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Abstract
Topology optimization on a unit cell is a common technique to improve the fundamental frequencies of periodic cellular solid
structures. During this procedure, the effective properties of cellular solids are primarily computed by the homogenization
method. This homogenizationmethod is based on the classic continuum theory under the assumption that the unit cell is infinitely
small. Hence, this classic strategy is inadequate to interpret the size dependence of the optimal results. The aim of this study was
to describe and examine size dependence in relation to the topology design of the unit cell to achieve maximization of the
structural fundamental frequencies. For this purpose, we determined the effective properties of the cellular solids and constructed
the optimization formulation based on the couple-stress theory rather than the classic theory. Amodified bound formulation of the
objective and constraint functions was used to avoid the non-differentiability of repeated frequencies. Although the existing
theory does not reflect size dependence, our optimization formulation was able to identify the size dependence of both the
microstructural topologies and the fundamental frequencies. The size-dependent results are achieved by varying of the mecha-
nisms to achieve the maximal fundamental frequencies in response to cell size variation. The present formulation is suitable for
the unit cell design of cellular solid structures that possess local dimensions comparable to the cell size, and this novel formulation
has expanded the application scope of the classic microstructural design problem for periodic materials.

Keywords Topology optimization . Size dependence . Repeated eigenvalues . Couple-stress

1 Introduction

Incorporating the structural optimization method to improve
structural fundamental frequencies is a classic technique used
to avoid structural resonance, and this approach has attracted a

great deal of attention. Typically, there are two fundamental
issues regarding the geometric levels of the design variables
that must be addressed to allow for realization of this concept.
One issue involves the structural parameters, such as the to-
pologies, the boundary curves, and the sizes of structural com-
ponents, used as design variables (Olhoff 1989; Seyranian
et al. 1994; Du and Olhoff 2007). In contrast, the other in-
volves the microstructural parameters of periodic materials,
such as the microstructural topologies of the unit cell, used
as design variables (Niu et al. 2009; Du and Yang 2015; Du
and Sun 2017). Both of these problems have been actively
studied, and the classic monograph by Bendsøe and
Sigmund (2003) provides information regarding the earlier
developments on this topic.

In regard to microstructural design problems, the actual
heterogeneous material containing periodic microstructures
is typically replaced by a given homogeneous continuum that
possesses effective properties, and the structural responses are
then calculated using those effective properties. The homoge-
nization of heterogeneous material therefore plays a key role
in this topic. The homogenization method, which is based on
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the perturbation technique, is generally the most commonly
used method. In this method, the microstructure is assumed to
be infinitely small, and the effective constitutive constants are
derived using the perturbation expansion technique (Hassani
andHinton 1999). By using this classic homogenizationmeth-
od, researchers have reported numerous microstructural de-
sign studies over the past two decades since Sigmund
(1994b) proposed the inverse homogenization strategy of ma-
terial design. The objective functions in the previous studies
are not only confined to the structural frequencies but also
include a range of physical properties, such as elastic stiffness
(Neves et al. 2000; Chen et al. 2018; Gao et al. 2018), buck-
ling strength (Thomsen et al. 2018), Poisson’s ratio (Sigmund
1994a), thermal expansion coefficient, and conductivity.
Previously published reviews provide additional information
regarding related studies (Cadman et al. 2013; Osanov and
Guest 2016).

The basic assumption that the material microstructural size
is infinitely small, however, is sometimes inadequate, as a
structure may possess certain local dimensions that are com-
parable to those of the microstructural sizes. Based on this
fact, in these local regions, the effective continuum properties
of the actual heterogeneous material cannot be determined by
the homogenization method. Prior studies have indicated that
the structural responses computed using the effective proper-
ties are quite different from the results tested by experiments
or computed using the full discretization of the real structures
(Onck et al. 2001; Dai and Zhang 2008; Tekoglu and Onck
2008; Liu and Su 2009; Su and Liu 2014). Additionally, it was
previously demonstrated that the structural response in regard
to effective properties tends to mirror the real response as the
material microstructural size becomes smaller. This procedure
indicated that the effective properties of heterogeneous mate-
rial are dependent upon the dimensions of the specimen and
upon the size of the material microstructural scale. This phe-
nomenon is typically termed the “size effect” (Onck et al.
2001; Tekoglu and Onck 2008).

It is expected that the optimal results for the microstructural
optimization problems are size-dependent, as the effective con-
tinuum properties depend upon the size of actual heteroge-
neous material microstructures. Few studies, however, have
focused on the size dependence of the optimal results for mi-
crostructural design problems (Zhang and Sun 2006; Huang
and Xie 2008). These few studies did report that the optimal
topologies of microstructures exhibit size dependence in regard
to the maximization of global stiffness for structures composed
of periodic cellular solids. In these studies, it was observed that
the microstructures of the materials are fully discretized, and
expensive computations are therefore required.

Owing to the expensive computations, an alternativemeans
to provide economic computation is necessary. It is well-
known that some high-order continuum theories, for example,
the couple-stress continuum theory (Mindlin 1963), contain

more information regarding the microstructures. This may,
therefore, provide a reasonable approach to homogenize the
actual heterogeneous material as an effective couple-stress
continuum to reveal size dependence in the material design.
The couple-stress theory incorporates a local rotation of points
in addition to the translation that is assumed in classical elas-
ticity and a couple-stress (a torque per unit area) and the force
stress (force per unit area) (Anderson and Lakes 1994). This
theory simulates the higher order deformations that occur on
the microstructures of a given material, and it has been used
successfully for size effects analyses. Additionally, it should
be noted that there are other theories, such as the Cosserat
theory, that incorporate couple-stress. For details regarding
the differences among these theories, the reader is referred to
the classic monograph (Eringen 1999).

Although these higher order theories have been widely
applied to the size effect analysis of structures, little work
has been performed regarding the size dependence of the op-
timal results for the structural optimization problems. Previous
studies have indicated that the optimal results, including struc-
tural topologies and the objective functions for the topology
design of higher order continuum, depend upon the structural
dimensions (Rovati and Veber 2007; Liu and Su 2010; Bruggi
and Taliercio 2012; Veber and Taliercio 2012; Su and Liu
2016). In one of our earlier related studies (Su and Liu
2010), we examined the microstructural design problems in
regard to the minimization of the structural mean compliance
based on the couple-stress continuum model, and we found
that the optimal microstructural topologies exhibit remarkable
size dependence.

The purpose of this study was to describe and examine the
size dependence in regard to the microstructural topology de-
sign of periodic cellular solids to achieve the maximal funda-
mental frequencies of free vibration. We constructed our topol-
ogy optimization model based upon the couple-stress continu-
um theory rather than upon the classic continuum theory. In this
model, a modified bound formulation of objective and con-
straint functions was used to avoid the non-differentiability of
the repeated frequencies. The numerical examples revealed that
the present couple-stress-based optimization model details the
size dependence of the optimal results in the microstructural
design of periodic cellular solids and improves the weakness of
the classic optimization models in regard to the description of
the size effects.

2 Couple-stress theory

As mentioned earlier, the couple-stress theory introduces the
rotation of points along with translation. This assumption im-
plies that the dimension of a “point” within couple-stress con-
tinuum is finite rather than infinitely small. If this assertion
were not the case, then the definition of rotation would be
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meaningless. Hence, a point in couple-stress continuum must
have a property to resist its change of rotation motion, as the
point has finite dimension. The measure of this resistance is
named as the micro-rotation inertia and symbolized by Θ.
Micro-rotation inertia plays an important role in the dynamic
behavior of couple-stress continuum or Cosserat continuum
(de Borst and Sluys 1991). This parameter does not exist in
classic continuum, as a point in class continuum is infinitely
small. In addition, an element of the couple-stress continuum
must incorporate a curvature to represent its curve deforma-
tion. Note that this curvature is not included in the classic
continuum, as an element of the classic continuum is infinitely
small. Similarly, the stress on an element within the couple-
stress continuum may vary along the sides due to the finite
dimension of the element. The varying stress on the couple-
stress continuum element is then approximately replaced by
the mean stress and by a torque per unit area that is named as
the couple-stress (see Fig. 1).

The homogenization of actual heterogeneous material
based on the couple-stress theory is necessarily more accurate
than the classic theory. As presented in Fig. 1, the mean stress
alone does not represent the varying stress on real microstruc-
tures if the stress possesses a significant gradient; however, the
effective couple-stress continuum model improves the accu-
racy by allowing for the incorporation of the couple-stress.

We confined our study to the scope of 2D orthotropic prob-
lems in this paper, and we provide an example using the fol-
lowing planar problem. The degrees of freedom (DOF) of a
particle is expressed as

u ¼ u; v;φð ÞT ð1Þ
where u, v, and φ denote the planar translations and the rota-
tion, respectively. The stress and couple-stress components are
provided in Fig. 2.

It is determined that the cross-shearing stresses are not nec-
essarily equal from the condition of the moment equilibrium
of the element. Mindlin (1963) suggested decomposing the
asymmetric shearing stresses into a symmetric part τS and an
antisymmetric part τA.

τS ¼ τ xy þ τyx
� �

=2; τA ¼ τxy−τ yx
� �

=2 ð2Þ

Hence, the constitutive relations of the planar orthotropic
couple-stress continuum are expressed as

σx

σy

τS

8<
:

9=
; ¼

C11 C12 0
C21 C22 0
0 0 C66

2
4

3
5 εx

εy
γxy

8<
:

9=
;;

mxz

myz

� �
¼ D11 0

0 D22

� �
κxz

κyz

� �
ð3Þ

or in a compact form:

σ ¼ Cε; m ¼ Dκ ð4Þ

(a) (b)

(c)

Fig. 1 Effective couple-stress
continuum model and classic
continuum model for the
approximation of the actual
varying stress. a actual varying
stress. b couples-stress
continuum. d classic continuum

Fig. 2 Components of stress and couple-stress in a planar problem
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where the classic component C and the couple-stress compo-
nent D are uncoupling for the orthotropic couple-stress con-
tinuum. The strain components εx, εx, and γxy and the curva-
ture components κxz and κyz are defined as follows:

εx ¼ ∂u=∂x; εy ¼ ∂v=∂y; γxy ¼ ∂u=∂yþ ∂v=∂x
κxz ¼ ∂φ=∂x; κyz ¼ ∂φ=∂y ð5Þ

It has been well-documented that the nonzero components
of matrix D are dependent on microstructural size while the
components of matrixC are size-independent. Mindlin (1963)
defined a characteristic length parameter l to denote the size
dependence of the couple-stress constitutive constants. The
nonzero components of D are thereby expressed as D11 =
4Gl2 and D22 = 4Gl2 for isotropic couple-stress continuum,
where G denotes the shearing modulus. The characteristic
length l depends on the microstructure of couple-stress con-
tinuum. For example, the characteristic length of couple-stress
continuum deduced from a periodic heterogeneous material
that has square unit cell and dilute circular inclusions is pro-
portional to the length of the cell size (Bigoni and Drugan
2007). The definitions of characteristic lengths for orthotropic
couple-stress continuum are more complicated. For a detailed
discussion regarding the definitions, the related references
should be consulted (Bouyge et al. 2002; Liu and Su 2009).

In addition to D11 and D22, another size-dependent param-
eter in couple-stress elasticity is the micro- rotational inertia
Θ. In contrast, the effective density ρ is size-independent.

The finite elementmethod (FEM) is typically required for the
vibration analysis of general structures composed of a couple-
stress continuum. The discrete FEM equation was derived from
the principle of virtual work of couple-stress continuum.

KX ¼ λMX ð6Þ
where K denotes the structural global stiffness matrix andM is
the global mass matrix, X denotes the vibrating mode corre-
sponding to the eigenvalue λ that relates the natural frequency
f by λ = (2πf) 2.K andM are assembled by the element stiffness
matrix and the element mass matrix, respectively.

Note that the rotation depends upon the translations within
the couple-stress elasticity, which is expressed as Eq. (7).

φ ¼ 1

2

∂v
∂x

−
∂u
∂y

� 	
ð7Þ

Hence, the C1 continuity is required for the interpolations
of displacements of couple-stress elasticity.

3 Optimization formulation

The purpose of this study was to study size dependence in
regard to the microstructural design of periodic cellular

solids to achieve the maximal structural fundamental fre-
quencies (see Fig. 3). Topology optimization methods that
have been widely recognized were used at the cell level.
This approach was based upon the inverse homogenization
problems defined by Sigmund (1994b). In this model, the
topology of the base cell was identified for a given amount
of admissible material in a manner that allowed the struc-
tural fundamental frequencies to be maximized. The geom-
etry domain of the base cell was regarded as the design
domain. A homogenization method was performed to cal-
culate the effective couples-stress continuum constitutive
constants that included the components of constitutive ma-
trix C and D, the micro-rotation inertia Θ, and the effective
density ρ. Then, the structural fundamental frequencies
were computed using the FEM in combination with these
effective constitutive constants. It should be noted that
some higher order eigenmodes may be missed due to ho-
mogenization of the cellular solids to continuum. However,
this limitation has little influence on this study, as our ob-
jective is to maximize the fundamental frequencies.

In the procedure, the solid isotropic material with pe-
nalization (SIMP) interpolation scheme (Bendsøe 1989;
Rozvany et al. 1992) was adopted at the cell level. In this
scheme, the geometry domain of a base cell was
discretized into small quadrilateral elements, and the arti-
ficial density ρi of element i was used as a design variable
to describe the topology of that location. Based on the
SIMP scheme, the element i has Young’s modulus Esi

penalized by the artificial density as

Esi ¼ ρpi E0 ð8Þ
where p = 3 is the penalty number and E0 is the Young’s
modulus of base material of the real cellular solids. The
physical density at element i, ρsi, which should be re-
quired in the vibration analysis of structures, was
expressed as

ρsi ¼ ρiρ0 ð9Þ
where ρ0 is the physical density of the base material of
the real cellular solids (see Fig. 4). Note that in the topol-
ogy optimization problems regarding macrostructures for
the maximization of fundamental frequencies, the

Fig. 3 Sketch of the microstructural design of periodic cellular solids
used for maximization of the structural fundamental frequencies
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interpolation as Eq.(8) and Eq.(9), occasionally results in
local vibration modes; however, these local vibration
modes did not appear in the present study, as we did
not compute the vibration at the cell level.

Next, the effective continuum properties were determined
from the analysis of the base cell. As mentioned earlier, to
determine the size dependence of the optimal design of unit
cells, the couple-stress continuum model was used in this pro-
cedure. The homogenization of the classic heterogeneous con-
tinuum into a homogeneous couple-stress continuum
exhibiting effective properties has attracted a great deal of
attention. Here, we used the technique proposed in our previ-
ous work (Liu and Su 2009; Su and Liu 2014) that is based on
the equivalent strain energy methods. Six loading cases were
performed to calculate the nonzero components in constitutive
matrices C and D, and one loading case was used to calculate
the effective micro-inertia Θ. To ensure that this study was
self-contained, a brief introduction of the computation proce-
dure is provided in the Appendix.

The frequencies of the structure composed of the effective
couple-stress continuum were computed by the FEM. As
mentioned earlier, the C1 continuity is required for the dis-
placement interpolation scheme in the FEM of couple-stress
continuum. It is typically difficult to directly develop an ap-
propriate C1 continuous element for a couple-stress continu-
um. In this study, a penalty constraint was introduced to ap-
proximately implement the C1 continuity.

The objective of the optimization formulation was to max-
imize the fundamental frequencies of structures. The main
issue with this type of optimization problem is the non-
smoothness or non-differentiability of eigenvalues in common
sense when the magnitudes of several eigenvalues coalesce
(Seyranian et al. 1994; Bendsøe and Sigmund 2003). The
phenomenon of repeated eigenvalues is more prominent in
the design of symmetry structures possessing symmetry
boundary conditions. This non-differentiability in common
sense creates difficulties in finding sensitivities of repeated
eigenvalues with respect to design changes and derivation of
necessary optimal conditions for the optimization problems.
Some special formulations or algorithms have been construct-
ed to handle this non-differentiability problem (Clarke 1990;
Seyranian et al. 1994; Rodrigues et al. 1995; Bendsøe and

Sigmund 2003). A procedure that combined the bound formu-
lation and the artificial frequency constraints (Bendsøe and
Sigmund 2003) to prevent these repeating frequencies was
adopted in this study.

The optimization formulation was stated as:

find : ρ1; ρ2; :::; ρn;β
max : β
s:t: : KXi ¼ λiMXi; i ¼ 1; 2; :::;N

αiλi≥β; i ¼ 1; 2; :::;N

∑
n

e¼1
ρeve≤V

*

0 < ρmin≤ρe≤1; e ¼ 1; 2; :::; n

ð10Þ

where ρi denoted the artificial density variables on the cell
level while β was a bound variable. ve denoted the volume
of element e, and V* denoted the permitted solid material
amount. n denoted the number of the density variables. N
was an integer number that was larger than the possible re-
peating number of fundamental frequencies of the designing
structures, and N was set 3 in this study. The eigenvectors
were M-orthonormalized as

XT
i MX j ¼ δij; i; j ¼ 1; 2; :::;N ð11Þ

where δij denoted the Kronecker’s delta.
The purpose of the introduction of the artificial constraints

αiλi ≥ β, i = 1,…, N, where each frequency was multiplied
with α at the power i was to slightly separate the adjacent
eigenvalues to prevent the repeated eigenvalues. The param-
eter α was a number that was less than and close to 1. Hence,
these constraints required that the frequency be progressively
larger from mode one to mode N (Bendsøe and Sigmund
2003). Although it is impossible to prove the validity of this
formulation rigorously, it does work well for most cases in
practice, according to Bendsøe and Sigmund (2003) and other
experience (Tsai and Cheng 2013; Su and Liu 2016). The
exact value of the parameter α in the modified bound con-
straint was heuristic. We chose α as 0.95 in this study.

The optimization problem was solved by the method of
moving asymptotes (MMA) (Svanberg 1987), where the gra-
dients of the objective function and the constraint functions
with respect to changes in the design variables were required.
This procedure of computing the gradients of objective or

0

0

p
si i

si i

E E

Homogenization

couple-stress continuum

C*

C*

Fig. 4 SIMP scheme at the cell
level
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constraint functions with respect to design variables is usually
termed “sensitivity analysis.” The focus of the sensitivity anal-
ysis in the present optimization formulation was to allow for
the computations of the gradients of the eigenvalues to the
density design variables. This procedure was implemented
straightforward according to the method presented in Eq.
(12), as the repeated frequencies were already prevented.

∂λi

∂ρe
¼ XT

i
∂K
∂ρe

−λi
∂M
∂ρe

� 	
X i; i ¼ 1; 2; :::;N ; e ¼ 1; 2; :::; n ð12Þ

According to the global stiffness matrix and the mass ma-
trix assembling procedure of the standard FEM, the key step
in Eq. (12) was the computations of ∂ke/∂ρe and ∂me/∂ρe,
where ke denoted the element stiffness matrix and me was
the element mass matrix. Additionally, according to the defi-
nitions of element stiffness matrix and mass matrix, only the
gradients of the effective constitutive constants with respect to
the design variables required computation, and these values
were ∂C/∂ρe, ∂D/∂ρe, ∂ρ/∂ρe, and ∂Θ/∂ρe. Among these terms,
∂C/∂ρe and ∂D/∂ρe were reported in our previous work (Su
and Liu 2010). Hence, this study provided only the expres-
sions of ∂ρ/∂ρe and ∂Θ/∂ρe.

From the definition of the effective density ρ

∂ρ
∂ρe

¼ ρ0ve

∑
n

i¼1
vi
; e ¼ 1; :::; n ð13Þ

Similarly, from the definition of the effective micro-
rotational inertia Θ

∂Θ
∂ρe

¼ 1

∑
n

i¼1
vi

ρ0Ipe−Ip
∂ρ
∂ρe

� 	
; e ¼ 1; :::; n ð14Þ

where Ipe denoted the polar moment of inertia of element e in
the unit cell with respect to its centroid and Ip denoted the
polar moment of inertia of the whole unit cell with respect to
its centroid.

In addition, density filter (Bruns and Tortorelli 2001) was
applied to prevent the checkerboard pattern and mesh depen-
dency of the optimal topology.

4 Numerical examples

It is important to reiterate that the aim of this study was to
explore the size dependence of the optimal results for the
microstructural topology design of a periodic cellular solid
for maximizing the structural fundamental frequencies. As
this size dependence is difficult to determine using the homog-
enization method based on the classic continuum theory, we
constructed our topology optimization formulation based on
the couple-stress continuum theory.

In this section, two typical numerical examples were pre-
sented to verify the present topological optimization formula-
tion. In each example, the structure was composed of periodic
cellular solids and possessed fixed shape and size. The opti-
mal microstructures of the unit cells possessing different sizes
for the maximization of the structural fundamental frequencies
were designed to investigate the size dependence of the opti-
mal results. The unit cell was assumed to be centrosymmetric
in each case for simplicity, as the effective couple-stress con-
tinuum of this material is orthotropic, and the constitutive
matrices C and D are uncoupling. This symmetric assumption
may slightly affect the optimal results, as it introduces an
additional constraint. However, this constraint is valuable, as
the symmetric cells are usually manufactured more easily. The
base material used for each cellular solid was aluminum, as
this material exhibits a Young’s modulus E0 = 69GPa, a
Poisson’s ratio ν0 = 0.3, and a density ρ0 = 2.7 × 103 kg/m3

without a loss of generality.

4.1 Exampe 1

A simply supported beam-like structure shown in Fig. 5 was
considered for this example. The structure possesses a fixed
length L = 20 mm, a height H = 10 mm, and unit thickness. It
was composed of periodic cellular solids with microstructure
of unit cell that was designed to achieve maximal fundamental
frequencies for the structures. The amount of the permitted
material was 0.4. It was assumed that the unit cells of the
cellular solids possessed square domains. Each square cell
possessed a side length h that varied for different cases. To
assess the size dependence of the results, a scale factor n =H/h
was defined. The topology optimization problems with n =
2~5 were solved. In each case, 1/4 base cell was studied due to
the symmetry.

Using the method described above, the topologies of the
unit cells at different scale factor n were obtained. Taken to-
gether, the optimal microstructural topologies varied as the
scale factor n or the microstructural size changed, and this is
illustrated in Table 1. For the convenience of observation, the
topologies of 1/4 cell, one cell, and 3 × 2 cells for each case
were all listed in this table.

The microstructural topologies based on the classic contin-
uum theorywere also listed in this table for comparison. These

L

H?

h

Fig. 5 Beam-like structure composed of periodic cellular materials
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results demonstrated that the classic continuum model cannot
reflect the size dependence of the optimal microstructural
topologies.

Additionally, the optimal fundamental frequencies at dif-
ferent cell sizes obtained by the present method were reported
in Fig. 6. Again, the corresponding results obtained by the
classic continuum model were shown for comparison. In gen-
eral, the fundamental frequencies based on the couple-stress
continuummodel exhibited size dependence, while the results
based on the classic model possessed size-independence. The
fundamental frequency of the couple-stress model was over
17% larger than that of the classic model for n = 2.
Additionally, this value dropped rapidly as n increased and
was nearly equal to the classic value for n = 5. Hence, the
present couple-stress optimization model described the size
dependence successfully.

Table 1 Optimal microstructural topologies at different cell sizes for cellular solids described in Example 1

n=h/H 1/4 cell 1 cell 3   2 cells

2

3

4

5

classic

2 3 4 5

23

24

25

26

27

classic

01/
seicneuqerflatne

madnuf
3 H

z

n

couple-stress

Fig 6 Maximal fundamental frequencies of the structures versus cell
sizes for Example 1
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The size dependence of the structural fundamental frequen-
cies could be due to the size dependence of the constitutive
constants of the effective couple-stress continuum. As illus-
trated in Fig. 7, the effective bending constants D11 and D22

and the micro-rotational inertia Θ all possessed high values at
n = 2 and decreased rapidly to almost zero as n increased from
2 to 5. These trends were similar to those of the fundamental
frequencies (see Fig. 6); however, it should be noted that the
influences of these two types of constants on the fundamental
frequencies are totally opposite. In general, the decreasing of
D11 and D22 decreases of the fundamental frequencies of a
structure composed of a couple-stress continuum while the
decreasing of Θ increases the frequencies. Hence, the above
results indicated that the influence of the bending constants
D11 and D22 on the size dependence of the maximal funda-
mental frequencies may be a primary factor, while the micro-
rotational inertia may be a secondary factor. This observation
was in good agreement with our previous conclusions (Su and
Liu 2014, 2016).

Additionally, other effective constitutive constants also ex-
hibited size dependence. The effective constants at different
cell sizes were summarized in Table 2. Unlike the bending
constants and the micro-rotational inertia, these rest constants
did not exhibit evident trends. In fact, these classic constants
were incapable of describing size dependence. Hence, these
slight size-dependent differences may be caused by the size
dependence of the higher order constants (e.g., D11 and D22).

The aim of this study was to investigate the size depen-
dence of microstructural design of periodic cellular solids to

possess maximal fundamental natural frequencies. To avoid
expensive computation, this study considered the cellular
solids as couple-stress continuum. Hence, the comparison of
the present method and the fully discrete method is interesting.
We tried to compare these two methods in this example for the
case n = 2 and 3, as they contained only small number cells;
even then, the computation was still expensive. Hence, only
coarser meshes were adopted in the discrete models. The re-
sults showed that the two methods obtained similar structural
topologies and same size-dependent trends (see Table 3).
Additionally, the optimal fundamental frequencies of discrete
models were lower than those of the couple-stress models.
This difference may be caused by the coarser meshes of dis-
crete models, and better frequencies are expected for finer
meshes. However, more efficient and stable computational
technique is required, and this extends the scope of the present
study.

4.2 Exampe 2

A rectangular structure possessing a small rectangular void
was considered for this example. The structure was clamped
at each of its four corners as shown in Fig. 8. The structure
contained unit thickness and possessed the sizes L1 = 40 mm,
L2 = 20 mm,H1 = 30 mm, andH2 = 10 mm. The scale factor n
was defined as n = (H1-H2)/2h in this example, as it was ex-
pected that the bending deformation of a given portion was the
dominant mode in the free vibration. Without a loss of gener-
ality, the amount of permitted solid material in the base cell of

(a) (b)

2 3 4 5

0

10

20

30 D11
D

11
,  

D
22

  /
kN

n

D22

2 3 4 5

0.0

0.5

1.0

1.5

2.0

kg

n

Fig. 7 Effective constitutive constants of the optimal cellular solids versus cell sizes in Example 1: (a) D11 and D22, (2) Θ

Table 2 The constitutive constants of the optimal cellular solids versus cell size

n C11 /GPa C22 /GPa C12 /GPa C66 /GPa D11 /kN D22 /kN ρ 103 kg/m3 Θ 10−6 kg

2 14.07 8.67 3.57 3.43 31.24 12.09 1.08 1.63

3 13.57 8.27 3.65 3.46 4.56 1.64 1.08 0.25

4 13.98 7.99 3.59 3.47 1.22 0.27 1.08 0.06

5 12.69 8.89 3.45 3.46 0.13 0.07 1.08 0.01
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the solid material was still 0.4. Again, 1/4 cell was studied due
to symmetry, and the topologies were obtained for n = 2~5.

In contrast to the previous example, repeated frequencies
exhibiting different mode shapes were observed for this ex-
ample. The iteration history of n = 2 was given in Fig. 9. As
detailed in this figure, f1 and f2 were very close during the
iteration process, and the relative error of these two frequen-
cies in the optimal results was as small as 2.06%. The stable
convergence indicated that the bound formulation used in the
present study was effective. Additionally, the repeated fre-
quencies were also found in other cases of n, and the iteration
histories were summarized in Table 4. In each case, the repeat-
ed frequencies were separated numerically to ensure that the
sensitivity analysis was performed correctly.

Again, the topologies of the unit cells at n = 2~5 were iden-
tified to examine the size dependence of the optimal results in
this example. All results from these analyses were listed in
Table 5, and the optimal topologies from the classic continu-
um model were also included. Similar to example 1, it was
evident from the results that the couple-stress-based results

were size-dependent, while the classic theory-based results
exhibited no size dependence.

The fundamental frequencies of the structure contained
within the optimal unit cells also displayed remarkable size
effects (Fig. 10). The fundamental frequency of the couple-
stress model was higher by as much as 16.9% compared to
that of the classic model for n = 2. As n increased, the funda-
mental frequencies dropped rapidly, and this value was 5.7%
larger than that of the classic method for n = 5. It should be
noted that this size dependence cannot be revealed by the
classic continuum models.

As stated earlier, there was a strong possibility that the size
dependence of the structural fundamental frequencies was the
result of the size dependence of the constitutive constants of
the studied effective continuum. Figure 11 indicated that the
effective bending constants D11 and D22, as well as the effec-
tive micro-rotational inertia Θ, were strongly dependent upon
cell size. The values of these constants were large at n = 2 and

Table 3 Comparison of couple-stress model and fully discrete model: topologies and fundamental frequencies

n
structural topologies f1 /103Hz

couple-stress discrete couple-stress discrete

2 27.2 25.6

3 24.2 23.3

0 20 40 60

15

20

25

01/
seicneuqer f

3 H
z

iteration

f3

f2
f1

Fig. 9 Iteration histories of the first three frequencies of the structure for
n = 2

L1

L2

H1H2?

h

Fig. 8 Rectangular structure possessing a rectangular void composed of
periodic cellular material
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dropped rapidly toward zeros as n increased. Additionally, the
slope of this drop gradually decreased as n increased. Note
that D11 and D22 nearly coincided in this example; however,
this was likely just a coincidence.

In addition to the above three constants, other constants,
with the exception of the effective densities, exhibited size
dependence. For convenience, all the effective constants ver-
sus the scale factor n were summarized in Table 6. Again we

Table 5 Optimal microstructural topologies at different cell sizes for cellular solids in Example 2

n=(H1-H2)/2h 1/4 cell 1 cell 3   2 cells

2

3

4

5

classic

2 3 4 5

18

19

20

21

22

classic

01/
seicneuqerf latne

m adnuf
3 H

z

n

couple-stress

Fig. 10 Maximal fundamental frequencies of the structures versus cell
sizes for Example 2

Table 4 Optimal first
two frequencies of the
structure for n = 2~5

n f1 /10
3 Hz f2 /10

3 Hz error %

2 21.53 21.97 2.06

3 20.18 20.62 2.20

4 19.48 19.88 2.06

5 19.46 19.86 2.06

*where error = (f2-f1)/f1 × 100%
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found that the size dependence of nonzero components of the
sub-matrix C of constitutive was irregular, and this finding
was different from those of D11, D22, and Θ.

5 Discussion

Prior studies (Sigmund 1994a; Sigmund 1994b; Neves et al.
2000; Niu et al. 2009; Cadman et al. 2013; Osanov and Guest
2016; Chen et al. 2018) have documented the feasibility of the
design of microstructures in improving structural global prop-
erties such as the global stiffness, the bulk modulus, and the
shearing modulus. Most of these studies, however, are based
on the effective classic continuum model and have used the
homogenization method to represent the effective properties
of actual heterogeneous solids. Those formulations have ig-
nored the influence of the cell size on the structural properties
due to the assumption of infinitely small cell scale.

In this study, we developed a microstructural topology op-
timization model based on the effective couple-stress contin-
uummodel to maximize the fundamental frequencies of struc-
tures composed of periodic cellular solids. The numerical ex-
amples demonstrated that our optimization model recognized
the size-dependent features of the optimal results. We found
that the size effects of the optimal results influenced both the
optimal fundamental frequencies and the corresponding mi-
crostructural topologies.

The size effects were described quantitatively along with the
optimal fundamental frequencies in the present optimization
model. When the cell sizes of the researched cellular solids
were close to the key dimensions of structures (n = 2, for ex-
ample), the structural fundamental frequencies based on the
present couple-stressmodel could bemore than 15% larger than
those of the classic model. As the cell sizes decreased gradually,
the couple-stress model-based fundamental frequencies tended
to mirror the classic theory-based results. The relative error
between these two models was often less than 5% for n = 5.

The size effects were also directly indicated by the optimal
microstructural topologies in this model. When the cell sizes
of the cellular solids were close to the key dimensions of the
structures, the optimal topologies typically possessed a com-
mon layout, where the most material lay on the boundary
regions of the cell domains. The optimal topologies tended
to exist as a “truss-like” layout, however, as the cell sizes
decreased gradually. It should be noted that the truss-like mi-
crostructures are typically the optimal layouts of the classic
continuum for the maximal global stiffness.

These two different layouts of material influenced the con-
stitutive constants and the optimal results in different ways.
The material existing at the boundary regions of cell domains
almost always produces larger bending constants D11 and D22

and micro-rotational inertia Θ (Bigoni and Drugan 2007; Liu
and Su 2009; Su and Liu 2014). In contrast, the truss-like
layout of material constructing the stretching-governed struc-
tures always produces structures that exhibit excellent

(a) (b)
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Fig. 11 Effective constitutive constants of the optimal cellular solids versus cell sizes in Example 2: (a) D11 and D22, (2) Θ

Table 6 The constitutive constants of optimal cellular solids versus cell size

n C11 /GPa C22 /GPa C12 /GPa C66 /GPa D11 /kN D22 /kN ρ 103 kg/m3 Θ 10−6 kg

2 10.89 11.15 3.20 3.05 23.04 23.02 1.08 1.73

3 10.84 12.26 3.67 3.48 2.98 3.86 1.08 0.27

4 11.34 11.04 3.42 3.38 0.52 0.63 1.08 0.05

5 11.25 11.29 3.42 3.39 0.13 0.11 1.08 0.01
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stiffness per unit mass (Deshpande et al. 2001). This high
specific stiffness of these structures often results in high fun-
damental frequencies of natural vibration.

Given this, it is highly probable that the size dependence is
caused by the transition of these two mechanisms for the im-
provement of the structural fundamental frequencies. When
the cell sizes are large, n = 2, D11 and D22 are also large. As
these bending constants dominantly influence the natural vi-
bration behavior, improvement of these two constants pro-
vides an economical means to maximize the structural funda-
mental frequencies. Therefore, finite amounts of solid mate-
rials tend to exist at the boundary regions of the cells, ulti-
mately allowing for larger bending constants and larger fun-
damental frequencies. When the cell sizes are small, however,
the bending constants become small, and they influence the
structural fundamental frequencies slightly. Hence, an effec-
tive approach to enhance the structural fundamental frequen-
cies is to improve the specific stiffness of the effective contin-
uum, for a method that is used for the classic continuum. This
size effect deduced by the transition of two mechanisms that
allows for the improvement of structural global properties is
also confirmed in our previous work, where we attempted
minimization of the structural compliance (Su and Liu 2010).

Additionally, it should be noted that themaximal fundamental
frequencies decrease as the cell sizes become small. As discussed
earlier, the bending constants D11 and D22 approach zero as the
cell sizes decrease. Hence, the global stiffness of structures de-
clines, and the optimal fundamental frequencies drop according-
ly. Similar trends have been reported in cell design studies ex-
amining the maximization of structural global stiffness (Zhang
and Sun 2006; Huang and Xie 2008; Su and Liu 2010).

Interestingly, we observed that both the bending constants
and the micro-rotational inertia show the same size-dependent
trends; however, they influence the structural fundamental
frequencies in completely opposite ways. In our previous
work (Su and Liu 2014, 2016), we documented that the D11

andD22 are the dominant factors in regard to the free vibration
of couple-stress continuum structures.

The present method is suitable for the design of structures
possessing some local dimensions comparable to those of the
microstructural sizes of the composed materials, as the effective
couple-stress continuum model does not require that the micro-
structural size of a material is infinitely small. For example, the
topology design of structures composed of geometry gradient
materials, which can be manufactured by the additive
manufacturing process, can be finished by this method. Note that
constraints due to manufacturability must also be considered
prior to the initiation of final engineering applications. These
considerations, however, are beyond the scope of this study.

The present formulation is not recommended to design
beam-like structures with only one cell in height, as local
deformations on the cell level may sometimes be remarkable.
The fully discrete method is suggested in such extreme case.

6 Conclusions

In this study, a topology optimization formulation to allow for
the design of the microstructures of periodic cellular solids to
maximize the structural fundamental frequencies was pro-
posed. The cellular solids were homogenized as a couple-
stress continuum rather than as a classic continuum in an at-
tempt to interpret the influence of cell size on the optimal
results.

Based on our results, we have formulated the following
conclusions:

The present formulation based on the couples-tress
continuum model confirms both the size dependence of
the maximal structural fundamental frequencies and that
of the corresponding optimal microstructures. Hence, it
improves on the limitations of the classic continuum
models that are unable to describe the size dependence
of the optimal results.

The maximal structural fundamental frequencies
based on the present couple-stress continuum optimiza-
tion model are larger than those derived from the classic
continuum optimization model, as the latter model ig-
nores the influences of the microstructural scale on the
global structural responses. Additionally, the optimal
frequencies derived from the couples-tress model tend
to mirror those of the classic model as the microstruc-
tural sizes decrease. Similar trends are also observed in
regard to the microstructural topologies.

This couple-stress continuum-based optimization model is
useful for the microstructural design of structures possessing
local dimensions that are comparable to the microstructural
size.
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Appendix calculations for the effective
couple-stress constitutive constants

Four tests are constructed to determine the components of
stiffness matrix C and another two tests are constructed to
determine the components of stiffness matrix D for the
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homogenization of a cellular solid unit cell to homogeneous
couple-stress continuum (Fig. 12). These six computations are
based on the equivalent strain energy. In addition, a computa-
tion that is based on the geometry analysis is applied to deter-
mine the density ρ. The other computation that is based on the
equivalent rotational kinetic energy is applied to determine the
micro-rotational inertia Θ of the effective couple-stress
continuum.

1) Horizontal uniaxial extension test forC11: by applying the
unit strain to the unit cell

εx ¼ 1; εy ¼ γxy ¼ 0; κxz ¼ κyz ¼ 0; in Ω ðA1Þ

The corresponding boundary conditions are

u ¼ x; v ¼ 0; on ∂Ω ðA2Þ

The deformation of the unit cell is shown in Fig. 13(a).
Then it follows that

C11 ¼ 2U 1ð Þ
disc=V ðA3Þ

where U 1ð Þ
disc is the strain energy of the unit cell with boundary

conditions Eq.(A2) and V is the volume of the unite cell.

2) Vertical uniaxial extension test for C22: by applying the
unit strain to the unit cell

εy ¼ 1; εx ¼ γxy ¼ 0; κxz ¼ κyz ¼ 0; in Ω ðA4Þ

The corresponding boundary conditions are

u ¼ 0; v ¼ y; on ∂Ω ðA5Þ

The deformation of the unit cell is shown in Fig. 13(b).
Then it follows that

C22 ¼ 2U 2ð Þ
disc=V ðA6Þ

3) Biaxial extension test for C12: by applying the unit strain
to the unit cell

εx ¼ εy ¼ 1; γxy ¼ 0; κxz ¼ κyz ¼ 0; in Ω ðA7Þ

The corresponding boundary conditions are

u ¼ x; v ¼ y; on ∂Ω ðA8Þ

The deformation of the unit cell is shown in Fig. 13(c).
Then it follows that

C12 ¼ 2U 3ð Þ
disc=V−C11−C22


 �
=2 ðA9Þ

4) Shearing test for C66: by applying the unit strain to the
unit cell

εx ¼ εy ¼ 0; γxy ¼ 1; κxz ¼ κyz ¼ 0; in Ω ðA10Þ

The corresponding boundary conditions are

u ¼ y=2; v ¼ x=2; on ∂Ω ðA11Þ

The deformation of the unit cell is shown in Fig. 13(d).
Then it follows that

C66 ¼ 2U 4ð Þ
disc=V ðA12Þ

5) Bending test forD11: by applying the mixed field of strain
and stress to the unit cell

εx ¼ −y;σy ¼ 0; γxy ¼ 0; κxz ¼ 1;κyz ¼ 0; in Ω ðA13Þ

The corresponding boundary conditions are

uj∂Ω ¼ −xy; vjy¼0 ¼ x2=2 ðA14Þ

The deformation of the unit cell is shown in Fig. 13(e).
Then it follows that

D11 ¼ 2U 5ð Þ
disc−∫ΩExy2dV


 �
=V ðA15Þ

6) Bending test forD22: by applying the mixed field of strain
and stress to the unit cell

σx ¼ 0; εy ¼ x; ; γxy ¼ 0; κxz ¼ 0;κyz ¼ 1; in Ω ðA16Þ

The corresponding boundary conditions are

ujy ¼ 0 ¼ −y2=2 ; vj∂Ω ¼ xy ðA17Þ

The deformation of the unit cell is shown in Fig. 13(f).
Then it follows that

D22 ¼ 2U 6ð Þ
disc−∫ΩEyx2dV


 �
=V ðA18Þ

More detailed introduction and examples should be found
in reference (Liu and Su 2009).

C* r

couple-stress continuumclassic continuum

s

s

Fig. 12 Homogenization of a cellular solid unit cell to homogeneous
couple-stress continuum
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ρ and Θ are computed in the following:

1) Computing ρ: the effective density ρ is exactly the mean
density of the base cell

ρ ¼ ∫ΩsρsdΩs=V ðA19Þ
where ρs denotes the density of the solid material of cellular
solids.

2) Computing Θ: assuming the unit cell rotates about its
centroid at a given angular velocity, then based on the
equivalent kinetic energy, Θ is computed as

Θ ¼ ρs∫Ωs r
2dΩs−ρ∫Ωr2dΩ

� �
=V ðA20Þ

Detail derivations are given in reference (Su and Liu 2014).
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