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Abstract
Surrogate models are often used as surrogates for computationally intensive simulations. And there are a variety of surrogate
models which are widely used in aerospace engineering–related investigation and design. In general, there is an optimal
individual surrogate for a certain research object. However, the behavior of an individual surrogate is unknown in advance.
Building an ensemble of surrogates by combining different individual surrogates into a weighted-sum formulation is an
efficient method to enhance the accuracy and robustness of the surrogate model. Motivated by the previous researches on
the ensemble of surrogates, we propose an optimal pointwise weighted ensemble (OPWE) method, wherein the optimal
pointwise weight factors are obtained based on the minimization of the local mean square error which is constructed by the
global-local error (GLE). By using six well-known mathematical problems and four engineering problems, it is proved that
the OPWE proposed in this paper is better than the other ensembles of surrogates in terms of both accuracy and robustness.

Keywords Ensemble of surrogates · Mean square error · Cross-validation error · Surrogate model

1 Introduction

High-fidelity computer simulations play an important
role in the investigation of modern engineering systems.
However, the computational cost of computer simulations
is still excessive even with the current fast developed
computer technology, especially for the numerical design
optimization of engineering systems. It is an efficient
way to reduce the computational cost by replacing
the computationally expensive simulations with surrogate
models in the investigation and design of complex
engineering systems.
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There are various surrogate models widely used in the
investigation of engineering design, such as polynomial
response surface (PRS) (Myers and Montgomery 2002),
radial basis function (RBF) (Hardy 1971), kriging (KRG)
(Sacks et al. 1989), Gaussian process (GP) (MacKay
1998), neural networks (Smith 1993), and support vector
regression (SVR) (Gunn 1997).

The surrogate models are widely used in many research
fields, such as surrogate-based optimization (Meng et al.
2019; Imani et al. 2018), adaptive sampling (Li et al.
2010), Bayesian control (Imani et al. 2018), and adaptive
filtering (Imani et al. 2017). Generally, there is an optimal
surrogate model for a specific research object. And it
was proved by many researchers that one individual
surrogate tends to perform quite differently for different
design problems due to their underlying and dissimilar
characteristics (Forrester and Keane 2009; Queipo et al.
2005; Wang and Shan 2007). Simpson et al. (2001) and Jin
et al. (2001) provided recommendations on the selection
of surrogates for different problems by comparing various
surrogate models. However, the behavior of an individual
surrogate is unknown in advance. Building an ensemble
of surrogates by combining different individual surrogates
into a weighted-sum formulation is an efficient method
to enhance the accuracy and robustness of the surrogate
model.
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The ensemble of surrogate models can be categorized
into average ensemble model and pointwise ensemble
model, according to its weight calculation method:

Average ensemble model The weights of the average
ensemble model stay constant over the entire design space,
and the weights are calculated by using a global error
measure. There are many approaches for average ensemble
modeling. For example, Goel et al. (2007) proposed
an average ensemble of surrogates. In their work, the
generalized mean square cross-validation error (GMSE)
was used to determine the weights as global data-based error
measure. Acar and Rais-Rohani (2009) proposed an average
ensemble of surrogates, wherein the selection of weight
factors was treated as an optimization problem. Viana et al.
(2009) proposed an average ensemble of surrogates based
on minimization of the mean square error (MSE), and they
noted that the use of weighted average surrogate does not
seem to have the potential of substantial error reduction
with a large number of points. Zhou et al. (2011) obtained
the average weights through a recursive process. Ferreira
et al. (2016) presented an approach to create ensemble of
surrogates based on least squares approximation.

Pointwise ensemble model The weights of pointwise
ensemble model change with the variation of prediction
point, and the weights are calculated based on a local
error measure. For example, Acar (2010) determined the
weight factors of individual surrogate by cross-validation
error, and he noted that pointwise cross-validation error
is not a good surrogate for the error at a point, even
though GMSE is a good representative with respect to the
global error. Lee and Choi (2014) proposed to construct the
ensemble of surrogates by using v nearest points. Liu et al.
(2016) presented an optimal weighted pointwise ensemble.
Yin et al. (2018) divided the design space into multiple
subdomains, and each domain is assigned a set of optimized
weight factors. Chen et al. (2018) divided the design space
into two parts, and different strategies were introduced to
evaluate the weight factors in each of the two parts.

The potential for average ensemble modeling to improve
prediction precision is limited because of the constant
weights. The optimal average ensemble model proposed by
Viana et al. (2009) is one of the best average ensemble
models. However, they also noted that the use of weighted
average surrogates does not seem to have the potential for
substantial error reduction with a large number of points.
Thus, it may be a way to build an accurate pointwise
ensemble model by determining the pointwise weight
factors based on the minimization of the local error.

Besides, the data-based error measure, such as GMSE
and cross-validation error, is widely used in the recent
investigation of ensemble modeling. This is because the

data-based error measure can provide error estimation for
any individual surrogate. The local data-based error measure
plays an essential role in building the pointwise ensemble
model. Ideally, if an accurate local data-based error measure
to identify the error between the individual surrogate model
and the real model is available, the pointwise ensemble
model must be more accurate than the average ensemble
model because the ensemble model can adapt to the local
characteristics of each individual surrogate. In previous
research, however, the pointwise ensemble model did not
exhibit obvious advantage over the average ensemble model
as there is no sufficiently accurate local data-based error
measure. Thus, one could be able to enhance the accuracy
of the pointwise ensemble model by improving the accuracy
of the data-based local error measure.

Motivated by these findings, we propose an optimal
pointwise weight ensemble (OPWE) based on the mini-
mization of the local mean square error (LMSE). The LMSE
is proposed in this paper as criteria for the error of the region
near the observed points. Meanwhile, a new local data-
based error measure, namely the global-local error (GLE),
is proposed in this paper to construct the LMSE.

The remainder of this paper is organized as follows. In
Section 2, we review the existing ensembles of surrogates.
In Section 3, we describe the proposed ensemble of
surrogates in detail. In Section 4, we show the example
problems. In Section 5, we present the numerical procedure.
The results and discussion appear in Section 6, followed by
the summary of important conclusions in Section 7.

2 Existing ensembles of surrogates

2.1 The average ensemble of surrogates proposed
by Goel et al. (2007)

Goel et al. used the GMSE as the global error measure to
determine the weights using a heuristic formulation:

wi = w∗
i∑n

j=1 w∗
j

w∗
i = (Ei + αEavg)

β

Eavg =
∑n

i=1 Ei

n

β < 0, α < 1 (1)

where wi denotes the weight of the ith surrogate model, n is
the total number of the individual surrogates, andEi denotes
the GMSE of the ith surrogate model, which is obtained
from the leave-one-out strategy and is calculated as

Ei =
∑m

k=1(y(k) − ŷ(k))2

m
(2)
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In the equation, m is the number of points in the training
set, y(k) is the true response at the kth observed point,
and ŷ(k) is the corresponding predicted value from the
individual surrogate constructed by using all except the kth
observed points.

There are two user-defined parameters α and β in this
method, which are employed to control the importance
of averaging surrogate and the importance of individual
surrogate, respectively. Goel et al. (2007) set α = 0.05 and
β = −1 in their study.

2.2 The average ensemble of surrogates proposed
by Acar and Rais-Rohani (2009)

Acar and Rais selected weights by solving an optimization
problem of the form

Find wi

Minimize GMSE

s.t .
n∑

i=1

wi = 1 (3)

where GMSE is the generalized mean square cross-
validation error of the ensemble model, wi is the weight of
the ith individual surrogate, and n is the total number of the
individual surrogates.

2.3 The average ensemble of surrogates proposed
by Vinan et al. (2009)

Viana et al. selected weights by following an approach
based on the minimization of the mean square error (MSE):

MSE =
∫
V

e2(x)

V
= wT Cw (4)

where the function e(x) is the error of the ensemble model at
x,w is the vector of weights of the individual surrogates, and
V denotes the sample space. They approximated the value
of C by using the vectors of cross-validation errors, e∗ , as

cij � e∗T
i e∗

j

m
(5)

where m is the number of observed points.
The weights are obtained by minimizing the MSE, as

Find w

Minimize MSEWAS = wT Cw (6)

which is subject to

1T w = 1 (7)

The solution is obtained by using Lagrange multipliers,
as

w = C−11
1T C−11

(8)

The solution of (8) may include negative weights as
well as weights with values larger than one. Viana et al.
suggested to solve (8) using only the diagonal elements of
C to enforce the positivity.

2.4 The pointwise ensemble of surrogates proposed
by Acar (2010)

Acar proposed that the weight of the individual surrogate
with the smallest cross-validation error is one while the
other individual surrogates have zero weights. And the
spatial weights are calculated by

wi(x) =
n∑

k=1

Wi,kIk(x)

Ik(x) = 1

d2
k (x)

dk(x) = ‖x − xk‖ (9)

whereWi,k is the pointwise weight of the ith surrogate at the
kth observed point. Wi,k is equal to one for the individual
surrogate with the smallest cross-validation error at an
observed point, and it is equal to zero for all other individual
surrogates. dk(x) is the Euclidian distance between x and
xk, and n is the total number of the individual surrogates.

3 The proposed ensemble of surrogates

A pointwise ensemble of surrogates named optimal
pointwise weighted ensemble (OPWE) is proposed in this
section. The pointwise weight of each individual surrogate
at an observed point is determined by minimizing the local
error of the region around this observed point. The local
mean square error (LMSE) is defined in this section to
measure the local error of the region around the observed
point. And a new local data-based error measure named
global-local error (GLE) is proposed in this section to
construct the LMSE.

3.1 Determining the weights at observed points
byminimizing the local error

Viana et al. (2009) determined the global weight factors by
minimizing the MSE. In their work, the MSE represents the
global error of the ensemble model. And we determine the
pointwise weight factors at an observed point by minimizing
the local error of the region around this observed point. And
the LMSE is used to measure this local error:

LMSEWAS(x) =
∫
V ′ e2(x)dx

V ′ = w(x)T C(x)w(x) (10)
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The formulation of LMSE is similar to MSE, except that
the weight and C change with x, where V ′ denotes the
region around the observed point and C is the error matrix.
And the weights are calculated as

w(x) = (C(x)−11)

(1T C(x)−11)
(11)

Similar to (8), the solution of (11) may include negative
weights as well as weights with values larger than one.
Viana et al. suggested to solve (8) using only the diagonal
elements of C to enforce positivity. In this paper, we solve
(11) by using the diagonal elements of C if the solution
based on the full elements of C include negative weights or
weight values larger than one.

3.2 Approximating the local error of the region
around the observed points

The local error of the region around an observed point is
not only related to the error of the observed point, but also
related to the error of the nearby observed points. Thus, we
approximate the elements of the C matrix by using an error
measure vector. The elements of C matrix are defined in
(12), as

cij (x) = e∗
i (x)

T • e∗
j (x)

v
(12)

where e∗
i (x) is the local error measure vector of the ith

surrogate at x, and it represents the local error of the region
around x. The parameter v denotes the vector dimension of
e∗
i (x). The local error measure vector of an observed point is
constructed with the local error measure of nearby observed
points. Meanwhile, the distances between observed points
are used to correct the local error measure vector. A new
local error measure named GLE, which combines the global
error measure and the local error measure, is employed
to prevent the bias in error estimation of the local error
measure.

The details regarding the calculation of e∗
i (x) at each

observed point will be shown later in this section.

3.2.1 The combination of the global error measure
and the local error measure

Some researchers built average ensemble models using
GMSE, and GMSE is a good criterion for the global error
to determine weights in the average ensemble model. It
is difficult to further improve the accuracy of the average
ensemble model due to the constant weights. There are
also some researches who built pointwise ensemble models
using pointwise cross-validation error. The accuracy of
the pointwise ensemble model may improve due to the
pointwise weights. However, the improvement depends on

the accuracy of the local error measure. The accuracy of
the pointwise ensemble model may be poor only if the
local error measure at an observed point is inaccurate
although the local error measure at the other observed points
is accurate.

In this paper, we combine the GMSE and the pointwise
cross-validation error to enhance the accuracy of the local
error measure, as

ei(x) = GMSEi • CVi(x) (13)

where ei(x) is the local error measure of the ith surrogate at
x, GMSEi is the generalized mean square cross-validation
error of the ith surrogate, and CVi(x) is the pointwise
cross-validation error of the ith surrogate at x.

A similar form of the formula in (13) was first put
forward by Liu et al. (2016). Liu et al. proposed that the
weight at an observed point of the individual surrogate with
the smallest absolute value of ei(x) is equal to one while the
other individual surrogates have zero weights. The absolute
value of ei(x) is used to identify the individual surrogate
with the best accuracy at an observed point. In other words,
only the order of the ei(x) is used to determine the weights.
In the current work, however, the value of ei(x) is used to
calculate weights. In the approach of Liu et al., one only
needs to be able to precisely identify the most accurate
individual surrogate based on ei(x). In the current approach,
however, the value of ei(x) needs to be able to reflect the
local error of the ith surrogate at x.

3.2.2 Use of the nearby observed points

The local error measure vector of an observed point is
constructed with the local error measure of nearby observed
points. On the one hand, the local error measure vector at
an observed point represents the local error of the region
around this observed point. Thus, all the observed points
in the region should be utilized to construct the local error
measure. On the other hand, constructing the local error
measure vector using nearby points is also a way to prevent
the bias in error estimation of the local error measure.

Thus, e∗
i (x) at each observed point is calculated by

e∗
i (x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ei(x1) • li (x1)
ei(x2) • li (x2)
...
ei(xj ) • li (xj )

...
ei(xm) • li (xm)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

where e∗
i (x) is the error measure vector of the ith surrogate

at x, ei(xj ) is the local error measure of the ith surrogate

Yifan Ye et al. 532



at xj , and m is the total number of observed points. where
li (xj ) is the weight of the ith surrogate at xj :

li (xj ) =
⎧
⎨

⎩

1 d(xj , x) = dlow

dinv dlow < d(xj , x) ≤ dhigh

0 dhigh < d(xj , x)

dlow = min
1≤j,k≤n;j �=k

d(xj .xk)

dhigh = average
1≤j,k≤n;j �=k

d(xj .xk) (15)

where d(xj , x) is the Euclidean distance between the
observed points xj and x, dinv denotes the inverse-distance
relative conversion value, and dlow and dhigh denote
the upper and lower bounds of distance, respectively. In
particular, dlow is defined as the minimum value of the
distance among all the observed points, and dhigh is defined
as the average value of the distance among all the observed
points.

For each observed point x, the value of li (xj ) at the
observed point xj is equal to one if the distance between
xj and x is less than dlow, the value of li (xj ) is zero
if the distance between xj and x is greater than dhigh,
and the value of li (xj ) is set as dinv if the distance
between xj and x is within the upper and lower bounds of
distance.

The dinv satisfies

dinv =
{
1 d(xj , x) = dlow

0 d(xj , x) = dhigh

d
′
inv =

{
0 d(xj , x) = dlow

0 d(xj , x) = dhigh

(16)

where d
′
inv is the first derivative function of dinv .

Thus, the following third-order polynomial is employed
to calculate d̄inv in this paper:

dinv = 2d(xj , xk)
3 − 3d(xj , xk)

2 + 1

d(xj , xk) = (d(xj ,xk)−dlow)

dhigh−dlow

(17)

3.3 The optimal pointwise weighted ensemble

Figure 1 shows the flowchart of the proposed OPWE. And
the following points need to be explained:

1. The method described in Section 3.2 is employed in
this paper to calculate the error measures (LMSE) at
observed points. This method combines the global error
measure and the local error measure based on the
formula in (13). The nearby points are used to construct
the local error measure vector to prevent the negative
influence from inaccurate pointwise cross-validation
error at an observed point.

Fig. 1 The flowchart of the proposed OPWE

2. The method described in Section 3.1 is adopted in
this paper to determine the weights at observed points.
The LMSE is proposed to represent the local error of
the region around the observed point, and the OPWE
is obtained from the minimization of the LMSE as
described in (10). In addition, the solution of (10) is
obtained by using Lagrange multipliers as (11).

3. The weights at unobserved points are predicted by
referring to the inverse-distance weighted formulas (9).

3.4 The pointwise ensemblemodels based on GLE

In order to verify the performance of OPWE, two pointwise
ensemble models based on GLE are proposed in this paper
and they are compared to the other ensemble models in the
numerical procedure.

Ensemble model A Ensemble model A is a pointwise
ensemble model. In this model, the weight of the individual
surrogate with the smallest local error measure is set
equal to one while the other individual surrogates have
zero weights. The local error measure used in this model
is the GLE proposed in Section 3.2.1. The weights at
unobserved points are predicted according to the inverse-
distance weighted formulas (9).
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Ensemble model B Ensemble model B is also a pointwise
ensemble model. The weights at observed points are
calculated by

wi(x) = e2i (x)∑n
j=1 e2j (x)

(18)

where n is the total number of the individual surrogates
and ei(x) is the local error measure of the ith surrogate
at x, and the local error measure is the GLE proposed
in Section 3.2.1. The weights at unobserved points
are predicted according to the inverse-distance weighted
formulas (9).

Summary The ensemble models A and B are similar to the
ensemble models proposed by Acar (2010) except for the
local error measure. Ensemble model A is also similar to
the ensemble model proposed by Liu (2016) except for the
inverse-distance weighted formulation.

In ensemble model A, the order of GLE is used to
determine the best individual surrogate model at observed
points, and the weight of the best individual surrogate is
set equal to one while the other individual surrogates have
zero weights. And in ensemble model B, the value of GLE
is used to calculate the weight factors at observed points.
Ideally, ensemble model A is more accurate than ensemble
model B if the GLE is accurate enough to determine the
best individual surrogate. However, one may obtain bad
weights if there are some cases with bias in error estimation
of GLE. In such cases, ensemble model B is more robust
than ensemble model A since the weights in model B are
calculated by using the local error measure of all individual
surrogates. Thus, one obtains better weights with ensemble
model B than ensemble model A if there is obvious bias in
error estimation of the local error measure.

4 Reference example problems

To verify the performance of the proposed ensemble model
in this paper, we consider six well-known mathematical
problems and four engineering problems.

4.1 Mathematical problems

4.1.1 Branin-Hoo function (two variables)

y (x1, x2) =
(

x2 − 5.1x21
4π2 + 5x1

π
− 6

)2

+10
(
1 − 1

8π

)
cos (x1) + 10

(19)

where x1 ∈ [−5, 10] and x2 ∈ [0, 15].

4.1.2 Camelback function (two variables)

y (x1, x2) =
(

4 − 2.1xx
1 + x41

3

)

x2
1

+x1x2 + (−4 + 4xx
x

)
xx
x

(20)

where x1 ∈ [−3, 3] and x2 ∈ [−2, 2].

4.1.3 Glodstein-Price function (two variables)

y (x1, x2) = [ 1 + (x1 + x2 + 1)2

× ( 19 − 4x1 + 3x2
1

−14x2 + 6x1x2 + 3x2
2 ) ]

× [ 30 + (2x1 − 3x2)
2

× ( 18 − 32x1 + 12x2
1

+48x2 − 36x1x2 + 27x2
2 ) ] (21)

where x1, x2 ∈ [−2, 2].

4.1.4 Hartman function (six variables)

y(x) = −
m∑

i=1

ci exp

⎡

⎣−
n∑

j=1

aij

(
xj − pij

)2

⎤

⎦ (22)

where xi ∈ [0, 1]. Here, the six-variable model (m=6) of
Hartman function is considered and m is taken as four. The
values of the function parameters ci , aij and pij are taken
from Goel et al. (2007), and they are provided in Table 1.

4.1.5 Extended Rosenbrock function (nine variables)

y(x) = −
m−1∑

i=1

[

(1 − xi)
2 + 100

(
xi+1 − x2

i

)2
]

(23)

where xi ∈ [−5, 10]. Here, the nine-variable model (m=9)
of extended Rosenbrock function is considered.

Table 1 Parameters used in the six-variable Hartman function (j=1,...,6)

i aij ci pij

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.05 10.0 17.0 0.1 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3.0 3.5.0 1.7.0 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.665

4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Fig. 2 The cross-section of the four variable I-beam design

4.1.6 Dixon-Price function (twelve variables)

y(x) = (x1 − 1)2 +
m∑

i=2

i
[
2x2

i − xi−1

]2
(24)

where xi ∈ [−10, 10]. Here, the 12-variable model (m=12)
of Dixon-Price function is considered.

4.2 Engineering problems

4.2.1 Four variable I-beam

This four variable I-beam problem (see Fig. 2) is taken from
Messac and Mullur (2008). The response for this problem is

the maximum bending stress developed in the beam, which
is calculated from

σmax =
P
2

x1
2

I

I = 1

12

[
x2x

3
1 − (x2 − x3) (x1 − 2x4)

3
]

(25)

The ranges of the design variables are taken as 0.1m ≤
x1, x2 ≤ 0.8m and 0.009m ≤ x3, x4 ≤ 0.05m as specified
in Messac and Mullur.

4.2.2 Fortini’s clutch

The Fourtini’s clutch problem (see Fig. 3) is taken from
Lee and Kwak (2006). The response for this problem is the
contact angle, which is calculated from

y = arccos

[
x1 + 0.5 (x2 + x3)

x4 − 0.5 (x2 + x3)

]

(26)

The ranges of the design variables are shown in Table 2.

4.2.3 Lavel nozzle

A finite volume (FV) model of a Lavel nozzle shown in
Fig. 4 is used for flow simulation using the commercial
software of CFD, FLUENT. In this example, surrogate
models are constructed to estimate the thrust and mass flow
rate. The responses are calculated from

qm =
∫

Ao

(ρv) dA

F =
∫

Ao

[
ρv2 + (p − p0)

]
dA (27)

where, F denotes the thrust, qm denotes the mass flow
rate, Ao denotes the nozzle outlet, ρ is the flow density at
nozzle outlet, v is the flow velocity at nozzle outlet, p is the
flow static pressure at nozzle outlet, and p0 is the standard
atmospheric pressure. The input variables include the nozzle

Fig. 3 The clutch assembly
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Table 2 The ranges of the design variables for Fortini’s clutch problem

Variable name Low limit Up limit

x1 55.0917 55.4883

x2 22.8492 22.8708

x3 22.8492 22.8708

x4 101.4017 101.7983

pressure ratio (NPR, the ratio of total pressure at nozzle inlet
to standart atomspheric presure) and expansion angle (α, see
in Fig. 4). And the ranges of input variables are taken as
2 ≤ NPR ≤ 15 and 20 ≤ α ≤ 50.

4.2.4 Variable cycle engine

The variable cycle engine problem (VCE, see Fig. 5) is
taken from Zhang et al. (2016). The thrust and specific
fuel consumption (sfc) under subsonic cruise condition
(Flight Mach number=0.9, Flight altitude=11000m) are the
responses for this problem. The ranges of design variables
are shown in Table 3.

5 Numerical procedure

The numerical procedure is similar to the publicly available
document (Acar 2010) to better evaluate and study
the improvement of OPWE. The example problems are
considered in this paper with varying dimensions (from 2 to
12) and selected numbers of training points. For all example
problems, the Latin hypercube sampling (LHS) technique is
adopted to generate the training points. The training points

are generated with the MATLAB routine “lhsdesign” and
“maximin” criterion with the maximum iteration number
of 1000. And the computational time of building each
ensemble model is calculated with the MATLAB routine
“tic” and “toc.” Meanwhile, random sampling is utilized to
generate 1000 test points for each training set. It is noted
that the performance of the surrogate model may vary as
the training set changes. Thus, some training and test sets
are generated to reduce the effect of random sampling.
The number of the training and test sets decreases as
the dimension of the test problem increases to save the
computational cost. In Table 4, we summarized the training
and test data used in each problem.

Four different individual surrogates are considered:
PRS, RBF, KRG, and GP. We used the SURROGATES
Toolbox (2011) to build these individual surrogates. The
SURROGATES Toolbox fits the kriging model using the
DACE toolbox of Lophaven et al. (2002), fits the Gaussian
process model using the GPML toolbox of Rasmussen
and Williams (2006), and fits the radial basis function
model using the RBF toolbox of Jekabsons (2009). In the
case of kriging, both the constant trend model, KRG0,
and the linear trend model KRG1 are used. Therefore, the
ensemble of surrogates is composed of five members. The
PRS surrogate is represented by fully quadratic polynomial.
The RBF surrogate is based on multi-quadric formulation
with the constant c = 1. In the kriging surrogates KRG0
and KRG1, a Gaussian correlation function is used. The
covariance function in the GP surrogate is selected as
the squared exponential function with automatic relevance
determination distance measure.

In order to explore the effect of the number of individual
surrogates, three tests with different individual surrogates

Fig. 4 Three views of Lavel
nozzle
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Fig. 5 Variable cycle engine

are considered. The number of individual surrogates in the
three tests is 5, 4, and 3, respectively. In Table 5, we show
the individual surrogates used in each test.

All the ensemble models considered in the numerical
procedure have already been described in detail. The
ensemble models based on the heuristic method by Goel
et al. (2007) is labeled as EG; the spatial model by Acar
(2010) is labeled as SP; the OWSdiag by Viana (2009) is
labeled as Od; the OPWE proposed in the current work is
labeled as OP; and the two other ensemble models described
in Section 3.4 are labeled as EA and EB, respectively.

6 Results and discussion

In this section, the root mean square error (RSME) is
chosen as the error metric of interest. The error values are
normalized with respect to the most accurate individual
surrogate to provide a better comparison of different
models. And the most accurate individual surrogates and
ensemble models are marked in bold.

In Table 6, we show the mean values of RMSE
over various training and test sets for all mathematical
test problems. Wherein, the numbers in the bracket are
the rank of the accuracy of ensemble models. And in

Table 3 The ranges of the design variables for VCE problem

Variable name Low limit Up limit

Fan design bypass ratio 0.1 0.7

Fan design pressure ratio 3 4.5

CDFS design bypass ratio 0.2 0.5

CDFS design pressure ratio 1.2 1.8

HPC design pressure ratio 5 9

Burner outlet temperature(K) 1650 1950

Fan relative speed 0.7 1

CDFS inlet guide vane angle 0 45

LPT nozzle area (%) 70 130

FVABI inner duct area (%) −50 50

RVABI inner duct area (%) −50 50

Table 10, we show the computational time among different
ensemble models for all mathematical test problems.
Wherein, the numbers in the bracket are the normalized
computational time, which is normalized with respect to
the ensemble model with the fastest modeling speed.
Tables 7 and 8 show the comparison of normalized RMSE
of individual surrogate and ensemble of surrogates for
all mathematical test problems with varying numbers of
individual surrogates. Table 9 shows the comparison of
normalized RMSE of individual surrogate and ensemble
of surrogates for all engineering problems. Wherein, the
numbers in the bracket are the rank of the accuracy of
ensemble models.

By comparing the accuracy of individual surrogates with
the different number of points in the training set, it is
revealed that the best individual surrogate may change
as the number of points in the training set increases for
the same test problem. This indicates that the accuracy
of individual surrogate depends heavily on the training
set. The sequential sampling optimization is an efficient
optimization framework using surrogate. The sequential
sampling procedure continuously generates new observed
points until the end of optimization, and of course, it causes
a change in the training set. Thus, it is not suitable to
use only a certain surrogate model in sequential sampling
optimization. However, it is noted that using the ensemble
model is much more time-consuming.

As the number of points in the training set increases,
the deviation of accuracy for the most accurate individual
surrogate and the ensemble models increases in most test
problems. However, SP, EA, EB, and OP are more robust
than Od. This is because the accuracy of local error measure
continuously increases as the number of points in the
training set increases. It is also noted that OP exhibits
excellent stability along with the increase of the number
of points in the training set in comparison with the other
ensemble models.

EA is more accurate than SP in most test problems.
The difference between EA and SP is only the local
error measure. This indicates that GLE is a more accurate
criterion for the local error than the cross-validation error. It
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Table 4 Summary of training and test data used in each test problem

Problem Number of Number of points Number of points Number of training

dimension in a training set in a test set and test sets

Branin-Hoo (BH) 2 12/24/36 1000 1000

Camelback (Ca) 2 12/24/36 1000 1000

Glodstein-Price (GP) 2 12/24/36 1000 1000

Hartman (Ha) 6 56/112 1000 300/200

ExtendedRosen (ER) 9 110/220 1000 100/50

DixonPrice (DP) 12 182/364 1000 30/20

I-beam 4 30 1000 1000

Fortini’s clutch 4 30 1000 1000

Lavel nozzle 2 12 30 1

VCE 11 100 50 1

is also noted that for several low-dimensional test problems
(dimension≤5), SP shows better accuracy than EA. The
cross-validation error provides the local information, and
the GLE provides the local and global information. If the
cross-validation error is an accurate enough criterion for the
local error for a certain test problem, the global information
provided by GLE is useless or even harmful for constructing
an accurate ensemble model. For example, for the Nozzle
flow rate (12.) test problem, SP is more accurate than EA.
And it is found that SP is also more accurate than the best
individual surrogate obviously. This indicates that the cross-
validation error is accurate enough to represent the local
error for this test problem.

EB is more accurate than EA in most low-dimensional
test problems. This indicates that there is bias in error
estimation of GLE. This bias raises the probability for EA
to gain bad ensemble models. The deviation in accuracy
between EB and EA is enlarged as the number of individual
surrogate increases. This is because the increase of the
number of individual surrogate raises the probability for
bias in error estimation of GLE. It is also noted that EA
is more accurate than EB in most of high-dimensional test
problems (dimension≤6). This indicates that GLE is an
accurate criterion of local error for these test problems.

OP is more accurate than EA and EB in most test
problems. This implies that using OP with GLE is better
than EA and EB in determining the weight factors. The
pointwise weights are calculated by minimizing LMSE in
OP, wherein LMSE is defined as a representative for the

Table 5 The individual surrogates used in each test

PRS RBF KRG0 KRG1 GP

Test 1
√ √ √ √ √

Test 2
√ √ √ √ ×

Test 3
√ √ √ × ×

error of the region near the observed points. This method not
only offers more efficient use of local error measure but also
prevents the bias in error estimation of GLE. Altogether, OP
can be utilized to prevent the bias in error estimation of GLE
for local error and to improve the accuracy and robustness
of ensemble models due to the efficient use of GLE. It is
also noted that for several low-dimensional test problems,
EB shows better accuracy than OP. In EB and OP, the GLE
provides the local information of an observed point, and the
LMSE provides the local information of several observed
points. Thus, if the local information of an observed point
can reflect the local error accurately at observed points,
the local information of the other observed points provided
by LMSE is useless or even harmful for constructing an
accurate ensemble model.

It can be seen from Table 10 that the computational
time of building OP is more than that of building the other
ensemble models considered in this paper.

Except for building the individual surrogate model, the
most time-consuming procedure in building the ensemble
models considered in this paper (EG, Od, SP, EA, EB, and
OP) is calculating the surrogate error measure. The data-
based error measure is used in these ensemble models. The
individual surrogate need to rebuilt n times to provide the
cross-validation error for data-based error measure, where
the n is the number of points in the training set. Thus,
the computational time of calculating the surrogate error
measure depends on the type of individual surrogate, the
dimension of test problem, and the number of points in the
training set.

Another time-consuming procedure in OP is calculating
the distance between each observed point. The computa-
tional time of this procedure depends on the dimension of
the test problem and the number of points in the training set.

As the number of points in the training set increases,
the computational time of computing surrogate error
measure increases. Thus, the computational time of building
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Table 6 Comparison of the normalized RMSE of individual surrogate and ensemble of surrogates for the all mathematical test problems with five
individual surrogates

RMSEa Individual surrogate Ensemble of surrogates

RBF KRG0 PRS KRG1 GP EG Od SP EA EB OP

BH(12.) 1.24 1.00 1.56 1.01 3.11 1.13(5) 1.07(2) 1.13(5) 1.09(4) 1.07(2) 1.06(1)

BH(24.) 1.00 1.42 1.78 1.47 3.28 1.07(6) 1.03(5) 1.00(2) 1.01(4) 0.98(1) 1.00(2)

BH(36.) 1.00 1.57 2.32 1.58 3.88 1.09(6) 1.01(5) 0.97(3) 0.97(3) 0.95(1) 0.96(2)

Ca(12.) 1.02 1.25 1.00 1.29 1.43 1.11(3) 1.10(2) 1.13(6) 1.12(5) 1.11(3) 1.09(1)

Ca(24.) 1.00 1.58 1.27 1.63 1.61 1.17(3) 1.15(1) 1.21(6) 1.18(5) 1.17(3) 1.15(1)

Ca(36.) 1.44 1.00 2.47 1.03 2.52 1.21(5) 1.11(3) 1.21(5) 1.12(4) 1.10(2) 1.05(1)

GP(12.) 1.01 1.00 1.25 1.02 1.17 1.00(1) 1.00(1) 1.03(5) 1.04(6) 1.01(3) 1.01(3)

GP(24.) 1.27 1.00 2.00 1.02 1.44 1.10(6) 1.09(5) 1.08(3) 1.09(4) 1.07(2) 1.06(1)

GP(36.) 1.70 1.00 3.73 1.03 1.79 1.23(6) 1.18(5) 1.12(4) 1.11(3) 1.08(1) 1.08(1)

Ha(56.) 1.21 1.00 1.37 1.04 1.46 1.05(6) 1.03(4) 1.03(4) 1.01(1) 1.02(3) 1.01(1)

Ha(112.) 1.25 1.00 1.36 1.03 1.72 1.04(5) 1.03(4) 1.04(5) 1.02(2) 1.02(2) 1.01(1)

ER(110.) 1.00 2.03 1.08 1.57 4.44 1.19(6) 1.05(4) 1.09(5) 1.01(2) 1.03(3) 0.98(1)

ER(220.) 1.02 2.12 1.00 1.61 5.16 1.22(6) 1.06(4) 1.13(5) 1.03(2) 1.05(3) 0.98(1)

DP(182.) 1.32 2.37 1.00 2.45 5.97 1.42(6) 1.12(4) 1.13(5) 1.03(2) 1.06(3) 0.97(1)

DP(364.) 1.34 2.79 1.00 2.84 7.28 1.52(6) 1.15(4) 1.19(5) 1.07(2) 1.11(3) 1.02(1)

Average 1.188 1.475 1.605 1.441 3.085 1.170(6) 1.079(4) 1.100(5) 1.060(3) 1.056(2) 1.029(1)

Variance 0.044 0.351 0.582 0.308 3.607 0.020(5) 0.003(1) 0.06(5) 0.003(1) 0.003(1) 0.003(1)

a The RMSE are normalized with respect to the most accurate individual surrogate. And the most accurate individual surrogates and ensemble
models are italicized.

Table 7 Comparison of the normalized RMSE of individual surrogate and ensemble of surrogates for the all mathematical test problems with four
individual surrogates

RMSEa Individual surrogate Ensemble of surrogates

RBF KRG0 PRS KRG1 EG Od SP EA EB OP

BH(12.) 1.24 1.00 1.58 1.00 1.05(1) 1.05(1) 1.09(5) 1.09(5) 1.06(4) 1.05(1)

BH(24.) 1.00 1.41 1.78 1.45 0.99(2) 1.00(5) 0.99(2) 1.00(5) 0.98(1) 0.99(2)

BH(36.) 1.00 1.58 2.29 1.58 0.99(5) 0.98(4) 0.99(5) 0.97(2) 0.96(1) 0.97(2)

Ca(12.) 1.01 1.25 1.00 1.28 1.06(6) 1.05(3) 1.05(3) 1.05(3) 1.04(1) 1.04(1)

Ca(24.) 1.00 1.56 1.27 1.60 1.12(5) 1.10(1) 1.13(6) 1.11(3) 1.10(1) 1.11(3)

Ca(36.) 1.43 1.00 2.46 1.03 1.08(5) 1.04(2) 1.11(6) 1.07(4) 1.05(3) 1.02(1)

GP(12.) 1.01 1.00 1.14 1.01 0.98(1) 0.98(1) 1.00(5) 1.00(5) 0.98(1) 0.98(1)

GP(24.) 1.27 1.00 2.01 1.02 1.08(5) 1.08(5) 1.04(1) 1.06(4) 1.04(1) 1.04(1)

GP(36.) 1.71 1.00 3.77 1.03 1.20(6) 1.15(5) 1.10(4) 1.09(3) 1.06(1) 1.06(1)

Ha(56.) 1.22 1.00 1.38 1.04 1.02(5) 1.01(3) 1.02(5) 1.00(1) 1.01(3) 1.00(1)

Ha(112.) 1.24 1.00 1.37 1.03 1.02(5) 1.01(2) 1.02(5) 1.01(2) 1.01(2) 1.00(1)

ER(110.) 1.00 2.03 1.07 1.56 1.10(6) 1.03(3) 1.07(5) 1.02(2) 1.03(3) 0.98(1)

ER(220.) 1.01 2.12 1.00 1.60 1.12(6) 1.04(3) 1.09(5) 1.02(2) 1.04(3) 0.99(1)

DP(182.) 1.28 2.31 1.00 2.37 1.27(6) 1.09(4) 1.10(5) 1.01(2) 1.04(3) 0.97(1)

DP(364.) 1.35 2.81 1.00 2.84 1.40(6) 1.15(4) 1.21(5) 1.07(2) 1.11(3) 1.02(1)

Average 1.186 1.471 1.608 1.421 1.099(6) 1.050(4) 1.067(5) 1.038(3) 1.034(2) 1.016(1)

Variance 0.044 0.346 0.591 0.298 0.013(6) 0.003(4) 0.004(5) 0.002(1) 0.002(1) 0.002(1)

a The RMSE are normalized with respect to the most accurate individual surrogate. And the most accurate individual surrogates and ensemble
models are italicized.
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Table 8 Comparison of the normalized RMSE of individual surrogate and ensemble of surrogates for the all mathematical test problems with
three individual surrogates

RMSEa Individual surrogate Ensemble of surrogates

RBF KRG0 PRS EG Od SP EA EB OP

BH(12.) 1.24 1.00 1.56 1.10(6) 1.08(2) 1.09(5) 1.08(2) 1.08(2) 1.07(1)
BH(24.) 1.00 1.37 1.76 0.99(4) 0.99(4) 0.98(3) 0.99(4) 0.96(1) 0.97(2)
BH(36.) 1.00 1.55 2.32 1.00(6) 0.97(5) 0.95(3) 0.96(4) 0.92(1) 0.93(2)
Ca(12.) 1.01 1.25 1.00 1.02(2) 1.01(1) 1.04(5) 1.04(5) 1.02(2) 1.02(2)
Ca(24.) 1.00 1.56 1.28 1.07(1) 1.07(1) 1.13(6) 1.11(5) 1.08(3) 1.08(3)
Ca(36.) 1.49 1.00 2.56 1.23(6) 1.13(4) 1.14(5) 1.09(2) 1.09(2) 1.06(1)
GP(12.) 1.02 1.00 1.13 0.99(1) 0.99(1) 1.01(5) 1.01(5) 0.99(1) 0.99(1)
GP(24.) 1.25 1.00 2.00 1.14(6) 1.11(5) 1.05(1) 1.06(2) 1.06(2) 1.06(2)
GP(36.) 1.74 1.00 3.77 1.39(6) 1.24(4) 1.08(3) 1.07(1) 1.07(1) 1.08(3)
Ha(56.) 1.22 1.00 1.37 1.05(6) 1.03(5) 1.02(4) 1.00(1) 1.01(3) 1.00(1)
Ha(112.) 1.25 1.00 1.36 1.04(6) 1.03(5) 1.02(3) 1.01(1) 1.02(3) 1.01(1)
ER(110.) 1.00 2.04 1.08 1.06(6) 1.00(3) 1.04(5) 0.99(2) 1.00(3) 0.97(1)
ER(220.) 1.02 2.13 1.00 1.08(6) 1.01(2) 1.07(5) 1.01(2) 1.02(4) 0.98(1)
DP(182.) 1.30 2.34 1.00 1.14(6) 1.04(4) 1.08(5) 1.01(2) 1.03(3) 0.98(1)
DP(364.) 1.34 2.82 1.00 1.22(6) 1.08(3) 1.16(5) 1.05(2) 1.08(3) 1.02(1)
Average 1.192 1.471 1.613 1.100(6) 1.052(4) 1.057(5) 1.030(3) 1.028(2) 1.015(1)
Variance 0.048 0.355 0.605 0.012(6) 0.005(5) 0.003(4) 0.002(1) 0.002(1) 0.002(1)

a The RMSE are normalized with respect to the most accurate individual surrogate. And the most accurate individual surrogates and ensemble
models are italicized

Table 9 Comparison of the normalized RMSE of individual surrogate and ensemble of surrogates for the all engineering test problems with five
individual surrogates

RMSEa Individual surrogate Ensemble of surrogates
RBF KRG0 PRS KRG1 GP EG Od SP EA EB OP

Ibeam (30.) 1.00 1.75 1.44 1.45 1.12 1.08(6) 1.06(5) 1.05(4) 1.04(2) 1.04(2) 1.01(1)
Fortini (30.) 1.00 106.61 6.15 15.47 1.17 2.42(6) 1.86(5) 1.08(2) 1.09(4) 1.08(2) 1.03(1)
Nozzle flow rate (12.) 5.64 44.78 1.00 1.07 9.81 1.93(6) 1.34(5) 0.82(1) 0.87(4) 0.84(3) 0.82(1)
Nozzle thrust (12.) 1.13 5.61 2.42 1.00 1.33 1.17(6) 1.12(5) 1.04(4) 1.01(3) 0.98(1) 0.98(1)
VCE thrust (100.) 1.21 1.71 2.17 1.00 1.43 1.03(6) 1.01(5) 1.00(4) 0.97(2) 0.99(3) 0.96(1)
VCE sfc (100.) 1.55 1.55 2.19 1.00 2.43 1.34(6) 1.19(4) 1.24(5) 1.11(2) 1.15(3) 1.08(1)

a The RMSE are normalized with respect to the most accurate individual surrogate. And the most accurate individual surrogates and ensemble
models are italicized

Table 10 The computational time among different ensemble models for all mathematical test problems with five individual surrogates

Computational time (s) EG Od SP EA EB OP

BH(12.) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.036(1.24)
BH(24.) 0.067(1.00) 0.068(1.01) 0.067(1.00) 0.068(1.01) 0.068(1.01) 0.093(1.39)
BH(36.) 0.119(1.00) 0.119(1.00) 0.120(1.01) 0.120(1.01) 0.120(1.01) 0.177(1.49)
Ca(12.) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.029(1.00) 0.036(1.24)
Ca(24.) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.093(1.39)
Ca(36.) 0.117(1.00) 0.117(1.00) 0.117(1.00) 0.117(1.00) 0.117(1.00) 0.174(1.49)
GP(12.) 0.029(1.04) 0.029(1.04) 0.028(1.00) 0.029(1.04) 0.029(1.04) 0.035(1.25)
GP(24.) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.067(1.00) 0.092(1.37)
GP(36.) 0.116(1.00) 0.116(1.00) 0.116(1.00) 0.116(1.00) 0.117(1.01) 0.172(1.48)
Ha(56.) 0.259(1.00) 0.259(1.00) 0.259(1.00) 0.259(1.00) 0.258(1.00) 0.389(1.51)
Ha(112.) 0.918(1.00) 0.919(1.00) 0.918(1.00) 0.918(1.00) 0.918(1.00) 1.437(1.57)
ER(110.) 1.029(1.00) 1.028(1.00) 1.026(1.00) 1.030(1.00) 1.028(1.00) 1.521(1.48)
ER(220.) 5.257(1.00) 5.265(1.00) 5.267(1.00) 5.262(1.00) 5.267(1.00) 7.229(1.38)
DP(182.) 4.388(1.00) 4.388(1.00) 4.387(1.00) 4.386(1.00) 4.386(1.00) 5.755(1.31)
DP(364.) 36.26(1.00) 36.28(1.00) 36.28(1.00) 36.32(1.00) 36.29(1.00) 41.73(1.15)
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the ensemble models considered in this paper increases.
And the computational time of computing the distance
between each observed point also increases. For the high-
dimensional test problems, the increasing computation time
to compute the cross-validation error is more than that
to compute the distance between each observed point.
This is the reason why the normalized computational time
decreases as the number of points in the training set
increases for ExtendedRosen and DixonPrice test problems.

7 Conclusions

In this work, we propose an optimal pointwise weighted
ensemble (OPWE) method, wherein the optimal pointwise
weight factors are obtained based on minimization of
the local mean square error which is constructed by the
global-local error (GLE). Via six well-known mathematical
functions with varying dimensions and numbers of training
points and four engineering problems, it is proved that
the proposed OPWE is better than the other ensembles
of surrogates in terms of both accuracy and robustness.
GLE is a more accurate surrogate than the cross-validation
error for the local error at the observed points. The method
proposed in this paper can be utilized to prevent the bias in
error estimation of GLE for local error and to improve the
accuracy and robustness of ensemble models.
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