Additionally,
the SRA problem can be efficiently solved by building faster-
evaluated surrogate models for SPF. The frequently used sur-
rogate models are polynomial response surface method
(Shayanfar et al. 2017), polynomial chaos expansion model
(Sudret 2008), support vector machine (Bourinet et al. 2011),
and Kriging model. The SRA method based on traditional
response surface model is reported in (Sues and Cesare
2005). The method based on support vector machine can be
seen in (Hu and Du 2018). It should be noted that the way of
deploying training points determines the efficiency and accu-
racy of a surrogate model. From this perspective, the advent of
active learning Kriging (ALK) model is a major step forward.

In the ALK model, a learning function that takes the full
advantage of predicted mean and variance of a Kriging model
is defined. Using the learning function, the point at which the
sign of performance function has the largest “probability” to
be located around the limit state surface (LSS) can be recog-
nized. By iteratively exploring such a kind of training points,
the sign-prediction ability of a Kriging model can be remark-
ably improved, and accurate failure probability can be obtain-
ed. Most of the obtained training points are accumulated
around the region of interest rather than throughout a pre-
scribed space. This is the main advantage of ALK model over
other traditional surrogate models.

The basic idea of ALK model was first proposed and realized
in Ref. (Bichon et al. 2008), where the so-called efficient global
reliability analysis (EGRA) method was proposed. EGRA was
improved in (Echard et al. 2011), where the so-called active learn-
ing method combining Kriging and MCS (AK-MCS) was pro-
posed. Afterwards, diverse strategies were proposed to make the
ALKmodel more efficient and robust (Hu andMahadevan 2016;
Wen et al. 2016; Jiang et al. 2019). In addition, several solutions
were proposed by coupling ALKmodel with IS to estimate small
failure probability. The methods combining the ALKmodel with
single-MPP-based IS were proposed in (Echard et al. 2013;
Gaspar et al. 2017). The methods reported in (Yang et al.
2018a; Cadini and Santos 2014; Razaaly and Congedo 2018)
can solve problems with several failure regions in CRA.

The research of ALKmodel for SRAwas also in a gradually
deepening process. EGRA was adapted in Ref. (Bichon et al.
2011), and amethod known as EGRA-SYSwas proposed. AK-
MCSwas adapted in (Fauriat andGayton 2014) and themethod

termed AK-SYS was proposed. In (Wang and Wang 2015), a
so-called integrated performance measure approach was pro-
posed. In (Sadoughi et al. 2018; Wei et al. 2018; Hu et al.
2017), the multivariate Gaussian process was introduced. It
should be noted that a new task was posed to SRA compared
with CRA: The training points should be cleared from the com-
ponent LSSs that rarely contribute to system failure (Bichon
et al. 2011; Fauriat and Gayton 2014; Hu et al. 2017).
However, the methods in (Wang and Wang 2015; Wei et al.
2018) do not have such ability, and all the LSSs are finely
approximated. Sometimes, EGRA-SYS and AK-SYS may fail
to recognize the unimportant components correctly, and thus,
the ALK model with a truncated candidate region (TCR) was
proposed in (Yang et al. 2018b). The method is termed ALK-
TCR. ALK-TCR was further improved in (Yang et al. 2019a).

Although extensive studies have been conducted in the field
of SRA based on ALK model, one important issue remains
unsolved: the estimation of small failure probability. ALKmod-
el is popularly coupled withMCS in the existingmethods. If the
failure probability is very small (like 10−6~10−9), numerous
simulated samples (108~1011) will be required. The Kriging
model should provide predictions at all the simulated samples
in each iteration so that one training point is obtained. Then, the
learning process will become very time-demanding.

This paper systemically investigates the method fusing ALK
model and multimodal adaptive important sampling (MAIS) to
address the rare-event estimation issue of SRA. An innovative
scheme is proposed to build the ALK models of system: In each
iteration, MPPs on the surrogate LSS are explored, important
samples are generated and treated as the candidate points of
ALKmodel; the system surrogate LSS is iteratively updated until
it unbiasedly converges to the true LSS. A recently proposed
multimodal optimization algorithm, called the evolutionary
multi-objective optimization-based multimodal optimization
(EMO-MMO) (Cheng et al. 2018), is first utilized to obtain all
the MPPs on the system surrogate LSS. In this manner, the
unbiasedness of the proposed scheme is guaranteed. Improper
solutions of EMO-MMO are excluded, and the weighted instru-
mental sampling density function is formulated. Finally, the basic
idea of ALK-TCR (Yang et al. 2018b) is introduced and training
points are chosen from the important samples located in the
TCR. The proposed method is termed ALK-MAIS-TCR.

This paper is outlined as follows. SRA based on the IS
method is reviewed in Sect. 2. Our ALK-MAIS-TCR method
is systematically expounded in Sect. 3. Four case studies are
investigated to demonstrate the performance of our method.
Conclusions are provided in the final section.

2 SRA based on IS method

When importance sampling method is involved, researchers
prefer to expound the theory in the standard normal space.
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This space can be transformed from the original space by
Nataf or Rosenblatt transformation (Der Kiureghian and
Dakessian 1998). In addition, the values of component perfor-
mance functions (CPFs) might be different by several magni-
tudes. The numerical difference of components may influence
our search for MPPs. Therefore, it is recommended to normal-
ize the value of every CPF in this paper. One way of doing
such normalization is offered in Sect. 3.6.

In the standard normal space, denote the vector of random
variables as u = [u1,⋯, un], and the ith (normalized) CPF as
gi(u). The failure probability of a series system and that of a
parallel system are respectively defined as

Pf ¼ P ∪
p

i¼1
gi uð Þ < 0

� �
¼ P min

p

i¼1
gi uð Þ < 0

� �
ð1Þ

and

Pf ¼ P ∩
p

i¼1
gi uð Þ < 0

� �
¼ P max

p

i¼1
gi uð Þ < 0

� �
ð2Þ

in which P{·} is the probability of an event. DefineG uð Þ ¼ min
p

i¼1

gi uð Þ or G uð Þ ¼ max
p

i¼1
gi uð Þ, and G(u) is the SPF. The integra-

tion form of failure probability is given as

Pf ¼ ∫RnI F uð Þϕ uð Þdu ¼ E I F uð Þ½ � ð3Þ

in which E[·] is the expectation operator; ϕ(·) is the probability
density function (PDF) of the standard normal distribution, and
IF(·) is the failure indication function which is given as

I F uð Þ ¼ 1 G uð Þ≤0
0 G uð Þ > 0

�
ð4Þ

Equation (3) can be directly estimated by theMCSmethod.
However, a huge number of calls to G(u) are required for a
small failure probability. By introducing an instrumental PDF
(iPDF) h(u), the failure probability integral can be rewritten as

Pf ¼ ∫RnI F uð Þ ϕ uð Þ
h uð Þ h uð Þdu ¼ Eh I F uð Þ½ � ð5Þ

Then, we can obtain another estimator for Pf, i.e.,

P ̂
IS

f ¼ 1

N IS
∑
i¼1

N IS

I F u ið Þ
� � ϕ u ið Þ� �

h u ið Þð Þ ð6Þ

where {u(i), i = 1,⋯,NIS} are the important samples generat-
ed from h(u). The coefficient of variation (Cov) is given as

Cov P ̂
IS

f

� �
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var P ̂

IS

f

� �r

P ̂
IS

f

ð7Þ

in which Var(·) is the variance operator, and we have

Var P ̂
IS

f

� �
≈

1

N IS

1

N IS
∑
i¼1

N IS

I u ið Þ
� � ϕ u ið Þ� �

h u ið Þð Þ

 !2

− P ̂
IS

f

� �20
@

1
A ð8Þ

The real art of IS lies in the development of h(u). By prop-

erly developing an iPDF, the estimator P ̂
IS

f can be unbiased,

and its Cov can be remarkably smaller than that of MCS. A
proper iPDF should be able to guide the samples to cover all
the failure regions with large probability density. The most
classic technique is building a Gaussian mixture function cen-
tered on the MPPs. Other techniques can be found in Refs.
(Kurtz and Song 2013; Au and Beck 1999).

3 ALK-MAIS-TCR

The basic ideas of our proposed method are shown as follows:

1. Separately build a Kriging model for each component
2. According to the prediction information of current

Kriging models, obtain the surrogate LSS of system
3. Obtain multiple MPPs on the surrogate LSS by the evo-

lutionary multimodal optimization (MMO) algorithm
4. Formulate an iPDF based on the “quasi” MPPs and gen-

erate important samples
5. Treat the important samples located in TCR as candidate

points, choose training points, and update the Kriging
models

6. Repeat steps (2)–(5) until the Kriging models of compo-
nents are accurate enough

Then, we will expound our method step-by-step.

3.1 Surrogate LSS of a system

If multiple components exist in a system, it is desirable to
separately build a Kriging model for each CPF rather than to
build a single Kriging model for the SPF (Bichon et al. 2011).
This is because the SPF often has several sharp corners, and
those sharp corners will cost a lot of training points. Given a
design of experiments (DoE), a Kriging model predicts gi(u)

as a Gaussian process, i.e., gî uð Þ∼N μgi
uð Þ;σ2

gi
uð Þ

� �
. In the

prediction, μgi
uð Þ is the Kriging mean and σ2

gi
uð Þ is the

Kriging variance. μgi
uð Þ represents the most probable

value of gi(u), and σ2
gi
uð Þ can be regarded as the uncer-

tainty that gi(u) has such a value. Such uncertainty is
epistemic and can be reduced along with the enrichment
of DoE (Dubourg et al. 2011).
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By making full use of the prediction information of all com-
ponent Kriging models, a proper surrogate LSS can be obtained
for the system. In Ref. (Yang et al. 2019a), two measures of
failure regions were proposed. They are known as the “plausi-
bility” measure and the “belief” measure of failure regions.
Along with the enrichment of DoE, both of them will converge
to the true failure regions. The “plausibility”measure of failure

regions is defined as eΩP ¼ u ĜS uð Þ < 0
			 on

, and we have

G ̂S uð Þ ¼
min
p

i¼1
μgi

uð Þ−ασgi uð Þ
� �

series system

max
p

i¼1
μgi

uð Þ−ασgi uð Þ
� �

parallel system

8><
>: ð9Þ

in whichα is a constant which controls the confidence level. By

setting α = 1.96, the confidence level will be 95%. In eΩP, both
the region with a very large confidence level and the region
remaining uncertain to be failure regions are included. That
means, all potential failure regions are taken into consideration.

Therefore, the boundary of eΩP, denoted asGŜ uð Þ ¼ 0, is taken
as the system surrogate LSS in this paper.

People may take it for granted that min
p

i¼1
μgi

uð Þ ¼ 0 or max
p

i¼1

μgi
uð Þ ¼ 0 can also be used as a surrogate LSS for a system.

Unfortunately, neither of them is qualified enough. The
Kriging variance is not taken into account, and several poten-
tial failure regions are excluded by them. In SRA, multiple
failure regions exist and the system LSS often has multiple
branches. It is frequently encountered that only several
branches of the system LSS are finely approximated while
others are not. Biased estimation often occurs when using
them as the surrogate LSS.

3.2 Evolutionary multimodal optimization algorithm

The MPPs on ĜS uð Þ ¼ 0 will be explored and utilized to
formulate an iPDF for the IS method. For distinction with
the true MPPs, they are called the quasi MPPs in this paper.
The quasi MPPs can be obtained by solving such an optimi-
zation problem as

min
u

uk k

s:t:ĜS uð Þ≤0; u∈ u; u
h i

8><
>: ð10Þ

in which u ; u½ � is a prescribed searching space (like [− 6,6]n).

GŜ uð Þ is combined by multiple components, and hence, mul-
tiple optimal solutions frequently exist. Note that the optimal
solutions include the global ones and local ones, and both of
them should be found. Ignoring the local optima will cause

G ̂S uð Þ to biasedly converge to the true LSS. Traditional opti-
mization algorithms, such as the genetic algorithm and

differential evolution algorithm (Wang et al. 2015), can only
obtain one single optimum. To obtain all the optima of one
optimization problem, the MMO algorithm is needed.

The MMO approaches can be coarsely classified into two
groups: the niching ones and those based on the multi-
objective optimization (MOO). The naïve idea of niching ap-
proaches has been applied to MPPs exploration in (Li and
Mourelatos 2009; Der Kiureghian and Dakessian 1998),
where a bulge-adding approach and a niching genetic algo-
rithm were respectively proposed. Other early studies of nich-
ing approaches can be seen from (Shir 2012). However, the
feasibility of those approaches is pretty sensitive to parameter
settings, and it is hard to tune them. Some of the optima can be
easily neglected by those methods (Cheng et al. 2018; Wang
et al. 2015).

The approaches based on MOO attempted to transform an
MMO problem into anMOO problem. Several excellent tech-
niques along this direction have been proposed recently
(Cheng et al. 2018; Wang et al. 2015; Yao et al. 2010). Their
great performances have been verified by quite a lot of very
complicated case studies (Cheng et al. 2018;Wang et al. 2015;
Yao et al. 2010). However, the application of such advanced
methods into SRA has not been reported so far. In this paper,
the EMO-MMO algorithm (Cheng et al. 2018) is introduced
into SRA for the first time.

Equation (10) can be transformed into such an uncon-
strained optimization problem as

min P uð Þ ¼ uk k þ λmax G ̂S uð Þ; 0
� �2

s:t: u∈ u ; u
h i ð11Þ

in which λ is a penalty factor with a very large value, like 2 ×
1010. To preserve the diversity of solutions, a diversity func-
tion d(u) can be introduced into (11), and thus, we obtain such
an bi-objective optimization problem as

min F uð Þ ¼ P uð Þ; d uð Þð Þ
s:t: u∈ u ; u

h i ð12Þ

By solving the Pareto front of (12), optimal solutions with
remarkable diversity can be obtained. The Pareto front can be
solved by quite a lot of MOO algorithms, and the most pop-
ular one, i.e., the non-dominated sorting genetic algorithm II
(NSGA-II) was utilized in EMO-MMO. EMO-MMO is a
population-based metaheuristic and d(u) is defined according
to the current population of solutions.

In generation t(t ∈ [1,⋯, tmax]), denote the population of
solutions as ut;1; ut;2;⋯; ut;Npop


 �
. d(u) was defined as

d uð Þ ¼ Ktj j− 1

δt
∑

k∈Kt

u−ut;k
�� ��

1

 !
ð13Þ
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where Kt contains the indices of solutions in a niche, i.e.,

Kt ¼ j∈ 1;⋯;N pop


 �
: u−ut; j
�� ��

1
< δt

n o
ð14Þ

|Kt| is the number of elements in Kt, and δt is the radius of
the niche which was defined as

δt ¼ 1−
t−1
tmax


 �
� max

1≤ i≤Npop

min
j≠i

ut;i−ut; j
�� ��

1

� �
ð15Þ

Note that ‖·‖1 is the Manhattan distance (L1 norm) of
two points, and the distance is calculated in a grid-
based normalized coordinate system in (Cheng et al.
2018). Equation (13) shows that, in a generation, a can-
didate solution having more neighbors or closer dis-
tances to those neighbors will have a larger value of
d(u). As a consequence, offspring candidates will be
attracted to the region with rare points and the diversity
of solutions is maintained. The interested readers can
refer to (Cheng et al. 2018) for more details.

In EMO-MMO, the candidate solutions in all gener-
ations of NSGA-II are stored in an archive. From the
historical candidate solutions, we can mine multiple ap-
proximate optimal solutions. The approximate solutions
can be further refined by a local optimizer. The proce-
dure is listed as follows.

& Among the historical candidates, choose the points satis-

fying G ̂S uð Þ < 0. Denote the set of them as D.
& DivideD intoNclust clusters D1;D2;⋯;DNclustf g by the K-

means clustering algorithm (Jain 2010). In Di(i = 1,⋯,
Nclust), obtain the point with a minimal value of ‖u‖.

Denote it as u ið Þ
F .

& Set u 1ð Þ
F ; u 2ð Þ

F ;⋯; u Nclustð Þ
F

� �
as the starting points, perform

Nclust times of independent local search by gradient-based
optimization method. The sequential quadratic program-
ming (SQP) algorithm is adopted here.

3.3 Weighted iPDF

The number of quasi MPPs is not known in prior and
Nclust is assigned a value just according to experience.
The set of solutions obtained by EMO-MMO probably
blend spurious solutions. Moreover, in one failure region,
there exist a crowd of solutions. Therefore, improper so-
lutions should be eliminated. Otherwise, important samples
will cover the unimportant regions or overly indulge in
certain failure regions.

Geometrically, the position vector of a quasi MPP and the

gradient of ĜS at the quasi MPP should be collinear (Li and

Mourelatos 2009). Therefore, a point u can be treated as a
quasi MPP only if

λθ ¼
u; ∇GŜ

� �
u

D E
uk k ∇ĜSÞu

� ������ 			≈1
						 ð16Þ

If λθ < 0.8, the point should be eliminated. In this manner,
spurious optimal solutions can be excluded.

If two points ui, uj are very close to each other, their posi-
tion vectors should be almost the same. Mathematically, there
is

ρij ¼
ui; u j
� �
uik k u j
�� �� ≈1 ð17Þ

ρij is named the correlation coefficient of two points
in (Deb et al. 2009; Li and Mourelatos 2009). If ρij ≥
0.95, the point with a larger value of ‖u‖ should be
eliminated. In this way, the solutions will not be
crowded in one failure region.

After wiping out the inferior solutions, an iPDF can be for-

mulated. Denote the quasi MPPs as u kð Þ
MPP; k ¼ 1;⋯;NMPP

n o
,

and the iPDF can be given as

eh uð Þ ¼ ∑
k¼1

NMPP

wkφ u u kð Þ
MPP

			� �
ð18Þ

in which

φ u u kð Þ
MPP

			� �
¼ 1ffiffiffiffiffiffi

2π
p exp −

u−u kð Þ
MPP

� �2
2

0
B@

1
CA ð19Þ

and wk is the weight of each quasi MPP. wk is intro-
duced to take the contribution of each potential failure
region to the system failure probability into account.
For the sake of simplicity, those potential failure regions
are considered to be mutually independent, and FORM
can give an approximate failure probability for each of
them. Then, wkcan be given as

wk ¼
Φ − u kð Þ

MPP

��� ���� �
∑
i¼1

NMPP

Φ − u ið Þ
MPP

��� ���� � ð20Þ

in which Φ(·) is the cumulative distribution function (CDF) of

standard normal distribution and Φ − u kð Þ
MPP

��� ���� �
is the approx-

imate failure probability of the kth failure region by FORM.

Then, NIS important samples obeying eh uð Þ can be generated
by the sampling method offered in (Au and Beck 1999).
Denote the set of important samples as ΩIS.
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3.4 Truncated candidate region

Training points can be chosen fromΩIS by a learning function.
Note that several learning functions have been proposed, such
as the learning function U (Echard et al. 2011), the expected
risk function (ERF) (Yang et al. 2015), and the expected fea-
sibility function (EFF) (Bichon et al. 2008). In this paper, ERF
is adopted. For the ith Kriging model, ERF was defined as

ERFgi uð Þ ¼ −sign μgi
uð Þ

� �
μgi

uð ÞΦ −sign μgi
uð Þ

� � μgi
uð Þ

σgi uð Þ

 �

þ σG uð Þϕ μgi
uð Þ

σgi uð Þ

 �

ð21Þ
in which sign(·) is the sign function, and ϕ(·) is the PDF of the
standard normal distribution. For a single component, the
point maximizing EFR should be chosen as the training point.
For a system, one can directly choose the point with the max-
imal value among the p ERFs, i.e.,

u* ¼ max
u;1≤ i≤p

ERFgi uð Þ ð22Þ

However, in this way, training points will finally be popu-
lated around all component LSSs including the unimportant
ones. Take a 2D series system with three components as an
example. As shown in Fig. 1, the region covered by ΩIS may
also cover the unimportant LSSs, i.e., O1C, O1B, O2E, and
O2D. If the training points are directly chosen by (22), those
unimportant LSSs will also attract training points. As a result,
a certain number of function evaluations are wasted.

Therefore, it is recommended to choose training points in a
systematic way. Several advanced strategies have been pro-
posed to assist training points to get away from the unimpor-
tant component LSSs (Bichon et al. 2011; Fauriat and Gayton
2014; Hu et al. 2017; Yang et al. 2018b, 2019b). In this paper,

the method based on the so-called TCR is adopted (Yang et al.
2018b, 2019b). In this method, the unimportant region is cut
off from the original candidate region, and training points are
only chosen from the TCR.

For a series system, the TCR was defined as

eΩT uð Þ ¼ u min
p

i¼1
μgi

uð Þ þ ασgi uð Þ
� �

> 0

				
� �

ð23Þ

and for a parallel system, the TCR was defined as

eΩT uð Þ ¼ u max
p

i¼1
μgi

uð Þ−ασgi uð Þ
� �

< 0

				
� �

ð24Þ

The optimal training point can be obtained by

u* ¼ max
u;1≤ i≤p

ERFgi uð Þ

s:t: u∈eΩT

ð25Þ

Another issue is how many training points should be cho-
sen fromΩIS in each sequence. If only one is chosen from one
set of important samples, EMO-MMO will be executed for
many times, which is quite time-demanding. Executing the
learning process multiple times and choosingmultiple training
points from the current ΩIS are recommend. The number is
assigned as NSeq in this paper.

3.5 Stopping condition

The difference between the “plausibility” measure and the
“belief” measure of the system failure region was utilized to
judge the accuracy of component Kriging models in (Yang

et al. 2019a). Recall that eΩP is the plausibility measure. By

setting the parameter α in eΩP as − 1.96, the “belief” measure
of system failure region can be obtained. The belief measure is

denoted as eΩB.
Along with the enrichment of DoE, the epistemic uncer-

tainty of a Kriging model can be gradually reduced, and eΩP

will gradually approach to eΩB. Thus, the stopping condition
can be defined by the following expression:

εP f ¼
ePIS

f P−ePIS

f B

				
				

ePIS

f P

< γ ð26Þ

in which ePIS

f P is the plausibility measure of failure probability,

and ePIS

f B is the belief measure of failure probability. Thus,

ePIS

f B ¼ 1

N IS
∑
i¼1

N IS

I F u ið Þ∈eΩB

� � ϕ u ið Þ� �
eh u ið Þð Þ

ð27Þ
Fig. 1 A 2D series system with three components
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ePIS

f P ¼ 1

N IS
∑
i¼1

N IS

I F u ið Þ∈eΩP

� � ϕ u ið Þ� �
eh u ið Þð Þ

ð28Þ

Note that, for convenience, ePIS

f P and ePIS

f B are estimated from

the same set of important samples. The important samples are

obtained in Sect. 3.3, i.e., those generated for G ̂S uð Þ ¼ 0.
However, such convenience cannot vitally disturb the conver-

gence of our method. If eΩP and eΩB are different from each

other, the important samples of ĜS uð Þ ¼ 0 definitely cannot
generate two similar estimations in (27) and (28). Only wheneΩP and eΩB are very close to each other, they share the same

set of important samples and generate the same estimation of
failure probability. In addition, γ = 5% is adopted in this paper.

3.6 Summarization of ALK-MAIS-TCR

The proposed method is shown in Fig. 2. It consists of 11 steps:

1. Transform the random variables into the standard normal
space.

2. Draw a small number of training points by the Latin hy-
percube sampling method. Those points are uniformly dis-
tributed in the region [−5, 5]n, and the number is assigned
12. Denote the set of initial training points as Ω0.

Fig. 2 Flowchart of ALK-MAIS-
TCR

Table 1 Parameter settings of ALK-MAIS-TCR

Example Nclust Nmin NSeq
max Npop tmax NIS

4.1(case I) 12 20 8 500 20 1 × 104

4.1(case II) 12 20 8 500 20 1 × 104

4.2 10 20 8 500 100 1 × 104

4.3 9 20 8 500 200 1 × 104

4.4 8 20 8 500 400 5 × 103
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Table 2 Results of Example 4.1
with different methods (case I) Method Function calls Pf (×10

−7) Cov(%)

MCS(1σ interval) 1 × 109 9.13 ([8.83,9.43]) 3.31

EMO-MMO+ IS 5000 + 1668 + 104 8.85 2.67

FERUM#11 + IS > 104 3.09 2.93

ALK-MAIS(bounds) 86.9 ([72,96]) 8.93 ([8.58,9.31]) 2.63 ([2.58,2.72])

ALK-MAIS-TCR#1(bounds) 74.5 ([64,88]) 9.06 ([8.73,9.27]) 2.93 ([2.81,3.39])

ALK-MAIS-TCR(bounds) 67.6 ([59,76]) 8.97 ([8.51,9.21]) 2.63 ([2.59,2.72])

“1σ interval” equals to (1 ±Cov)Pf

(a) (b)

(c)

Fig. 3 DoE comparison. a ALK-MAIS. b ALK-MAIS-TCR#1. c ALK-MAIS-TCR

X. Yang et al. 588



3. Obtain the normalized CPFs by gk uð Þ ¼ Yk uð Þ
=μYk

k ¼ 1;⋯; pð Þ, where Yk(u) is the original value

of the kth CPF, and μY k
¼ meanu∈Ω0 Yk uð Þð Þ. Build p

Kriging models for gk(u)(k = 1,⋯, p). Denote the kth

Kriging model as g ̂k uð Þ.

4. With the pred ic t ion in format ion of g ̂k uð Þ
k ¼ 1;⋯; pð Þ, formulate the surrogate LSS of the
system by (9).

5. Obtain multiple quasi MPPs onG ̂S uð Þ ¼ 0 by the EMO-
MMO algorithm.

Sequence 1 (add 8 points) Sequence 2(add 16 points)

Sequence 3(add 24 points) Sequence 4(add 32 points)

Sequence 5(add 40 points) Sequence 6(add 48 points)

Fig. 4 Learning process of ALK-
MAIS-TCR: green line is the
surrogate LSS of system; black
line is the true system LSS; black
star is the MPP; the blue dot is the
initial training point, the red dot
represents the added training
point, and the black dot is the
important samples
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6. Remove the unqualified solutions and formulate a
weighted iPDF by (18). GenerateNIS important samples
and denote the set of them as ΩIS.

7. If εP f < γ and m ≥ Nmin, which means the Kriging
models of components have been accurate enough, step
out to step (11). Otherwise, set NSeq = 0 and continue.

8. InΩIS, obtain the points located in the TCR. Among the
points in the TCR, choose the optimal training point u∗

by (25).
9. If NSeq > Nmax

Seq or εP f < γ, return to Step (4).
10. Otherwise, add u∗ into the DoE and evaluate the

(normalized) CPFs at u∗. Update all the Kriging models
and set NSeq =NSeq + 1. Return to Step (8).

11. Obtain the system failure probability based on all the
Kriging models.

Note that, m ≥Nmin is introduced in step (7) to guarantee
that at least m − Nmin times of learning are executed. The
learning process of our method without this condition may
be terminated in the beginning by sheer coincidence. That is
because the size of initial training points is very small and
randomly generated. The surrogate LSS might regard all the
prescribed searching space as the safety region and EMO-
MMO cannot obtain any feasible solution. Under this situa-
tion, we take the point among the candidates of EMO-MMO

closest to ĜS uð Þ ¼ 0 as the quasi MPP. Such a last resort
might result in the early termination of learning process.
m ≥Nmin is introduced to prevent this from happening. A sim-
ilar measure can also be seen in (Cadini and Santos 2014).

4 Test examples

In this section, four examples will be investigated to examine
our method. In each example, the parameter settings of our
method are outlined in Table 1. The method will be indepen-
dently executed ten times. The averaged result and the bounds
of each quantity will be extracted.

4.1 System with four failure regions

Four components exist in this system, and the ith one is defined as

gi uð Þ ¼ min

ki
2
þ u1−u2ð Þ2

10
� u1 þ u2ð Þffiffiffi

2
p

kiffiffiffi
2

p � u1−u2ð Þ

8>><
>>: ð29Þ

in which u= [u1, u2] are two independent random variables obey-
ing standard normal distribution and ki= 9+ i. Note that each of
them is a complicated black-box function with four failure re-
gions. Two cases are considered in this example.

Fig. 5 Populations stored by
EMO-MMO: left, Sequence 1;
right, Sequence 6

Fig. 6 Failed learning process without considering Kriging variance
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4.1.1 Case I series system

In case I, the four CPFs are assumed to form a series system.
Note that only g1 = 0contributes to system failure. Results of
different methods are collected in Table 2. The true failure
probability is 9.13 × 10−7, which is obtained by MCS with
1 × 109. EMO-MMO + IS refers to the method combining
the EMO-MMO algorithm with IS method: EMO-MMO de-
scribed in Sect. 3.2 is used to calculate all MPPs of the true
SPF, and the IS method offered in Sect. 3.3 is used to estimate
the true failure probability. FERUM#11 + IS uses the famous
reliability analysis software FERUM (method 11) to obtain all
the MPPs and IS method offered in Sect. 3.3 to estimate the
true failure probability. In the FERUM software (Bourinet
et al. 2009), method 11 refers to the bulge-adding approach
for multi-MPP calculation proposed in (Der Kiureghian and
Dakessian 1998). In (Der Kiureghian and Dakessian 1998),
after oneMPP is obtained, a bulge is added to the performance
function around theMPP so that the optimizer can be forced to
explore another region. The optimizer is implemented several
times until multiple MPPs are obtained. However,
FERUM#11 + IS provides a biased estimation and only two
MPPs are obtained. That is because the size of the bulge is
very hard to be determined, and some MPPs are concealed by
the bulge. By contrast, EMO-MMO obtains all the MPPs, and
unbiased estimation is offered by EMO-MMO+ IS.

Using 67.6 function evaluations, the proposed method ac-
curately estimates such a small failure probability. The DoE of
the proposed method is shown in Fig. 3. Note that the SPF has
four failure regions, and all of them contribute to the failure
probability integration. In addition, only the first component
contributes to system failure. It can be seen that the training
points are mainly accumulated around the LSS of the first
component. By fusing the TCR strategy into our method, little
portion of training points is deployed to the unimportant LSSs,
and thus, the waste of training points is avoided.

The learning process of the proposed method is shown in
Fig. 4. The system surrogate LSS, the obtained quasi MPPs,
the generated important samples, and the chosen training
points are offered. It can be seen that, along with the enrich-
ment of DoE, the surrogate LSS converges to the true one. In
each sequence, the quasi MPPs are all correctly found by the
EMO-MMO algorithm. The quasi MPPs gradually converge
to the true ones, and redundant ones are rarely kept during this
process. From those figures, the rationality of the proposed
method can be revealed. Figure 5 shows the historical popu-
lations of EMO-MMO in sequence (1) and sequence (6). It
can be seen that all the surrogate failure regions are densely
covered by the candidate solutions.With them, it is pretty easy
to mine all the global and local quasi MPPs by the technique
offered in this paper. The effectiveness of EMO-MMO guar-
antees the unbiasedness of the proposed method.

Fig. 7 DoE comparison: left,
ALK-MAIS; right, ALK-MAIS-
TCR

Table 3 Results of Example 4.1 with different methods (case II)

Method EMO-MMO+ IS
(1σ interval)

FERUM#11 + IS ALK-MAIS (bounds) ALK-MAIS-TCR (bounds)

Function calls 5000 + 628 + 104 >104 114.6([102,131]) 67.1([59,73])

Pf (×10
−10) 1.24([1.20,1.28]) 0.410 1.23([1.15,1.28]) 1.23([1.16,1.26])

Cov(%) 2.98 3.43 3.09[3.04,3.23] 3.07([2.99,3.17])

“1σ interval” equals to (1 ±Cov)Pf
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People may also doubt that min
p

i¼1
μgi

uð Þ ¼ 0 which does not

take the Kriging variance into account can also serve as the
surrogate LSS of this system. However, in this manner, it takes
a huge risk that several branches of the system LSS are never
approximated throughout the learning process. As shown in
Fig. 6, the learning process is terminated early before all
branches of the system LSS are accurately approximated.
Throughout the learning process, the lower right branch does
not attract any training point. Because no failure training

points are located around this region initially, min
p

i¼1
μgi

uð Þ ¼
0 rashly holds that there is no failure region here. As a result,
no candidate points are generated in this region and no train-
ing points will be chosen in the next sequences. By contrast,

the Kriging variance here is quite large, and GŜ uð Þ ¼ 0
regards this region as a potential failure region. Therefore,
training points will also be deployed into this region, and
unbiased estimation is guaranteed.

To demonstrate the effect of weighted iPDF and TCR on
the proposed method, two methods ALK-MAIS and ALK-
MAIS-TCR#1 are introduced. If the training points are directly
chosen from all the candidate points rather than from the TCR,
the method is termed ALK-MAIS. If all the quasi MPPs ob-
tained by EMO-MMO are kept and an equally weighted iPDF
is formulated based on those MPPs, the method is termed

ALK-MAIS-TCR#1. The other conditions of those methods
are kept the same with ALK-MAIS-TCR. The results of those
methods are also given in Table 2. It can be seen that ALK-
MAIS-TCR is apparently more efficient than the other two
methods. The DoEs of the other two methods are also given
in Fig. 3. It can be seen that (I) if the quasi MPPs are not
filtered, some portion of the failure regions with little contri-
bution will also have training points; (II) if the TCR is not
introduced, the unimportant components will also attract train-
ing points. Both cases should be avoided while building ALK
models.

4.1.2 Case II parallel system

In case II, the four CPFs are assumed to form a parallel sys-
tem. In this case, only g4 = 0 contributes to the system and the
system failure probability is very small. By the EMO-MMO+
IS method, the estimated failure probability is 1.24 × 10−10.
Such an estimation is unbiased because the fourMPPs on g4 =
0 are obtained by EMO-MMO. Therefore, the estimation of
EMO-MMO+ IS is regarded as the benchmark.

Table 3 gives the results of this case. Both ALK-MAIS-
TCR and ALK-MAIS obtain very accurate results. Their effi-
ciency is very distinct: A considerable number of training
points are saved by ALK-MAIS-TCR. In one test, the DoEs
of them are offered in Fig. 7. It can be seen that most attention
of ALK-MAIS-TCR is paid to the system LSS. On the con-
trary, all the four component LSSs distract the attention of

Table 4 Results of Example 4.2
with different methods Method Function calls Pf (×10

−6) Cov(%)

MCS(1σ interval) 2 × 108 6.13([5.95,6.31]) 2.86

EMO-MMO+ IS 5 × 104 + 7687 + 104 6.33([6.13,6.53]) 3.20

FERUM#11 + IS >104 5.48 9.42

FORM 1160 13.0 –

ALK-MAIS(bounds) 42([39,47]) 6.36([6.10,6.56]) 3.60([3.18,4.01])

ALK-MAIS-TCR(bounds) 37.8([33,46]) 6.37([5.92,6.75]) 3.51([3.26,4.06])

“1σ interval” equals to (1 ±Cov)Pf

Fig. 8 A cantilever beam (Hu and Du 2018)

Table 5 Geometric
parameters of cantilever
beam

Parameter Value

a1(m) 1.5

a2(m) 4.5

b1(m) 0.75

b2(m) 2.5

c1(m) 0.25

c2(m) 1.75

d1(m) 1.25

d2(m) 4.75

L(m) 5.1
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ALK-MAIS. To sum up, introducing the TCR can reduce the
waste of training points for complicated SRA.

4.2 Series system with 10 components

This example is a series system modified from Refs. (Bichon
et al. 2011; Fauriat and Gayton 2014). It has ten failure modes
related to the impact crash-worthiness of a vehicle. The sys-
tem failure probability is defined as

P f ¼ P
g1 xð Þ≥1∪g2 xð Þ≥4:55∪g3 xð Þ≥32:5∪g4 xð Þ≥34:6∪g5 xð Þ≥34:5∪
g6 xð Þ≥0:32∪g7 xð Þ≥0:32∪g8 xð Þ≥0:32∪g9 xð Þ≥10:1∪g10 xð Þ≥15:89

� �

ð30Þ
in which x = [x1, x2,⋯, x11] is the random variables and gk is
the kth CPF. x and gk(k = 1,⋯, 10) are kept the same with
Refs. (Bichon et al. 2011; Fauriat and Gayton 2014), and
details about them can be seen there. Only the thresholds of
those CPFs are modified so that the true failure probability of
the system is very small.

The results of this example are given in Table 4. The true
failure probability of this system is 6.13 × 10−6, which is obtained
byMCSwith 2 × 108 simulations. EMO-MMO+ IS is also used
to calculate the small failure probability. The population size of
EMO-MMO is 500, and the number of generations is 100. A
total of 5 × 104 candidates are stored by EMO-MMO, and the K-

means algorithm divides them into 10 clusters. Ten times of local
optimization take 7687 function evaluations. Three inferior solu-
tions are eliminated and sevenMPPs are finally obtained. IS with
104 samples is performed based on the seven MPPs, and the
obtained failure probability is very close to the true one.
FORMcan also be applied to calculate a small failure probability.
By FORM, the MPP of each component is calculated, and mul-
tiple linear approximation can be constructed at the ten MPPs
(Hu and Du 2018). Then, MCS can be executed based on the
linear approximation. However, the accuracy of FORM cannot
be assured. For this problem, FORM takes 1160 function evalu-
ations while the error is quite large. Also note that, at one point,
all those CPFs can be obtained by one time of FE analysis in
practice. However, FORM has to be executed in a component-
by-component way. That is why it takes so many function eval-
uations. FERUM#11 + IS only obtains one MPP and the estima-
tion is a little biased. With ALK-MAIS-TCR, only 37.8 function
evaluations are needed, and a very accurate result is obtained.
This reveals the advantage of the proposed method. Without
considering the TCR, ALK-MAIS needs about four more func-
tion evaluations. It is beneficial to exclude the unimportant com-
ponents during building ALK models in SRA.

4.3 A cantilever beam

A cantilever beam from (Du 2010; Hu and Du 2018) is inves-
tigated here. As shown in Fig. 8, the beam is subjected to two
moments, two concentrated forces, and two distributed loads.
The geometric parameters of the beam are given in Table 5.
Twelve random variables exist, and details about them can be
seen in Table 6. Three main failure modes are considered here.
The first failure mode occurs if the maximal stress exceeds the
yield strength (σs), and its CPF is given by

g1 xð Þ ¼ σs−
6M

wh2
ð31Þ

in which Mis calculated by

M ¼ ∑
2

i¼1
Mi þ ∑

2

i¼1
Fibi þ ∑

2

i¼1
qLi di−cið Þ di þ cið Þ=2þ

∑
2

i¼1
qRi−qLið Þ di−cið Þ=2½ � ci þ 2 di−cið Þ=3½ �

ð32Þ

Table 6 Random variables of cantilever beam

Parameter Distribution Mean Standard deviation

M1(N · m) Normal 50 × 103 5 × 103

M2(N · m) Normal 30 × 103 3 × 103

F1(N) Gumbel 18 × 103 1.8 × 103

F2(N) Gumbel 30 × 103 3 × 103

qL1(N/m) Normal 30 × 103 1 × 103

qR1(N/m) Normal 20 × 103 1 × 103

qL2(N/m) Normal 20 × 103 1 × 103

qR2(N/m) Normal 1 × 103 10

w(m) Normal 0.2 1 × 10−4

h(m) Normal 0.4 1 × 10−4

σs(Pa) Normal 100 × 106 9 × 106

τa(Pa) Normal 4 × 106 0.4 × 106

Table 7 Results of Example 4.3 with different methods

Method MCS
(1σ interval)

EMO-MMO+ IS FERUM#11 + IS FORM ALK-MAIS-TCR
(bounds)

Function calls 5 × 109 105 + 4565 + 104 307 + 104 331 48([44,55])

Pf (×10
−7) 4.26([4.17,4.35]) 4.25 4.30 3.18 4.27([4.03,4.42])

Cov(%) 2.17 3.39 2.61 – 2.83([2.64,3.1])

“1σ interval” equals to (1 ±Cov)Pf
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The second failure mode occurs if the maximal deflection
is larger than 35 mm, and its CPF is defined as

g2 xð Þ ¼ 35−δ ð33Þ
in which δ is computed by

δ ¼ 1

EI

ML2

2
þ RL3

6
þ ∑

2

i¼1

Mi L−aið Þ2
2

− ∑
2

i¼1

Fi L−bið Þ3
6

− ∑
2

i¼1

qLi L−cið Þ4
24

− ∑
2

i¼1

qRi−qLið Þ L−cið Þ5
120 di−cið Þ þ ∑

2

i¼1

qRi L−dið Þ4
24

þ ∑
2

i¼1

qRi−qLið Þ L−dið Þ5
120 di−cið Þ

2
6664

3
7775

ð34Þ
where E is the Young’s modulus, I is the moment inertia, and
R is the reaction force at the fixed end. E = 200GPa and I =
wh3/12.R is given by

R ¼ ∑
2

i¼1
Fi þ ∑

2

i¼1
qLi di−cið Þ þ ∑

2

i¼1
qRi−qLið Þ di−cið Þ=2 ð35Þ

The third failure mode occurs because the shear stress ex-
ceeds the shear strength (τa), and its CPF is given by

g3 xð Þ ¼ τa−
3R
2wh

ð36Þ

Any of the three failure modes is not allowed, and the three
failure modes compose a series system.

The results of different methods are given in Table 7. The
failure probability obtained by MCS is 4.26 × 10−7, which is
very small. EMO-MMO+ IS obtains a pretty accurate result
by about 105 function evaluations. This time, FERUM#11 + IS
successfully obtains all the MPPs, and an unbiased estimation
is obtained. By FORM, 331 function evaluations are needed
while the result is quite inaccurate. However, by the proposed
method, only 48 training points are used to build three Kriging

x
z

y

1xF
1yF

6xF

2 yF

4xF

Fig. 9 A 3D truss

Table 9 Details of bars of 3D truss

Bar Node 1 Node 2 Area Bar Node 1 Node 2 Area

1 1 2 A1 14 3 10 A6
2 1 4 A2 15 6 7 A6
3 2 3 A2 16 4 9 A6
4 1 5 A2 17 5 8 A6
5 2 6 A2 18 4 7 A7
6 2 4 A3 19 3 8 A7
7 2 5 A3 20 5 10 A7
8 1 3 A3 21 6 9 A7
9 1 6 A3 22 6 10 A8
10 3 6 A4 23 3 7 A8
11 4 5 A4 24 4 8 A8
12 3 4 A5 25 5 9 A8
13 5 6 A5

Table 10 Random variables of 3D truss

Parameter Distribution Mean Standard deviation

A1(mm2) Normal 300 30

A2(mm2) Normal 320 32

A3(mm2) Normal 340 34

A4(mm2) Normal 360 36

A5(mm2) Normal 380 38

A6(mm2) Normal 400 40

A7(mm2) Normal 420 42

A8(mm2) Normal 440 440

F1x(N) Normal 4500 450

F1y(N) Normal 45,000 4500

F2y(N) Normal 45,000 4500

F4x(N) Normal 2250 225

F6x(N) Normal 2700 270

Table 8 Nodes
coordinates of 3D truss Node x (mm) y (mm) z (mm)

1 −1200 0 6400

2 1200 0 6400

3 −1200 1200 3200

4 1200 1200 3200

5 1200 − 1200 3200

6 − 1200 − 1200 3200

7 − 3200 3200 0

8 3200 3200 0

9 3200 − 3200 0

10 − 3200 − 3200 0
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models and a very accurate estimation is obtained for the
system.

Note that the CPF g1(x) is remarkably smaller than the
other two CPFs. To obtain all the MPPs by EMO-MMO,
one should normalize the values of the three CPFs into a
similar magnitude. Otherwise, several dominant MPPs will
not be obtained. That is because a uniform penalty factor is
used for all the CPFs in this paper. EMO-MMO will always
deem the region around g1(x) superior to that around the other
two CPFs. However, such a kind of normalization does not
need to be very strict. Just unifying the values of CPFs into a
similar magnitude has been able to meet the requirement.

4.4 A 3D truss

A space truss with 25 bars, as shown in Fig. 9, is investigated
to demonstrate the application of the proposed method to
practical engineering. The truss has 10 nodes, and their coor-
dinates are listed in Table 8. The number of bars, the nodes of
each bar, and individual area are shown in Table 9. Five loads
are exerted on nodes 1, 2, 4 and 6. The Young’s modulus of
bars 1~13 is 120 GPa and that of bars 14~25 is 70 GPa.
Random variables are given in Table 10. After several times
of FE analysis, it can be found that bars 6, 8, 23, and 24 are
subjected to a remarkably larger tensile stress than other bars.
The CPFs are defined as

g1 xð Þ ¼ 230−σ6 xð Þ
g2 xð Þ ¼ 230−σ8 xð Þ
g3 xð Þ ¼ 210−σ23 xð Þ
g4 xð Þ ¼ 210−σ24 xð Þ

8>><
>>: ð37Þ

in which σi(x)(i= 6, 8, 23, 24) are the tensile stresses of the four
vulnerable bars, and their unit is MPa. The four CPFs form a
series system. The four CPFs are calculated by FE analysis, and
one time of FE analysis can obtain all their values.

Results of different methods are offered in Table 11. The
true result is obtained by the EMO-MMO+ IS method. In this
method, the population size of EMO-MMO is 105, 1018 func-
tion evaluations are cost by four times of local optimization,
and 104 important samples are used to estimate the small fail-
ure probability. FERUM#11 + IS also successfully solves this
problem. FORM is independently executed four times to ob-
tain the MPPs of the four CPFs, and a linear approximation is

conducted at theMPPs. And the obtained failure probability is
very close to the true one. However, 357 times of FE analysis
are consumed by the four times of MPP exploration. By the
proposed method, only 95.5 times of FE analysis are required,
and an unbiased estimation is obtained.

5 Conclusions

This paper proposes a new method combining ALKmodel and
MAIS to address the SRA problem with small failure probabil-
ity. In each iteration, training points are chosen among the im-
portant samples predicted by a so-called surrogate LSS, and the
surrogate LSS is updated. After several iterations, the system
surrogate LSS converges to the true LSS. To obtain all the
MPPs on the surrogate LSS, a brilliant MMO algorithm
(EMO-MMO) is introduced. After filtering the quasi MPPs, a
weighted iPDF is constructed, and important samples consider-
ing the contribution of failure region are generated. To further
save the training points, TCR is introduced, and training points
are only chosen from the important samples located in the TCR.

Through four complicated examples, the characteristics of the
proposedmethod are demonstrated. Themethod can approximate
all the branches of system LSS and obtain all the main MPPs of
the system. The training points of the proposed method pays
much attention to the LSSs of components which really contrib-
ute to system failure. These two important features guarantee the
unbiasedness and high efficiency of the proposed method.
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Replication of results Detailed procedure of our method is shown in
Section 3.6. All tuning parameters are listed in Table 1. Source code of
EMO-MMO algorithm is available at https://github.com/ranchengcn/
EMO-MMO.

Table 11 Results of Example 4.4
with different methods Method EMO-MMO+ IS

(1σ interval)
FERUM#11 + IS FORM ALK-MAIS-TCR (bounds)

Function calls 105 + 1018 + 104 > 104 357 95.5 ([85,103])

Pf (×10
−6) 3.13 ([3.05,3.21]) 3.04 × 10−6 3.30 × 10−6 3.10 ([2.99,3.24])

Cov(%) 2.62 2.49% – 3.63 ([3.37,4.37])

“1σ interval” equals to (1 ±Cov)Pf
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