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Abstract
One of the issues for the automotive industry is weight reduction. For this purpose, topology optimization is used for
mechanical parts and usually involves a single part. Its connections to other parts are assumed to be fixed. This paper deals
with a coupled topology optimization of both the structure of a part and its connections (location and number) to other
parts. The present work focuses on two models of connections, namely rigid support and spring that prepares work for
bolt connection. Rigid supports are modeled by Dirichlet boundary conditions while bolt-like connections are idealized and
simplified as a non-local interaction to be representative enough at a low computational cost. On the other hand, the structure
is modeled by the linearized elasticity system and its topology is represented by a level set function. A coupled optimization
of the structure and the location of rigid supports is performed to minimize the volume of an engine accessories bracket
under a compliance constraint. This coupled topology optimization (shape and connections) provides more satisfactory
performance of a part than the one given by classical shape optimization alone. The approach presented in this work
is therefore one step closer to the optimization of assembled mechanical systems. Thereafter, the concept of topological
derivative is adapted to create an idealized bolt. The main idea is to add a small idealized bolt at the best location and to test
the optimality of the solution with this new connection. The topological derivative is tested with a 3d academic test case for
a problem of compliance minimization.

Keywords Mechanical system · Connections · Topology optimization · Level-set method · Topological derivative

1 Introduction

Automotive industry must constantly respect safety and
environmental standards, comfort requirement, etc., while
producing even more performant cars. One of the main
concerns is weight reduction. Lightweighting of vehicles
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actually leads to a reduction of fuel consumption i.e.
a reduction of CO2 emissions. Moreover, structures
lightening allows saving on raw materials and cost
avoidance. There are several methods to lighten parts,
including topology optimization. This method has been
studied quite a lot for the structure of a part alone while
its connections to other parts are fixed in the non-design
space. However, the performance of a system is strongly
affected by the locations and the number of its connections.
In the present work, connections are a not fixed data input
anymore. They are design-variables as well as the structure.

Shape and topology optimization of structures is a
well-established field (see e.g. Allaire 2002; Bendsøe and
Sigmund 2003). One of the most popular approaches is
the Solid Isotropic Material Penalization method (also
known as SIMP) (Bendsøe 1989, 2003). An alternative
approach is the level-set method combined with Hadamard’s
boundary variation method (Allaire et al. 2004; Wang
et al. 2003), which is the method used in the present
work. According to the original idea of Osher and Sethian
(1988, 2006), Sethian (1999), boundaries of the shape are
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tracked by the zeros of a level-set function. The advection
velocity is given by the shape derivative of the objective
function, computed by Hadamard’s method (Murat and
Simon 1976; Pironneau 1984; Simon 1980; Sokołowski
and Zolesio 1992). Furthermore, we combine the level-set
method with the notion of topological derivative which is
a complementary tool that improves the final shape and
topology of the structure by introducing new connections.

As introduced in Céa et al. (2000), Novotny and
Sokołowski (2013), Sokołowski and Żochowski (1999,
2001), the topological derivative indicates where it might be
more interesting to introduce a small inclusion or a small
hole with specific boundary conditions. It is conceptually
different from the shape derivative which merely indicates
how to move (already present) boundaries. The topological
derivative stems from an asymptotic analysis of the
objective function with respect to a small perturbation of
the initial domain. This notion has been deployed for a
wide range of models: linear elasticity system in Garreau
et al. (2001) and Sokołowski and Żochowski (1999) (for
holes with Neumann boundary condition), Navier-Stokes
equations in Amstutz (2005a) (for holes with Dirichlet
boundary condition), Helmholtz equation for wave guide
optimization in Samet et al. (2003), crack detection in
Amstutz et al. (2005b), image processing in Auroux et al.
(2006), damage evolution modelling in Allaire et al. (2011)
or inverse problems in Ammari and Kang (2004). The above
list is obviously not exhaustive. Yet, in section 3, we add one
more new example of a topological derivative, evaluating
the sensitivity to the nucleation of a new connection,
which is an idealized model of a standard bolt. This
mathematical ingredient is one of the main novelty of the
present work. We compute this topological derivative when
the objective function is the compliance of the elasticity
system in 3d. The asymptotic analysis is established with
a variational approach (see Rakotondrainibe (2020) for the
proof) although it can also be computed with an integral
approach or layer potential techniques as in Ammari and
Kang (2004), Garreau et al. (2001), and Guillaume and Sid
Idris (2002).

There are already some works dealing with supports
optimization for bar or frame structures (see e.g. (Bojczuk
and Mroz 1998; Mroz and Rozvany 1975; Szelag and Mroz
1978)) where location, number and stiffness of supports
are design-variables. A topological derivative approach is
used in (Bojczuk and Rebosz-Kurdek 2014) in order to
create new support in a problem of location and number
optimization of supports for bar structures. Optimal support
locations are studied in (Son and Kwak 1993) for eigenvalue
problems. More complex systems are studied in (Jiang
and Chirehdast 1997) in which a connection is modeled
by a spring: a SIMP approach is used to penalize spring
rigidity and allows to limit the number of connections

for 3d multi-components system. A coupled optimization
of both structure and supports with density approaches is
performed in Buhl (2002) and Zhu and Zhang (2010). A
multi-point constraints (MPC) based method is applied in
Zhu et al. ((Zhu et al. 2015; Zhu et al. 2017)) to optimize
connections and structure of multi-component systems. The
level-set method is employed in Xia et al. (2014) to optimize
both structure and support of continuum structures. This
work is quite close to our example in Section 2. However,
supports have changing shapes and are rigid in Xia et al.
(2014) whereas they have fixed shape and can be more
complex (as a bolt) in this paper. Instead of a gradient-
based method, an evolutionary optimization of structure
and connections is proposed in Li et al. (2001). For more
industrial implementations of connections optimization,
one can refer to Cai et al. (1994), Johanson (1996),
and Menassa and DeVries (1991). Recent advancement
of topology optimization of multi-component structural
design accentuate the interest in coupling structure and
connections optimization (see e.g. Liu and Kang 2018;
Woischwill and Kim 2018; Zhou and Saitou 2018). A
wider example of coupled topology optimization is given
in (Koppen et al. 2018) for an optical performance problem
combining a structural-thermal-optical analysis. The main
novelties of the present work are twofold. First, we consider
connections (either rigid supports or bolt-like connections)
which have a fixed shape and only their position is
optimized, concurrently with the topology of the structure
in a level-set framework. Second, we introduce a notion
of topological gradient for a connection, which allows to
decide when creating or not a new bolt-like connection.

The present work investigates two models of con-
nections, namely rigid support and bolt-like connection.
Section 2 focuses on the coupled optimization of rigid sup-
ports locations and the structure of a part in a mechanical
system. This issue is illustrated with a simplified industrial
test case of an accessories bracket assembly. The optimiza-
tion problem is to minimize the volume of the bracket under
a compliance constraint. The structure is classically opti-
mized with the level-set method (Allaire et al. 2004; Wang
et al. 2003). The positions of the rigid supports are opti-
mized with a parametric gradient-based algorithm. Section 3
extends our previous approach by replacing rigid supports
with bolt-like connections, thus opening the way to opti-
mize several parts connected by such bolts. We first give a
preparatory model of a standard bolt where the bolt is rep-
resented by a spring with rigid extremities. The pre-stressed
state and a contact model are not taken into account yet.
Then, topological derivative techniques are adapted to this
new setting. The topological derivative depends on two vari-
ables, the position and the orientation of the bolt, which
allow us to find the optimal placement of a new bolt in
order to decrease the compliance. Finally, this model is
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implemented on a simple academic 3d test case. The topo-
logical gradient is not included in an optimization loop yet.
It is used here to decide where to initially put a bolt. We
leave to further work (Rakotondrainibe 2020) the subse-
quent coupled optimization of a complete bolt model (with
the pre-stressed state) and the structure, possibly on a more
realistic test case, in the spirit of Section 2.

2 Rigid supports

2.1 Setting of the problem

2.1.1 Scope of the study

This section is devoted to a simplified model of an
accessories bracket assembly taken from a diesel engine
(cf. Figure 1). This simplified model has the characteristic
dimensions of a reference model given by Renault (cf.
Figure. 2). In the following test case, accessories are an
alternator, a belt tensioning roller and an air conditioning
(AC) compressor. Perfect bonding is assumed between the
accessories and the bracket. The union of all accessories and
of the bracket is what is called assembly. The accessories
bracket insures their positioning and their fastening to the
crankcase. The alternator supplies electricity to the vehicle.
The belt tensioning roller regulates the belt tension. The
AC compressor insures the flow and compression of the
air conditioning fluid. In the sequel, the accessories are not
optimized.

In this test case, connections are rigid supports. They
correspond to seven clamped zones of the bracket to the
crankcase which is not represented in this study. For the sake

Fig. 1 Simplified accessories and bracket where only the accessories
bracket (in brown) is to be optimized

Fig. 2 Reference engine (belt, accessories and bracket are in the lower
left-hand corner)

of simplicity, they are represented by discs on the surface
of the bracket. We choose this ideal shape in order to be
functional and user-friendly.

2.1.2 The elasticity problem

Let D be the working domain containing the accessories
and bracket assembly. This assembly �ASB ⊂ D is made of
disjoint parts

�ASB = � ∪ �NDS ∪ �ACC,

namely the design-space � (in brown in Fig. 1) and
the non design-space �NDS of the bracket and the
accessories �ACC (alternator, belt tensioning roller and AC
compressor). Its boundaries is likewise divided into disjoints
parts

∂�ASB = �T F ∪ �D ∪ �N,

where �T F is the traction-free boundary, �D corresponds to
clamped zones and loads are applied on accessories pulleys
�N (Neumann boundary conditions). Since the accessories
are not optimized, it is better to distinguish the traction-
free boundary of the design-space of the bracket, denoted
�, from the traction-free boundaries of accessories, that is
�T F \�. These boundaries are displayed in Fig. 3 for further
clarity. The orange part is the boundary to be optimized. We
denote by n the outer unit normal to ∂�ASB .

The assembly �ASB is made of linear isotropic
elastic materials. Typically, the bracket is aluminium
and accessories are mostly aluminium or steel. For a
displacement field , the strain tensor is then
defined by

ε(u) = 1

2
(∇u + ∇T u).
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Fig. 3 Boundaries of the sub-parts

The stress tensor is given by the Hooke’s law

Aε(u) = 2με(u) + λtr(ε(u))I,

with μ and λ the Lamé coefficients of the material. Surface
loads on the accessories pulley are applied simultaneously
on 3 different parts of �N . Loads g are then split into gALT ,
gBT R and gCOMP as displayed in Fig. 4. They correspond to
integrated contact force of the tensioned belt on each pulley
given in Table 1. These are values of the tension forces
applied in the reference model. The mechanical analysis
problem is then a single and static load case.

In the sequel, there are seven rigid supports, which are
discs, centered at points xi , 1 ≤ i ≤ 7 (cf. Figure 6).
Mathematically speaking, rigid supports correspond to zero
displacement on the clamped zones �D (Dirichlet boundary
condition). However, the transition between Dirichlet and
Neumann boundary conditions leads to singularity of the
elastic displacement, which is a delicate issue for computing
the shape derivative (see Fremiot and Sokołowski (2001),
Dapogny et al. (2019) and Remark 1 for more details).
To avoid mathematical technicalities, we rather use a
penalization and regularization technique to enforce the
Dirichlet boundary condition. More precisely, the Dirichlet
condition u = 0 on �D is replaced by the following Robin
or Fourier condition

Aε(u)n = −1

ε
u�(x − xi ) (1)

for each rigid support 1 ≤ i ≤ 7. The penalization
coefficient ε > 0 is a very small value and � is a
regularization of the characteristic function of the rigid

Fig. 4 Load case

support i centred at xi . To avoid discontinuous boundary
condition on �BRDS

, the smooth function � is equal to
1 inside the disc of center xi , then decrease to 0 in the
vicinity of that disc and is equal to 0 otherwise (cf. Figure 5).
Furthermore, this penalization technique avoids remeshing
the rigid supports zones while optimizing their location. The
center xi of the smoothed characteristic function is the only
parameter that varies. They are restricted such that functions
�(x − xi ) have disjointed support.

Assuming that surface loads are smooth enough, the
displacement field u of the assembly is then the unique
solution of the linear elasticity problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−div(Aε(u)) = 0 in �ASB

Aε(u)n = g on �N

Aε(u)n = 0 on �T F \�
Aε(u)n = − 1

ε
u

7∑

i=1
�(x − xi ) on �

. (2)

Note that, since � is a smooth compactly supported
function, the solution u of the above system is smooth and

Table 1 Tension force values

Accessory Tension force (N)

Alternator 2 020

Belt tensioning roller 1 554

AC compressor 2 742
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Fig. 5 Regularized characteristic function � of a given rigid support

its shape derivative can easily be computed, in particular
when moving the positions xi of the rigid supports.

2.1.3 The optimization problem

An industrial goal is to minimize the weight of the
bracket. Since the material density is constant, the weight
minimization is equivalent to a volume minimization. We
consider the volume of the optimizable part of the bracket,
in other words, the design space of the bracket

V (�) =
∫

�

dV . (3)

The volume reduction implies a loss of the assembly
stiffness which is controlled by the increase of the work
done by the loads, that is to say the compliance of the
assembly, which reads

C(�, xi ) =
∫

�N

g · udS. (4)

The initial compliance, denoted C0, is the work done by
loads with the full bracket before the optimization process.
In this test case, an increase of a given rate η of the initial
compliance is allowed.

Design variables are the structure of the bracket (denoted
by �) and the rigid supports locations xi . The main
purpose is then to find simultaneously the best compromise
between the topology of the bracket and the locations of
rigid supports. As there are two types of design variables,
there should be two types of design-spaces (cf. Figure 6).
Each support is allowed to translate in the plane (Y,Z)
representing the crankcase face, within a specific allocated
area to avoid collision of supports. One can choose an other

Fig. 6 Rigid supports and structure design spaces

division. The design space of the structure is naturally the
entire bracket.

The optimization problem is then to minimize the volume
of the bracket (3) under a constraint on the maximal
compliance of the assembly (4). A typical formulation of
this problem is

min
(�,xi )∈Uad

s.t. C(�,xi )≤(1+η)C0

V (�), (5)

where Uad is the set of admissible shapes of the
structure and admissible locations of rigid supports. Note
that the volume V (�) does not depend on the rigid
supports locations xi . The problem (5) is rewritten using the
augmented Lagrangian functional, J (�, xi ), that reads

min
(�,xi )∈Uad

max
α≥0

{

J (�, xi ) = V (�) + α(C(�, xi ) − (1 + η)C0)

+β
2
(C(�, xi ) − (1 + η)C0)

2
}

, (6)

where α and β are respectively Lagrange multiplier and
penalty parameter for the compliance constraint. The value
of α is optimized and that of β is updated during the
optimization process (see Section 2.2.6 for details). Readers
are referred to Luenberger and Ye (2008) and Nocedal
and Wright (2006) for more informations about augmented
Lagrangian methods.
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2.2 A coupled optimizationmethod

We propose here a coupled method for the optimization of
both the structure of the bracket and the locations of rigid
supports. An important distinction should be made between
connections and structure. Although both are optimized
using a gradient-based method, this distinction comes from
their different representation. Rigid supports have simple
and fixed shapes: their centers are the only design variables.
By contrast, the shape of the structure is geometrically more
complex. Its boundary is optimized by using the level-set
method. As there are two types of design-variables, there
are two associate design-spaces (see Section 2.2.5 for more
details about their interaction). In the following, to compute
gradients (more precisely, partial derivatives) with respect
to one type of design variables, the other type of design
variables is kept fixed. Thus, support locations are fixed
when the structure is optimized and vice versa.

2.2.1 Parametrization of the rigid supports

The rigid supports have fixed shapes and sizes and only
their centers are design variables. Their optimization is thus
performed with a parametric gradient-based algorithm

xk+1
i = xk

i − δk ∂J

∂xi

(�, xk
i ), (7)

where xk
i is the center of the rigid support i at iteration

k, δk is the descent step and ∂J
∂xi

(�, xi ) is the partial
derivative of (6). Because of our choice of a penalized and
regularized formulation of the rigid supports, they don’t
need to be exactly meshed and there is no remeshing during
the optimization process. This approach is then numerically
cost-effective.

2.2.2 Derivative of the objective function with respect
to support locations

Consider the rigid support i centered at point xi . The descent
direction of (7) is obtained by differentiating J with respect
to the point xi . This Lagrangian functional J , defined by
(6), depends on xi through the compliance but it is not
clearly explicit in its expression (6). To bring to light this
dependence, let us consider for simplicity the compliance C,
defined by (4), instead of J (which depends polynomially
on C) and define another Lagrangian function

L(�, v, q, xi ) =
∫

�N

g · vdS +
∫

�ASB

Aε(v) : ε(q)dV −
∫

�N

g · qdS

+1

ε

7∑

i=1

∫

�

v · q�(x − xi )dS, (8)

where and � ⊂ �ASB are independent
variables. As usual, one can check that the system is self-
adjoint, i.e., the adjoint state p is simply p = −u. Introduce
the coordinates of the vector xi = (xi, yi, zi). Recalling
that rigid supports are allowed to translate in the plane
(Y,Z), the partial derivative of L with respect to xi is
zero. The descent directions along Y and Z are respectively
obtained by first differentiating the Lagrangian (8) at yi and
zi for fixed (v,q) and, second, evaluating the derivative at
(v,q) = (u, −u). We obtain

∂L
∂yi

(�,u, −u, xi ) = 1

ε

∫

�

|u|2 ∂�

∂yi

(x − xi )dS,

∂L
∂zi

(�,u, −u, xi ) = 1

ε

∫

�

|u|2 ∂�

∂zi

(x − xi )dS. (9)

The adjoint state is defined such that the partial derivative
of the Lagrangian is equal to the partial derivative of the
compliance. We have then

∂L
∂xi

(�,u, −u, xi ) = ∂C

∂xi

(�,u, −u, xi ). (10)

The partial derivative of J , defined by (6), is now easy to
calculate and it is left to the readers.

Remark 1 If the Dirichlet boundary conditions on the
supports �BRDS

were not penalized and regularized, the
computation of the derivative (9) would be much more
involved. Although the computation of shape derivatives
for Dirichlet boundary conditions is well known (see
e.g. Allaire et al. 2007, 2004), the difficulty is that the
elastic displacement u is not smooth on the line which
is the transition between Dirichlet boundary conditions
and Neumann boundary conditions and therefore most
classical formulas of shape derivatives do not hold true.
For more details, the reader is refered to Fremiot and
Sokołowski (2001) and Dapogny et al. (2019). This lack
of regularity of u at the interface on the boundary between
a Dirichlet zone and a Neumann zone is overcome by the
penalization or Robin boundary condition (1), as well as
the smoothness of the regularization � of the characteristic
function of the support (see Fig. 5). In such a case, the
resulting displacement u is smooth and the problem is
suitable for the classical formulas of shape derivatives
with Hadamard’s method. This difficulty appears also in
the case of an interface optimization and it can be
cured also by a regularization process as explained in Allaire
et al. (2014).
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2.2.3 Level-set method for the structure

Let be a working domain containing all admissible
shapes. The structure � is described by a function ϕ defined
on D by

⎧
⎨

⎩

ϕ < 0 in �

ϕ = 0 on ∂� ∩ D
ϕ > 0 on D\�

. (11)

The level-set method captures a given shape on a fixed
mesh and it does not require remeshing. The shape is
optimized using a gradient-based algorithm. The shape,
initially defined by ϕ0(x), is updated to a new shape defined
by ϕ(t, x), by solving the following advection Hamilton-
Jacobi equation

{
∂ϕ
∂t

(t, x) + V (t, x)|∇ϕ(t, x)| = 0
ϕ(0, x) = ϕ0(x)

, (12)

where V (t, x) is a scalar advection velocity given by the
shape derivative of the Lagrangian functional (6).

2.2.4 Shape derivative for the structure

The advection velocity of (12) is obtained by Hadamard’s
method of shape differentiation. The dependence on xi is
left out to ease the notations. For a bounded smooth domain

, we consider variations of the form �θ = (Id +
θ)(�), where is a small vector field. In other
words, θ is the displacement field defining the transport of
the initial domain � to the new one �θ . Following Murat
and Simon (1976), Pironneau (1984), Simon (1980), and
Sokołowski and Zolesio (1992) the shape derivative of a
function J at � is defined as the Fréchet differential at 0 of
the map θ 	→ J ((Id + θ)(�)),

J ((Id + θ)(�)) = J (�) + J ′(�)(θ)

+o(θ) with lim
θ→0

|o(θ)|
‖θ‖ = 0, (13)

where θ 	→ J ′(�)(θ) is a continuous linear map on

. The shape derivative of the volume is well-known

V ′(�)(θ) =
∫

�

θ · ndS.

As in (Allaire et al. 2004), the shape derivative of the
compliance is obtained by differentiating the Lagrangian
(8) at � for fixed (v,q). Recall that the inhomogeneous
Neumann boundaries (where the loads are applied) are
fixed. It means that θ ≡ 0 on �N . Again, since the
Lagrangian (8) features the compliance, the problem is
self-adjoint and the adjoint state is simply p = −u.

Differentiating L(�, v,q) with respect to the shape and
evaluating the derivative at (v,q) = (u, −u) yields

∂L
∂�

(�, u, −u)(θ) = −
∫

�

θ · n
(

Aε(u) : ε(u)

+1

ε

7∑

i=1

(
∂|u|2
∂n

+ H |u|2
)

�(x − xi )

)

dS,

where H = div(n) is the mean curvature. However, rigid
supports locations are fixed during the optimization of the
structure. They are excluded from the design-space of the
structure. Therefore, the vector θ vanishes on each rigid
support. The shape derivative of the Lagrangian thus reads

∂L
∂�

(�,u, −u)(θ) = −
∫

�

θ · nAε(u) : ε(u)dS. (14)

As previously, the shape derivative of the Lagrangian is
equal to the shape derivative of the compliance. All the
elements are here to calculate the shape derivative of the
Lagrangian function (6) and it is left to the readers.

2.2.5 Interactions between rigid supports and structure

From a technological point of view, the bolt threads need
some minimal surrounding of material so that diffusion
of efforts into the structure is appropriate (cf. Figure 7).
This minimal volume of material has a fixed geometry that
is deduced from the characteristic shape and size of the
rigid support. In numerical practice during the optimization
process, this minimal volume follows the rigid support
location. Imposing a negative level set function inside this
non-design domain ensures an appropriate interaction with
the design space of the structure being optimized.

We recall that in the following, for the sake of simplicity,
two rigid supports cannot merge nor collapse. This is
ensured by assigning disjointed design space for each rigid
support (see Fig. 6).

2.2.6 Algorithm

The level-set of the structure is initialized as the completely
filled bracket design space. The number of connections is
fixed to 7. Their initial location corresponds approximately
to the reference model (see Fig. 6). The structure and the
support locations are alternatively optimized. Inside the
optimization loop, two iterations of structure optimization
are performed, followed by one iteration for the support
locations, until convergence. This alternate scheme handles
easily the different order of sensibilities magnitude of
respectively the structure and the supports. The Lagrange
multiplier for the constraint on the compliance defined at (6)
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Fig. 7 Rigid supports surrounded by non-design domain of the
structure

is optimized according to the optimality condition at each
iteration by

αk+1 = αk + β(C(�k, xk
i ) − (1 + η)C0), (15)

The penalty parameter β is multiplied by a factor 1.1 every
10 iterations. They are initialized to α = 1 and β = 0.01.
Concerning the rigid supports, which are not meshed and
move according to their center xi , they are updated by (7)
where the descent step δk is initialized to move them by at
most one or two lengthscales of the mesh. The Hamilton-
Jacobi (12) is advected with a standard scheme (Allaire et al.
2004).

This work relies on two types of continuous gradients
(the shape derivative for the structure and a family of partial
derivatives for rigid supports). An elementary stopping
criterion would be to check if the norm of each gradient
tends toward zero. However, numerical discretization errors
of these derivatives, due to the present differentiate-then-
discretize method, imply that their norm will never go to
zero. One could implement a stopping criterion by checking
if the gradient norm is small enough, which requires a
calibration of the numerical errors. For simplicity, we did
not use any stopping criterion and rather the number of
iterations was fixed at the beginning. The algorithm can be
restarted with the last shape and locations as initial guess if
the number of iterations is not satisfactory.

2.3 Results

The test case uses a tetrahedral mesh with 109 360 elements.
We recall that the optimization problem is to minimize the
volume of the bracket under a compliance constraint (see
(5)). An increase of η = 2% of the compliance is allowed.
Figures 8 and 9 compare the optimal bracket obtained
respectively by a classical structure optimization (without
moving rigid supports) and by a coupled optimization of
both structure and support locations. The bracket topology
is significantly different since it is a single block in the first
case whereas it is divided into two parts in the coupling case.
Extremal changes in support locations range from 12 to 28
mm. The support optimization has been able to identify one
useless connection. It is still displayed on Figs. 9 and 10
because of the settings of the non-design domain of the
structure around the rigid support. However, this support,
disconnected from the structure, is not necessary to respect
the compliance constraint. It is noteworthy that the same
support is needed by the optimized design on Fig. 8 in order
to respect the compliance constraint. Therefore, the coupled
optimization, not only can improve the final design, but
can also indirectly optimize the number of connections. Of
course, it only leads to a reduction of that number, not an

Fig. 8 Classic structure optimization for fixed support locations
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Fig. 9 Coupled support locations and structure optimization

increase (see Section 2.4 on this issue). Finally, this use case
reveals about 1.50kg of lightening of the bracket compared
to a classical optimization of its structure (corresponding to
an additional 35% improvement).

Fig. 10 Lateral views of result
in Fig. 9 : Coupled support
locations and structure
optimization

Figures 11 and 12 give the history of convergence
of the volume and the compliance for the classical
structure optimization and for the coupled optimization.
One can notice oscillations of the compliance in the
case of the coupling. Those oscillations are typical of
augmented Lagrangian algorithm where the value of the
constraint converge non-monotonically to the target value.
Actually, the optimization of support locations decreases
the compliance. It counterbalances the increase due to the
volume minimization. Results are gathered in the Table 2.

2.4 Add a new rigid support using a topological
derivative approach

The previous section revealed that the coupled optimiza-
tion of structure and supports locations already enables
indirectly a reduction of the number of connections. A
legitimate question arises now to widen the scope of the
previous approach : how to add connections? The topo-
logical derivative might be an efficient way to do so. The
main idea of this method is to check if it is favourable to
add a small rigid support and where. The expression of the
topological derivative is already known in 2d and 3d. The
inclusion of a hole with Dirichlet boundary condition has
already been studied by Guillaume and Sid Idris (2002):
these authors established the topological derivative for the
Poisson equation for a wide range of objective functions
and arbitrarily shaped holes. These results were extended to
the linear elasticity system in Garreau et al. (2001) in 2d
and 3d using an integral approach. The same results can be
obtained with a variational approach, see Rakotondrainibe
(2020), but they are not implemented on numerical test
case yet.
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Fig. 11 History of volume convergence for classical and coupled optimization

3 Standard bolt

3.1 Motivations

A rigid support is used in the industry as an idealized
model of connection provided it is still meaningful. The
correct transmission of efforts between two assembled parts
sometimes requires a more representative model for the
connection, e.g, the bolt connection type. However, fine
modelling of the connection by finite element method is not
necessary if one is not interested in local results, which is
the case for the topology optimization context. In the case
of long bolt, we may advantageously consider an analytical
model. This idealized model is hence established in the
following. Physical representativeness is kept at first order.
This model aims to be easy to use for optimization process
and topological derivative developments.

3.2 Idealizedmodel

3.2.1 Generalities

We propose a simple representation in which displacements
continuity between the bolt and the parts are embodied
by two spheres symbolizing its head and its thread (see
Fig. 13). This property is realized by applying rigid body
motions in both spheres. In this idealized model, the head
and the thread, respectively denoted by ωA and ωB , are
separated by a distance �, in the direction of a unit vector e,
and have a radius re scaled by a factor ρ. The length � stands
for the implantation length of the bolt in the assembly and
the radius reρ corresponds to the effective radius of the bolt
(Guillot 1989).

This model is associated to the rigidity matrix K of
the bolt, obeying to the Euler-Bernoulli condition for long

Fig. 12 History of compliance
convergence for classical and
coupled optimization
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Table 2 Comparison of classical and coupled optimization results

Design variables Weight (kg) Volume (mm3) Compliance (μJ)

Structure 4.22 1.56E+06 128 581

Supports + Structure 2.71 1.00E+06 128 581

beam. The spheres can remotely interact with each other
through the spring-like law : F = KLs , with F the
generalized force and Ls the generalized lengthening of the
bolt. For the sake of simplicity, the pre-stress of the bolt
is not taken into account yet (this is the topic of further
work (Rakotondrainibe 2020)), and only the rigidity along
the direction e between ωA and ωB is considered for the re
mote interaction law.

3.2.2 Energy formulation

Let � be a smooth bounded domain of containing an
idealized bolt-like connection. The boundary of this domain
is made of two disjoint parts, ∂� = �N ∪�D . Neumann and
Dirichlet boundary conditions are respectively imposed on
�N and �D . We also define the perforated domain �ρ , i.e.
the domain � without the head and the tread of the idealized
bolt.

�ρ = �\(ωA ∪ ωB). (16)

The idealized model is defined by an energy formulation,
using an average approach and a non-local interaction
between ωA and ωB . Introduce the following notation for
the average on ωA of the projection of the displacement
along e, the axis of the spring,

The lengthening Ls of the spring is the difference between
the average displacements in ωA and ωB along the axis of
the spring. The space of admissible displacements for this

Fig. 13 Standard bolt and the idealized model

study corresponds to zero displacement on �D and rigid
displacement fields in ωA and ωB ,

V = {φ ∈ H 1(�)3, φ = 0 on �D, φ(x)

= Ca + Rax in ωA, φ(x) = Cb + Rbx in ωB}, (17)

where are tra nslations and Ra =
−RT

a and Rb = −RT
b are anti-symmetric 3x3 matrices

modelling infinitesimal rotations. For φ ∈ V , define the
energy functional

where g is the applied surface load. As the idealized remote
interaction model involves two rigid body motions on ωA

and ωB , the space V is appropriate for the analysis. The first
term of (18) is the elastic energy. The rigid body motions in
each sphere implies that ωA and ωB have zero deformation.
Thus, they are excluded from the elastic energy. The last
term is the energy of a spring of rigidity K(ρ) that, among
other things, depends on the relative size ρ of the spheres.
The so-called spring can be depicted as an out-of-plane
non-local rigidity linking the two spheres (cf. Figure 14).

The minimum potential energy principle then states that
the displacement field describing the assembled system is
the unique minimizer u ∈ V of (18) in V , i.e.,

E(u) = min
φ∈V

E(φ). (19)

Then u satisfies

(20)

with and Ra(ρ) and Rb(ρ) anti-
symmetric matrices. Since these translations and rotations
are unknown, they are determined by adding forces and

Fig. 14 Graphical representation of the non-local rigidity
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moments equilibrium on the boundary of ωA and ωB which
are the two last equations of (20).

3.3 Adding an idealized bolt-like connection using a
topological derivative approach

3.3.1 Classical definition of the topological derivative

This idealized model of a standard bolt is well adapted
to topological asymptotic analysis, as we shall see. Let us
recall classical topological derivative principles. In Ammari
and Kang (2004), Garreau et al. (2001), Novotny and
Sokołowski (2013), and Sokołowski and Żochowski (1999),
the topological derivative is obtained by an asymptotic
analysis of an objective function with respect to the creation
of ωρ ⊂ �, a small hole or a small inclusion with suitable
boundary conditions. This small perturbation is centred at
a point x0 in the domain and has a fixed shape ω that is
rescaled by a small factor ρ > 0, namely

(21)

Consider some objective function J to minimize: we denote
by Jρ(�) its value in the domain �, perturbed by ωρ (thus,
J0(�) is its value in the unperturbed or background domain
�). The objective function J is said to admit a topological
derivative DJ(x0) at the point x0 for an inclusion of shape
ω, if the following asymptotic expansion holds for small
ρ > 0

Jρ(�) = J0(�) + s(ρ)DJ (x0) + R(s(ρ)), (22)

where s(ρ) is a positive scalar function and R(s(ρ)) is a
remainder term satisfying

lim
ρ→0

s(ρ) = 0 and lim
ρ→0

R(s(ρ))

s(ρ)
= 0.

In (22), the term DJ(x0) is the topological derivative at
the point x0. If the quantity DJ(x0) is negative, it is then
favourable to add a small hole or a small inclusion at the
point x0.

3.3.2 Insertion of two rigid bodies linked by a spring

This section adapts the previous definition (22) to the model
of a small idealized bolt (ρ goes to zero). The asymptotic
expansion then expresses the sensitivity of an objective
function with respect to the creation of a small pair of rigid
inclusions linked by a fixed-length spring of rigidity K(ρ).
For simplicity, we choose the following dependence on the
size ρ of the inclusions

K(ρ) = κρ, (23)

with κ > 0 independent of ρ. Other scalings of K(ρ),
like κρk , are studied in Rakotondrainibe (2020). Let � be
a smooth domain of and �1, �2 a partition of it, that is
� = �1 ∪ �2 and �1 ∩ �2 = ∅. To avoid technicalities,
the objective function is evaluated in �1, while the bolt-like
connection is included in �2. For smooth functions F and
G, consider a general objective function of the type

J (�) =
∫

�1

F(u)dV +
∫

�N

G(u)dS. (24)

In the sequel, we choose ω to be the unit ball of ,
which allows us to compute explicitly the coefficients of the
topological derivative. The effective radius is then re = 1.
Let ωA be the small inclusion of shape ω, rescaled by an
adimensional factor ρ and centered at the point x0 ∈ �2 as
shown in Fig. 15. The second inclusion, denoted ωB , is the
translation of ωA at a distance � > 0 and in the direction e,
a unit vector. More specifically, we have

(25)

According to the idealized model given in the previous
section, ωA and ωB represent respectively the head and the
thread of a small bolt-like connection. As before, Jρ(�)

denotes the value of the objective function in the perturbed
domain with a connection of size ρ, while J0(�) is its value
in the unperturbed or background domain.

In Rakotondrainibe (2020), it is proved that the objective
function J (�) admits a topological derivative DJ(x0, e)
at the point x0 for a spring of direction e and for a pair
of inclusions of shape ω, in the sense that the following
asymptotic expansion holds for any small ρ > 0

Jρ(�) = J0(�) + ρre

(
1

κ
+ 2

τ

)−1

(u(x0 + �e)

−u(x0)) · e(p(x0 + �e) − p(x0)) · e + O(ρ2),

(26)

with τ = 12πμ(2μ+λ)
5μ+2λ

where μ and λ are the Lamé
coefficients of the background domain. The topological
derivative is scaled by a factor ρ. It involves κ , the behaviour
of the spring independent of ρ and the orientation e of the

Fig. 15 Perturbation of the domain �
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spring. Moreover, it depends on the displacement field u of
the background domain and on the associated adjoint state
p that solves

(27)

where is the characteristic function equal to 1 in �1

and 0 otherwise. This scaling of ρ and the dependence on
u and p are reminiscent of the topological derivative for the
Dirichlet problem (Garreau et al. 2001; Guillaume and Sid
Idris 2002). The asymptotic expansion (26) results from a
long asymptotic analysis that is not developed in this paper
(see (Rakotondrainibe 2020) for the proof).

The major novelty is that the topological derivative given
in (26) characterizes a remote interaction law and depends
on two parameters, the center of the first inclusion x0 and the
direction of the spring e. In the classical definition (22), the
topological derivative only depends on a single parameter,
the center of the local inclusion x0.

Note that the ideal bolt-like connection given by this
approach is a connection of small size, so that it does not
match with the realistic size of a bolt. The topological
derivative gives then the best location to add a small connec-
tion. Once its efficiency is verified, it is rescaled (by para-
metric optimization) at a standard size, which is more realistic.

3.3.3 Numerical illustration

The meaningfulness and accuracy of the topological
derivative are checked on a very simple, academic, 3d test
case. Figure 16 presents a cube with a slit or opening,
clamped at the bottom and on the left.

Dimensions of the cube are given in Fig. 16. The opening
goes to the center of the face so that its length is

√
48.02.

The Young’s modulus E of the background domain is
rescaled to 1 and its Poisson’s coefficient is 0.3. Loads are

Gaussian functions centered at points xY = (7.5, 10, 2.5)

and xZ = (5, 5, 10). They are deliberately non-symmetric
so that horizontal and vertical configurations are different.
They are explicitly given by g = exp(−((x − xY )2 +
(z − zY )2)) and g = exp(−((x − xZ)2 + (y − yZ)2))

respectively on the face of normal Y and Z. Loads are
applied simultaneously.

The length of the spring is � = 1. Setting the Young’s
modulus Espring to 1, the rigidity of the spring is given by

κ = Espringπ

�
re where re = 1 is the radius of the unit ball. The

relative radius of the spheres is ρ = 0.3. Their rigid motion
is implemented by setting rigid material properties on each
sphere. In this test case, the Young modulus of the spheres is
100*E and the Poisson’s coefficient is unchanged. This test
case was implemented on FREEFEM++ (Hecht 2012) using
a tetrahedral mesh with 237 887 elements and a minimal
mesh size of 0.1.

This test case is not an optimization problem. The topo-
logical derivative is used just to put an initial bolt-like
connection in order to stiffen the cube. A coupled optimiza-
tion of both structure and locations/number of connections
and structure will be studied in Rakotondrainibe (2020). The
problem here is to create a small pair of rigid inclusions
linked by a spring to decrease the compliance, which reads

C(�) =
∫

�N

g · udS.

In other words, the topological derivative should indicate
the most interesting location to add an idealized bolt-like
connection, as well as the most favourable direction of the
bolt axis. Since the objective is the compliance, the problem
is self-adjoint so the topological derivative has the following
form

DJ(x0, e) = −re

(
1

κ
+ 2

τ

)−1

((u(x0 + �e) − u(x0)) · e)2 . (28)

Fig. 16 Cube with a slit, its
loadings and dimensions
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Fig. 17 Optimal small bolt-like
connection for a horizontal
orientation (e = (0, 1, 0)) and
iso-values

Fig. 18 Optimal small bolt-like
connection for a vertical
orientation (e = (0, 0, 1)) and
iso-values

Table 3 Optimal values (recall that C0(�) = 7.01)

Orientation Cρ(�) E(�) x0 (θ, φ) DJ(x0, e)

Horizontal 6.87 6.62 (7.76 , 8.44 , 9.03)
(

π
2 , π

2

) −1.31

Vertical 6.58 5.91 (5.63 , 9.00 , 8.42) (0 , 0) −3.67

Optimal 6.50 5.52 (5.46 , 9.25 , 8.50)
(

5π
6 , π

2

)
−4.97

Fig. 19 Optimal position and
orientation
(e =

(
0, sin( 5π

6 ), cos( 5π
6 ))

)
) of

the small bolt-like connection
and iso-values
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This topological derivative involves an harmonic mean
of rigidities due to the interaction between the spring
and the background material that are respectively depicted
by κ and τ . It is intuitive that the topological derivative
corresponds to a certain energy of the spring. Formula
(28) is still valid if one wants to add a new bolt-like
connection in a domain already containing one bolt or more,
provided that u is computed in the domain featuring those
previous bolt-like connection (see Rakotondrainibe (2020)
for the proof). For graphical purposes, it is more suitable
to represent the vector e in spherical coordinates e =
(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). The angles θ and φ

are calculated every π/18 radian. The topological derivative
is computed for any x0 in the domain which insures that both
spheres are inside the cube and they do not stick to the point
of application of forces. This is thus geometrically evaluated
in a smaller cube and unsuitable values are truncated. Since
it is always negative in this test case, one can choose x0 as
the point of the most negative value of DJ .

It turns out that the compliance of the perturbed structure
(with the inclusions linked by a spring) actually matches
the initial compliance perturbed by the topological gradient.
More precisely, denote by Cρ(�) the compliance when
the small bolt-like connection is added. For this test case,
the initial compliance, i.e. the one without that small bolt,
is C0(�) = 7.01. Define a so-called estimator E , as the
topological asymptotic expansion without the remainder
term

E(�) = C0(�)−ρre

(
1

κ
+ 2

τ

)−1

((u(x0+�e)−u(x0))·e)2.

(29)

Figures 17 and 18 represent iso-surfaces of the topologi-
cal derivative field for two given orientations of the spring,
namely horizontal and vertical. The small bolt-like connec-
tions are located in the area of the most negative value of the
topological derivative. The topological derivative should be
computed in the area of the gap. Nevertheless, it is computed
everywhere to get all possible information for overall com-
prehension. There are some interesting iso-values around
the application point of the horizontal load for the horizontal
bolt-like connection (likewise for the vertical orientation) as
displayed in Figs. 17a and 18a. It means that an horizontal
connection could counter the horizontal force, likewise for
the vertical orientation. In that case, this connection should
not be considered as a bolt anymore. It should be seen as
a tool to stiffen the structure. Concerning the bolt-like con-
nection, it should be placed in the area of the gap. The
topological derivative can be restricted to that zone. Yet, the
better location aims to close the gap in both cases. Also,
the estimator (29) is close to the value of the compliance

Fig. 20 Cartography of DJ for fixed x0 = (5.46, 9.25, 8.50) in terms
of the angles (θ, φ) defining direction e

of the perturbed domain Cρ(�) (see Table 3). The differ-
ence corresponds to the remainder term. The compliance
and the estimator should be closer if the size of the spheres is
smaller. Actually, the asymptotic analysis of the topological
derivative is more accurate for smaller values of ρ. How-
ever, the size of the spheres is numerically limited by the
size of the mesh. Therefore, it has to be as fine as possible
to get better accuracy of the topological derivative.

More generally, there are two strategies to seek for the
best configuration of the couple (x0, e). The first approach
is to fix an orientation e and then compute the topological
derivative for all candidate point x0. This evaluation is
repeated for all directions e. The best configuration then
matches with the most negative value of the topological
derivative among all tested orientations (see Fig. 19). It
intuitively corresponds to a slanted orientation that closes
the gap. The small bolt-like connection is in a path that
connects the loads. The second strategy is to compute
the topological derivative for a given point x0 and for all
directions e. It is applied for the optimal location given
by the first approach and leads to the cartography given at
Fig. 20. The best orientation for that location still matches
with the most negative value of the topological derivative.

This test case proves the accuracy of the topological
derivative approach in order to add one connection. Of
course, after adding a new connection, a coupled optimiza-
tion of both the structure and the connection position should
be performed (this is discussed in Section 4).

4 Conclusion and perspectives

This work shows good results for the coupled optimization
of both rigid support locations and structure for a
problem of volume minimization under a compliance
constraint. The idealized model proposed for a bolt-like
connection provides also satisfactory result in order to add
a new connection using topological derivative techniques.
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Therefore, the optimization of connections presented in this
work is one step closer to the optimization of assembled
mechanical systems. However, we have so far used an
incomplete model of a bolt. Future work will consist
in implementing the pre-stress to the idealized model of
the bolt and in introducing the pre-stressed state to the
mechanical analysis. This pre-stressed state implies the use
of a contact model. An other important ongoing work is
to perform a coupled optimization of both structure and
connection locations and orientations (after they have been
added by using the topological gradient). The coupled
optimization will follow the same spirit as in Section 2,
except that the type of connections is different. These
perspectives are the topic of Rakotondrainibe (2020).
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